1
|
Koren V, Ben-Zeev E, Voronov I, Fridman M. Chiral Fluorescent Antifungal Azole Probes Detect Resistance, Uptake Dynamics, and Subcellular Distribution in Candida Species. JACS AU 2024; 4:3157-3169. [PMID: 39211628 PMCID: PMC11350599 DOI: 10.1021/jacsau.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Azoles are essential for fungal infection treatment, yet the increasing resistance highlights the need for innovative diagnostic tools and strategies to revitalize this class of antifungals. We developed two enantiomers of a fluorescent antifungal azole probe (1 S and 1 R ), analyzing 60 Candida strains via live-cell microscopy. A database of azole distribution images in strains of Candida albicans, Candida glabrata, and Candida parapsilosis, among the most important pathogenic Candida species, was established and analyzed. This analysis revealed distinct populations of yeast cells based on the correlation between fluorescent probe uptake and cell diameter. Varied uptake levels and subcellular distribution patterns were observed in C. albicans, C. glabrata, and C. parapsilosis, with the latter displaying increased localization to lipid droplets. Comparison of the more potent fluorescent antifungal azole probe enantiomer 1 S with the moderately potent enantiomer 1 R highlighted time-dependent differences in the uptake profiles. The former displayed a marked elevation in uptake after approximately 150 min, indicating the time required for significant cell permeabilization to occur and its association with the azole's antifungal activity potency. Divergent uptake levels between susceptible and high efflux-based azole-resistant strains were detected, offering a rapid diagnostic approach for identifying azole resistance. This study highlights unique insights achievable through fluorescent antifungal azole probes, unraveling the complexities of azole resistance, subcellular dynamics, and uptake within fungal pathogens.
Collapse
Affiliation(s)
- Vlad Koren
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Ben-Zeev
- Ilana
and Pascal Mantoux Institute for Bioinformatics and Nancy and Stephen
Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ivan Voronov
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Ramírez-Zavala B, Krüger I, Schwanfelder S, Barker KS, Rogers PD, Morschhäuser J. The zinc cluster transcription factor Znc1 regulates Rta3-dependent miltefosine resistance in Candida albicans. mSphere 2024; 9:e0027024. [PMID: 38860767 PMCID: PMC11288014 DOI: 10.1128/msphere.00270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Katherine S. Barker
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - P. David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Mahdizade AH, Hoseinnejad A, Ghazanfari M, Boozhmehrani MJ, Bahreiny SS, Abastabar M, Galbo R, Giuffrè L, Haghani I, Romeo O. The TAC1 Gene in Candida albicans: Structure, Function, and Role in Azole Resistance: A Mini-Review. Microb Drug Resist 2024; 30:288-296. [PMID: 38770776 DOI: 10.1089/mdr.2023.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Candidiasis is a common fungal infection caused by Candida species, with Candida albicans being the most prevalent. Resistance to azole drugs, commonly used to treat Candida infections, poses a significant challenge. Transcriptional activator candidate 1 (TAC1) gene has emerged as a key player in regulating drug resistance in C. albicans. This review explores the structure and function of the TAC1 gene and its role in azole resistance. This gene encodes a transcription factor that controls the expression of genes involved in drug resistance, such as efflux pump genes (CDR1, CDR2, and MDR1) and ERG11. Mutations in TAC1 can increase these genes' expression and confer resistance to azoles. Various TAC1 gene mutations, mostly gain-of-function mutations, have been identified, which upregulate CDR1 and CDR2 expression, resulting in azole resistance. Understanding the mechanisms of azole resistance mediated by the TAC1 gene is crucial for the strategies in the effective antifungal development pipeline.
Collapse
Affiliation(s)
- Amir Hossein Mahdizade
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akbar Hoseinnejad
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Ghazanfari
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Javad Boozhmehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Parasitology, Faculty of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Sobhan Bahreiny
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roberta Galbo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
McKenna JA, Garcia‐Ceron D, Bleackley MR, Yu L, Bulone V, Anderson MA. SUR7 deletion in Candida albicans impacts extracellular vesicle features and delivery of virulence factors. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e82. [PMID: 38938278 PMCID: PMC11080841 DOI: 10.1002/jex2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) from human fungal pathogens have been implicated in fungal virulence, yet little is known about their role in the host-pathogen interaction. Progress has been hampered by the lack of a specific marker for fungal EVs that can be used to monitor EV isolation and tracking in biological systems. Here we report the effect of a SUR7 gene knockout on the production, properties, and role of EVs in the virulence of Candida albicans. Sur7 is a component of the membrane compartment of Can1 (MCC) complex and is enriched in the EVs from C. albicans and other fungal species. MCC is a plasma membrane complex which together with the eisosome, a cytoplasmic protein complex, is a key regulator in plasma membrane organisation and plasma membrane associated processes. The SUR7 knockout strain produces smaller EVs than the wild-type (WT) with different protein and carbohydrate cargos. Furthermore, proteins with known roles in Candida pathogenesis were present in WT EVs and absent or diminished in the sur7Δ EVs. We demonstrate that the reduced virulence of the sur7Δ cells can be partially restored with EVs from a WT strain. These findings demonstrate the importance of Sur7-like proteins in the biogenesis of EVs in fungi and enhance our understanding of the role of fungal EVs in human pathogenesis.
Collapse
Affiliation(s)
- James A. McKenna
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Donovan Garcia‐Ceron
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Mark R. Bleackley
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| | - Long Yu
- School of Agriculture Food and WineThe University of Adelaide Waite CampusSAAustralia
- Centre for Marine Bioproducts Development, College of Medicine & Public HealthFlinders UniversitySAAustralia
| | - Vincent Bulone
- School of Agriculture Food and WineThe University of Adelaide Waite CampusSAAustralia
- Centre for Marine Bioproducts Development, College of Medicine & Public HealthFlinders UniversitySAAustralia
- Division of GlycoscienceDepartment of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH)AlbaNova University CentreStockholmSweden
| | - Marilyn A. Anderson
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityVICAustralia
| |
Collapse
|
5
|
Sun LL, Li H, Yan TH, Fang T, Wu H, Cao YB, Lu H, Jiang YY, Yang F. Aneuploidy Mediates Rapid Adaptation to a Subinhibitory Amount of Fluconazole in Candida albicans. Microbiol Spectr 2023; 11:e0301622. [PMID: 36853047 PMCID: PMC10101127 DOI: 10.1128/spectrum.03016-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
Candida albicans is a prevalent, opportunistic, human fungal pathogen. Antifungal drug resistance and tolerance are two distinct mechanisms of adaptation to drugs. Studies of mechanisms of drug resistance are limited to the applications of high doses of drugs. Few studies have investigated the effects of subinhibitory amounts of drugs on the development of drug resistance or tolerance. In this study, we found that growth in a subinhibitory amount of fluconazole (FLC), a widely used antifungal drug, for just a short time was sufficient to induce aneuploidy in C. albicans. Surprisingly, the aneuploids displayed fitness loss in the presence of subinhibitory FLC, but a subpopulation of cells could tolerate up to 128 μg/mL FLC. Particular aneuploidy (ChrR trisomy) caused tolerance, not resistance, to FLC. In the absence of FLC, the aneuploids were unstable. Depending on the karyotype, aneuploids might become completely euploid or maintain particular aneuploidy, and, accordingly, the tolerance would be lost or maintained. Mechanistically, subinhibitory FLC was sufficient to induce the expression of several ERG genes and as well as the drug efflux gene MDR1. Aneuploids had a constitutive high-level expression of genes on and outside the aneuploid chromosomes, including most of the ERG genes as well as the drug efflux genes MDR1 and CDR2. Therefore, aneuploids were prepared for FLC challenges. In summary, aneuploidy provides a rapid and reversible strategy of adaptation when C. albicans is challenged with subinhibitory concentrations of FLC. IMPORTANCE Genome instability is a hallmark of C. albicans. Aneuploidy usually causes fitness loss in the absence of stress but confers better fitness under particular stress conditions. Therefore, aneuploidy is considered to be a double-edged sword. Here, we extend the understanding of aneuploidy. We found that aneuploidy arose under weak stress conditions but that it did not confer better fitness to the stress. Instead, it was less fit than its euploid counterparts. If the stress was withdrawn, aneuploidy spontaneously reverted to euploidy. If the stress became stronger, aneuploidy enabled subpopulation growth in a dose-independent manner of the stress. Therefore, we posit that aneuploidy enables the rapid and reversible development of drug tolerance in C. albicans. Further studies are required to investigate whether this is a general mechanism in human fungal pathogens.
Collapse
Affiliation(s)
- Liu-liu Sun
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Li
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Fang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Lu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-ying Jiang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Yang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Biocontrol of Candida albicans by Antagonistic Microorganisms and Bioactive Compounds. Antibiotics (Basel) 2022; 11:antibiotics11091238. [PMID: 36140017 PMCID: PMC9495215 DOI: 10.3390/antibiotics11091238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an endogenous opportunistic pathogenic fungus that is harmless when the host system remains stable. However, C. albicans could seriously threaten human life and health when the body’s immune function declines or the normal flora is out of balance. Due to the increasing resistance of candidiasis to existing drugs, it is important to find new strategies to help treat this type of systemic fungal disease. Biological control is considered as a promising strategy which is more friendly and safer. In this review, we compare the bacteriostatic behavior of different antagonistic microorganisms (bacteria and fungi) against C. albicans. In addition, natural products with unique structures have attracted researchers’ attention. Therefore, the bioactive nature products produced by different microorganisms and their possible inhibitory mechanisms are also reviewed. The application of biological control strategies and the discovery of new compounds with antifungal activity will reduce the resistance of C. albicans, thereby promoting the development of novel diverse antifungal drugs.
Collapse
|
7
|
Nyuykonge B, Siddig EE, Konings M, Bakhiet S, Verbon A, Klaassen CHW, Fahal AH, van de Sande WWJ. Madurella mycetomatis grains within a eumycetoma lesion are clonal. Med Mycol 2022; 60:6643561. [PMID: 35833294 PMCID: PMC9335062 DOI: 10.1093/mmy/myac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Eumycetoma is a neglected tropical infection of the subcutaneous tissue, characterized by tumor-like lesions and most commonly caused by the fungus Madurella mycetomatis. In the tissue, M. mycetomatis organizes itself in grains, and within a single lesion, thousands of grains can be present. The current hypothesis is that all these grains originate from a single causative agent, however, this hypothesis was never proven. Here, we used our recently developed MmySTR assay, a highly discriminative typing method, to determine the genotypes of multiple grains within a single lesion. Multiple grains from surgical lesions obtained from 11 patients were isolated and genotyped using the MmySTR panel. Within a single lesion, all tested grains shared the same genotype. Only in one single grain from one patient, a difference of one repeat unit in one MmySTR marker was noted relative to the other grains from that patient. We conclude that within these lesions the grains originate from a single clone and that the inherent unstable nature of the microsatellite markers may lead to small genotypic differences.
Collapse
Affiliation(s)
- Bertrand Nyuykonge
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Emmanuel Edwar Siddig
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan.,Faculty of medical laboratory sciences, University of Khartoum, Khartoum, Sudan
| | - Mickey Konings
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Sahar Bakhiet
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | | | - Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
8
|
Bjørklund G, Pivin M, Hangan T, Yurkovskaya O, Pivina L. Autoimmune polyendocrine syndrome type 1: Clinical manifestations, pathogenetic features, and management approach. Clin Exp Rheumatol 2022; 21:103135. [PMID: 35690244 DOI: 10.1016/j.autrev.2022.103135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive hereditary pathology that develops with endocrine and non-endocrine manifestations in childhood. The classic triad of APS-1 includes chronic candidiasis of the skin and mucous membranes, adrenal insufficiency, and hypoparathyroidism. APS-1 is often accompanied by hypogonadism, type 1 diabetes, autoimmune thyroiditis, vitiligo, alopecia, asplenia, pneumonitis, gastritis, pernicious anemia, and intestinal dysfunction, nephritis, and hepatitis. The prevalence rate is highest in genetically isolated populations (up to 1:6500-1:9000). APS-1 occurs because of mutations in the autoimmune regulator (AIRE) gene, leading to a disrupted mechanism of normal antigen expression, the formation of abnormal clones of immune cells, and autoimmune damage to various organs. Analysis of the AIRE gene is the main diagnostic method for early detection of APS-1 and the choice of methods for its treatment. Timely genetic counseling makes it possible to identify the disease early, prescribe appropriate treatment and prevent serious complications. This paper analyzes scientific information characterizing clinical manifestations of autoimmune polyendocrine syndrome type 1 in association with its pathogenetic features, epidemiology, and current management.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | | | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania.
| | | | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| |
Collapse
|
9
|
Chen Z, Luo T, Huang F, Yang F, Luo W, Chen G, Cao M, Wang F, Zhang J. Kangbainian Lotion Ameliorates Vulvovaginal Candidiasis in Mice by Inhibiting the Growth of Fluconazole-Resistant Candida albicans and the Dectin-1 Signaling Pathway Activation. Front Pharmacol 2022; 12:816290. [PMID: 35140608 PMCID: PMC8819624 DOI: 10.3389/fphar.2021.816290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is an infectious disease caused by Candida species, which affects millions of women worldwide every year. The resistance to available antifungal drugs for clinical treatment is a growing problem. The treatment of refractory VVC caused by azole-resistant Candida is still facing challenges. However, research on new antifungal drugs is progressing slowly. Although a lot of reports on new antifungal drugs, only three new antifungal drugs (Isavuconazole, ibrexafungerp, and rezafungin) and two new formulations of posaconazole were marketed over the last decade. Chinese botanical medicine has advantages in the treatment of drug-resistant VVC, such as outstanding curative effects and low adverse reactions, which can improve patients’ comfort and adherence to therapy. Kangbainian lotion (KBN), a Chinese botanical formulation, has achieved very good clinical effects in the treatment of VVC. In this study, we investigated the antifungal and anti-inflammatory effects of KBN at different doses in fluconazole-resistant (FLC-resistant) VVC model mice. We further studied the antifungal mechanism of KBN against FLC-resistant Candida albicans (C. albicans) and the anti-inflammatory mechanism correlated with the Dectin-1 signaling pathway. In vivo and in vitro results showed that KBN had strong antifungal and anti-inflammatory effects in FLC-resistant VVC, such as inhibiting the growth of C. albicans and vaginal inflammation. Further studies showed that KBN inhibited the biofilm and hypha formation, reduced adhesion, inhibited ergosterol synthesis and the expression of ergosterol synthesis-related genes ERG11, and reduced the expression of drug-resistant efflux pump genes MDR1 and CDR2 of FLC-resistant C. albicans in vitro. In addition, in vivo results showed that KBN reduced the expression of inflammatory factor proteins TNF-α, IL-1β, and IL-6 in vaginal tissues, and inhibited the expression of proteins related to the Dectin-1 signaling pathway. In conclusion, our study revealed that KBN could ameliorate vaginal inflammation in VVC mice caused by FLC-resistance C. albicans. This effect may be related to inhibiting the growth of FLC-resistance C. albicans and Dectin-1 signaling pathway activation.
Collapse
Affiliation(s)
- Zewei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengshuo Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fengke Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuzhen Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Luo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanfeng Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengfei Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengyun Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jun Zhang, ; Fengyun Wang,
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jun Zhang, ; Fengyun Wang,
| |
Collapse
|
10
|
Ferré EMN, Schmitt MM, Lionakis MS. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Front Pediatr 2021; 9:723532. [PMID: 34790633 PMCID: PMC8591095 DOI: 10.3389/fped.2021.723532] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome type-1 (APS-1), is a rare monogenic autoimmune disease caused by loss-of-function mutations in the autoimmune regulator (AIRE) gene. AIRE deficiency impairs immune tolerance in the thymus and results in the peripheral escape of self-reactive T lymphocytes and the generation of several cytokine- and tissue antigen-targeted autoantibodies. APECED features a classic triad of characteristic clinical manifestations consisting of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and primary adrenal insufficiency (Addison's disease). In addition, APECED patients develop several non-endocrine autoimmune manifestations with variable frequencies, whose recognition by pediatricians should facilitate an earlier diagnosis and allow for the prompt implementation of targeted screening, preventive, and therapeutic strategies. This review summarizes our current understanding of the genetic, immunological, clinical, diagnostic, and treatment features of APECED.
Collapse
Affiliation(s)
| | | | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
11
|
Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother 2021; 75:257-270. [PMID: 31603213 DOI: 10.1093/jac/dkz400] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cheshta Sharma
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
12
|
Moorhouse AJ, Moreno-Lopez R, Gow NAR, Hijazi K. Clonal evolution of Candida albicans, Candida glabrata and Candida dubliniensis at oral niche level in health and disease. J Oral Microbiol 2021; 13:1894047. [PMID: 33796227 PMCID: PMC7971237 DOI: 10.1080/20002297.2021.1894047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background:Candida species have long been recognised as aetiological agents of opportunistic infections of the oral mucosa, and more recently, as players of polymicrobial interactions driving caries, periodontitis and oral carcinogenesis. Methods: We studied the clonal structure of Candida spp. at oral niche resolution in patients (n = 20) with a range of oral health profiles over 22 months. Colonies from oral micro-environments were examined with multilocus sequencing typing. Results:Candida spp. identified were C. albicans, C. glabrata and C. dubliniensis. Increased propensity for micro-variations giving rise to multiple diploid strain types (DST), as a result of loss of heterozygosity, was observed among C. albicans clade 1 isolates compared to other clades. Micro-variations among isolates were also observed in C. dubliniensis contra to expectations of stable population structures for this species. Multiple sequence types were retrieved from patients without clinical evidence of oral candidosis, while single sequence types were isolated from oral candidosis patients. Conclusion: This is the first study to describe the clonal population structure, persistence and stability of Candida spp. at oral niche level. Future research investigating links between Candida spp. clonality and oral disease should recognise the propensity to micro-variations amongst oral niches in C. albicans and C. dubliniensis identified here.
Collapse
Affiliation(s)
- Alexander J Moorhouse
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Rosa Moreno-Lopez
- Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Neil A R Gow
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology at The University of Exeter, University of Exeter, UK
| | - Karolin Hijazi
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
13
|
Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev 2020; 49:2426-2480. [PMID: 32140691 DOI: 10.1039/c9cs00556k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.
Collapse
Affiliation(s)
- Kaitlind C Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | | | | | |
Collapse
|
14
|
Dennis EK, Kim JH, Parkin S, Awuah SG, Garneau-Tsodikova S. Distorted Gold(I)–Phosphine Complexes as Antifungal Agents. J Med Chem 2019; 63:2455-2469. [DOI: 10.1021/acs.jmedchem.9b01436] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Emily K. Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Jong Hyun Kim
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Sean Parkin
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Samuel G. Awuah
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
15
|
Shi HZ, Chang WQ, Zhang M, Lou HX. Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation. Chin J Nat Med 2019; 17:209-217. [PMID: 30910057 DOI: 10.1016/s1875-5364(19)30023-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/25/2022]
Abstract
Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.
Collapse
Affiliation(s)
- Hong-Zhuo Shi
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Wen-Qiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ming Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
16
|
Spettel K, Barousch W, Makristathis A, Zeller I, Nehr M, Selitsch B, Lackner M, Rath PM, Steinmann J, Willinger B. Analysis of antifungal resistance genes in Candida albicans and Candida glabrata using next generation sequencing. PLoS One 2019; 14:e0210397. [PMID: 30629653 PMCID: PMC6328131 DOI: 10.1371/journal.pone.0210397] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction/Objectives An increase in antifungal resistant Candida strains has been reported in recent years. The aim of this study was to detect mutations in resistance genes of azole-resistant, echinocandin-resistant or multi-resistant strains using next generation sequencing technology, which allows the analysis of multiple resistance mechanisms in a high throughput setting. Methods Forty clinical Candida isolates (16 C. albicans and 24 C. glabrata strains) with MICs for azoles and echinocandins above the clinical EUCAST breakpoint were examined. The genes ERG11, ERG3, TAC1 and GSC1 (FKS1) in C. albicans, as well as ERG11, CgPDR1, FKS1 and FKS2 in C. glabrata were sequenced. Results Fifty-four different missense mutations were identified, 13 of which have not been reported before. All nine echinocandin-resistant Candida isolates showed mutations in the hot spot (HS) regions of FKS1, FKS2 or GSC1. In ERG3 two homozygous premature stop codons were identified in two highly azole-resistant and moderately echinocandin-resistant C. albicans strains. Seven point mutations in ERG11 were determined in azole-resistant C. albicans whereas in azole-resistant C. glabrata, no ERG11 mutations were detected. In 10 out of 13 azole-resistant C. glabrata, 12 different potential gain-of-function mutations in the transcription factor CgPDR1 were verified, which are associated with an overexpression of the efflux pumps CDR1/2. Conclusion This study showed that next generation sequencing allows the thorough investigation of a large number of isolates more cost efficient and faster than conventional Sanger sequencing. Targeting different resistance genes and a large sample size of highly resistant strains allows a better determination of the relevance of the different mutations, and to differentiate between causal mutations and polymorphisms.
Collapse
Affiliation(s)
- Kathrin Spettel
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Barousch
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Iris Zeller
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Marion Nehr
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Selitsch
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Nuremberg, Germany
| | - Birgit Willinger
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Humbert L, Cornu M, Proust-Lemoine E, Bayry J, Wemeau JL, Vantyghem MC, Sendid B. Chronic Mucocutaneous Candidiasis in Autoimmune Polyendocrine Syndrome Type 1. Front Immunol 2018; 9:2570. [PMID: 30510552 PMCID: PMC6254185 DOI: 10.3389/fimmu.2018.02570] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is an autosomal recessive disease caused by mutations in the autoimmune regulator (AIRE) gene, characterized by the clinical triad of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and adrenal insufficiency. CMC can be complicated by systemic candidiasis or oral squamous cell carcinoma (SCC), and may lead to death. The role of chronic Candida infection in the etiopathogenesis of oral SCC is unclear. Long-term use of fluconazole has led to the emergence of Candida albicans strains with decreased susceptibility to azoles. CMC is associated with an impaired Th17 cell response; however, it remains unclear whether decreased serum IL-17 and IL-22 levels are related to a defect in cytokine production or to neutralizing autoantibodies resulting from mutations in the AIRE gene.
Collapse
Affiliation(s)
- Linda Humbert
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
| | - Marjorie Cornu
- Department Parasitology-Mycology, CHU, Lille, France
- Inserm, U995-LIRIC, Fungal Associated Invasive & Inflammatory Diseases, Lille, France
| | | | - Jagadeesh Bayry
- Inserm, Center de Recherche des Cordeliers, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Louis Wemeau
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
- UMR 1190, Translational Research in Diabetes Inserm, Lille, France
- European Genomic Institute for Diabetes, Univ Lille, Lille, France
| | - Boualem Sendid
- Department Parasitology-Mycology, CHU, Lille, France
- Inserm, U995-LIRIC, Fungal Associated Invasive & Inflammatory Diseases, Lille, France
| |
Collapse
|
18
|
Ksiezopolska E, Gabaldón T. Evolutionary Emergence of Drug Resistance in Candida Opportunistic Pathogens. Genes (Basel) 2018; 9:genes9090461. [PMID: 30235884 PMCID: PMC6162425 DOI: 10.3390/genes9090461] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
Fungal infections, such as candidiasis caused by Candida, pose a problem of growing medical concern. In developed countries, the incidence of Candida infections is increasing due to the higher survival of susceptible populations, such as immunocompromised patients or the elderly. Existing treatment options are limited to few antifungal drug families with efficacies that vary depending on the infecting species. In this context, the emergence and spread of resistant Candida isolates are being increasingly reported. Understanding how resistance can evolve within naturally susceptible species is key to developing novel, more effective treatment strategies. However, in contrast to the situation of antibiotic resistance in bacteria, few studies have focused on the evolutionary mechanisms leading to drug resistance in fungal species. In this review, we will survey and discuss current knowledge on the genetic bases of resistance to antifungal drugs in Candida opportunistic pathogens. We will do so from an evolutionary genomics perspective, focusing on the possible evolutionary paths that may lead to the emergence and selection of the resistant phenotype. Finally, we will discuss the potential of future studies enabled by current developments in sequencing technologies, in vitro evolution approaches, and the analysis of serial clinical isolates.
Collapse
Affiliation(s)
- Ewa Ksiezopolska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
19
|
de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MDS, Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, de Andrade Monteiro C. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front Microbiol 2018; 9:1351. [PMID: 30018595 PMCID: PMC6038711 DOI: 10.3389/fmicb.2018.01351] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
The Candida genus comprises opportunistic fungi that can become pathogenic when the immune system of the host fails. Candida albicans is the most important and prevalent species. Polyenes, fluoropyrimidines, echinocandins, and azoles are used as commercial antifungal agents to treat candidiasis. However, the presence of intrinsic and developed resistance against azole antifungals has been extensively documented among several Candida species. The advent of original and re-emergence of classical fungal diseases have occurred as a consequence of the development of the antifungal resistance phenomenon. In this way, the development of new satisfactory therapy for fungal diseases persists as a major challenge of present-day medicine. The design of original drugs from traditional medicines provides new promises in the modern clinic. The urgent need includes the development of alternative drugs that are more efficient and tolerant than those traditional already in use. The identification of new substances with potential antifungal effect at low concentrations or in combination is also a possibility. The present review briefly examines the infections caused by Candida species and focuses on the mechanisms of action associated with the traditional agents used to treat those infections, as well as the current understanding of the molecular basis of resistance development in these fungal species. In addition, this review describes some of the promising alternative molecules and/or substances that could be used as anticandidal agents, their mechanisms of action, and their use in combination with traditional drugs.
Collapse
Affiliation(s)
- Giselle C. de Oliveira Santos
- Programa de Doutorado em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Maranhão, São Luís, Brazil
| | - Cleydlenne C. Vasconcelos
- Programa de Doutorado em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Maranhão, São Luís, Brazil
| | - Alberto J. O. Lopes
- Postgraduate Program in Health Sciences, Universidade Federal do Maranhão, São Luís, Brazil
| | | | - Allan K. D. B. Filho
- Departamento de Engenharia Elétrica, Programa de Doutorado em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Maranhão, São Luís, Brazil
| | | | - Ricardo M. Ramos
- Department of Information, Environment, Health and Food Production, Laboratory of Information Systems, Federal Institute of Piauí, Teresina, Brazil
| | | | - Marcelo S. de Andrade
- Postgraduate Program in Health Sciences, Universidade Federal do Maranhão, São Luís, Brazil
| | - Flaviane M. G. Rocha
- Laboratório de Micologia Médica, Programa de Mestrado em Biologia Parasitária, Universidade Ceuma, São Luís, Brazil
| | - Cristina de Andrade Monteiro
- Laboratório de Micologia Médica, Programa de Mestrado em Biologia Parasitária, Universidade Ceuma, São Luís, Brazil
- Departmento de Biologia, Instituto Federal do Maranhão, São Luís, Brazil
| |
Collapse
|
20
|
Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets! Genes (Basel) 2018; 9:genes9070332. [PMID: 30004464 PMCID: PMC6071111 DOI: 10.3390/genes9070332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
Fungal infections caused by Candida, Aspergillus, and Cryptococcus species are an increasing problem worldwide, associated with very high mortality rates. The successful prevalence of these human pathogens is due to their ability to thrive in stressful host niche colonization sites, to tolerate host immune system-induced stress, and to resist antifungal drugs. This review focuses on the key role played by multidrug resistance (MDR) transporters, belonging to the ATP-binding cassette (ABC), and the major facilitator superfamilies (MFS), in mediating fungal resistance to pathogenesis-related stresses. These clearly include the extrusion of antifungal drugs, with C. albicans CDR1 and MDR1 genes, and corresponding homologs in other fungal pathogens, playing a key role in this phenomenon. More recently, however, clues on the transcriptional regulation and physiological roles of MDR transporters, including the transport of lipids, ions, and small metabolites, have emerged, linking these transporters to important pathogenesis features, such as resistance to host niche environments, biofilm formation, immune system evasion, and virulence. The wider view of the activity of MDR transporters provided in this review highlights their relevance beyond drug resistance and the need to develop therapeutic strategies that successfully face the challenges posed by the pleiotropic nature of these transporters.
Collapse
|
21
|
Carey B, Lambourne J, Porter S, Hodgson T. Chronic mucocutaneous candidiasis due to gain-of-function mutation in STAT1. Oral Dis 2018; 25:684-692. [PMID: 29702748 DOI: 10.1111/odi.12881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/06/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Abstract
Chronic mucocutaneous candidiasis (CMC) is a heterogenous group of primary immunodeficiency diseases characterised by susceptibility to chronic or recurrent superficial Candida infection of skin, nails and mucous membranes. Gain-of-function mutations in the STAT1 gene (STAT1-GOF) are the most common genetic aetiology for CMC, and mutation analysis should be considered. These mutations lead to defective responses in Type 1 and Type 17 helper T cells (Th1 and Th17), which, depending on the mutation, also predispose to infection with Staphylococci, Mycobacteria and Herpesviridae. We describe the clinical and genetic findings for three patients with CMC due to gain-of-function mutations in the STAT1 gene.
Collapse
Affiliation(s)
- Barbara Carey
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| | - Jonathan Lambourne
- Department of Microbiology and Infectious Diseases, Barts Health NHS Trust, London, UK
| | - Stephen Porter
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| | - Tim Hodgson
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| |
Collapse
|
22
|
Bruserud Ø, Costea DE, Laakso S, Garty BZ, Mathisen E, Mäkitie A, Mäkitie O, Husebye ES. Oral Tongue Malignancies in Autoimmune Polyendocrine Syndrome Type 1. Front Endocrinol (Lausanne) 2018; 9:463. [PMID: 30177913 PMCID: PMC6109689 DOI: 10.3389/fendo.2018.00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) or Autoimmune polyendocrine syndrome type-1 (APS-1) (APECED, OMIM 240300) is a rare, childhood onset, monogenic disease caused by mutations in the Autoimmune Regulator (AIRE) gene. The overall mortality is increased compared to the general population and a major cause of death includes malignant diseases, especially oral and esophageal cancers. We here present a case series of four APS-1 patients with oral tongue cancers, an entity not described in detail previously. Scrutiny of history and clinical phenotypes indicate that chronic mucocutaneous candidiasis and smoking are significant risk factors. Preventive measures and early diagnosis are important to successfully manage this potentially fatal disease.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Daniela-Elena Costea
- Gade Laboratory for Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Saila Laakso
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Ben-Zion Garty
- Allergy and Immunology Clinic, Schneider Children's Medical Center of Israel, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eirik Mathisen
- Department of Otolaryngology-Head and Neck Surgery, Østfold Hospital, Sarpsborg, Norway
| | - Antti Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Eystein S. Husebye
| |
Collapse
|
23
|
Proust-Lemoine E, Guyot S. [Oral diseases in auto-immune polyendocrine syndrome type 1]. Presse Med 2017; 46:853-863. [PMID: 28683959 DOI: 10.1016/j.lpm.2017.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 11/26/2022] Open
Abstract
Auto-immune polyendocrine syndrome type 1 (APS1) also called Auto-immune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED) is a rare monogenic childhood-onset auto-immune disease. This autosomal recessive disorder is caused by mutations in the auto-immune regulator (AIRE) gene, and leads to autoimmunity targeting peripheral tissues. There is a wide variability in clinical phenotypes in patients with APSI, with auto-immune endocrine and non-endocrine disorders, and chronic mucocutaneous candidiasis. These patients suffer from oral diseases such as dental enamel hypoplasia and candidiasis. Both are frequently described, and in recent series, enamel hypoplasia and candidiasis are even the most frequent components of APS1 together with hypoparathyroidism. Both often occur during childhood (before 5 years old for canrdidiasis, and before 15 years old for enamel hypoplasia). Oral candidiasis is recurrent all life long, could become resistant to azole antifungal after years of treatment, and be carcinogenic, leading to severe oral squamous cell carcinoma. Oral components of APS1 should be diagnosed and rigorously treated. Dental enamel hypoplasia and/or recurrent oral candidiasis in association with auto-immune diseases in a young child should prompt APS1 diagnosis.
Collapse
Affiliation(s)
| | - Sylvie Guyot
- Polyclinique Aguilera, 21, rue de l'Estagnas, 64200 Biarritz, France
| |
Collapse
|
24
|
Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist 2017; 10:237-245. [PMID: 28814889 PMCID: PMC5546770 DOI: 10.2147/idr.s118892] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida albicans and the emerging non-albicans Candida spp. have significant clinical relevance among many patient populations. Current treatment guidelines include fluconazole as a primary therapeutic option for the treatment of these infections, but it is only fungistatic against Candida spp. and both inherent and acquired resistance to fluconazole have been reported. Such mechanisms of resistance include increased drug efflux, alteration or increase in the drug target, and development of compensatory pathways for producing the target sterol, ergosterol. While many mechanisms of resistance observed in C. albicans are also found in the non-albicans species, there are also important and unexpected differences between species. Furthermore, mechanisms of fluconazole resistance in emerging Candida spp., including the global health threat Candida auris, are largely unknown. In order to preserve the utility of one of our fundamental antifungal drugs, fluconazole, it is essential that we fully appreciate the manner by which Candida spp. manifest resistance to it.
Collapse
Affiliation(s)
- Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
25
|
Terças ALG, Marques SG, Moffa EB, Alves MB, de Azevedo CMPS, Siqueira WL, Monteiro CA. Antifungal Drug Susceptibility of Candida Species Isolated from HIV-Positive Patients Recruited at a Public Hospital in São Luís, Maranhão, Brazil. Front Microbiol 2017; 8:298. [PMID: 28303122 PMCID: PMC5332371 DOI: 10.3389/fmicb.2017.00298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/14/2017] [Indexed: 01/30/2023] Open
Abstract
Oropharyngeal candidiasis is the most common fungal infection in hospitalized patients with acquired immune deficiency syndrome (AIDS). Its progression results in invasive infections, which are a significant cause of morbidity and mortality. This study aimed to quickly and accurately identify Candida spp. from oral mucosa of AIDS patients recruited at Presidente Vargas Hospital, in São Luís city, Brazil and to evaluate the sensitivity profile of these fungi to antifungals by using an automated system. Isolates were collected from oropharyngeal mucosa of 52 hospitalized AIDS patients, under anti-viral and antifungal therapies. Patients were included in research if they were HIV-positive, above 18 years of age and after obtaining their written consent. CHROMagar®Candida and the automated ViteK-2®system were used to isolate and identify Candida spp., respectively. Antifungal susceptibility testing was performed using the ViteK-2®system, complemented with the Etest®, using the drugs amphotericin B, fluconazole, flucytosine, and voriconazole. Oropharyngeal candidiasis had a high prevalence in these hospitalized AIDS patients (83%), and the most prevalent species was Candida albicans (56%). Antifungal susceptibility test showed that 64.7% of the Candida spp. were susceptible, 11.8% were dose-dependent sensitive, and 23.5% were resistant. All the Candida krusei and Candida famata isolates and two of Candida glabrata were resistant to fluconazole. Most of AIDS patients presented oropharyngeal candidiasis and C. albicans was the most frequently isolated species. The results showed high variability in resistance among isolated species and indicates the need to identify the Candida spp. involved in the infection and the need to test antifungal susceptibility as a guide in drug therapy in patients hospitalized with AIDS. This is the first relate about AIDS patients monitoring in a public hospital in São Luís concerning the precise identification and establishing of antifungal profile of Candida spp..
Collapse
Affiliation(s)
- Ana L G Terças
- Department Federal Technological Teaching Center of Maranhão São Luis, Brazil
| | - Sirlei G Marques
- Nucleus of Tropical Pathology and Social Medicine, Department of Pathology, Federal University of Maranhão São Luis, Brazil
| | - Eduardo B Moffa
- Department of Post-Graduate Program in Dentistry, CEUMA UniversitySão Luis, Brazil; Department of Post-Graduate Program in Parasite Biology, CEUMA UniversitySão Luis, Brazil
| | - Márcia B Alves
- Department of Post-Graduate Program in Parasite Biology, CEUMA University São Luis, Brazil
| | | | - Walter L Siqueira
- Schulich Dentistry and Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London ON, Canada
| | - Cristina A Monteiro
- Department of Post-Graduate Program in Parasite Biology, CEUMA University São Luis, Brazil
| |
Collapse
|
26
|
Alizadeh F, Khodavandi A, Zalakian S. Quantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans. Curr Med Mycol 2017; 3:13-19. [PMID: 29302625 PMCID: PMC5747584 DOI: 10.29252/cmm.3.1.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose: The frequency of opportunistic fungal infections in immunocompromised patients, especially by Candida species, has sharply increased in the last few decades. The objective of this study was to analyse the ergosterol content and gene expression profiling of clinical isolates of fluconazole-resistant Candida albicans. Materials and Methods: Sixty clinical samples were identified and collected from immunocompromised patients, namely recurrent oral, vaginal, and cutaneous candidiasis, during 2015-16. Antifungal susceptibility testing of fluconazole against clinical Candida species was performed according to Clinical and Laboratory Standards Institute guidelines. Ergosterol content and gene expression profiling of sterol 14α-demethylase (ERG11) gene in fluconazole-susceptible and –resistant C. albicans were investigated. Results: The specimens consisted of C. albicans (46.67%), Candida krusei (41.67%), and Candida tropicalis (11.67%). All the isolates were resistant to fluconazole. No significant reduction was noted in total cellular ergosterol content in comparison with untreated controls in terms of fluconazole-resistant C. albicans. The expressionlevel of ERG11 gene was down-regulated in fluconazole-susceptible C. albicans. Eventually, the expression pattern of ERG11 gene revealed no significant changes in fluconazole-resistant isolates compared to untreated controls. The results revealed no significant differences between fluconazole-susceptible and –resistant C. albicans sequences by comparison with ERG11 reference sequence. Conclusion: Our findings provide an insight into the mechanism of fluconazole resistance in C. albicans. The mechanisms proposed for clinical isolates of fluconazole-resistant C. albicans are alteration in sterol biosynthesis, analysis of expression level of ERG11 gene, and analysis of gene sequences. Nonetheless, further studies are imperative to find molecular mechanisms that could be targeted to control fluconazole resistance.
Collapse
Affiliation(s)
- F Alizadeh
- Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - A Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| | - S Zalakian
- Department of Microbiology, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
27
|
Hernando-Amado S, Blanco P, Alcalde-Rico M, Corona F, Reales-Calderón JA, Sánchez MB, Martínez JL. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updat 2016; 28:13-27. [PMID: 27620952 DOI: 10.1016/j.drup.2016.06.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported.
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jose A Reales-Calderón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - María B Sánchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Seneviratne CJ, Rosa EAR. Editorial: Antifungal Drug Discovery: New Theories and New Therapies. Front Microbiol 2016; 7:728. [PMID: 27242745 PMCID: PMC4876608 DOI: 10.3389/fmicb.2016.00728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/02/2016] [Indexed: 12/16/2022] Open
|
29
|
Moorhouse AJ, Rennison C, Raza M, Lilic D, Gow NAR. Clonal Strain Persistence of Candida albicans Isolates from Chronic Mucocutaneous Candidiasis Patients. PLoS One 2016; 11:e0145888. [PMID: 26849050 PMCID: PMC4743940 DOI: 10.1371/journal.pone.0145888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency disorder characterised by susceptibility to chronic Candida and fungal dermatophyte infections of the skin, nails and mucous membranes. Molecular epidemiology studies of CMC infection are limited in number and scope and it is not clear whether single or multiple strains inducing CMC persist stably or are exchanged and replaced. We subjected 42 C. albicans individual single colony isolates from 6 unrelated CMC patients to multilocus sequence typing (MLST). Multiple colonies were typed from swabs taken from multiple body sites across multiple time points over a 17-month period. Among isolates from each individual patient, our data show clonal and persistent diploid sequence types (DSTs) that were stable over time, identical between multiple infection sites and exhibit azole resistant phenotypes. No shared origin or common source of infection was identified among isolates from these patients. Additionally, we performed C. albicans MLST SNP genotype frequency analysis to identify signatures of past loss of heterozygosity (LOH) events among persistent and azole resistant isolates retrieved from patients with autoimmune disorders including CMC.
Collapse
Affiliation(s)
- Alexander J. Moorhouse
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| | - Claire Rennison
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muhammad Raza
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Desa Lilic
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Teodoro GR, Ellepola K, Seneviratne CJ, Koga-Ito CY. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Front Microbiol 2015; 6:1420. [PMID: 26733965 PMCID: PMC4685070 DOI: 10.3389/fmicb.2015.01420] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy.
Collapse
Affiliation(s)
- Guilherme R Teodoro
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science and Technology, Universidade Estadual Paulista São José dos Campos, Brazil
| | - Kassapa Ellepola
- Oral Sciences, Faculty of Dentistry, National University of Singapore Singapore, Singapore
| | - Chaminda J Seneviratne
- Oral Sciences, Faculty of Dentistry, National University of Singapore Singapore, Singapore
| | - Cristiane Y Koga-Ito
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science and Technology, Universidade Estadual PaulistaSão José dos Campos, Brazil; Department of Environmental Engineering and Biopathology Graduate Program, São José dos Campos Institute of Science and Technology, Universidade Estadual PaulistaSão José dos Campos, Brazil
| |
Collapse
|
31
|
Patil S, Rao RS, Majumdar B, Anil S. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies. Front Microbiol 2015; 6:1391. [PMID: 26733948 PMCID: PMC4681845 DOI: 10.3389/fmicb.2015.01391] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
Candida species present both as commensals and opportunistic pathogens of the oral cavity. For decades, it has enthralled the clinicians to investigate its pathogenicity and to improvise newer therapeutic regimens based on the updated molecular research. Candida is readily isolated from the oral cavity, but simple carriage does not predictably result in development of an infection. Whether it remains as a commensal, or transmutes into a pathogen, is usually determined by pre-existing or associated variations in the host immune system. The candida infections may range from non-life threatening superficial mucocutaneous disorders to invasive disseminated disease involving multiple organs. In fact, with the increase in number of AIDS cases, there is a resurgence of less common forms of oral candida infections. The treatment after confirmation of the diagnosis should include recognizing and eliminating the underlying causes such as ill-fitting oral appliances, history of medications (antibiotics, corticosteroids, etc.), immunological and endocrine disorders, nutritional deficiency states and prolonged hospitalization. Treatment with appropriate topical antifungal agents such as amphotericin, nystatin, or miconazole usually resolves the symptoms of superficial infection. Occasionally, administration of systemic antifungal agents may be necessary in immunocompromised patients, the selection of which should be based upon history of recent azole exposure, a history of intolerance to an antifungal agent, the dominant Candida species and current susceptibility data.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M. S. Ramaiah University of Applied Sciences Bangalore, India
| | - Roopa S Rao
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M. S. Ramaiah University of Applied Sciences Bangalore, India
| | - Barnali Majumdar
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M. S. Ramaiah University of Applied Sciences Bangalore, India
| | - Sukumaran Anil
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Abstract
Invasive fungal infections remain a major source of global morbidity and mortality, especially among patients with underlying immune suppression. Successful patient management requires antifungal therapy. Yet, treatment choices are restricted due to limited classes of antifungal agents and the emergence of antifungal drug resistance. In some settings, the evolution of multidrug-resistant strains insensitive to several classes of antifungal agents is a major concern. The resistance mechanisms responsible for acquired resistance are well characterized and include changes in drug target affinity and abundance, and reduction in the intracellular level of drug by biofilms and efflux pumps. The development of high-level and multidrug resistance occurs through a stepwise evolution of diverse mechanisms. The genetic factors that influence these mechanisms are emerging and they form a complex symphony of cellular interactions that enable the cell to adapt and/or overcome drug-induced stress. Drivers of resistance involve a complex blend of host and microbial factors. Understanding these mechanisms will facilitate development of better diagnostics and therapeutic strategies to overcome and prevent antifungal resistance.
Collapse
Affiliation(s)
- David S Perlin
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Erika Shor
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Yanan Zhao
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| |
Collapse
|
33
|
Yousefimanesh H, Amin M, Robati M, Goodarzi H, Otoufi M. Comparison of the Antibacterial Properties of Three Mouthwashes Containing Chlorhexidine Against Oral Microbial Plaques: An in vitro Study. Jundishapur J Microbiol 2015; 8:e17341. [PMID: 25825646 PMCID: PMC4362091 DOI: 10.5812/jjm.17341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 11/16/2022] Open
Abstract
Background: The mouth provides an environment that allows the colonization and growth of a wide variety of microorganisms, especially bacteria. One of the most effective ways to reduce oral microorganisms is using mouthwashes. Objectives: The aim of this study was to investigate the antibacterial effects of chlorhexidine mouthwashes (manufacture by Livar, Behsa, Boht) on common oral microorganisms. Materials and Methods: In this in vitro study, isolated colonies of four bacteria, including Streptococcus mutans, S. sanguinis, S. salivarius and Lactobacillus casei, were prepared for an antimicrobial mouth rinse test. The tube dilution method was used for determining the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). Results: The MICs for Kin gingival, Behsa and Boht mouthwashes were 0.14, 0.48 and 1000 micrograms/mL using the tube method for S. mutans, respectively. The MBCs for the mentioned mouthwashes were 0.23, 1.9 and 2000 micrograms/mL for S. mutans, respectively. The MICs for Kin gingival, Behsa and Boht mouthwashes were 0.073, 0.48 and 250 micrograms/mL using the tube method for S. sanguinis, respectively. The MBCs for the mentioned mouthwashes were 0.14, 1.9 and 1000 micrograms/mL for S. sanguinis, respectively. Conclusions: The Kin Gingival chlorhexidine mouthwash has a greater effect than Behsa and Boht mouthwashes on oral microorganisms and is recommended to be used for plaque chemical inhibition.
Collapse
Affiliation(s)
- Hojatollah Yousefimanesh
- Department of Periodontology, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mansour Amin
- Health Research Institute, Infectious and Tropical Diseases Research Center Ahvaz, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Corresponding author: Mansour Amin, Health Research Institute, Infectious and Tropical Diseases Research Center, Jundishapur University of Medical Sciences, Ahvaz, IR Iran. Tel: +989166711679, E-mail:
| | - Maryam Robati
- Department of Oral Medicine, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Hamed Goodarzi
- Infectious and Tropical Diseases Research Center, Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Masumeh Otoufi
- Department of Periodontology, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| |
Collapse
|
34
|
Xie JL, Polvi EJ, Shekhar-Guturja T, Cowen LE. Elucidating drug resistance in human fungal pathogens. Future Microbiol 2014; 9:523-42. [PMID: 24810351 DOI: 10.2217/fmb.14.18] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fungal pathogens cause life-threatening infections in immunocompetent and immunocompromised individuals. Millions of people die each year due to fungal infections, comparable to the mortality attributable to tuberculosis or malaria. The three most prevalent fungal pathogens are Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungi are eukaryotes like their human host, making it challenging to identify fungal-specific therapeutics. There is a limited repertoire of antifungals in clinical use, and drug resistance and host toxicity compromise the clinical utility. The three classes of antifungals for treatment of invasive infections are the polyenes, azoles and echinocandins. Understanding mechanisms of resistance to these antifungals has been accelerated by global and targeted approaches, which have revealed that antifungal drug resistance is a complex phenomenon involving multiple mechanisms. Development of novel strategies to block the emergence of drug resistance and render resistant pathogens responsive to antifungals will be critical to treating life-threatening fungal infections.
Collapse
Affiliation(s)
- Jinglin Lucy Xie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
35
|
Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med 2014; 5:a019752. [PMID: 25384768 DOI: 10.1101/cshperspect.a019752] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
Collapse
Affiliation(s)
- Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dominique Sanglard
- University of Lausanne and University Hospital Center, Institute of Microbiology, 1011 Lausanne, Switzerland
| | - Susan J Howard
- University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - P David Rogers
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
36
|
Wong SSW, Kao RYT, Yuen KY, Wang Y, Yang D, Samaranayake LP, Seneviratne CJ. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS One 2014; 9:e85836. [PMID: 24465737 PMCID: PMC3899067 DOI: 10.1371/journal.pone.0085836] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022] Open
Abstract
Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.
Collapse
Affiliation(s)
| | - Richard Yi Tsun Kao
- Department of Microbiology, University of Hong Kong, Hong Kong
- * E-mail: (CJS); (RYTK)
| | - Kwok Yong Yuen
- Department of Microbiology, University of Hong Kong, Hong Kong
| | - Yu Wang
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Dan Yang
- Department of Chemistry, Faculty of Science, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
37
|
Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans. Int J Antimicrob Agents 2013; 42:410-5. [DOI: 10.1016/j.ijantimicag.2013.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/04/2013] [Accepted: 07/26/2013] [Indexed: 11/20/2022]
|
38
|
Sakko M, Moore C, Novak-Frazer L, Rautemaa V, Sorsa T, Hietala P, Järvinen A, Bowyer P, Tjäderhane L, Rautemaa R. 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses 2013; 57:214-21. [PMID: 24125484 DOI: 10.1111/myc.12145] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/05/2013] [Accepted: 09/13/2013] [Indexed: 11/30/2022]
Abstract
The amino acid derivative 2-hydroxyisocaproic acid (HICA) is a nutritional additive used to increase muscle mass. Low levels can be detected in human plasma as a result of leucine metabolism. It has broad antibacterial activity but its efficacy against pathogenic fungi is not known. The aim was to test the efficacy of HICA against Candida and Aspergillus species. Efficacy of HICA against 19 clinical and reference isolates representing five Candida and three Aspergillus species with variable azole antifungal sensitivity profiles was tested using a microdilution method. The concentrations were 18, 36 and 72 mg ml(-1) . Growth was determined spectrophotometrically for Candida isolates and by visual inspection for Aspergillus isolates, viability was tested by culture and impact on morphology by microscopy. HICA of 72 mg ml(-1) was fungicidal against all Candida and Aspergillus fumigatus and Aspergillus terreus isolates. Lower concentrations were fungistatic. Aspergillus flavus was not inhibited by HICA. HICA inhibited hyphal formation in susceptible Candida albicans and A. fumigatus isolates and affected cell wall integrity. In conclusion, HICA has broad antifungal activity against Candida and Aspergillus at concentrations relevant for topical therapy. As a fungicidal agent with broad-spectrum bactericidal activity, it may be useful in the topical treatment of multispecies superficial infections.
Collapse
Affiliation(s)
- M Sakko
- Finnish Doctoral Program of Oral Sciences, Turku, Finland; Institute of Dentistry, University of Oulu, Oulu, Finland; Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marttila E, Bowyer P, Sanglard D, Uittamo J, Kaihovaara P, Salaspuro M, Richardson M, Rautemaa R. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans. Mol Oral Microbiol 2013; 28:281-91. [PMID: 23445445 DOI: 10.1111/omi.12024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-Coenzyme A (CoA) during fermentation. THE AIMS OF OUR STUDY WERE (i) to determine the levels of acetaldehyde produced by Candida albicans in the presence of glucose in low oxygen tension in vitro; (ii) to analyse the expression levels of genes involved in the pyruvate-bypass and acetaldehyde production; and (iii) to analyse whether any correlations exist between acetaldehyde levels, alcohol dehydrogenase enzyme activity or expression of the genes involved in the pyruvate-bypass. Candida albicans strains were isolated from patients with oral squamous cell carcinoma (n = 5), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients with chronic oral candidosis (n = 5), and control patients (n = 5). The acetaldehyde and ethanol production by these isolates grown under low oxygen tension in the presence of glucose was determined, and the expression of alcohol dehydrogenase (ADH1 and ADH2), pyruvate decarboxylase (PDC11), aldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (ACS1 and ACS2) and Adh enzyme activity were analysed. The C. albicans isolates produced high levels of acetaldehyde from glucose under low oxygen tension. The acetaldehyde levels did not correlate with the expression of ADH1, ADH2 or PDC11 but correlated with the expression of down-stream genes ALD6 and ACS1. Significant differences in the gene expressions were measured between strains isolated from different patient groups. Under low oxygen tension ALD6 and ACS1, instead of ADH1 or ADH2, appear the most reliable indicators of candidal acetaldehyde production from glucose.
Collapse
Affiliation(s)
- E Marttila
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chlorhexidine is a highly effective topical broad-spectrum agent against Candida spp. Int J Antimicrob Agents 2013; 41:65-9. [DOI: 10.1016/j.ijantimicag.2012.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/08/2012] [Accepted: 08/24/2012] [Indexed: 11/20/2022]
|
41
|
Buschart A, Burakowska A, Bilitewski U. The fungicide fludioxonil antagonizes fluconazole activity in the human fungal pathogen Candida albicans. J Med Microbiol 2012; 61:1696-1703. [DOI: 10.1099/jmm.0.050963-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Anna Buschart
- Biological Systems Analysis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anna Burakowska
- Biological Systems Analysis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ursula Bilitewski
- Biological Systems Analysis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
42
|
Salim N, Moore C, Silikas N, Satterthwaite J, Rautemaa R. Candidacidal effect of fluconazole and chlorhexidine released from acrylic polymer. J Antimicrob Chemother 2012; 68:587-92. [DOI: 10.1093/jac/dks452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
43
|
Shephard MK, Schifter M, Palme CE. Multiple oral squamous cell carcinomas associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:e36-42. [PMID: 22939323 DOI: 10.1016/j.oooo.2012.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/23/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disorder characterized by chronic mucocutaneous candidiasis, hypoparathyroidism, and adrenal insufficiency. Chronic oral candidiasis is frequently the first manifestation of the condition. There is an increased incidence of oral squamous cell carcinomas at an early age in this population, and it is possible that chronic oral candidal infection has a role in oral carcinogenesis in patients with APECED. We present a case of multiple oral squamous cell carcinomas in a 35-year-old woman with chronic mucocutaneous candidiasis as a component of APECED. Our patient has had 3 confirmed oral squamous cell carcinomas to date, which have been managed with laser resection and ablation. She remains on systemic antifungal therapy and is under regular surveillance in a multidisciplinary head and neck clinic.
Collapse
Affiliation(s)
- Martina K Shephard
- Concord Repatriation General Hospital, Concord, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
44
|
Sasse C, Dunkel N, Schäfer T, Schneider S, Dierolf F, Ohlsen K, Morschhäuser J. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol Microbiol 2012; 86:539-56. [PMID: 22924823 DOI: 10.1111/j.1365-2958.2012.08210.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2012] [Indexed: 01/12/2023]
Abstract
The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1, Tac1 and Upc2, which result in constitutive overexpression of multidrug efflux pumps and ergosterol biosynthesis genes respectively. It is not known how the permanently changed gene expression program in resistant strains affects their fitness in the absence of drug selection pressure. We have systematically investigated the effects of activating mutations in Mrr1, Tac1 and Upc2, individually and in all possible combinations, on the degree of fluconazole resistance and on the fitness of C. albicans in an isogenic strain background. All combinations of different resistance mechanisms resulted in a stepwise increase in drug resistance, culminating in 500-fold increased fluconazole resistance in strains possessing mutations in the three transcription factors and an additional resistance mutation in the drug target enzyme Erg11. The acquisition of resistance mutations was associated with reduced fitness under non-selective conditions in vitro as well as in vivo during colonization of a mammalian host. Therefore, without compensatory mutations, the inability to appropriately regulate gene expression results in a loss of competitive fitness of drug-resistant C. albicans strains.
Collapse
Affiliation(s)
- Christoph Sasse
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Gammelsrud KW, Lindstad BL, Gaustad P, Ingebretsen A, Høiby EA, Brandtzaeg P, Sandven P. Multilocus sequence typing of serial Candida albicans isolates from children with cancer, children with cystic fibrosis and healthy controls. Med Mycol 2012; 50:619-26. [DOI: 10.3109/13693786.2012.675088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Salim N, Moore C, Silikas N, Satterthwaite JD, Rautemaa R. Fungicidal amounts of antifungals are released from impregnated denture lining material for up to 28 days. J Dent 2012; 40:506-12. [DOI: 10.1016/j.jdent.2012.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/21/2022] Open
|
47
|
Weiler FG, Dias-da-Silva MR, Lazaretti-Castro M. Autoimmune polyendocrine syndrome type 1: case report and review of literature. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2012; 56:54-66. [PMID: 22460196 DOI: 10.1590/s0004-27302012000100009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/03/2011] [Indexed: 11/22/2022]
Abstract
Autoimmune polyendocrine syndrome type 1 (APECED) is a rare autosomal recessive disorder characterized by autoimmune multiorgan attack. The disease is caused by mutations in the autoimmune regulator gene (AIRE), resulting in defective AIRE protein, which is essential for selftolerance. Clinical manifestations are widely variable. Although the classic triad is composed by mucocutaneous candidiasis, hypoparathyroidism and adrenal failure, many other components may develop. Treatment is based on supplementation of the various deficiencies, and patients require regular follow-up throughout their lifespan. This article describes the case of a patient with the disease, and reviews literature data on the epidemiology, clinical course, immunogenetic aspects, diagnosis and treatment of the syndrome.
Collapse
Affiliation(s)
- Fernanda Guimarães Weiler
- Bone and Mineral Unit, Division of Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| | | | | |
Collapse
|
48
|
Bowyer P, Moore CB, Rautemaa R, Denning DW, Richardson MD. Azole Antifungal Resistance Today: Focus on Aspergillus. Curr Infect Dis Rep 2011; 13:485-91. [DOI: 10.1007/s11908-011-0218-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Rautemaa R, Ramage G. Oral candidosis--clinical challenges of a biofilm disease. Crit Rev Microbiol 2011; 37:328-36. [PMID: 21777047 DOI: 10.3109/1040841x.2011.585606] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review summarizes the impact of biofilms in oral candidosis with special emphasis on medically compromised patients. The concept of oral candidosis as a mixed candidal-bacterial biofilm infection has changed our understanding of its epidemiology and diagnosis as well as approach to its treatment. Candida albicans is the most common causative agent of oral candidosis although Candida species other than C. albicans are often seen in medically compromised patients with a history of multiple courses of azole antifungals. Although C. albicans is usually susceptible to all commonly used antifungals when tested in vitro, their biofilm form are highly resistant to most antifungals. Therefore, treatment consists of mechanical destruction of the biofilm in combination with topical drugs. Azole antifungals should be avoided for patients suffering from recurrent oral yeast infections due to a risk of selection and enrichment of resistant strains within the biofilm. Oral candidosis can also be a symptom of an undiagnosed or poorly controlled systemic disease such as HIV infection or diabetes. If the response to appropriate treatment is poor, other causes of oral mucositis should be excluded. Oral candidosis arises from the patient's mixed candidal-bacterial biofilm, i.e., dental plaque, whereby good self-care is important for successful therapy.
Collapse
Affiliation(s)
- Riina Rautemaa
- Manchester Academic Health Science Centre, School of Translational Medicine, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
50
|
Siikala E, Bowyer P, Richardson M, Saxen H, Sanglard D, Rautemaa R. ADH1 expression inversely correlates with CDR1 and CDR2 in Candida albicans from chronic oral candidosis in APECED (APS-I) patients. FEMS Yeast Res 2011; 11:494-8. [DOI: 10.1111/j.1567-1364.2011.00739.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|