1
|
Kamiya S, Sugai T, Oka K, Noda E, Miyazaki A, Hagiwara-Fujishiro R, Yamada M, Yagi T, Akiyama M. Case of monomicrobial necrotizing fasciitis caused by extended-spectrum β-lactamase-producing Citrobacter freundii. J Dermatol 2024; 51:e340-e341. [PMID: 38651762 DOI: 10.1111/1346-8138.17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Satoshi Kamiya
- Department of Dermatology, Toyohashi Municipal Hospital, Toyohashi, Japan
- Department of Dermatology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tatsuro Sugai
- Department of Dermatology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Keisuke Oka
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Japan
| | - Eori Noda
- Department of Dermatology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Akira Miyazaki
- Department of Dermatology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | | | - Motohito Yamada
- Department of Dermatology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Khadka C, Shyaula M, Syangtan G, Bista S, Tuladhar R, Singh A, Joshi DR, Pokhrel LR, Dawadi P. Extended-spectrum β-lactamases producing Enterobacteriaceae (ESBL-PE) prevalence in Nepal: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166164. [PMID: 37572913 DOI: 10.1016/j.scitotenv.2023.166164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
An alarming increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has threatened the treatment and management of bacterial infections. This systematic review and meta-analysis aimed to provide a quantitative estimate of the prevalence of ESBL among the members of the Enterobacteriaceae family by analyzing the community-based and clinical studies published between 2011 and 2021 from Nepal and determine if ESBL-PE correlates with multidrug resistance (MDR). The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for systematic review and meta-analysis and the articles' quality was assessed using the Newcastle-Ottawa scale. Of the 2529 articles screened, 65 articles were systematically reviewed, data extracted, and included in in-depth meta-analysis. The overall pooled prevalence of ESBL-producers in Enterobacteriaceae was 29 % (95 % CI: 26-32 %) with high heterogeneity (I2 = 96 %, p < 0.001). Escherichia coli was the predominant ESBL-producing member of the Enterobacteriaceae family, followed by Citrobacter spp. and Klebsiella spp. The prevalence of ESBL-PE increased from 18.7 % in 2011 to 29.5 % in 2021. A strong positive correlation (r = 0.98) was observed between ESBL production and MDR in Enterobacteriaceae. ESBL-PE isolates showed high resistance to ampicillin, cephalosporins, and amoxicillin-clavulanic acid, and blaCTX-M type was the most reported gene variant among ESBL-PE. In conclusion, this study demonstrated an increased prevalence of ESBL-PE in Nepal over the last decade, and such isolates showed a high level of MDR against the β-lactams and non-β-lactam antibiotics. Tackling the rising antibiotic resistance (AR) and MDR in ESBL-PE would require concerted efforts from all stakeholders to institute effective infection control programs in the community and clinical settings.
Collapse
Affiliation(s)
- Christina Khadka
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Gopiram Syangtan
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Shrijana Bista
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
3
|
Phuadraksa T, Wichit S, Songtawee N, Tantimavanich S, Isarankura-Na-Ayudhya C, Yainoy S. Emergence of plasmid-mediated colistin resistance mcr-3.5 gene in Citrobacter amalonaticus and Citrobacter sedlakii isolated from healthy individual in Thailand. Front Cell Infect Microbiol 2023; 12:1067572. [PMID: 36683683 PMCID: PMC9846275 DOI: 10.3389/fcimb.2022.1067572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Citrobacter spp. are Gram-negative bacteria commonly found in environments and intestinal tracts of humans and animals. They are generally susceptible to third-generation cephalosporins, carbapenems and colistin. However, several antibiotic resistant genes have been increasingly reported in Citrobacter spp., which leads to the postulation that Citrobacter spp. could potentially be a reservoir for spreading of antimicrobial resistant genes. In this study, we characterized two colistin-resistant Citrobacter spp. isolated from the feces of a healthy individual in Thailand. Based on MALDI-TOF and ribosomal multilocus sequence typing, both strains were identified as Citrobacter sedlakii and Citrobacter amalonaticus. Genomic analysis and S1-nuclease pulsed field gel electrophoresis/DNA hybridization revealed that Citrobacter sedlakii and Citrobacter amalonaticus harbored mcr-3.5 gene on pSY_CS01 and pSY_CA01 plasmids, respectively. Both plasmids belonged to IncFII(pCoo) replicon type, contained the same genetic context (Tn3-IS1-ΔTnAs2-mcr-3.5-dgkA-IS91) and exhibited high transferring frequencies ranging from 1.03×10-4 - 4.6×10-4 CFU/recipient cell Escherichia coli J53. Colistin-MICs of transconjugants increased ≥ 16-fold suggesting that mcr-3.5 on these plasmids can be expressed in other species. However, beside mcr, other major antimicrobial resistant determinants in multidrug resistant Enterobacterales were not found in these two isolates. These findings indicate that mcr gene continued to evolve in the absence of antibiotics selective pressure. Our results also support the hypothesis that Citrobacter could be a reservoir for spreading of antimicrobial resistant genes. To the best of our knowledge, this is the first report that discovered human-derived Citrobacter spp. that harbored mcr but no other major antimicrobial resistant determinants. Also, this is the first report that described the presence of mcr gene in C. sedlakii and mcr-3 in C. amalonaticus.
Collapse
Affiliation(s)
- Thanawat Phuadraksa
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Srisurang Tantimavanich
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | | | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Negrete-González C, Turrubiartes-Martínez E, Briano-Macias M, Noyola D, Pérez-González LF, González-Amaro R, Niño-Moreno P. Plasmid Carrying blaCTX-M-15, blaPER-1, and blaTEM-1 Genes in Citrobacter spp. From Regional Hospital in Mexico. INFECTIOUS DISEASES: RESEARCH AND TREATMENT 2022; 15:11786337211065750. [PMID: 35068933 PMCID: PMC8771733 DOI: 10.1177/11786337211065750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Introduction: Citrobacter spp. is an opportunistic bacteria that have been recognized as significant pathogens in patients with underlying diseases or immunocompromised status. The aim of this study was to identify extended-spectrum β-lactamases in clinical isolates of Citrobacter spp. Methods: This cross-sectional study was conducted at Hospital Central “Dr. Ignacio Morones Prieto” in San Luis Potosi, Mexico. Nineteen isolates of Citrobacter spp. were obtained from clinical specimens between April to December 2015. Four isolates were resistant to third-generation cephalosporins. The presence of genes encoding ESBL ( blaCTX-M-15, blaTEM-1, blaVEB-1, blaSHV, and blaPER-1) was analyzed by PCR. For this purpose, plasmid DNA was extracted and horizontally transferred to recipient E. coli Top 10. Results: blaCTX-M-15 and blaVEB-1 genes were detected in Citrobacter freundii and Citrobacter sedlakii, whereas blaPER-1 gene was identified in 1 isolate of Citrobacter freundii. In contrast, blaSHV gene was not detected in any isolate. One strain carried blaCTX-M-15, blaTEM-1, blaVEB-1, and blaPER-1 genes, most in a 275-kb plasmid. Conclusion: This study shows the presence of different types of ESBL in clinical isolates of Citrobacter freundii and Citrobacter sedlakii, which confer resistance to broad-spectrum β-lactams. The plasmid identified in this study harboring ESBL genes could play an important role in the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Cindy Negrete-González
- Laboratorio de Genética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Edgar Turrubiartes-Martínez
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Laboratorio de Hematología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Miriam Briano-Macias
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Daniel Noyola
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | | | - Roberto González-Amaro
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Perla Niño-Moreno
- Laboratorio de Genética, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
5
|
Liu L, Zhang L, Zhou H, Yuan M, Hu D, Wang Y, Sun H, Xu J, Lan R. Antimicrobial Resistance and Molecular Characterization of Citrobacter spp. Causing Extraintestinal Infections. Front Cell Infect Microbiol 2021; 11:737636. [PMID: 34513738 PMCID: PMC8429604 DOI: 10.3389/fcimb.2021.737636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives This prospective study was carried out to investigate molecular characteristics and antimicrobial susceptibility patterns of Citrobacter spp. from extraintestinal infections. Methods Forty-six clinical Citrobacter spp. isolates were isolated from hospital patients with extraintestinal infections and analyzed by multilocus sequence typing (MLST) using seven housekeeping genes. Antimicrobial susceptibility testing was performed by disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI) recommendations. Adhesion and cytotoxicity to HEp-2 cells were assessed. Results The 46 clinical Citrobacter spp. isolates were typed into 38 sequence types (STs), 9 of which belonged to four clonal complexes (CCs). None of the isolates shared the same ST or CCs with isolates from other countries or from other parts of China. Over half of the isolates were multidrug-resistant (MDR), with 17/26 C. freundii, 5/6 C. braakii, and 3/14 C. koseri isolates being MDR. Moreover, four isolates were carbapenem resistant with resistance to imipenem or meropenem. Among eight quinolone resistant C. freundii, all had a mutation in codon 59 (Thr59Ile) in quinolone resistance determining region of the gyrA gene. Only a small proportion of the isolates were found to be highly cytotoxic and adhesive with no correlation to sample sources. Conclusions There was a diverse range of Citrobacter isolates causing extraintestinal infections and a high prevalence of MDR.
Collapse
Affiliation(s)
- Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhang
- Microbiology Department, Maanshan Center for Clinical Laboratory, Ma'anshan, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Min Yuan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Dalong Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yonglu Wang
- Microbiology Department, Maanshan Center for Disease Control and Prevention, Ma'anshan, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Castellanos-Rozo J, Pérez Pulido R, Grande MJ, Lucas R, Gálvez A. Potentially pathogenic bacteria isolated from Paipa cheese and its susceptibility profiles to antibiotics and biocides. Braz J Microbiol 2021; 52:1535-1543. [PMID: 34050446 DOI: 10.1007/s42770-021-00522-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this work was to evaluate the microbiological quality of cheese produced by formal and informal micro-enterprises in Paipa, Colombia, to isolate potentially pathogenic bacteria and to determine their prevalence and resistance to antimicrobials such as antibiotics and biocides. Sixteen micro-enterprises of the seventy existing in the region were sampled during 3 years. Viable concentrations of aerobic mesophiles, total and fecal coliforms, Salmonella sp., Listeria monocytogenes, Staphylococcus sp., yeasts, and molds were determined. Seventy-three bacterial isolates were identified by 16S rRNA gene sequencing. The susceptibility of the isolates to antibiotics and biocides was determined. The results indicated that between 98 and 100% of the cheese samples (n = 48 samples) of formal and informal micro-enterprises presented populations of total and fecal coliforms and Staphylococcus sp. above the limits established by Colombian regulations and varied according to the micro-enterprise. The results also indicated that 56% of Staphylococcus isolates were S. aureus. L. monocytogenes was positive in 38% of the samples. Salmonella sp. was not detected. The coliforms that prevailed were Escherichia coli (25%), Citrobacter freundii (14%), and Proteus mirabilis (8%). All L. monocytogenes were sensitive to ampicillin but resistant to erythromycin and trimethoprim-sulfamethoxazole. S. aureus isolates were susceptible to most antibiotics, except tetracycline and erythromycin (7% resistance). Likewise, 30% of coliforms (n = 36) were multidrug-resistant to antibiotics but susceptible to biocides.
Collapse
Affiliation(s)
- José Castellanos-Rozo
- Department of Biology and Microbiology, Faculty of Sciences and Engineering, Universidad de Boyacá, 150003, Tunja, Colombia
| | - Rubén Pérez Pulido
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Mª José Grande
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Rosario Lucas
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain.
| |
Collapse
|
7
|
A Review on Antibiotic Resistance Gene (ARG) Occurrence and Detection in WWTP in Ishikawa, Japan and Colombo, Sri Lanka. EMERGING ISSUES IN THE WATER ENVIRONMENT DURING ANTHROPOCENE 2020. [DOI: 10.1007/978-981-32-9771-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
9
|
Complete genome arrangement revealed the emergence of a poultry origin superbug Citrobacter portucalensis strain NR-12. J Glob Antimicrob Resist 2019; 18:126-129. [PMID: 31185330 DOI: 10.1016/j.jgar.2019.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Citrobacter spp. are part of normal human and animal intestinal flora. Citrobacter portucalensis (C. portucalensis) is closely related to Citrobacter freundii, which is an emerging opportunistic nosocomial pathogen. The aim of this study was to retrieve colistin-resistant Citrobacter spp. from poultry in Bangladesh. METHODS The C. portucalensis strain NR-12 was isolated from poultry droppings and subjected to antibiotic susceptibility testing. Complete genome analysis of NR-12 was performed followed by bioinformatics. It is believed that this is one of first reports of its kind of complete genome sequence of multidrug-resistant (MDR) C. portucalensis isolated from veterinary samples. RESULTS The C. portucalensis strain NR-12 showed resistance to polymyxin, sulfonamide, tetracycline, fluoroquinolone, and macrolide. Its complete genome revealed 13 acquired antimicrobial resistance gene markers (AMRs) conferring resistance to eight different antibiotic groups: dfrA12 (trimethoprim); sul1 and sul2 (sulfonamide); mph (A) (macrolide); tet (A) (tetracycline); qnrS1 and qnrB13 (fluoroquinolone); blaCMY-39 (extended-spectrum β-lactamase (ESBL)), blaTEM-176 (non-ESBL) and aadA2, aph (3')-Ia, aph (3″)-Ib, aph (3')-Ic, aph (3')-Id, strA, strB) (aminoglycoside). The genome possessed a class 1 integron (IntI1) gene cassette harbouring four different antibiotic resistance genes (dfrA12, aadA2, sul1, mph (A)). The organisation of class 1 integron (IntI1) carrying MDR determinants in C. portucalensis strain NR-12 was also first reported here. Colistin-resistant genes such as mgrB, phoP, phoQ, pmrA, pmrB, eptB and arnB were also present within NR-12. CONCLUSION C. portucalensis NR-12 was resistant to eight different antibiotics from six antimicrobial groups. To formulate a control strategy, it is important to understand this resistant mechanism.
Collapse
|
10
|
Chen D, Ji Y. New insights into Citrobacter freundii sepsis in neonates. Pediatr Int 2019; 61:375-380. [PMID: 30325560 DOI: 10.1111/ped.13715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/19/2018] [Accepted: 10/11/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND The aim of this study was to investigate the clinical features of neonatal sepsis caused by Citrobacter freundii as well as the current status and treatment strategy for multi-drug resistance of infection with this bacterium. METHODS Nine newborns were diagnosed with C. freundii sepsis between January 2014 and December 2017. We collated and analyzed a range of data for these nine patients, including general information, laboratory tests during infection, blood culture and treatment. RESULTS One of the patients died after only 7 h of infection. In the remaining eight cases, three patients developed meningitis, although none had brain abscess. A reduction of white blood cells (WBC) was detected <24 h after the start of infection, compared with at 48-72 h, when WBC count had increased and platelets progressively decreased. In all nine cases the infection was susceptible to tigecycline and was resistant to cephalosporins, carbapenems, and quinolones. In eight cases the infection was susceptible to co-trimoxazole and in the other case it was susceptible to amikacin. Of the eight patients who were cured, three received meropenem, two received ceftriaxone, one received amikacin, and two received tigecycline. CONCLUSION Reduction in WBC could take place in the early stages of C. freundii infection in newborns. The incidence of brain abscess was not high, but multi-drug resistance was common. Some non-sensitive drugs can also treat C. freundii sepsis effectively.
Collapse
Affiliation(s)
- Dan Chen
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yalian Ji
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Characterization of Antimicrobial Resistance in Serratia spp. and Citrobacter spp. Isolates from Companion Animals in Japan: Nosocomial Dissemination of Extended-Spectrum Cephalosporin-Resistant Citrobacter freundii. Microorganisms 2019; 7:microorganisms7030064. [PMID: 30823419 PMCID: PMC6462910 DOI: 10.3390/microorganisms7030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/28/2023] Open
Abstract
In many countries including Japan, the status of emerging antimicrobial resistance among Serratia spp. and Citrobacter spp. in companion animals remains unknown because these genera are rarely isolated from animals. In this study, 30 Serratia spp. and 23 Citrobacter spp. isolates from companion animals underwent susceptibility testing for 10 antimicrobials. Phenotypic and genetic approaches were used to identify the mechanisms of extended-spectrum cephalosporins (ESC). Subsequently, ESC-resistant Citrobacter spp. strains underwent multilocus sequence typing and pulsed-field gel electrophoresis (PFGE). A significantly higher rate (34.8%) of ESC resistance was observed in Citrobacter spp. isolates than in Serratia spp. isolates (0%). ESC resistance was detected in five C. freundii strains, two C. portucalensis strains, and one C. koseri strain. All of the ESC-resistant Citrobacter spp. strains harbored CMY-type and/or DHA-type AmpC β-lactamases. Three C. freundii strains harbored the CTX-M-3-type extended-spectrum β-lactamases. Notably, the three blaCTX-3-producing and two blaCMY-117-bearing C. freundii strains (obtained from different patients in one hospital) had the same sequence type (ST156 and ST18, respectively) and similar PFGE profiles. We believe that ESC-resistant Citrobacter spp. are important nosocomial pathogens in veterinary medicine. Therefore, infection control in animal hospitals is essential to prevent dissemination of these resistant pathogens.
Collapse
|
12
|
Lee R, Choi SM, Jo SJ, Lee J, Cho SY, Kim SH, Lee DG, Jeong HS. Clinical Characteristics and Antimicrobial Susceptibility Trends in Citrobacter Bacteremia: An 11-Year Single-Center Experience. Infect Chemother 2019; 51:1-9. [PMID: 30941932 PMCID: PMC6446011 DOI: 10.3947/ic.2019.51.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/26/2019] [Indexed: 11/24/2022] Open
Abstract
Background Recently, Citrobacter freundii bacteremia outbreak in a neonatal intensive care unit has attracted public attention in Korea. However, Citrobacter bacteremia is uncommon and usually occurs in patients with underlying diseases such as malignancy and hepatobiliary diseases. Increase in resistance and emerging of multidrug resistance among Citrobacter species have gradually been reported. The aim of this study was to investigate the clinical characteristics and outcome of C. freundii and non-freundii bacteremia and antimicrobial susceptibility trends. Materials and Methods We reviewed the medical records of patients with Citrobacter bacteremia at St. Mary's Hospital, from 2007 to 2017. Results A total of 43 patients with a median age of 72 (24-93) years was identified and 90.7% of them had comorbidities. Twenty-nine (67.4%) patients had C. freundii bacteremia while 14 had non-freundii bacteremia (six of C. braakii, five of C. koseri, two of C. amalonaticus and one of C. youngae). A total of 26 (51.2%) patients had community-acquired infection and intra-abdominal infection including hepatobiliary tract was the most common portal of entry (24/43, 55.8%). Moreover, hepatobiliary tract was the leading primary site of nosocomial infection (9/17, 52.9%). Polymicrobial bacteremia was observed in 21 (48.8%) patients. The percentages of Citrobacter species susceptible to ampicillin, amikacin, aztreonam, cefazolin, cefoxitin, cefotaxime, cefepime, piperacillin-tazobactam, ciprofloxacin, and imipenem were 9.5%, 97.6%, 73.8%, 9.5%, 14.3%, 71.4%, 92.9%, 83.3%, 83.3% and 100%, respectively. The resistance rate did not increase during the study period. Of 39 patients treated with antibiotics, 36 (92.3%) received appropriate empirical antibiotics. Overall mortality was 18.6%. High Charlson comorbidity index and Pitt bacteremia score were significant risk factors for death in univariate analysis and showed trends in the multivariate analysis. No significant difference in clinical features and antimicrobial susceptibility rate was observed between C. freundii and non-freundii bacteremia. Conclusion Citrobacter bacteremia was predominant in the elderly with comorbidities, while no pediatric case was observed. Hepatobiliary tract is the leading primary focus of bacteremia both in community-acquired and nosocomial infection. The rate of susceptibility to antibiotics has not changed in the last 11 years.
Collapse
Affiliation(s)
- Raeseok Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Mi Choi
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Sung Jin Jo
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jehoon Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, Seoul, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Si Hyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, Seoul, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
13
|
Akinbami OR, Olofinsae S, Ayeni FA. Prevalence of extended spectrum beta lactamase and plasmid mediated quinolone resistant genes in strains of Klebsiella pneumonia, Morganella morganii, Leclercia adecarboxylata and Citrobacter freundii isolated from poultry in South Western Nigeria. PeerJ 2018; 6:e5053. [PMID: 29942700 PMCID: PMC6016527 DOI: 10.7717/peerj.5053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
A serious concern is arising on the coexistence of extended-spectrum beta-lactamase (ESBL) and plasmid mediated quinolone resistance (PMQR) producing bacteria in animal husbandry, which could be transferred to humans, especially in strains that may not be routinely screened for resistance. This study therefore tested the prevalence of ESBL and PMQR genes in selected bacteria isolated from poultry faeces. Faecal droppings of birds were collected from 11 farms in five states in South Western Nigeria. Bacteria were isolated from the samples on cefotaxime supplemented plates and identified with MALDI-TOF. The MIC was determined using VITEK system and resistance genes were detected with PCR. A total of 350 strains were isolated from different samples and selected strains were identified as 23 Klebsiella pneumonia, 12 Morganella morganii, seven Leclercia adecarboxylata and one Citrobacter freundii. All the species were resistant to gentamycin, trimethoprim/sulphamethaxole, tobramycin, piperacillin, cefotaxime and aztreonam (except Morganella morganii strains which were mostly susceptible to aztreonam). All the tested strains were susceptible to imipenem, meropenem and amikacin. All Leclercia adecarboxylata strains were resistant to ceftazidime, cefepime and fosfomycin while all Morganella morganii strains were resistant to fosfomycin, moxifloxacin and ciprofloxacin. All tested species were generally sensitive to ciprofloxacin except Morganella morganii strains which were resistant to ciprofloxacin. The resistance to ciprofloxacin, ceftazidime, cefepime, tigercylin, colistin and fosfomycin were 65%, 40%, 23%,, 7%, 33%, 48% respectively while the prevalence of SHV, TEM and CTX genes were 42%, 63%, 35% respectively. 9.3% of the isolates had the three ESBL genes, 2.33% had qnrA gene, 4.65% had qnr B gene while none had qnrS gene. The most prevalent PMQR gene is Oqxb (25.58%) while 6.98% had the qep gene. Klebsiella pneumoniae generally had both ESBL and PMQR genes. The high prevalence of extended spectrum beta-lactamase genes in the studied strains calls for caution in the use of beta lactam antibiotics in poultry feeds. This is the first report of the occurrence of extended spectrum beta-lactamase and plasmid mediated quinolone resistance genes in Morganella morganii and Leclercia adecarboxylata strains isolated from poultry faeces.
Collapse
Affiliation(s)
- Olajumoke R. Akinbami
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Samson Olofinsae
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Funmilola A. Ayeni
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
14
|
Moghanni M, Ghazvini K, Farsiani H, Namaei MH, Derakhshan M, Yousefi M, Maragheh A, Jamehdar SA. High prevalence of sequence type 131 isolates producing CTX-M-15 among extended-spectrum β-lactamase-producing Escherichia coli strains in northeast Iran. J Glob Antimicrob Resist 2018; 15:74-78. [PMID: 29807202 DOI: 10.1016/j.jgar.2018.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/08/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVES The recent expansion of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is a worldwide problem. The purpose of this study was to investigate the molecular characteristics of ESBL-producing E. coli strains in Mashhad, located in the northeast of Iran. METHODS A total of 455 clinical E. coli isolates were collected at three hospitals in Mashhad between April-September 2015. Antimicrobial susceptibility was determined by the Kirby-Bauer disk diffusion test. The combination disk test was performed for phenotypic detection of ESBLs. PCR was used to screen isolates for ESBL typing. Phylogenetic groups and sequence type 131 (ST131) were determined by multiplex PCR. RESULTS The prevalence of ESBL-producing E. coli among the collected strains was 51.6% (235/455). Among the 235 ESBL-producing strains, 222 (94.5%) tested positive for CTX-M type, whilst 115 (48.9%), 92 (39.1%) and 21 (8.9%) were positive for TEM, OXA and SHV, respectively. Moreover, CTX-M-15 (94.1%; 209/222) was the most common ESBL among E. coli. Based on multiplex PCR, phylogenetic group B2 was predominant (169/235; 71.9%), followed by D (32/235; 13.6%), A (21/235; 8.9%) and B1 (13/235; 5.5%). ST131 was the predominant clonal group among the phylogenetic group B2 isolates (151/169; 89.3%). CONCLUSION The results revealed that an urgent investigation of the source and transmission pathways of the CTX-M-15-B2-ST131 E. coli clone is needed to mitigate this emergent public-health problem.
Collapse
Affiliation(s)
- Marzie Moghanni
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi Square, Medical Campus, Mashhad 9177948564, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi Square, Medical Campus, Mashhad 9177948564, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi Square, Medical Campus, Mashhad 9177948564, Iran
| | - Mohammad Hasan Namaei
- Infectious Diseases Research Centre, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi Square, Medical Campus, Mashhad 9177948564, Iran
| | - Masoud Yousefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi Square, Medical Campus, Mashhad 9177948564, Iran
| | - Alimohammad Maragheh
- Medical Laboratory Basic Sciences, 17 Shahrivar Hospital, Iranian Social Security Organization, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Azadi Square, Medical Campus, Mashhad 9177948564, Iran.
| |
Collapse
|
15
|
Shrestha A, Bajracharya AM, Subedi H, Turha RS, Kafle S, Sharma S, Neupane S, Chaudhary DK. Multi-drug resistance and extended spectrum beta lactamase producing Gram negative bacteria from chicken meat in Bharatpur Metropolitan, Nepal. BMC Res Notes 2017; 10:574. [PMID: 29116010 PMCID: PMC5678746 DOI: 10.1186/s13104-017-2917-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/03/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Multidrug resistance (MDR) and extended spectrum beta lactamase (ESBL) producer Gram negative bacteria are considered as a major health problem, globally. ESBL enzyme hydrolyses the beta lactam ring of third generation cephalosporins, which alters the structure of the antibiotic. Due to the modification in structure of the antibiotic, bacteria show resistance to these antibiotics. Resistant bacterial strains are transmitted to humans from animals through consumption of uncooked meat, through contact with uncooked meat and meat surfaces. This study aims to assess bacteriological profile and analyze the situation of antibiotic resistance, multidrug resistance, and ESBL producing Gram negative bacteria in chicken meat. RESULTS A total of 38 chicken meat samples were studied in which 103 Gram negative bacteria were isolated. Species of Gram negative bacteria were identified as Citrobacter spp. (44.7%), Salmonella spp. (26.2%), Proteus spp. (18.4%), Escherichia coli (4.8%), Shigella spp. (3.9%), Pseudomonas spp. (1.9%), and Klebsiella spp. (1.0%). The prevalence of MDR isolates was found to be 79.6%. Total ESBL producer was 36.9% and ESBL producer among MDR was 34.9%. This concludes wide range of antibiotic resistance bacteria is prevalent in raw chicken meat.
Collapse
Affiliation(s)
- Anil Shrestha
- Department of Microbiology, Balkumari College, Chitwan, Nepal
| | | | - Hemraj Subedi
- Department of Microbiology, Balkumari College, Chitwan, Nepal
| | - Raju Shah Turha
- Department of Microbiology, Balkumari College, Chitwan, Nepal
| | - Sachin Kafle
- Department of Microbiology, Balkumari College, Chitwan, Nepal
| | - Saroj Sharma
- Department of Microbiology, Balkumari College, Chitwan, Nepal
| | - Sunil Neupane
- Department of Microbiology, Balkumari College, Chitwan, Nepal
| | - Dhiraj Kumar Chaudhary
- Department of Microbiology, Prithu Technical College, Institute of Agriculture and Animal Science, Tribhuvan University, Dang, Nepal.
| |
Collapse
|
16
|
Molecular characterization and antimicrobial resistance profile of atypical Citrobacter gillenii and Citrobacter sp. isolated from diseased rainbow trout ( Oncorhynchus mykiss ). J Glob Antimicrob Resist 2017; 10:136-142. [DOI: 10.1016/j.jgar.2017.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022] Open
|
17
|
Liu L, Lan R, Liu L, Wang Y, Zhang Y, Wang Y, Xu J. Antimicrobial Resistance and Cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China. Front Microbiol 2017; 8:1357. [PMID: 28775715 PMCID: PMC5518651 DOI: 10.3389/fmicb.2017.01357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/04/2017] [Indexed: 11/23/2022] Open
Abstract
Objectives:Citrobacter spp. especially Citrobacter freundii, is frequently causing nosocomial infections, and increasingly becoming multi-drug resistant (MDR). In this study, we aimed to determine the genetic diversity and relationships of Citrobacter spp. from diarrheal patients and food sources, their antimicrobial resistance profiles and in vitro virulence properties. Methods: Sixty two Citrobacter isolates, including 13 C. freundii, 41 C. youngae and eight C. braakii isolates, were obtained from human diarrheal patients and food sources. Multilocus Sequence Typing (MLST) of seven housekeeping genes and antimicrobial susceptibility testing using the broth microdilution method according to CLSI recommendations were carried out. Adhesion and cytotoxicity to HEp-2 cells were performed. PCR and sequencing were used to identify blaCTX−M, blaSHV, blaTEM and qnr genes. Results: The 62 isolates were divided into 53 sequence types (STs) with all STs being novel, displaying high genetic diversity. ST39 was a predominant ST shared by 5 C. youngae strains isolated from four foods and a diarrheal patient. All isolates were resistant to cefoxitin, and sensitive to imipenem, meropenem and amikacin. The majority of Citrobacter isolates (61.3%) were MDR of three or more antibiotics out of the 22 antibiotics tested. Two C. freundii isolates each carried the blaTEM−1 gene and a variant of qnrB77. Three Citrobacter isolates each carried qnrS1 and aac(6')-Ib-cr genes. Seven isolates that showed strong cytotoxicity to HEp-2 cells were MDR. Conclusions:Citrobacter spp. from human and food sources are diverse with variation in virulence properties and antibiotic resistance profiles. Food may be an important source of Citrobacter species in transmission to humans. C. freundii and C. youngae are potential foodborne pathogens.
Collapse
Affiliation(s)
- Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia
| | - Liqin Liu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology BeijingBeijing, China
| | - Yonglu Wang
- Maanshan Center for Disease Control and PreventionMaanshan, China
| | - Yushi Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology BeijingBeijing, China
| | - Yiting Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang, China
| |
Collapse
|
18
|
Liu LH, Wang NY, Wu AYJ, Lin CC, Lee CM, Liu CP. Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:565-572. [PMID: 28711438 DOI: 10.1016/j.jmii.2016.08.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE Multidrug-resistant strains of Citrobacter have emerged, which carry Amp-C β-lactamase (Amp-C), broad-spectrum β-lactamase, extended-spectrum β-lactamase (ESBL), and other resistance mechanisms. These strains are associated with a higher rate of in-hospital mortality. The object of this study is to determine the mortality risk factors, susceptibility pattern to antibiotics, and prevalence of resistance genes in patients with Citrobacter freundii bacteremia. METHODS From January 2009 to December 2014, blood isolates of C. freundii were collected in MacKay Memorial Hospital, Taipei, Taiwan. PCR technique and sequencing were performed for resistance genes. Pulsed-field gel electrophoresis (PFGE) was done using XbaI restriction enzyme. The clinical characteristics and risk factors for mortality are demonstrated. RESULTS The 36 blood isolates of C. freundii belonged to 32 different PFGE pulsotypes, and 15 isolates (41.7%) were polymicrobial. The most common source of infection was intra-abdominal origin (61.1%), followed by unknown sources (22.2%), the urinary tract (8.3%), intravascular catheter (5.6%), and soft tissue (2.8%). High degree of antibiotic resistance was noted for cefazolin (100%), cefoxitin (97.2%), and cefuroxime (66.7%). The blaTEM-1 resistance gene was present in 16.7% isolates. 72.2% isolates carried blaAmpC and 5.6% isolates carried ESBL genes (blaSHV-12 or blaCTX-M-15). Multivariate analysis indicated that the independent risk factor for 28-day mortality was carrying the blaTEM-1 resistance gene. CONCLUSION For patients with C. freundii bacteremia, carrying the blaTEM-1 resistance gene was an independent risk factor for 28-day mortality. Carbapenems, fourth-generation cephalosporins, amikacin, and quinolones are still reliable agents for drug-resistant strains.
Collapse
Affiliation(s)
- Li-Hsiang Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Nai-Yu Wang
- Section of Microbiology, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Chen Lin
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chun-Ming Lee
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, St. Joseph's Hospital, Yunlin County, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Section of Microbiology, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Medical College, Taipei, Taiwan.
| |
Collapse
|
19
|
Noguchi T, Matsumura Y, Yamamoto M, Nagao M, Takakura S, Ichiyama S. Clinical and microbiologic characteristics of cefotaxime-non-susceptible Enterobacteriaceae bacteremia: a case control study. BMC Infect Dis 2017; 17:44. [PMID: 28061869 PMCID: PMC5219717 DOI: 10.1186/s12879-016-2150-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 12/22/2016] [Indexed: 01/31/2023] Open
Abstract
Background Cefotaxime plays an important role in the treatment of patients with bacteremia due to Enterobacteriaceae, although cefotaxime resistance is reported to be increasing in association with extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase (AmpC). Methods We conducted a case-control study in a Japanese university hospital between 2011 and 2012. We assessed the risk factors and clinical outcomes of bacteremia due to cefotaxime-non-susceptible Enterobacteriaceae (CTXNS-En) and analyzed the resistance mechanisms. Results Of 316 patients with Enterobacteriaceae bacteremia, 37 patients with bacteremia caused by CTXNS-En were matched to 74 patients who had bacteremia caused by cefotaxime-susceptible Enterobacteriaceae (CTXS-En). The most common CTXNS-En was Escherichia coli (43%), followed by Enterobacter spp. (24%) and Klebsiella spp. (22%). Independent risk factors for CTXNS-En bacteremia included previous infection or colonization of CTXNS-En, cardiac disease, the presence of intravascular catheter and prior surgery within 30 days. Patients with CTXNS-En bacteremia were less likely to receive appropriate empirical therapy and to achieve a complete response at 72 h than patients with CTXS-En bacteremia. Mortality was comparable between CTXNS-En and CTXS-En patients (5 vs. 3%). CTXNS-En isolates exhibited multidrug resistance but remained highly susceptible to amikacin and meropenem. CTX-M-type ESBLs accounted for 76% of the β-lactamase genes responsible for CTXNS E. coli and Klebsiella spp. isolates, followed by plasmid-mediated AmpC (12%). Chromosomal AmpC was responsible for 89% of CTXNS Enterobacter spp. isolates. Conclusions CTXNS-En isolates harboring ESBL and AmpC caused delays in appropriate therapy among bacteremic patients. Risk factors and antibiograms may improve the selection of appropriate therapy for CTXNS-En bacteremia. Prevalent mechanisms of resistance in CTXNS-En were ESBL and chromosomal AmpC. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-2150-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taro Noguchi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shunji Takakura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Ichiyama
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
20
|
Oliveira H, Pinto G, Oliveira A, Oliveira C, Faustino MA, Briers Y, Domingues L, Azeredo J. Characterization and genome sequencing of a Citrobacter freundii phage CfP1 harboring a lysin active against multidrug-resistant isolates. Appl Microbiol Biotechnol 2016; 100:10543-10553. [PMID: 27683211 DOI: 10.1007/s00253-016-7858-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/29/2016] [Accepted: 09/13/2016] [Indexed: 01/26/2023]
Abstract
Citrobacter spp., although frequently ignored, is emerging as an important nosocomial bacterium able to cause various superficial and systemic life-threatening infections. Considered to be hard-to-treat bacterium due to its pattern of high antibiotic resistance, it is important to develop effective measures for early and efficient therapy. In this study, the first myovirus (vB_CfrM_CfP1) lytic for Citrobacter freundii was microbiologically and genomically characterized. Its morphology, activity spectrum, burst size, and biophysical stability spectrum were determined. CfP1 specifically infects C. freundii, has broad host range (>85 %; 21 strains tested), a burst size of 45 PFU/cell, and is very stable under different temperatures (-20 to 50 °C) and pH (3 to 11) values. CfP1 demonstrated to be highly virulent against multidrug-resistant clinical isolates up to 12 antibiotics, including penicillins, cephalosporins, carbapenems, and fluroquinoles. Genomically, CfP1 has a dsDNA molecule with 180,219 bp with average GC content of 43.1 % and codes for 273 CDSs. The genome architecture is organized into function-specific gene clusters typical for tailed phages, sharing 46 to 94 % nucleotide identity to other Citrobacter phages. The lysin gene encoding a predicted D-Ala-D-Ala carboxypeptidase was also cloned and expressed in Escherichia coli and its activity evaluated in terms of pH, ionic strength, and temperature. The lysine optimum activity was reached at 20 mM HEPES, pH 7 at 37 °C, and was able to significantly reduce all C. freundii (>2 logs) as well as Citrobacter koseri (>4 logs) strains tested. Interestingly, the antimicrobial activity of this enzyme was performed without the need of pretreatment with outer membrane-destabilizing agents. These results indicate that CfP1 lysin is a good candidate to control problematic Citrobacter infections, for which current antibiotics are no longer effective.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Graça Pinto
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Oliveira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carla Oliveira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - Yves Briers
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Leuven, Belgium.,Department of Applied Biosciences, Ghent University, Valentin Vaerwijckweg 1, 9000, Ghent, Belgium
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Azeredo
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
21
|
Praharaj AK, Khajuria A, Kumar M, Grover N. Phenotypic detection and molecular characterization of beta-lactamase genes among Citrobacter species in a tertiary care hospital. Avicenna J Med 2016; 6:17-27. [PMID: 26952135 PMCID: PMC4759968 DOI: 10.4103/2231-0770.173578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: To examine the distribution, emergence, and spread of genes encoding beta-lactamase resistance in Citrobacter species isolated from hospitalized patients in a tertiary care hospital. Methods: A prospective study was conducted in a 1000-bed tertiary care center in Pune, India from October 2010 to October 2013. A total of 221 Citrobacter spp. isolates were recovered from clinical specimens from different patients (one isolate per patient) admitted to the surgical ward, medical ward and medical and surgical Intensive Care Units. Polymerase chain reaction (PCR) assays and sequencing were used to determine the presence of beta-lactamase encoding genes. Conjugation experiments were performed to determine their transferability. Isolate relatedness were determined by repetitive element based-PCR, enterobacterial repetitive intergenic consensus-PCR and randomly amplified polymorphic DNA. Results: Among 221 tested isolates of Citrobacter spp. recovered from various clinical specimens, 179 (80.9%) isolates showed minimum inhibitory concentration (MIC) >4 μg/ml against meropenem and imipenem. One hundred and forty-five isolates with increased MICs value against carbapenems were further processed for molecular characterization of beta-lactamase genes. Susceptibility profiling of the isolates indicated that 100% retained susceptibility to colistin. Conjugation experiments indicated that blaNDM-1 was transferable via a plasmid. Conclusion: The ease of NDM-1 plasmid transmissibility may help their dissemination among the Citrobacter species as well as to others in Enterobacteriaceae. Early detection, antimicrobial stewardship and adequate infection control measures will help in limiting the spread of these organisms.
Collapse
Affiliation(s)
| | - Atul Khajuria
- Department of Microbiology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Mahadevan Kumar
- Department of Microbiology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Naveen Grover
- Department of Microbiology, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
22
|
Abstract
Three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998. Plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from quinolone inhibition. The qnr genes appear to have been acquired from chromosomal genes in aquatic bacteria, are usually associated with mobilizing or transposable elements on plasmids, and are often incorporated into sul1-type integrons. The second plasmid-mediated mechanism involves acetylation of quinolones with an appropriate amino nitrogen target by a variant of the common aminoglycoside acetyltransferase AAC(6')-Ib. The third mechanism is enhanced efflux produced by plasmid genes for pumps QepAB and OqxAB. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. The plasmid-mediated mechanisms provide only low-level resistance that by itself does not exceed the clinical breakpoint for susceptibility but nonetheless facilitates selection of higher-level resistance and makes infection by pathogens containing PMQR harder to treat.
Collapse
|
23
|
Harada K, Sasaki A, Shimizu T. Effects of oral orbifloxacin on fecal coliforms in healthy cats: a pilot study. J Vet Med Sci 2015; 78:83-9. [PMID: 26311787 PMCID: PMC4751121 DOI: 10.1292/jvms.15-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study objective was to determine the effect of oral orbifloxacin (ORB) on antimicrobial susceptibility and composition of fecal coliforms in cats. Nine cats were randomized to two groups administered a daily oral dose of 2.5 and 5.0 mg ORB/kg for 7 days and a control group (three cats per group). Coliforms were isolated from stool samples and were tested for susceptibilities to ORB and 5 other drugs. ORB concentration in feces was measured using high-performance liquid chromatography (HPLC). The coliforms were undetectable after 2 days of ORB administration, and their number increased in most cats after termination of the administration. Furthermore, only isolates of Escherichia coli were detected in all cats before administration, and those of Citrobacter freundii were detected after termination of the administration. E. coli isolates exhibited high ORB susceptibility [Minimum inhibitory concentration (MIC), ≤0.125 µg/ml] or relatively low susceptibility (MIC, 1-2 µg/ml) with a single gyrA mutation. C. freundii isolates largely exhibited intermediate ORB susceptibility (MIC, 4 µg/ml), in addition to resistance to ampicillin and cefazolin, and harbored qnrB, but not a gyrA mutation. HPLC revealed that the peaks of mean concentration were 61.3 and 141.0 µg/g in groups receiving 2.5 and 5.0 mg/kg, respectively. Our findings suggest that oral ORB may alter the total counts and composition of fecal coliform, but is unlikely to yield highly fluoroquinolone-resistant mutants of E. coli and C. freundii in cats, possibly because of the high drug concentration in feces.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, 4-101 Minami, Koyama-Cho, Tottori-Shi, Tottori 680-8553, Japan
| | | | | |
Collapse
|
24
|
Okade H, Nakagawa S, Sakagami T, Hisada H, Nomura N, Mitsuyama J, Yamagishi Y, Mikamo H. Characterization of plasmid-mediated quinolone resistance determinants in Klebsiella pneumoniae and Escherichia coli from Tokai, Japan. J Infect Chemother 2014; 20:778-83. [PMID: 25239060 DOI: 10.1016/j.jiac.2014.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
The spread of plasmid-mediated quinolone resistance (PMQR) determinants was evaluated in 150 ceftazidime or cefotaxime-resistant clinical isolates of Klebsiella pneumoniae and Escherichia coli from Tokai, Japan between 2008 and 2011. In this study, qnrB, qnrS, and aac(6')-Ib-cr genes were detected in 12 (50.0%), 4 (16.7%), and 1 (4.2%) of 24 K. pneumoniae isolates, respectively, while qnrA, aac(6')-Ib-cr, and qepA genes were detected in 1 (0.8%), 11 (8.7%), and 2 (1.6%) of 126 E. coli isolates, respectively. qnr genes were mainly found in K. pneumoniae (66.7%) and to a lesser extent in E. coli (0.8%). We determined the genetic environment of the qnrB4 gene in 24.6 kb class 1 integron structure, including aar-2, cmlA, blaOXA-10, aadA1, qacEdelta1, sul1, and blaDHA-1. In a time-kill assay, introduction of the qnrB4 or qnrS1 plasmid to the recipient E. coli strain decreased the bactericidal activities of fluoroquinolones such as ciprofloxacin, levofloxacin, and pazufloxacin.
Collapse
Affiliation(s)
- Hayato Okade
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Research Laboratories, Toyama Chemical Co., Ltd., 2-4-1 Shimookui, Toyama 930-8508, Japan.
| | - Satoshi Nakagawa
- Research Laboratories, Toyama Chemical Co., Ltd., 2-4-1 Shimookui, Toyama 930-8508, Japan
| | - Toru Sakagami
- Research Laboratories, Toyama Chemical Co., Ltd., 2-4-1 Shimookui, Toyama 930-8508, Japan
| | - Harumi Hisada
- Research Laboratories, Toyama Chemical Co., Ltd., 2-4-1 Shimookui, Toyama 930-8508, Japan
| | - Nobuhiko Nomura
- Research Laboratories, Toyama Chemical Co., Ltd., 2-4-1 Shimookui, Toyama 930-8508, Japan
| | - Junichi Mitsuyama
- Development Division, Toyama Chemical Co., Ltd., 3-2-5 Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan; Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
25
|
Deveci A, Coban AY. Optimum management of Citrobacter koseri infection. Expert Rev Anti Infect Ther 2014; 12:1137-42. [DOI: 10.1586/14787210.2014.944505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aydin Deveci
- Department of Infectious Disease and Clinical Microbiology, Medical School, Ondokuz Mayis University,
55139, Samsun, Turkey
| | - Ahmet Yilmaz Coban
- Department of Medical Microbiology, Medical School, Ondokuz Mayis University,
55139, Samsun, Turkey
| |
Collapse
|
26
|
Molecular characteristics of extended-spectrum β-lactamases in clinical isolates from Escherichia coli at a Japanese tertiary hospital. PLoS One 2013; 8:e64359. [PMID: 23691204 PMCID: PMC3654959 DOI: 10.1371/journal.pone.0064359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/12/2013] [Indexed: 11/19/2022] Open
Abstract
The prevalence of ESBL has been increasing worldwide. In this study, we investigated the molecular characteristics of ESBL among clinical isolates of Escherichia coli from a Japanese tertiary hospital. A total of 71 consecutive and nonduplicate clinical isolates of ESBL-positive E. coli collected at Tohoku University Hospital between January 2008 and March 2011 were studied. The antimicrobial susceptibility profile of these strains was determined. PCR and sequencing were performed to identify genes for β-lactamase (bla(TEM), bla(SHV), bla(OXA-1-like), and bla(CTX-M)) and plasmid-mediated quinolone resistance determinants (PMQR). The isolates were also analyzed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Of the 71 strains, 68 were positive for CTX-M, 28 were positive for TEM, four were positive for OXA-1, and one was positive for SHV. Sequencing revealed that CTX-M-14 was the most prevalent (31/71), followed by CTX-M-27 (21/71) and then CTX-M-15 (9/71). Of the 28 TEM-positive strains, one was TEM-10 and the rest were TEM-1. One SHV-positive strain was SHV-12. The 21 CTX-M-27-producing isolates were divided into 14 unique PFGE types, while the 9 CTX-M-15 producers were divided into 8 types. Based on MLST, 9 CTX-M-14 procedures, 19 CTX-M-27 procedures, and 8 CTX-M-15 producers belonged to ST131. Thirty-five (94.6%) of the 37 ST131 E. coli strains showed resistance to levofloxacin, which was a higher rate than among non-ST131 strains (63.6%). Among ESBL-producing isolates, one, two, and six possessed qnrB, qnrS, qepA, and aac(6')-Ib-cr, respectively. Of the 6 isolates with aac(6')-Ib-cr, 4 carried the CTX-M-15 gene. Our data suggest that CTX-M-15-producing E. coli ST131 has emerged as a worldwide pandemic clone, while CTX-M-27 (a variant of CTX-M-14) is also spreading among E. coli ST131 in Japan.
Collapse
|
27
|
Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli in Japan: emergence of CTX-M-15-producing E. coli ST131. Diagn Microbiol Infect Dis 2012; 74:201-3. [DOI: 10.1016/j.diagmicrobio.2012.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 11/22/2022]
|
28
|
Zhao WH, Hu ZQ. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit Rev Microbiol 2012; 39:79-101. [PMID: 22697133 PMCID: PMC4086240 DOI: 10.3109/1040841x.2012.691460] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CTX-M enzymes, the plasmid-mediated cefotaximases, constitute a rapidly growing family of extended-spectrum β-lactamases (ESBLs) with significant clinical impact. CTX-Ms are found in at least 26 bacterial species, particularly in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. At least 109 members in CTX-M family are identified and can be divided into seven clusters based on their phylogeny. CTX-M-15 and CTX-M-14 are the most dominant variants. Chromosome-encoded intrinsic cefotaximases in Kluyvera spp. are proposed to be the progenitors of CTX-Ms, while ISEcp1, ISCR1 and plasmid are closely associated with their mobilization and dissemination.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
29
|
Kanamori H, Yano H, Hirakata Y, Hirotani A, Arai K, Endo S, Ichimura S, Ogawa M, Shimojima M, Aoyagi T, Hatta M, Yamada M, Gu Y, Tokuda K, Kunishima H, Kitagawa M, Kaku M. Molecular characteristics of extended-spectrum beta-lactamases and qnr determinants in Enterobacter species from Japan. PLoS One 2012; 7:e37967. [PMID: 22719857 PMCID: PMC3376121 DOI: 10.1371/journal.pone.0037967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/26/2012] [Indexed: 11/17/2022] Open
Abstract
The incidence of extended-spectrum β-lactamases (ESBLs) has been increasing worldwide, but screening criteria for detection of ESBLs are not standardized for AmpC-producing Enterobacteriaceae such as Enterobacter species. In this study, we investigated the prevalence of ESBLs and/or AmpC β-lactamases in Japanese clinical isolates of Enterobacter spp. and the association of plasmid-mediated quinolone resistance (PMQR) determinants with ESBL producers. A total of 364 clinical isolates of Enterobacter spp. collected throughout Japan between November 2009 and January 2010 were studied. ESBL-producing strains were assessed by the CLSI confirmatory test and the boronic acid disk test. PCR and sequencing were performed to detect CTX-M, TEM, and SHV type ESBLs and PMQR determinants. For ESBL-producing Enterobacter spp., pulsed-field gel electrophoresis (PFGE) was performed using XbaI restriction enzyme. Of the 364 isolates, 22 (6.0%) were ESBL producers. Seven isolates of Enterobacter cloacae produced CTX-M-3, followed by two isolates producing SHV-12. Two isolates of Enterobacter aerogenes produced CTX-M-2. Of the 22 ESBL producers, 21 had the AmpC enzyme, and six met the criteria for ESBL production in the boronic acid test. We found a significant association of qnrS with CTX-M-3-producing E. cloacae. The 11 ESBL-producing Enterobacter spp. possessing blaCTX-M, blaSHV, or blaTEM were divided into six unique PFGE types. This is the first report about the prevalence of qnr determinants among ESBL-producing Enterobacter spp. from Japan. Our results suggest that ESBL-producing Enterobacter spp. with qnr determinants are spreading in Japan.
Collapse
Affiliation(s)
- Hajime Kanamori
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
High frequency of IMP-6 among clinical isolates of metallo-β-lactamase-producing Escherichia coli in Japan. Antimicrob Agents Chemother 2012; 56:4554-5. [PMID: 22664972 DOI: 10.1128/aac.00617-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|