1
|
Huang Y, Yang Y, Liu G, Xu M. New clinical application prospects of artemisinin and its derivatives: a scoping review. Infect Dis Poverty 2023; 12:115. [PMID: 38072951 PMCID: PMC10712159 DOI: 10.1186/s40249-023-01152-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Recent research has suggested that artemisinin and its derivatives may have therapeutic effects on parasites, viruses, tumors, inflammation and skin diseases. This study aimed to review clinical research on artemisinin and its derivatives except anti-malaria and explore possible priority areas for future development. METHODS Relevant articles in English and Chinese published before 28 October 2021 were reviewed. All articles were retrieved and obtained from databases including WanFang, PubMed/MEDLINE, the Cochrane Library, China National Knowledge International, Embase, OpenGrey, the Grey Literature Report, Grey Horizon, and ClinicalTrials.gov. Studies were selected for final inclusion based on predefined criteria. Information was then extracted and analyzed by region, disease, outcome, and time to identify relevant knowledge gaps. RESULTS Seventy-seven studies on anti-parasitic (35), anti-tumor (16), anti-inflammatory (12), anti-viral (8), and dermatological treatments (7) focused on the safety and efficacy of artemisinin and its derivatives. The anti-parasitic clinical research developed rapidly, with a large number of trials, rapid clinical progress, and multiple research topics. In contrast, anti-viral research was limited and mainly stayed in phase I clinical trials (37.50%). Most of the studies were conducted in Asia (60%), followed by Africa (27%), Europe (8%), and the Americas (5%). Anti-parasite and anti-inflammatory research were mainly distributed in less developed continents such as Asia and Africa, while cutting-edge research such as anti-tumor has attracted more attention in Europe and the United States. At the safety level, 58 articles mentioned the adverse reactions of artemisinin and its derivatives, with only one study showing a Grade 3 adverse event, while the other studies did not show any related adverse reactions or required discontinuation. Most studies have discovered therapeutic effects of artemisinin or its derivatives on anti-parasitic (27), anti-tumor (9), anti-inflammatory (9) and dermatological treatment (6). However, the efficacy of artemisinin-based combination therapies (ACTs) for parasitic diseases (non-malaria) is still controversial. CONCLUSIONS Recent clinical studies suggest that artemisinin and its derivatives may be safe and effective candidates for anti-tumor, anti-parasitic, anti-inflammatory and dermatological drugs. More phase II/III clinical trials of artemisinin and its derivatives on antiviral effects are needed.
Collapse
Affiliation(s)
- Yangmu Huang
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China.
- Institute for Global Health and Development, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China.
| | - Yang Yang
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
| | - Guangqi Liu
- Energy Saving and Environmental Protection and Occupational Safety and Health Research Institute, China Academy of Railway Sciences Co., Ltd, No. 2 Daliushu Road, Beijing, 100081, China
| | - Ming Xu
- School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
2
|
Mhango EKG, Snorradottir BS, Kachingwe BHK, Katundu KGH, Gizurarson S. Estimation of Pediatric Dosage of Antimalarial Drugs, Using Pharmacokinetic and Physiological Approach. Pharmaceutics 2023; 15:1076. [PMID: 37111562 PMCID: PMC10140824 DOI: 10.3390/pharmaceutics15041076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Most of the individuals who die of malaria in sub-Saharan Africa are children. It is, therefore, important for this age group to have access to the right treatment and correct dose. Artemether-lumefantrine is one of the fixed dose combination therapies that was approved by the World Health Organization to treat malaria. However, the current recommended dose has been reported to cause underexposure or overexposure in some children. The aim of this article was, therefore, to estimate the doses that can mimic adult exposure. The availability of more and reliable pharmacokinetic data is essential to accurately estimate appropriate dosage regimens. The doses in this study were estimated using the physiological information from children and some pharmacokinetic data from adults due to the lack of pediatric pharmacokinetic data in the literature. Depending on the approach that was used to calculate the dose, the results showed that some children were underexposed, and others were overexposed. This can lead to treatment failure, toxicity, and even death. Therefore, when designing a dosage regimen, it is important to know and include the distinctions in physiology at various phases of development that influence the pharmacokinetics of various drugs in order to estimate the dose in young children. The physiology at each time point during the growth of a child may influence how the drug is absorbed, gets distributed, metabolized, and eliminated. From the results, there is a very clear need to conduct a clinical study to further verify if the suggested (i.e., 0.34 mg/kg for artemether and 6 mg/kg for lumefantrine) doses could be clinically efficacious.
Collapse
Affiliation(s)
- Ellen K. G. Mhango
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, 107 Reykjavik, Iceland (B.S.S.)
- Department of Pharmacy, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, P/Bag 360, Blantyre 3, Malawi
| | - Bergthora S. Snorradottir
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, 107 Reykjavik, Iceland (B.S.S.)
| | - Baxter H. K. Kachingwe
- Department of Pharmacy, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, P/Bag 360, Blantyre 3, Malawi
| | - Kondwani G. H. Katundu
- Biomedical Sciences Department, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, P/Bag 360, Blantyre 3, Malawi
| | - Sveinbjorn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, 107 Reykjavik, Iceland (B.S.S.)
- Department of Pharmacy, School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, P/Bag 360, Blantyre 3, Malawi
| |
Collapse
|
3
|
The effect of sickle cell genotype on the pharmacokinetic properties of artemether-lumefantrine in Tanzanian children. Int J Parasitol Drugs Drug Resist 2022; 19:31-39. [PMID: 35617818 PMCID: PMC9133758 DOI: 10.1016/j.ijpddr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Since there are inconsistent data relating to the effect of haemoglobinopathies on disposition of artemisinin antimalarial combination therapy, and none in sickle cell trait (SCT) or sickle cell disease (SCD), the aim of this study was to characterize the pharmacokinetic properties of artemether-lumefantrine (ARM-LUM) in children with SCD/SCT. Thirty-eight Tanzanian children aged 5–10 years with normal (haemoglobin AA; n = 12), heterozygous (haemoglobin AS; n = 14) or homozygous (haemoglobin SS; n = 12) sickle genotypes received six ARM-LUM doses (1.7 mg/kg plus 10 mg/kg, respectively) over 3 days. Sparse venous and mixed-capillary dried blood spot (DBS) samples were taken over 42 days. Plasma and DBS ARM and LUM, and their active metabolites dihydroartemisinin (DHA) and desbutyl-lumefantrine (DBL), were assayed using validated liquid chromatography-mass spectrometry. Multi-compartmental pharmacokinetic models were developed using a population approach. Plasma but not DBS concentrations of ARM/DHA were assessable. The majority (85%) of the 15 measurable values were within 95% prediction intervals from a published population pharmacokinetic ARM/DHA model in Papua New Guinean children of similar age without SCD/SCT who had uncomplicated malaria, and there was no clear sickle genotype clustering. Plasma (n = 38) and corrected DBS (n = 222) LUM concentrations were analysed using a two-compartment model. The median [inter-quartile range] LUM AUC0–∞ was 607,296 [426,480–860,773] μg.h/L, within the range in published studies involving different populations, age-groups and malaria status. DBS and plasma DBL concentrations correlated poorly and were not modelled. These data support use of the conventional ARM-LUM treatment regimen for uncomplicated malaria in children with SCT/SCD. Malaria remains a serious infection in children with sickle cell trait/disease. Artemether-lumefantrine (AL) is first-line therapy in this situation. There are no AL pharmacokinetic data in children with sickle cell disease/trait. AL disposition in Tanzanian children did not differ across sickle genotypes. Recommended AL treatment doses can be given regardless of sickle status.
Collapse
|
4
|
Maldonado JH, Grundmann O. Drug-drug Interactions of Artemisinin-based Combination Therapies in Malaria Treatment: A narrative review of the literature. J Clin Pharmacol 2022; 62:1197-1205. [PMID: 35543380 DOI: 10.1002/jcph.2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
Artemisinin is an antimalarial compound derived from the plant Artemisia annua L., also known as sweet wormwood. According to the World Health Organization, artemisinin-based combination therapy (ACT) is an essential treatment for malaria, specifically Plasmodium falciparum, which accounts for most of malaria related mortality. ACT used to treat uncomplicated malaria include artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, artesunate-sulphadoxine-pyrimethamine, and dihydroartemisinin-piperaquine. Although the mechanism of action and clinical capabilities of artemisinin in malaria treatment are widely known, more information on the potential for drug interactions needs to be further investigated. Some studies show pharmacokinetic and pharmacodynamic drug interactions with HIV-antiviral treatment but few studies have been conducted on most other drug classes. Based on known genotypes of cytochrome P450 (CYP) enzymes, CYP2B6 and CYP3A are primarily involved in the metabolism of artemisinin and its derivatives. Reduced functions in these enzymes can lead to subtherapeutic concentrations of the active metabolite dihydroartemisinin that may cause treatment failure which has been shown in some studies with cardiovascular, antibiotic, and antiparasitic drugs. Although the clinical importance remains unclear to date, clinicians should be aware of potential drug-drug interactions and monitor patients on ACT closely. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joyce Hernandez Maldonado
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States of America
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
5
|
Usman SO, Oreagba IA, Busari A, Akinyede A, Adewumi O, Kadri MR, Hassan O, Fashina YA, Agbaje EO, Akanmu SA. Evaluation of cardiotoxicity and other adverse effects associated with concomitant administration of artemether/lumefantrine and atazanavir/ritonavir-based antiretroviral regimen in patients living with HIV. Saudi Pharm J 2022; 30:605-612. [PMID: 35693439 PMCID: PMC9177448 DOI: 10.1016/j.jsps.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
The interplay of artemether-lumefantrine (AL) and atazanavir-ritonavir (ATVr) with Cytochrome P (CYP) 3A4 isoenzyme and QTc-interval may spawn clinically significant drug interactions when administered concomitantly. Cardiotoxicity and other adverse effects associated with interaction between AL and ATVr were evaluated in patients with HIV infection and malaria comorbidity. In a two-arm parallel study design, six doses of AL 80/480 mg were administered to 20 participants [control-arm (n = 10) and ATVr-arm (n = 10)], having uncomplicated Falciparum malaria, at intervals of 0, 8, 24, 36, 48 and 60 h respectively. Participants in the control arm took only AL while those in ATVr-arm took both AL and ATVr-based ART regimen. Electrocardiography, adverse events monitoring and blood tests were carried out for each of them at pre and post doses of AL. Data obtained were analyzed. QTc-interval was significantly increased in the ATVr-arm (0.4079 ± 0.008 to 0.4215 ± 0.007 s, p = 0.008) but not in the control-arm (0.4016 ± 0.018 to 0.4024 ± 0.014 s, p = 0.962). All values were, however, within normal range [0.36 – 0.44 / 0.46 s (male/female)]. General body weakness and chest pain were new adverse events reported, at post-dose of AL, in the ATVr-arm but not in the control-arm. There was no significant change (p > 0.05) in the plasma levels of creatinine, alanine aminotransferase, aspartate aminotransferase and hemoglobin at post-dose compared to pre-dose of AL in both arms of study. Concomitant administration of artemether-lumefantrine with atazanavir-ritonavir-based regimen is potentially cardiotoxic but not associated with clinically significant renal, blood nor liver toxicities. They must be used with caution.
Collapse
Affiliation(s)
- Sikiru Olatunji Usman
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
- Corresponding author at: Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, LUTH compound, Idi-Araba, Lagos State, Nigeria.
| | - Ibrahim Adekunle Oreagba
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - AbdulWasiu Busari
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Akinwumi Akinyede
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Ololade Adewumi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Michael Rotimi Kadri
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Olayinka Hassan
- Lagos University Teaching Hospital (LUTH), Idi-Araba, Lagos State, Nigeria
| | - Yinka Adeyemi Fashina
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Esther Oluwatoyin Agbaje
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Sulaimon Alani Akanmu
- Department of Haematology and Blood Transfusion, Faculty of Clinical Science, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
- APIN (Aids Prevention Initiatives in Nigeria) Clinic, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| |
Collapse
|
6
|
Walimbwa SI, Kaboggoza JP, Waitt C, Byakika-Kibwika P, D'Avolio A, Lamorde M. An open-label, randomized, single intravenous dosing study to investigate the effect of fixed-dose combinations of tenofovir/lamivudine or atazanavir/ritonavir on the pharmacokinetics of remdesivir in Ugandan healthy volunteers (RemTLAR). Trials 2021; 22:831. [PMID: 34814933 PMCID: PMC8609173 DOI: 10.1186/s13063-021-05752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Remdesivir is a novel broad-spectrum antiviral therapeutic with activity against several viruses that cause emerging infectious diseases. The purpose of this study is to explore how commonly utilized antiretroviral therapy (tenofovir disoproxil fumarate/lamivudine [TDF/3TC] and atazanavir/ritonavir [ATV/r]) influence plasma and intracellular concentrations of remdesivir. METHODS This is an open-label, randomized, fixed sequence single intravenous dosing study to assess pharmacokinetic interactions between remdesivir and TDF/3TC (Study A, crossover design) or TDF/3TC plus ATV/r (Study B). Healthy volunteers satisfying study entry criteria will be enrolled in the study and randomized to either Study A; N=16 (Sequence 1 or Sequence 2) or Study B; N=8. Participants will receive standard adult doses of antiretroviral therapy for 7 days and a single 200mg remdesivir infusion administered over 60 min. Pharmacokinetic blood sampling will be performed relative to the start of remdesivir infusion; predose (before the start of remdesivir infusion) and 30 min after the start of remdesivir infusion. Additional blood samples will be taken at 2, 4, 6, 12, and 24 h after the end of remdesivir infusion. DISCUSSION This study will characterize the pharmacokinetics of remdesivir from a typical African population in whom clinical use is anticipated. Furthermore, this study will deliver pharmacokinetic datasets for remdesivir drug concentrations and demographic characteristics which could support pharmacometric approaches for simulation of remdesivir treatment regimens in patients concurrently using tenofovir/lamivudine and/or atazanavir/ritonavir. TRIAL REGISTRATION ClinicalTrials.gov NCT04385719 . Registered 13 May 2020.
Collapse
Affiliation(s)
- Stephen I Walimbwa
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Julian P Kaboggoza
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Catriona Waitt
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Pauline Byakika-Kibwika
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, Turin, Italy.,CoQua Lab, Turin, Italy
| | - Mohammed Lamorde
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
7
|
Jjingo D, Mboowa G, Sserwadda I, Kakaire R, Kiberu D, Amujal M, Galiwango R, Kateete D, Joloba M, Whalen CC. Bioinformatics mentorship in a resource limited setting. Brief Bioinform 2021; 23:6377513. [PMID: 34591953 PMCID: PMC8769693 DOI: 10.1093/bib/bbab399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The two recent simultaneous developments of high-throughput sequencing and increased computational power have brought bioinformatics to the forefront as an important tool for effective and efficient biomedical research. Consequently, there have been multiple approaches to developing bioinformatics skills. In resource rich environments, it has been possible to develop and implement formal fully accredited graduate degree training programs in bioinformatics. In resource limited settings with a paucity of expert bioinformaticians, infrastructure and financial resources, the task has been approached by delivering short courses on bioinformatics-lasting only a few days to a couple of weeks. Alternatively, courses are offered online, usually over a period of a few months. These approaches are limited by both the lack of sustained in-person trainer-trainee interactions, which is a key part of quality mentorships and short durations which constrain the amount of learning that can be achieved. METHODS Here, we pioneered and tested a bioinformatics training/mentorship model that effectively uses the available expertise and computational infrastructure to deliver an in-person hands-on skills training experience. This is done through a few physical lecture hours each week, guided personal coursework over the rest of the week, group discussions and continuous close mentorship and assessment of trainees over a period of 1 year. RESULTS This model has now completed its third iteration at Makerere University and has successfully mentored trainees, who have progressed to a variety of viable career paths. CONCLUSIONS One-year (intermediate) skills based in-person bioinformatics training and mentorships are viable, effective and particularly appropriate for resource limited settings.
Collapse
Affiliation(s)
- Daudi Jjingo
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda.,Department of Computer Science, College of Computing and Information Sciences, Makerere University, Kampala-Uganda
| | - Gerald Mboowa
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda.,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala-Uganda
| | - Ivan Sserwadda
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda.,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala-Uganda
| | - Robert Kakaire
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA
| | - Davis Kiberu
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda
| | - Marion Amujal
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala-Uganda
| | - Ronald Galiwango
- The African Center of Excellence in Bioinformatics and Data Intensive Sciences, the Infectious Diseases Institute, Makerere University, Kampala-Uganda.,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala-Uganda
| | - David Kateete
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala-Uganda.,Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala-Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala-Uganda.,Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala-Uganda
| | - Christopher C Whalen
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Minh Le T, Szakonyi Z. Enantiomeric Isopulegol as the Chiral Pool in the Total Synthesis of Bioactive Agents. CHEM REC 2021; 22:e202100194. [PMID: 34553822 DOI: 10.1002/tcr.202100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Indexed: 11/12/2022]
Abstract
Isopulegol, a pool of abundant chiral terpene, has long served as the starting material for the total synthesis of isopulegol-based drugs. As an inexpensive and versatile starting material, this compound continues to serve modern synthetic chemistry. This review highlights the total syntheses of terpenoids in the period from 1980 to 2020 in which with isopulegol applied as a building block.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Stereochemistry Research Group of the Hungarian Academy Science, Eötvös utca 6, H-6720, Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720, Szeged, Hungary
| |
Collapse
|
9
|
Usman SO, Oreagba IA, Kadri MR, Adewumi OO, Akinyede A, Agbaje EO, Abideen G, Busari AA, Hassan OO, Akinleye MO, Akanmu AS. Evaluation of the effects of atazanavir-ritonavir on the pharmacokinetics of lumefantrine in patients living with HIV in Lagos University Teaching Hospital, South-Western Nigeria. Eur J Clin Pharmacol 2021; 77:1341-1348. [PMID: 33755736 DOI: 10.1007/s00228-021-03116-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Atazanavir-ritonavir (ATVr)-based antiretroviral therapy and artemether-lumefantrine (AL) are commonly used drugs for the treatment of human immune deficiency virus (HIV) infection and malaria respectively. However, interaction of both drugs, with Cytochrome P 3A4 (CYP 3A4) isoenzyme, may spawn clinically significant pharmacokinetic interactions. This study evaluated the effects of atazanavir-ritonavir on the pharmacokinetics of lumefantrine. METHOD In a case-control study, twenty participants having Plasmodium falciparum malaria were recruited and divided into two groups (ATVr-arm, n=10; and control-arm, n= 10). All the participants were administered six oral doses of AL 80-480 mg (Coartem). Thereafter, their blood samples were collected at different time intervals over seven days. The concentration of lumefantrine in each sample was quantified with high-performance liquid chromatography (HPLC) and used to determine its pharmacokinetic parameters which were compared between the test and control groups. RESULTS ATVr increased the mean day 7 concentration of lumefantrine (ATVr 3847.09 ± 893.35 ng/mL, control 1374.53 ± 265.55 ng/mL, p = 0.016) and the area under its plasma concentration-time curve (ATVr 670529.57 ± 157172.93 ng.h/mL, control 447976.28 ± 80886.99 ng.h/mL, p = 0.224) by 179.88 % and 49.68 %, respectively, but decreased its mean maximum plasma drug concentration (Cmax) (ATVr 13725.70 ± 2658.44 ng/mL, control 15380.48 ± 2332.62 ng/mL, p = 0.645) by 10.76 %. CONCLUSION ATVr increased drug exposure and day 7 plasma concentration of lumefantrine. AL is therefore considered effective for the treatment of malaria in patients taking ATVr-based regimen. However, the safety associated with the interaction requires further elucidation. TRIAL REGISTRATION Clin ClinicalTrials.gov Identifier: NCT04531072, August 27, 2020. "Retrospectively registered".
Collapse
Affiliation(s)
- Sikiru Olatunji Usman
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria.
| | - Ibrahim Adekunle Oreagba
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Michael Rotimi Kadri
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Ololade Oluwatosin Adewumi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Akinwumi Akinyede
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Esther Oluwatoyin Agbaje
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Ganiyu Abideen
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - AbdulWasiu Adeniyi Busari
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | | | - Moshood Olusola Akinleye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy of the University of Lagos, Idi-Araba, Lagos State, Nigeria
| | - Alani Sulaimon Akanmu
- Department of Haematology and Blood Transfusion, Faculty of Clinical Science, College of Medicine of the University of Lagos, Idi-Araba, Lagos State, Nigeria.,Apin Clinic, Lagos University Teaching Hospital, Idi-Araba, Lagos State, Nigeria
| |
Collapse
|
10
|
An Individual Participant Data Population Pharmacokinetic Meta-analysis of Drug-Drug Interactions between Lumefantrine and Commonly Used Antiretroviral Treatment. Antimicrob Agents Chemother 2020; 64:AAC.02394-19. [PMID: 32071050 PMCID: PMC7179577 DOI: 10.1128/aac.02394-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
Treating malaria in HIV-coinfected individuals should consider potential drug-drug interactions. Artemether-lumefantrine is the most widely recommended treatment for uncomplicated malaria globally. Lumefantrine is metabolized by CYP3A4, an enzyme that commonly used antiretrovirals often induce or inhibit. A population pharmacokinetic meta-analysis was conducted using individual participant data from 10 studies with 6,100 lumefantrine concentrations from 793 nonpregnant adult participants (41% HIV-malaria-coinfected, 36% malaria-infected, 20% HIV-infected, and 3% healthy volunteers). Treating malaria in HIV-coinfected individuals should consider potential drug-drug interactions. Artemether-lumefantrine is the most widely recommended treatment for uncomplicated malaria globally. Lumefantrine is metabolized by CYP3A4, an enzyme that commonly used antiretrovirals often induce or inhibit. A population pharmacokinetic meta-analysis was conducted using individual participant data from 10 studies with 6,100 lumefantrine concentrations from 793 nonpregnant adult participants (41% HIV-malaria-coinfected, 36% malaria-infected, 20% HIV-infected, and 3% healthy volunteers). Lumefantrine exposure increased 3.4-fold with coadministration of lopinavir-ritonavir-based antiretroviral therapy (ART), while it decreased by 47% with efavirenz-based ART and by 59% in the patients with rifampin-based antituberculosis treatment. Nevirapine- or dolutegravir-based ART and malaria or HIV infection were not associated with significant effects. Monte Carlo simulations showed that those on concomitant efavirenz or rifampin have 49% and 80% probability of day 7 concentrations <200 ng/ml, respectively, a threshold associated with an increased risk of treatment failure. The risk of achieving subtherapeutic concentrations increases with larger body weight. An extended 5-day and 6-day artemether-lumefantrine regimen is predicted to overcome these drug-drug interactions with efavirenz and rifampin, respectively.
Collapse
|
11
|
Banda CG, Chaponda M, Mukaka M, Mulenga M, Hachizovu S, Kabuya JB, Mulenga J, Sikalima J, Kalilani-Phiri L, Terlouw DJ, Khoo SH, Lalloo DG, Mwapasa V. Efficacy and safety of artemether-lumefantrine as treatment for Plasmodium falciparum uncomplicated malaria in adult patients on efavirenz-based antiretroviral therapy in Zambia: an open label non-randomized interventional trial. Malar J 2019; 18:180. [PMID: 31126288 PMCID: PMC6534937 DOI: 10.1186/s12936-019-2818-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/18/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND HIV-infected individuals on antiretroviral therapy (ART) require treatment with artemisinin-based combination therapy (ACT) when infected with malaria. Artemether-lumefantrine (AL) is the most commonly used ACT for treatment of falciparum malaria in Africa but there is limited evidence on the safety and efficacy of AL in HIV-infected individuals on ART, among whom drug-drug interactions are expected. Day-42 adequate clinical and parasitological response (ACPR) and incidence of adverse events was assessed in HIV-infected individuals on efavirenz-based ART with uncomplicated falciparum malaria treated with AL. METHODS A prospective, open label, non-randomized, interventional clinical trial was conducted at St Paul's Hospital in northern Zambia, involving 152 patients aged 15-65 years with uncomplicated falciparum malaria, who were on efavirenz-based ART. They received a 3-day directly observed standard treatment of AL and were followed up until day 63. Day-42 polymerase chain reaction (PCR)-corrected ACPRs (95% confidence interval [CI]) were calculated for the intention-to-treat population. RESULTS Enrolled patients had a baseline geometric mean (95% CI) parasite density of 1108 (841-1463) parasites/µL; 16.4% (25/152) of the participants had a recurrent malaria episode by day 42. However, PCR data was available for 17 out of the 25 patients who had malaria recurrence. Among all the 17 patients, PCR findings demonstrated malaria re-infection, making the PCR-adjusted day-42 ACPR 100% in the 144 patients who could be evaluated. Even when eight patients with missing PCR data were considered very conservatively as failures, the day-42 ACPR was over 94%. None of the participants, disease or treatment characteristics, including day-7 lumefantrine concentrations, predicted the risk of malaria recurrence by day 42. AL was well tolerated following administration. There were only two cases of grade 3 neutropaenia and one serious adverse event of lobar pneumonia, none of which was judged as probably related to intake of AL. CONCLUSIONS AL was well tolerated and efficacious in treating uncomplicated falciparum malaria in HIV co-infected adults on efavirenz-based ART. However, a higher than anticipated proportion of participants experienced malaria re-infection, which highlights the need for additional malaria prevention measures in this sub-population after treatment with AL. Trial registration Pan African Clinical Trials Registry (PACTR): PACTR201311000659400. Registered on 4 October 2013. https://pactr.samrc.ac.za/Search.aspx.
Collapse
Affiliation(s)
- Clifford G Banda
- University of Malawi, College of Medicine, Blantyre, Malawi.
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.
| | | | - Mavuto Mukaka
- University of Malawi, College of Medicine, Blantyre, Malawi
- Oxford Centre for Tropical Medicine and Global Health, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | | | | | | | | | - Jay Sikalima
- Tropical Diseases Research Centre, Ndola, Zambia
| | | | - Dianne J Terlouw
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Saye H Khoo
- University of Liverpool, Liverpool, UK
- Tropical and Infectious Diseases Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - David G Lalloo
- Liverpool School of Tropical Medicine, Liverpool, UK
- Tropical and Infectious Diseases Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - Victor Mwapasa
- University of Malawi, College of Medicine, Blantyre, Malawi.
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.
| |
Collapse
|
12
|
Walimbwa SI, Lamorde M, Waitt C, Kaboggoza J, Else L, Byakika-Kibwika P, Amara A, Gini J, Winterberg M, Chiong J, Tarning J, Khoo SH. Drug Interactions between Dolutegravir and Artemether-Lumefantrine or Artesunate-Amodiaquine. Antimicrob Agents Chemother 2019; 63:e01310-18. [PMID: 30420479 PMCID: PMC6355558 DOI: 10.1128/aac.01310-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
Across sub-Saharan Africa, patients with HIV on antiretrovirals often get malaria and need cotreatment with artemisinin-containing therapies. We undertook two pharmacokinetic studies in healthy volunteers, using standard adult doses of artemether-lumefantrine or artesunate-amodiaquine given with 50 mg once daily dolutegravir (DTG) to investigate the drug-drug interaction between artemether-lumefantrine or artesunate-amodiaquine and dolutegravir. The dolutegravir/artemether-lumefantrine interaction was evaluated in a two-way crossover study and measured artemether, dihydroartemisinin, lumefantrine, and desbutyl-lumefantrine over 264 h. The dolutegravir/artesunate-amodiaquine interaction was investigated using a parallel study design due to long half-life of the amodiaquine metabolite, desethylamodiaquine and measured artesunate, amodiaquine, and desethylamodiaquine over 624 h. Noncompartmental analysis was performed, and geometric mean ratios and 90% confidence intervals were generated for evaluation of both interactions. Dolutegravir did not significantly change the maximum concentration in plasma, the time to maximum concentration, and the area under the concentration-time curve (AUC) for artemether, dihydroartemisinin, lumefantrine, and desbutyl-lumefantrine, nor did it significantly alter the AUC for artesunate, dihydroartemisinin, amodiaquine, and desethylamodiaquine. Coadministration of dolutegravir with artemether-lumefantrine resulted in a 37% decrease in DTG trough concentrations. Coadministration of dolutegravir with artesunate-amodiaquine resulted in 42 and 24% approximate decreases in the DTG trough concentrations and the AUC, respectively. The significant decreases in DTG trough concentrations with artemether-lumefantrine and artesunate-amodiaquine and dolutegravir exposure with artesunate-amodiaquine are unlikely to be of clinical significance since the DTG trough concentrations were above dolutegravir target concentrations of 300 ng/ml. Study drugs were well tolerated with no serious adverse events. Standard doses of artemether-lumefantrine and artesunate-amodiaquine should be used in patients receiving dolutegravir. (This study has been registered at ClinicalTrials.gov under identifier NCT02242799.).
Collapse
Affiliation(s)
- Stephen I Walimbwa
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mohammed Lamorde
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Catriona Waitt
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Julian Kaboggoza
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Laura Else
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | - Alieu Amara
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Joshua Gini
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Justin Chiong
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saye H Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Impact of Efavirenz-, Ritonavir-Boosted Lopinavir-, and Nevirapine-Based Antiretroviral Regimens on the Pharmacokinetics of Lumefantrine and Safety of Artemether-Lumefantrine in Plasmodium falciparum-Negative HIV-Infected Malawian Adults Stabilized on Antiretroviral Therapy. Antimicrob Agents Chemother 2018; 62:AAC.01162-18. [PMID: 30150465 PMCID: PMC6201074 DOI: 10.1128/aac.01162-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/11/2018] [Indexed: 01/27/2023] Open
Abstract
There is conflicting evidence of the impact of commonly used antiretroviral therapies (ARTs) on the pharmacokinetics of lumefantrine and the safety profile of artemether-lumefantrine. We compared the area under the concentration-time curve from 0 h to 14 days (AUC0-14 days) of lumefantrine and the safety profile of artemether-lumefantrine in malaria-negative human immunodeficiency virus (HIV)-infected adults in two steps. In step 1, a half-dose adult course of artemether-lumefantrine was administered as a safety check in four groups (n = 6/group): (i) antiretroviral naive, (ii) nevirapine-based ART, (iii) efavirenz-based ART, and (iv) ritonavir-boosted lopinavir-based ART. In step 2, a standard-dose adult course of artemether-lumefantrine was administered to a different cohort in three groups (n = 10 to 15/group): (i) antiretroviral naive, (ii) efavirenz-based ART, and (iii) ritonavir-boosted lopinavir-based ART. In step 1, lumefantrine's AUC0-14 days was 53% (95% confidence interval [CI], 0.27 to 0.82) lower in the efavirenz-based ART group than in the ART-naive group and was 2.4 (95% CI, 1.58 to 3.62) and 2.9(95% CI, 1.75 to 4.72) times higher in the nevirapine- and ritonavir-boosted lopinavir groups, respectively. In step 2, lumefantrine's AUC0-14 days was 1.9 (95% CI, 1.26 to 3.00) times higher in the ritonavir-boosted lopinavir group and not significantly different between the efavirenz- and ART-naive groups (0.99 [95% CI, 0.63 to 1.57]). Frequent cases of hematological abnormalities (thrombocytopenia and neutropenia) were observed in the nevirapine group in step 1, leading to a recommendation from the data and safety monitoring board not to include a nevirapine group in step 2. Artemether-lumefantrine was well tolerated in the other groups. The therapeutic implications of these findings need to be evaluated among HIV-malaria-coinfected adults. (This study has been registered at the Pan African Clinical Trials Registry under numbers PACTR2010030001871293 and PACTR2010030001971409.).
Collapse
|
14
|
Huang L, Mwebaza N, Kajubi R, Marzan F, Forsman C, Parikh S, Aweeka FT. Strong correlation of lumefantrine concentrations in capillary and venous plasma from malaria patients. PLoS One 2018; 13:e0202082. [PMID: 30114201 PMCID: PMC6095545 DOI: 10.1371/journal.pone.0202082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/27/2018] [Indexed: 11/19/2022] Open
Abstract
Background Lumefantrine is a long-acting antimalarial drug with an elimination half-life of over 3 days and protein binding of 99 percent. Correlation of lumefantrine concentrations from capillary plasma via fingerprick (Cc) versus venous plasma (Cv) remains to be defined. Methods Venous and capillary plasma samples were collected simultaneously from children, pregnant women, and non-pregnant adults at 2, 24, 120hr post last dose of a standard 3-day artemether-lumefantrine regimen they received for uncomplicated malaria. Some of the enrolled children and pregnant women were also HIV-infected. Samples were analyzed via liquid chromatography tandem mass spectrometry. Linear regression analysis was performed using the program Stata® SE12.1. Results In children, the linear regression equations for Cc vs Cv at 2, 24, and 120hr (day 7) post dose are [Cc] = 1.05*[Cv]+95.0 (n = 142, R2 = 0.977), [Cc] = 0.995*[Cv]+56.7 (n = 147, R2 = 0.990) and [Cc] = 0.958*[Cv]+18.6 (n = 139, R2 = 0.994), respectively. For pregnant women, the equations are [Cc] = 1.04*[Cv]+68.1 (n = 43, R2 = 0.990), [Cc] = 0.997*[Cv]+37.3 (n = 43, R2 = 0.993) and [Cc] = 0.941*[Cv]+11.1 (n = 41, R2 = 0.941), respectively. For non-pregnant adults, the equations are [Cc] = 1.05*[Cv]-117 (n = 32, R2 = 0.958), [Cc] = 0.962*[Cv]+9.21 (n = 32, R2 = 0.964) and [Cc] = 1.04*[Cv]-40.1 (n = 32, R2 = 0.988), respectively. In summary, a linear relationship with a slope of ~1 was found for capillary and venous lumefantrine levels in children, pregnant women and non-pregnant adults at 2hr, 24hr and 120hr post last dose, representing absorption, distribution, and elimination phases. Conclusions Capillary and venous plasma concentration of lumefantrine can be used interchangeably at 1:1 ratio. Capillary sampling method via finger prick is a suitable alternative for sample collection in clinical studies.
Collapse
Affiliation(s)
- Liusheng Huang
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
- * E-mail: (LH); (FTA)
| | - Norah Mwebaza
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Florence Marzan
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
| | - Camilla Forsman
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Francesca T. Aweeka
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
- * E-mail: (LH); (FTA)
| |
Collapse
|
15
|
Zautner AE, Herchenröder O, Moussi AE, Schwarz NG, Wiemer DF, Groß U, Frickmann H. Pharmaceutical interactions between antiretroviral and antimalarial drugs used in chemoprophylaxis. Acta Trop 2018; 179:25-35. [PMID: 29273442 DOI: 10.1016/j.actatropica.2017.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Human immunodeficiency virus (HIV) is the causative agent of the Acquired Immunodeficiency Syndrome (AIDS). The pandemic is believed to have originated within the Northern Congo basin covering large parts of the Democratic Republic of Congo, the Republic of Congo, the Central African Republic, Cameroon and Gabon. Although over decades, HIV-1 has spread throughout the World leaving no country unaffected, sub-Saharan Africa remains the region with more than 80% of all infected individuals. The HIV-2 epidemic has largely remained restricted to West Africa along the Upper Guinean forests. Co-incident with these regions of highest HIV distribution is a part of the malaria belt and therefore, co-infections are common. In this review we carve out the consequences of HIV transmission prevention and synchronous malaria prophylaxis during occupational or leisure travelling activities within this World region. In particular, we elaborate on considering pre-existing drug resistances of both, the malaria parasites and the immunodeficiency viruses, when determining a combination for prophylactic and, if necessary, post-expositional measures with a focus on the compatibility of both medications.
Collapse
|
16
|
Evans EE, Siedner MJ. Tropical Parasitic Infections in Individuals Infected with HIV. CURRENT TROPICAL MEDICINE REPORTS 2017; 4:268-280. [PMID: 33842194 PMCID: PMC8034600 DOI: 10.1007/s40475-017-0130-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Neglected tropical diseases share both geographic and socio-behavioral epidemiological risk factors with HIV infection. In this literature review, we describe interactions between parasitic diseases and HIV infection, with a focus on the impact of parasitic infections on HIV infection risk and disease progression, and the impact of HIV infection on clinical characteristics of tropical parasitic infections. We limit our review to tropical parasitic infections of the greatest public health burden, and exclude discussion of classic HIV-associated opportunistic infections that have been well reviewed elsewhere. RECENT FINDINGS Tropical parasitic infections, HIV-infection, and treatment with antiretroviral therapy alter host immunity, which can impact susceptibility, transmissibility, diagnosis, and severity of both HIV and parasitic infections. These relationships have a broad range of consequences, from putatively increasing susceptibility to HIV acquisition, as in the case of schistosomiasis, to decreasing risk of protozoal infections through pharmacokinetic interactions between antiretroviral therapy and antiparasitic agents, as in the case of malaria. However, despite this intimate interplay in pathophysiology and a broad overlap in epidemiology, there is a general paucity of data on the interactions between HIV and tropical parasitic infections, particularly in the era of widespread antiretroviral therapy availability. SUMMARY Additional data are needed to motivate clinical recommendations for detection and management of parasitic infections in HIV-infected individuals, and to consider the implications of and potential opportunity granted by HIV treatment programs on parasitic disease control.
Collapse
Affiliation(s)
| | - Mark J Siedner
- Massachusetts General Hospital
- Harvard Medical School
- Mbarara University of Science and Technology
| |
Collapse
|
17
|
Huang L, Carey V, Lindsey JC, Marzan F, Gingrich D, Graham B, Barlow-Mosha L, Ssemambo PK, Kamthunzi P, Nachman S, Parikh S, Aweeka FT. Concomitant nevirapine impacts pharmacokinetic exposure to the antimalarial artemether-lumefantrine in African children. PLoS One 2017; 12:e0186589. [PMID: 29065172 PMCID: PMC5655345 DOI: 10.1371/journal.pone.0186589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The antiretroviral drug nevirapine and the antimalarial artemisinin-based combination therapy artemether-lumefantrine are commonly co-administered to treat malaria in the context of HIV. Nevirapine is a known inhibitor of cytochrome P450 3A4, which metabolizes artemether and lumefantrine. To address the concern that the antiretroviral nevirapine impacts the antimalarial artemether-lumefantrine pharmacokinetics, a prospective non-randomized controlled study in children presenting with uncomplicated malaria and HIV in sub-Saharan Africa was carried out. METHODS Participants received artemether-lumefantrine (20/120 mg weight-based BID) for 3 days during nevirapine-based antiretroviral therapy (ART) co-administration (158-266 mg/m2 QD). HIV positive participants who were not yet on ART drugs were also enrolled as the control group. The target enrollment was children aged 3-12 years (n = 24 in each group). Intensive pharmacokinetics after the last artemether-lumefantrine dose was assessed for artemether, its active metabolite dihydroartemisinin, and lumefantrine. Pharmacokinetic parameters (area under the plasma concentration vs. time curve (AUC), maximum concentration and day 7 lumefantrine concentrations) were estimated using non-compartmental methods and compared to controls. RESULTS Nineteen children (16 on nevirapine and three not on ART) enrolled. Fifteen of the 16 (aged 4 to 11 years) on nevirapine-based ART were included in the pharmacokinetic analysis. Due to evolving WHO HIV treatment guidelines, insufficient children were enrolled in the control group (n = 3), so the pharmacokinetic data were compared to a historical control group of 20 HIV-uninfected children 5-12 years of age who also presented with malaria and underwent identical study procedures. Decreases of pharmacokinetic exposure [as estimated by AUC (AUC0-8hr)] were marginally significant for artemether (by -46%, p = 0.08) and dihydroartemisinin (-22%, p = 0.06) in the children on nevirapine-based ART, compared to when artemether-lumefantrine was administered alone. Similarly, peak concentration was decreased by 50% (p = 0.07) for artemether and 36% (p = 0.01) for dihydroartemisinin. In contrast, exposure to lumefantrine increased significantly in the context of nevirapine [AUC0-120hr:123% (p<0.001); Cday7:116% (p<0.001), Cmax: 95% (p<0.001)]. CONCLUSIONS Nevirapine-based ART increases the exposure to lumefantrine in pre-pubescent children with a trend toward diminished artemether and dihydroartemisinin exposure. These findings contrast with other studies indicating NVP reduces or results in no change in exposure of antimalarial drugs, and may be specific to this age group (4-12 years). Considering the excellent safety profile of artemether-lumefantrine, the increase in lumefantrine is not of concern. However, the reduction in artemisinin exposure may warrant further study, and suggests that dosage adjustment of artemether-lumefantrine with nevirapine-based ART in children is likely warranted.
Collapse
Affiliation(s)
- Liusheng Huang
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
| | - Vincent Carey
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, United States of America
| | - Jane C. Lindsey
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA, United States of America
| | - Florence Marzan
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
| | - David Gingrich
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
| | - Bobbie Graham
- Frontier Science and Technology Research Foundation, Buffalo, NY, United States of America
| | | | | | | | - Sharon Nachman
- School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT, United States of America
| | - Francesca T. Aweeka
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
| | | |
Collapse
|
18
|
Seden K, Gibbons S, Marzolini C, Schapiro JM, Burger DM, Back DJ, Khoo SH. Development of an evidence evaluation and synthesis system for drug-drug interactions, and its application to a systematic review of HIV and malaria co-infection. PLoS One 2017; 12:e0173509. [PMID: 28334018 PMCID: PMC5363796 DOI: 10.1371/journal.pone.0173509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In all settings, there are challenges associated with safely treating patients with multimorbidity and polypharmacy. The need to characterise, understand and limit harms resulting from medication use is therefore increasingly important. Drug-drug interactions (DDIs) are prevalent in patients taking antiretrovirals (ARVs) and if unmanaged, may pose considerable risk to treatment outcome. One of the biggest challenges in preventing DDIs is the substantial gap between theory and clinical practice. There are no robust methods published for formally assessing quality of evidence relating to DDIs, despite the diverse sources of information. We defined a transparent, structured process for developing evidence quality summaries in order to guide therapeutic decision making. This was applied to a systematic review of DDI data with considerable public health significance: HIV and malaria. METHODS AND FINDINGS This was a systematic review of DDI data between antiretrovirals and drugs used in prophylaxis and treatment of malaria. The data comprised all original research in humans that evaluated pharmacokinetic data and/or related adverse events when antiretroviral agents were combined with antimalarial agents, including healthy volunteers, patients with HIV and/or malaria, observational studies, and case reports. The data synthesis included 36 articles and conference presentations published via PubMed and conference websites/abstract books between 1987-August 2016. There is significant risk of DDIs between HIV protease inhibitors, or NNRTIs and artemesinin-containing antimalarial regimens. For many antiretrovirals, DDI studies with antimalarials were lacking, and the majority were of moderate to very low quality. Quality of evidence and strength of recommendation categories were defined and developed specifically for recommendations concerning DDIs. CONCLUSIONS There is significant potential for DDIs between antiretrovirals and antimalarials. The application of quality of evidence and strength of recommendation criteria to DDI data is feasible, and allows the assessment of DDIs to be robust, consistent, transparent and evidence-based.
Collapse
Affiliation(s)
- Kay Seden
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sara Gibbons
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital of Basel, Basel, Switzerland
| | | | - David M. Burger
- Department of Pharmacy & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Centre, Nijmegen, the Netherlands
| | - David J. Back
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Saye H. Khoo
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Abstract
INTRODUCTION Using the data of a trial on cotrimoxazole (CTX) cessation, we investigated the effect of different antiretroviral therapy (ART) regimens on the incidence of clinical malaria. METHODS During the cotrimoxazole cessation trial (ISRCTN44723643), HIV-infected Ugandan adults with CD4 at least 250 cells/μl were randomized to receive either CTX prophylaxis or placebo and were followed for a median of 2.5 years. Blood slides for malaria microscopy were examined at scheduled visits and at unscheduled visits when the participant felt unwell. CD4 cell counts were done 6-monthly. Malaria was defined as fever with a positive blood slide. ART regimens were categorized as nucleoside reverse transcriptase inhibitor (NRTI) only, non-nucleoside reverse transcriptase inhibitor (NNRTI)-containing or protease inhibitor containing. Malaria incidence was calculated using random effects Poisson regression to account for clustering of events. RESULTS Malaria incidence in the three ART regimen groups was 9.9 (3.6-27.4), 9.3 (8.3-10.4), and 3.5 (1.6-7.6) per 100 person-years, respectively. Incidence on protease inhibitors was lower than that on the other regimens with the results just reaching significance (adjusted rate ratio 0.4, 95% confidence interval = 0.2-1.0, comparing with NNRTI regimens). Stratification by CTX/placebo use gave similar results, without evidence of an interaction between the effects of CTX/placebo use and ART regimen. There was no evidence of an interaction between ART regimen and CD4 cell count. CONCLUSION There was some evidence that protease inhibitor-containing ART regimens may be associated with a lower clinical malaria incidence compared with other regimens. This effect was not modified by CTX use or CD4 cell count. The antimalarial properties of protease inhibitors may have clinical and public health importance.
Collapse
|
20
|
Parikh S, Kajubi R, Huang L, Ssebuliba J, Kiconco S, Gao Q, Li F, Were M, Kakuru A, Achan J, Mwebaza N, Aweeka FT. Antiretroviral Choice for HIV Impacts Antimalarial Exposure and Treatment Outcomes in Ugandan Children. Clin Infect Dis 2016; 63:414-22. [PMID: 27143666 PMCID: PMC4946019 DOI: 10.1093/cid/ciw291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/03/2016] [Indexed: 02/06/2023] Open
Abstract
Pharmacokinetic/pharmacodynamic studies of artemether-lumefantrine and 3 antiretroviral regimens were conducted in malaria-infected Ugandan children. Efavirenz-based treatment was associated with significant reductions in antimalarial exposure and higher risks of recurrent malaria. Caution in their concurrent use is warranted. Background. The optimal treatment of malaria in human immunodeficiency virus (HIV)–infected children requires consideration of critical drug–drug interactions in coinfected children, as these may significantly impact drug exposure and clinical outcomes. Methods. We conducted an intensive and sparse pharmacokinetic/pharmacodynamic study in Uganda of the most widely adopted artemisinin-based combination therapy, artemether-lumefantrine. HIV-infected children on 3 different first-line antiretroviral therapy (ART) regimens were compared to HIV-uninfected children not on ART, all of whom required treatment for Plasmodium falciparum malaria. Pharmacokinetic sampling for artemether, dihydroartemisinin, and lumefantrine exposure was conducted through day 21, and associations between drug exposure and outcomes through day 42 were investigated. Results. One hundred forty-five and 225 children were included in the intensive and sparse pharmacokinetic analyses, respectively. Compared with no ART, efavirenz (EFV) reduced exposure to all antimalarial components by 2.1- to 3.4-fold; lopinavir/ritonavir (LPV/r) increased lumefantrine exposure by 2.1-fold; and nevirapine reduced artemether exposure only. Day 7 concentrations of lumefantrine were 10-fold lower in children on EFV vs LPV/r-based ART, changes that were associated with an approximate 4-fold higher odds of recurrent malaria by day 28 in those on EFV vs LPV/r-based ART. Conclusions. The choice of ART in children living in a malaria-endemic region has highly significant impacts on the pharmacokinetics and pharmacodynamics of artemether-lumefantrine treatment. EFV-based ART reduces all antimalarial components and is associated with the highest risk of recurrent malaria following treatment. For those on EFV, close clinical follow-up for recurrent malaria following artemether-lumefantrine treatment, along with the study of modified dosing regimens that provide higher exposure, is warranted.
Collapse
Affiliation(s)
- Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut
| | - Richard Kajubi
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, and San Francisco General Hospital
| | | | - Sylvia Kiconco
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Qin Gao
- University of California, San Francisco, and San Francisco General Hospital
| | - Fangyong Li
- University of California, San Francisco, and San Francisco General Hospital
| | - Moses Were
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Abel Kakuru
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Jane Achan
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Norah Mwebaza
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Francesca T Aweeka
- University of California, San Francisco, and San Francisco General Hospital
| |
Collapse
|
21
|
Kredo T, Mauff K, Workman L, Van der Walt JS, Wiesner L, Smith PJ, Maartens G, Cohen K, Barnes KI. The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients. BMC Infect Dis 2016; 16:30. [PMID: 26818566 PMCID: PMC4728832 DOI: 10.1186/s12879-016-1345-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
Abstract
Background Artemether-lumefantrine is currently the most widely recommended treatment of uncomplicated malaria. Lopinavir–based antiretroviral therapy is the commonly recommended second-line HIV treatment. Artemether and lumefantrine are metabolised by cytochrome P450 isoenzyme CYP3A4, which lopinavir/ritonavir inhibits, potentially causing clinically important drug-drug interactions. Methods An adaptive, parallel-design safety and pharmacokinetic study was conducted in HIV-infected (malaria-negative) patients: antiretroviral-naïve and those stable on lopinavir/ritonavir-based antiretrovirals. Both groups received the recommended six-dose artemether-lumefantrine treatment. The primary outcome was day-7 lumefantrine concentrations, as these correlate with antimalarial efficacy. Adverse events were solicited throughout the study, recording the onset, duration, severity, and relationship to artemether-lumefantrine. Results We enrolled 34 patients. Median day-7 lumefantrine concentrations were almost 10-fold higher in the lopinavir than the antiretroviral-naïve group [3170 versus 336 ng/mL; p = 0.0001], with AUC(0-inf) and Cmax increased five-fold [2478 versus 445 μg.h/mL; p = 0.0001], and three-fold [28.2 versus 8.8 μg/mL; p < 0.0001], respectively. Lumefantrine Cmax, and AUC(0-inf) increased significantly with mg/kg dose in the lopinavir, but not the antiretroviral-naïve group. While artemether exposure was similar between groups, Cmax and AUC(0-8h) of its active metabolite dihydroartemisinin were initially two-fold higher in the lopinavir group [p = 0.004 and p = 0.0013, respectively]. However, this difference was no longer apparent after the last artemether-lumefantrine dose. Within 21 days of starting artemether-lumefantrine there were similar numbers of treatment emergent adverse events (42 vs. 35) and adverse reactions (12 vs. 15, p = 0.21) in the lopinavir and antiretroviral-naïve groups, respectively. There were no serious adverse events and no difference in electrocardiographic QTcF- and PR-intervals, at the predicted lumefantrine Tmax. Conclusion Despite substantially higher lumefantrine exposure, intensive monitoring in our relatively small study raised no safety concerns in HIV-infected patients stable on lopinavir-based antiretroviral therapy given the recommended artemether-lumefantrine dosage. Increased day-7 lumefantrine concentrations have been shown previously to reduce the risk of malaria treatment failure, but further evidence in adult patients co-infected with malaria and HIV is needed to assess the artemether-lumefantrine risk : benefit profile in this vulnerable population fully. Our antiretroviral-naïve patients confirmed previous findings that lumefantrine absorption is almost saturated at currently recommended doses, but this dose-limited absorption was overcome in the lopinavir group. Trial registration Clinical Trial Registration number NCT00869700. Registered on clinicaltrials.gov 25 March 2009 Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1345-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Kredo
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa. .,Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa.
| | - K Mauff
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa.
| | - L Workman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - J S Van der Walt
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - L Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - P J Smith
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - G Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - K Cohen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - K I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa. .,WorlldWide Antimalarial Resistance Network (WWARN), Oxford, UK.
| |
Collapse
|
22
|
Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W, Day NPJ, White NJ, Äbelö A, Tarning J. Artemether-lumefantrine co-administration with antiretrovirals: population pharmacokinetics and dosing implications. Br J Clin Pharmacol 2015; 79:636-49. [PMID: 25297720 PMCID: PMC4386948 DOI: 10.1111/bcp.12529] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022] Open
Abstract
AIM Drug–drug interactions between antimalarial and antiretroviral drugs may influence antimalarial treatment outcomes. The aim of this study was to investigate the potential drug–drug interactions between the antimalarial drugs, lumefantrine, artemether and their respective metabolites desbutyl-lumefantrine and dihydroartemisinin, and the HIV drugs efavirenz, nevirapine and lopinavir/ritonavir. METHOD Data from two clinical studies, investigating the influence of the HIV drugs efavirenz, nevirapine and lopinavir/ritonavir on the pharmacokinetics of the antimalarial drugs lumefantrine, artemether and their respective metabolites, in HIV infected patients were pooled and analyzed using a non-linear mixed effects modelling approach. RESULTS Efavirenz and nevirapine significantly decreased the terminal exposure to lumefantrine (decrease of 69.9% and 25.2%, respectively) while lopinavir/ritonavir substantially increased the exposure (increase of 439%). All antiretroviral drugs decreased the total exposure to dihydroartemisinin (decrease of 71.7%, 41.3% and 59.7% for efavirenz, nevirapine and ritonavir/lopinavir, respectively). Simulations suggest that a substantially increased artemether-lumefantrine dose is required to achieve equivalent exposures when co-administered with efavirenz (250% increase) and nevirapine (75% increase). When co-administered with lopinavir/ritonavir it is unclear if the increased lumefantrine exposure compensates adequately for the reduced dihydroartemisinin exposure and thus whether dose adjustment is required. CONCLUSION There are substantial drug interactions between artemether-lumefantrine and efavirenz, nevirapine and ritonavir/lopinavir. Given the readily saturable absorption of lumefantrine, the dose adjustments predicted to be necessary will need to be evaluated prospectively in malaria-HIV co-infected patients.
Collapse
Affiliation(s)
- Richard M Hoglund
- Unit for Pharmacokinetics and Drug Metabolism, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rattanapunya S, Cressey TR, Rueangweerayut R, Tawon Y, Kongjam P, Na-Bangchang K. Pharmacokinetic Interactions Between Quinine and Lopinavir/Ritonavir in Healthy Thai Adults. Am J Trop Med Hyg 2015; 93:1383-90. [PMID: 26416104 DOI: 10.4269/ajtmh.15-0453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 01/12/2023] Open
Abstract
This study aimed to investigate the pharmacokinetic interactions between quinine and lopinavir boosted with ritonavir (LPV/r) in healthy Thai adults (8 males and 12 females). Period 1 (day 1): subjects received a single oral dose of 600 mg quinine sulfate. Period 2: subjects received LPV/r (400/100 mg) twice daily. Period 3: subjects received a single quinine sulfate dose plus LPV/r twice a day. Intensive blood sampling was performed during each phase. Quinine AUC0-48h (area under the plasma concentration-time curve from time 0 to 48 hours), AUC0-∞ (area under the plasma concentration-time curve from time 0 to infinity), and Cmax (maximum concentration over the time-span specified), were 56%, 57%, and 47% lower, respectively, in the presence of LPV/r. 3-Hydroxyquinine AUC0-48h, AUC0-∞, and Cmax were significantly lower and the metabolite-to-parent ratio was significantly reduced. Lopinavir and ritonavir exposures were not significantly reduced with quinine coadministration, but Cmax of both drugs were significantly lower. The geometric mean ratio (GMR) and 90% CI of AUC0-48h, AUC0-∞, and Cmax for quinine, 3-hydroxyquinine, lopinavir, and ritonavir lay outside the bioequivalent range of 0.8-1.25. Drug treatments during all periods were generally well tolerated. The reduction in systemic exposure of quinine and 3-hydroxyquinine with concomitant LPV/r use raises concerns of suboptimal exposure. Studies in HIV/malaria coinfection patients are needed to determine the clinical impact to decide if any change to the quinine dose is warranted.
Collapse
Affiliation(s)
- Siwalee Rattanapunya
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Tim R Cressey
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Ronnatrai Rueangweerayut
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Yardpiroon Tawon
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Panida Kongjam
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Faculty of Science and Technology, Chiang Mai Rajabhat University, Chaing Mai, Thailand; Program for HIV Prevention and Treatment, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Harvard School of Public Health, Boston, Massachusetts; Mae Sot General Hospital, Tak Province, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand; Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
24
|
Qin L, Qin L, Xu W, Zhao S, Chen X. Ritonavir-boosted indinavir but not lopinavir inhibits erythrocytic stage Plasmodium knowlesi malaria in rhesus macaques. Bioorg Med Chem Lett 2015; 25:1538-40. [PMID: 25704890 DOI: 10.1016/j.bmcl.2015.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 11/28/2022]
Abstract
The inhibitive activities of the human immunodeficiency virus protease inhibitors ritonavir (RTV) boosted indinavir (IDV) and RTV boosted lopinavir (LPV) for erythrocytic stage malaria were evaluated in rhesus macaques. The IDV/RTV regimen effectively inhibits the replication of Plasmodium knowlesi with clinically relevant doses, whereas the LPV/RTV regimen did not show activity against plasmodium infection.
Collapse
Affiliation(s)
- Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Limei Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Wanwan Xu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China.
| |
Collapse
|
25
|
Clinical pharmacokinetic drug interactions associated with artemisinin derivatives and HIV-antivirals. Clin Pharmacokinet 2014; 53:141-53. [PMID: 24158666 DOI: 10.1007/s40262-013-0110-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Management of HIV and malaria co-infection is challenging due to potential drug-drug interactions between antimalarial and HIV-antiviral drugs. Little is known of the clinical significance of these drug interactions, and this review provides a comprehensive summary and critical evaluation of the literature. Specifically, drug interactions between WHO-recommended artemisinin combination therapies (ACT) and HIV-antivirals are discussed. An extensive literature search produced eight articles detailing n = 44 individual pharmacokinetic interactions. Only data pertaining to artemether-lumefantrine and two other artesunate combinations are available, but most of the interactions are characterized on at least two occasions by two different groups. Overall, protease inhibitors (PIs) tended to increase the exposure of lumefantrine and decrease the exposures of artemether and dihydroartemisinin, a pharmacologically active metabolite of artemether. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) tended to decrease the exposures of artemether, dihydroartemisinin, and lumefantrine when co-administered with artemether-lumefantrine. Fewer studies characterized the effects of PIs or NNRTIs on artesunate combinations, but nevirapine increased artesunate exposure and ritonavir decreased dihydroartemisinin exposure. On the other hand, artemether-lumefantrine or artesunate combinations had little effect on the pharmacokinetics of HIV-antivirals, with the exception of decreased nevirapine exposure from artemether-lumefantrine or increased ritonavir exposure from pyronaridine/artesunate co-administration. In general, pharmacokinetic interactions can be explained by the metabolic properties of the co-administered drugs. Despite several limitations to the studies, these data do provide valuable insights into the potential pharmacokinetic perturbations, and the consistently marked elevation or reduction in ACT exposure in some cases cannot be overlooked.
Collapse
|
26
|
González R, Desai M, Macete E, Ouma P, Kakolwa MA, Abdulla S, Aponte JJ, Bulo H, Kabanywanyi AM, Katana A, Maculuve S, Mayor A, Nhacolo A, Otieno K, Pahlavan G, Rupérez M, Sevene E, Slutsker L, Vala A, Williamsom J, Menéndez C. Intermittent preventive treatment of malaria in pregnancy with mefloquine in HIV-infected women receiving cotrimoxazole prophylaxis: a multicenter randomized placebo-controlled trial. PLoS Med 2014; 11:e1001735. [PMID: 25247995 PMCID: PMC4172537 DOI: 10.1371/journal.pmed.1001735] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/05/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended for malaria prevention in HIV-negative pregnant women, but it is contraindicated in HIV-infected women taking daily cotrimoxazole prophylaxis (CTXp) because of potential added risk of adverse effects associated with taking two antifolate drugs simultaneously. We studied the safety and efficacy of mefloquine (MQ) in women receiving CTXp and long-lasting insecticide treated nets (LLITNs). METHODS AND FINDINGS A total of 1,071 HIV-infected women from Kenya, Mozambique, and Tanzania were randomized to receive either three doses of IPTp-MQ (15 mg/kg) or placebo given at least one month apart; all received CTXp and a LLITN. IPTp-MQ was associated with reduced rates of maternal parasitemia (risk ratio [RR], 0.47 [95% CI 0.27-0.82]; p=0.008), placental malaria (RR, 0.52 [95% CI 0.29-0.90]; p=0.021), and reduced incidence of non-obstetric hospital admissions (RR, 0.59 [95% CI 0.37-0.95]; p=0.031) in the intention to treat (ITT) analysis. There were no differences in the prevalence of adverse pregnancy outcomes between groups. Drug tolerability was poorer in the MQ group compared to the control group (29.6% referred dizziness and 23.9% vomiting after the first IPTp-MQ administration). HIV viral load at delivery was higher in the MQ group compared to the control group (p=0.048) in the ATP analysis. The frequency of perinatal mother to child transmission of HIV was increased in women who received MQ (RR, 1.95 [95% CI 1.14-3.33]; p=0.015). The main limitation of the latter finding relates to the exploratory nature of this part of the analysis. CONCLUSIONS An effective antimalarial added to CTXp and LLITNs in HIV-infected pregnant women can improve malaria prevention, as well as maternal health through reduction in hospital admissions. However, MQ was not well tolerated, limiting its potential for IPTp and indicating the need to find alternatives with better tolerability to reduce malaria in this particularly vulnerable group. MQ was associated with an increased risk of mother to child transmission of HIV, which warrants a better understanding of the pharmacological interactions between antimalarials and antiretroviral drugs. TRIAL REGISTRATION ClinicalTrials.gov NCT 00811421; Pan African Clinical Trials Registry PACTR 2010020001813440 Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Raquel González
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Meghna Desai
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, and Kisumu, Kenya
| | - Eusebio Macete
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Peter Ouma
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Kenya Medical Research Institute (KEMRI)/Center for Global Health Research, Kisumu, Kenya
| | | | | | - John J. Aponte
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Helder Bulo
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | | | - Abraham Katana
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Kenya Medical Research Institute (KEMRI)/Center for Global Health Research, Kisumu, Kenya
| | - Sonia Maculuve
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Alfredo Mayor
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | | | - Kephas Otieno
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Kenya Medical Research Institute (KEMRI)/Center for Global Health Research, Kisumu, Kenya
| | - Golbahar Pahlavan
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - María Rupérez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | | | - Laurence Slutsker
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, and Kisumu, Kenya
| | - Anifa Vala
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - John Williamsom
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, and Kisumu, Kenya
| | - Clara Menéndez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
- * E-mail:
| |
Collapse
|
27
|
Affiliation(s)
- Zhonglei Wang
- a School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing , China
| | - Liyan Yang
- b College of Science , China University of Petroleum , Beijing , China
| | - Xiuwei Yang
- c School of Pharmaceutical Sciences , Peking University , Beijing , China
| | - Xiaohua Zhang
- a School of Chinese Pharmacy , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
28
|
Abiodun OO, Akinbo J, Ojurongbe O. The effect of lopinavir/ritonavir on the antimalarial activity of artemether or artemether/lumefantrine in a mouse model of Plasmodium berghei. J Chemother 2014; 27:25-8. [PMID: 24621166 DOI: 10.1179/1973947813y.0000000158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The possibility of drug-drug interactions occurring during the treatment of malaria infection in human immunodeficient virus (HIV) patients receiving antiretroviral drugs is very high and limited data are available. This study reports the effect of lopinavir/ritonavir (LR) an antiretroviral drug on the antimalarial activity of standard dose of artemether/lumefantrine (AL) or artemether (AM) in a mouse model of Plasmodium berghei. The 50% effective dose (ED50) of AM alone (0.80 ± 0.15 and 2.18 ± 0.75 mg/kg) or in combination with LR (0.88 ± 0.40 and 3.53 ± 1.09 mg/kg) on days 4 and 5 post-infection was similar. In addition, treatment with a standard dose of AL alone or in combination with LR resulted in complete suppression of parasite growth. However, co-administration of LR with AL appears to be toxic resulting in lower survival of experimental animals in comparison to those treated with standard dose of AL alone.
Collapse
|
29
|
Kharasch ED, Stubbert K. Cytochrome P4503A does not mediate the interaction between methadone and ritonavir-lopinavir. Drug Metab Dispos 2013; 41:2166-74. [PMID: 24067429 DOI: 10.1124/dmd.113.053991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plasma concentrations of orally administered methadone are reduced by the human immunodeficiency virus protease inhibitor combination ritonavir and lopinavir, but the mechanism is unknown. Methadone metabolism, clearance, and drug interactions have been attributed to CYP3A4, but this remains controversial. This investigation assessed the effects of acute (2 days) and steady-state (2 weeks) ritonavir-lopinavir on intravenous and oral methadone metabolism and clearance, hepatic and intestinal CYP3A4/5 activity (using the probe substrate intravenous and oral alfentanil), and intestinal transporter activity (using oral fexofenadine) in healthy volunteers. Plasma and urine concentrations of methadone and metabolite enantiomers, and other analytes, were determined by mass spectrometry. Acute and chronic ritonavir-lopinavir reduced plasma methadone enantiomer concentrations in half, with an average 2.6- and 1.5-fold induction of systemic and apparent oral methadone clearances. Induction was attributable to stereoselectively increased hepatic methadone N-demethylation, hepatic extraction, and hepatic clearance, and there was a strong correlation between methadone N-demethylation and clearance. Methadone renal clearance was unchanged. Alfentanil's systemic clearance and hepatic extraction, apparent oral clearance, and intestinal extraction were reduced to 25%, 16%, and 35% of control, indicating strong inhibition of hepatic and intestinal CYP3A activities. Ritonavir-lopinavir (acute > chronic) increased fexofenadine exposure, suggesting intestinal P-glycoprotein inhibition. No correlation was found between methadone clearance and CYP3A activity. Acute and steady-state ritonavir-lopinavir stereoselectively induced methadone N-demethylation and clearance, despite significant inhibition of hepatic and intestinal CYP3A activity. Ritonavir-lopinavir inhibited intestinal transporters activity but had no effect on methadone bioavailability. These results do not support a significant role for CYP3A or ritonavir-lopinavir-inhibitable intestinal transporters in single-dose methadone disposition.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Division of Clinical and Translational Research (E.D.K., K.S.), and Department of Biochemistry and Molecular Biophysics (E.D.K.), Washington University in St. Louis, St. Louis, Missouri
| | | |
Collapse
|
30
|
Siccardi M, Rajoli RKR, Curley P, Olagunju A, Moss D, Owen A. Physiologically based pharmacokinetic models for the optimization of antiretroviral therapy: recent progress and future perspective. Future Virol 2013. [DOI: 10.2217/fvl.13.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Anti-HIV therapy is characterized by the chronic administration of antiretrovirals (ARVs), and consequently, several problems can arise during the management of HIV-positive patients. ARV disposition can be simulated by combining system data describing a population of patients and in vitro drug data through physiologically based pharmacokinetic (PBPK) models, which mathematically describe absorption, distribution, metabolism and elimination. PBPK modeling can find application in the investigation of clinically relevant scenarios, while providing the opportunity for a better understanding of the mechanisms regulating drug distribution. In this review, we have analyzed the most recent applications of PBPK models for ARVs and highlighted some of the most interesting areas of use, such as drug–drug interaction, pharmacogenetics, factors regulating absorption and tissue penetration, as well as therapy optimization in special populations. The application of the PBPK modeling approach might not be limited to the investigation of hypothetical clinical issues, but could be used to inform future prospective clinical trials.
Collapse
Affiliation(s)
- Marco Siccardi
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rajith Kumar Reddy Rajoli
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Paul Curley
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Adeniyi Olagunju
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Darren Moss
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
31
|
Kay K, Hastings IM. Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs. PLoS Comput Biol 2013; 9:e1003151. [PMID: 23874190 PMCID: PMC3715401 DOI: 10.1371/journal.pcbi.1003151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/07/2013] [Indexed: 01/13/2023] Open
Abstract
Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD) modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies to incorporate (i) time lags and drug concentration profiles resulting from absorption across the gut wall and, if required, conversion to another active form; (ii) multiple drugs within a treatment combination; (iii) differing modes of action of drugs in the combination: additive, synergistic, antagonistic; (iv) drugs converted to an active metabolite with a similar mode of action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine) where the likelihood of increased artemisinin tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that PK/PD data is generally very poorly reported in the malaria literature, severely reducing its value for subsequent re-application, and we make specific recommendations to improve this situation.
Collapse
Affiliation(s)
- Katherine Kay
- Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom.
| | | |
Collapse
|
32
|
Kakuda TN, DeMasi R, van Delft Y, Mohammed P. Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. HIV Med 2013; 14:421-9. [PMID: 23441978 DOI: 10.1111/hiv.12019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Etravirine is a substrate and inducer of cytochrome P450 (CYP) 3A and a substrate and inhibitor of CYP2C9 and CYPC2C19. Darunavir/ritonavir is a substrate and inhibitor of CYP3A. Artemether and lumefantrine are primarily metabolized by CYP3A; artemether is also metabolized to a lesser extent by CYP2B6, CYP2C9 and CYP2C19. Artemether has an active metabolite, dihydroartemisinin. The objective was to investigate pharmacokinetic interactions between darunavir/ritonavir or etravirine and arthemether/lumefrantrine. METHODS This single-centre, randomized, two-way, two-period cross-over study included 33 healthy volunteers. In panel 1, 17 healthy volunteers received two treatments (A and B) in random order, with a washout period of 4 weeks between treatments: treatment A: artemether/lumefantrine 80/480 mg alone, in a 3-day course; treatment B: etravirine 200 mg twice a day (bid) for 21 days with artemether/lumefantrine 80/480 mg from day 8 (a 3-day treatment course). In panel 2, another 16 healthy volunteers received two treatments, similar to those in panel 1 but instead of etravirine, darunavir/ritonavir 600/100 mg bid was given. RESULTS Overall, 28 of the 33 volunteers completed the study. Co-administration of etravirine reduced the area under the plasma concentration-time curve (AUC) of artemether [by 38%; 90% confidence interval (CI) 0.48-0.80], dihydroartemisinin (by 15%; 90% CI 0.75-0.97) and lumefantrine (by 13%; 90% CI 0.77-0.98) at steady state. Co-administration of darunavir/ritonavir reduced the AUC of artemether (by 16%; 90% CI 0.69-1.02) and dihydroartemisinin (by 18%; 90% CI 0.74-0.91) but increased lumefantrine (2.75-fold; 90% CI 2.46-3.08) at steady state. Co-administration of artemether/lumefantrine had no effect on etravirine, darunavir or ritonavir AUC. No drug-related serious adverse events were reported during the study. CONCLUSIONS Co-administration of etravirine with artemether/lumefantrine may lower the antimalarial activity of artemether and should therefore be used with caution. Darunavir/ritonavir can be co-administered with artemether/lumefantrine without dose adjustment but should be used with caution.
Collapse
Affiliation(s)
- T N Kakuda
- Janssen Research and Development LLC, Titusville, NJ, USA.
| | | | | | | |
Collapse
|
33
|
Askling HH, Bruneel F, Burchard G, Castelli F, Chiodini PL, Grobusch MP, Lopez-Vélez R, Paul M, Petersen E, Popescu C, Ramharter M, Schlagenhauf P. Management of imported malaria in Europe. Malar J 2012; 11:328. [PMID: 22985344 PMCID: PMC3489857 DOI: 10.1186/1475-2875-11-328] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/19/2012] [Indexed: 11/10/2022] Open
Abstract
In this position paper, the European Society for Clinical Microbiology and Infectious Diseases, Study Group on Clinical Parasitology, summarizes main issues regarding the management of imported malaria cases. Malaria is a rare diagnosis in Europe, but it is a medical emergency. A travel history is the key to suspecting malaria and is mandatory in patients with fever. There are no specific clinical signs or symptoms of malaria although fever is seen in almost all non-immune patients. Migrants from malaria endemic areas may have few symptoms.Malaria diagnostics should be performed immediately on suspicion of malaria and the gold- standard is microscopy of Giemsa-stained thick and thin blood films. A Rapid Diagnostic Test (RDT) may be used as an initial screening tool, but does not replace urgent microscopy which should be done in parallel. Delays in microscopy, however, should not lead to delayed initiation of appropriate treatment. Patients diagnosed with malaria should usually be hospitalized. If outpatient management is preferred, as is the practice in some European centres, patients must usually be followed closely (at least daily) until clinical and parasitological cure. Treatment of uncomplicated Plasmodium falciparum malaria is either with oral artemisinin combination therapy (ACT) or with the combination atovaquone/proguanil. Two forms of ACT are available in Europe: artemether/lumefantrine and dihydroartemisinin/piperaquine. ACT is also effective against Plasmodium vivax, Plasmodium ovale, Plasmodium malariae and Plasmodium knowlesi, but these species can be treated with chloroquine. Treatment of persistent liver forms in P. vivax and P. ovale with primaquine is indicated after excluding glucose 6 phosphate dehydrogenase deficiency. There are modified schedules and drug options for the treatment of malaria in special patient groups, such as children and pregnant women. The potential for drug interactions and the role of food in the absorption of anti-malarials are important considerations in the choice of treatment.Complicated malaria is treated with intravenous artesunate resulting in a much more rapid decrease in parasite density compared to quinine. Patients treated with intravenous artesunate should be closely monitored for haemolysis for four weeks after treatment. There is a concern in some countries about the lack of artesunate produced according to Good Manufacturing Practice (GMP).
Collapse
Affiliation(s)
- Helena H Askling
- Department of Medicine Solna/Unit for Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Stockholm, Sweden
| | - Fabrice Bruneel
- Intensive Care Unit, Centre Hospitalier de Versailles, Site André Mignot, 177 rue de Versailles, Le Chesnay 78150, France
| | - Gerd Burchard
- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| | - Francesco Castelli
- University Division of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Peter L Chiodini
- Hospital for Tropical Diseases and London School of Hygiene and Tropical Medicine, London, UK
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogelio Lopez-Vélez
- Tropical Medicine & Clinical Parasitology. Infectious Diseases Department.Hospital Ramón y Cajal, Madrid, Spain
| | - Margaret Paul
- Department and Clinic of Tropical and Parasitic Diseases, University of Medical Sciences, Poznan, Poland
| | - Eskild Petersen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Corneliu Popescu
- Clinical Hospital of Infectious and Tropical Diseases "Dr.Victor Babes", University of Medicine and Pharmacy "Carol Davila" Bucharest, Bucharest, Romania
| | - Michael Ramharter
- Department. of Medicine I, Div. of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Patricia Schlagenhauf
- University of Zürich, Centre for Travel Medicine, Division of Epidemiology and Communicable Diseases, Zürich, Switzerland
| |
Collapse
|
34
|
Kamya MR, Byakika-Kibwika P, Gasasira AF, Havlir D, Rosenthal PJ, Dorsey G, Achan J. The effect of HIV on malaria in the context of the current standard of care for HIV-infected populations in Africa. Future Virol 2012; 7:699-708. [PMID: 23293660 DOI: 10.2217/fvl.12.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV infection affects the clinical pattern of malaria. There is emerging evidence to suggest that previously documented interactions may be modified by recently scaled-up HIV and malaria interventions. Prophylaxis with trimethoprim-sulfamethoxazole (TS) in combination with use of insecticide-treated nets can markedly decrease the incidence of malaria in HIV-infected pregnant and nonpregnant adults and children even in the setting of antifolate resistance-conferring mutations that are currently common in Africa. Nonetheless, additional interventions are needed to protect HIV-infected people that reside in high-malaria-transmission areas. Artemether-lumefantrine and dihydroartemisinin-piperaquine are highly efficacious and safe for the treatment of uncomplicated malaria in HIV-infected persons. Coadministration of antiretroviral and antimalarial drugs creates the potential for pharmacokinetic drug interactions that may increase (causing enhancement of malaria treatment efficacy and post-treatment prophylaxis and/or unanticipated toxicity) or reduce (creating risk for treatment failure) antimalarial drug exposure. Further studies are needed to elucidate potentially important pharmacokinetic interactions between commonly used antimalarials, antiretrovirals and TS and their clinical implications. Data on the benefits of long-term TS prophylaxis among HIV patients on antiretroviral therapy who have achieved immune-reconstitution are limited. Studies to address these questions are ongoing or planned, and the results should provide the evidence base required to guide the prevention and treatment of malaria in HIV-infected patients.
Collapse
Affiliation(s)
- Moses R Kamya
- Makerere University College of Health Sciences, PO Box 7072, Kampala, Uganda
| | | | | | | | | | | | | |
Collapse
|