1
|
Macesic N, Uhlemann AC, Peleg AY. Multidrug-resistant Gram-negative bacterial infections. Lancet 2025; 405:257-272. [PMID: 39826970 DOI: 10.1016/s0140-6736(24)02081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 01/22/2025]
Abstract
Multidrug-resistant Gram-negative bacterial infections cause significant morbidity and mortality globally. These pathogens easily acquire antimicrobial resistance (AMR), further highlighting their clinical significance. Third-generation cephalosporin-resistant and carbapenem-resistant Enterobacterales (eg, Escherichia coli and Klebsiella spp), multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii are the most problematic and have been identified as priority pathogens. In response, several new diagnostic technologies aimed at rapidly detecting AMR have been developed, including biochemical, molecular, genomic, and proteomic techniques. The last decade has also seen the licensing of multiple antibiotics that have changed the treatment landscape for these challenging infections.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, VIC, Australia
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, VIC, Australia; Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Cento V, Carloni S, Sarti R, Bussini L, Asif Z, Morelli P, De Fazio F, Tordato FM, Casana M, Mondatore D, Desai A, Generali E, Pugliese N, Costantini E, Vanoni M, Cecconi M, Aliberti S, Da Rin G, Casari E, Bartoletti M, Voza A. Epidemiology and Resistance Profiles of Bacteria Isolated from Blood Samples in Septic Patients at Emergency Department Admission: A 6-year Single Center Retrospective Analysis from Northern Italy. J Glob Antimicrob Resist 2025:S2213-7165(24)00475-2. [PMID: 39805348 DOI: 10.1016/j.jgar.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVES This study aimed to investigate the microbiological and clinical heterogeneity of community-onset bloodstream infections (BSIs) and identify features to support targeted empirical antibiotic therapy in the Emergency Department (ED). METHODS Clinical and microbiological data from 992 BSI cases (1,135 isolates) diagnosed within 24 hours of ED admission at IRCCS Humanitas Research Hospital, Milan, Italy (January 2015-June 2022), were analyzed. Drug resistance was interpreted using EUCAST-2023. Clinical features included age, sex, comorbidities (e.g., cancer, diabetes), infection source, presence of central venous catheters (CVC), ongoing therapies, and sepsis severity. Microbiological data included pathogen identification and antimicrobial susceptibility. RESULTS Antibiotic-susceptible Escherichia coli (29.5%) was the most common isolate, including extended-spectrum beta-lactamase (ESBL)-producing strains (11.3%), followed by methicillin-susceptible Staphylococcus aureus (MSSA, 8.4%). BSIs due to E. coli were more frequent in patients >60 years (43.9% vs. 27.3%, p<0.001) and associated with ESBL production (OR=2.202, p=0.031) and urosepsis (OR=1.688, p=0.006). Younger patients (≤60 years) had more S. aureus-associated BSIs (22.4% vs. 10.8%, p<0.001) and methicillin resistance (7.9% vs. 3.6%, p=0.021). Carbapenem-resistant Enterobacterales were rare (2.1%-2.8%), predominantly involving Klebsiella pneumoniae. Onco-hematological patients had a lower multidrug-resistance prevalence (9.5% vs. 21.1%, p<0.001). CONCLUSIONS Community-onset BSIs demonstrated substantial prevalence of resistant pathogens, including ESBL and MRSA, emphasizing the need for robust surveillance systems. Age is a critical factor in guiding empirical antibiotic therapy in the ED.
Collapse
Affiliation(s)
- Valeria Cento
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Sara Carloni
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Riccardo Sarti
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Linda Bussini
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Zian Asif
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Paola Morelli
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Francesco De Fazio
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Federica Maria Tordato
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Maddalena Casana
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Debora Mondatore
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Antonio Desai
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Elena Generali
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Nicola Pugliese
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Elena Costantini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Massimo Vanoni
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Maurizio Cecconi
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Stefano Aliberti
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giorgio Da Rin
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Erminia Casari
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Michele Bartoletti
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Antonio Voza
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| |
Collapse
|
3
|
Chen J, Wang Q, Li S, Han R, Wang C, Cheng S, Yang B, Diao L, Yang T, Sun D, Zhang D, Dong Y, Wang T. Reprint of: Does two-step infusion improve the pharmacokinetics/pharmacodynamics target attainment of meropenem in critically Ill patients? J Pharm Sci 2025; 114:165-175. [PMID: 39652024 DOI: 10.1016/j.xphs.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The optimal method for administering meropenem remains controversial. This study was conducted to explore the optimal two-step infusion strategy (TIT), and to investigate whether TIT is superior to intermittent infusion therapy (IIT) and prolonged infusion therapy (PIT). A physiologically based pharmacokinetics model for critically ill patients was established and evaluated. The validated model was utilized to evaluate the pharmacokinetics/pharmacodynamics (PK/PD) target attainment of meropenem. The PK/PD target attainment of different TITs varied greatly, and the total infusion duration and the first-step dose greatly affected these values. The optimal TIT was 0.25 g (30 min) + 0.75 g (150 min) at MICs of ≤2 mg/L, and 0.25 g (45 min) + 0.75 g (255 min) at MICs of 4-8 mg/L. The PK/PD target attainment of optimal TIT, PIT, and IIT were 100 % at MICs of ≤1 mg/L. When MIC increased to 2-8 mg/L, the PK/PD target attainment of optimal TIT was similar to that of PIT and higher than IIT. In conclusion, TIT did not significantly improve the PK/PD target attainment of meropenem compared with PIT. IIT is adequate at MICs of ≤1 mg/L, and PIT may be the optimal meropenem infusion method in critically ill patients with MICs of 2-8 mg/L.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruiying Han
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiqi Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baogui Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lizhuo Diao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tingting Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dan Sun
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Di Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Li X, Zhou L, Lei T, Zhang X, Yao J, He J, Liu H, Cai H, Ji J, Zhu Y, Tu Y, Yu Y, Zhou H. Genomic epidemiology and ceftazidime-avibactam high-level resistance mechanisms of Pseudomonas aeruginosa in China from 2010 to 2022. Emerg Microbes Infect 2024; 13:2324068. [PMID: 38406830 PMCID: PMC10939098 DOI: 10.1080/22221751.2024.2324068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Ceftazidime-avibactam (CZA) resistance is a huge threat in the clinic; however, the underlying mechanism responsible for high-level CZA resistance in Pseudomonas aeruginosa (PA) isolates remains unknown. In this study, a total of 5,763 P. aeruginosa isolates were collected from 2010 to 2022 to investigate the ceftazidime-avibactam (CZA) high-level resistance mechanisms of Pseudomonas aeruginosa (PA) isolates in China. Fifty-six PER-producing isolates were identified, including 50 isolates carrying blaPER-1 in PA, and 6 isolates carrying blaPER-4. Of these, 82.1% (46/56) were classified as DTR-PA isolates, and 76.79% (43/56) were resistant to CZA. Importantly, blaPER-1 and blaPER-4 overexpression led to 16-fold and >1024-fold increases in the MICs of CZA, respectively. WGS revealed that the blaPER-1 gene was located in two different transferable IncP-2-type plasmids and chromosomes, whereas blaPER-4 was found only on chromosomes and was carried by a class 1 integron embedded in a Tn6485-like transposon. Overexpression of efflux pumps may be associated with high-level CZA resistance in blaPER-1-positive strains. Kinetic parameter analysis revealed that PER-4 exhibited a similar kcat/Km with ceftazidime and a high (∼3359-fold) IC50 value with avibactam compared to PER-1. Our study found that overexpression of PER-1 combined with enhanced efflux pump expression and the low affinity of PER-4 for avibactam contributes to high-level resistance to CZA. Additionally, the Tn6485-like transposon plays a significant role in disseminating blaPER. Urgent active surveillance is required to prevent the further spread of high-level CZA resistance in DTR-PA isolates.
Collapse
Affiliation(s)
- Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Longjie Zhou
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaofan Zhang
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jingshu Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yiwei Zhu
- Department of Critical Care Medicine, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuexing Tu
- Department of Critical care medicine, Tongde Hospital of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Saxena S, Aggarwal P, Mitra S, Singh S, Kaim M, Sharma A. In vitro assessment of newer colistin-sparing antimicrobial agents for clinical isolates of carbapenem-resistant organisms. J Infect Chemother 2024; 30:1252-1258. [PMID: 38839032 DOI: 10.1016/j.jiac.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVES Carbapenem-resistant organisms (CROs) are a significant public health threat globally, particularly in countries like India with high antibiotic resistance rates. The current study investigates the prevalence of CROs, detects resistance mechanisms using phenotypic methods and assesses the efficacy of newer antibiotics against CROs. METHODS A prospective study conducted at a tertiary care hospital in India during 2021-23. Clinical specimens were processed and bacterial identification was performed using MALDI-TOF mass spectrometry followed by antimicrobial susceptibility testing using CLSI guidelines against a plethora of newer antibiotics for CROs. Carbapenemase production was detected using phenotypic methods, and the presence of the mcr-1 gene was assessed by real-time PCR. RESULTS During the study period, predominantly (70 %) Gram-negative bacteria were isolated; amongst which 5692 strains were carbapenem-resistant, wherein resistance to different carbapenems ranged from 34.1% to 79 %. Majority of the carbapenemase producers were metallo-β-lactamases (MBL) producers (75 %). Colistin resistance was noted in 5.4 % of selected carbapenem-resistant isolates. Among newer antibiotics, cefiderocol demonstrated the lowest resistance rates (0-14 %), while resistance to newer β-lactam/β-lactamase inhibitor combinations was very high in carbapenem-resistant isolates. Fosfomycin, minocycline and tigecycline, each showing variable efficacy depending on the site of infection. Moreover, newer β-lactam/β-lactamase inhibitor combinations offer restricted benefits due to widespread prevalence of MBL in the region. CONCLUSION The escalating prevalence of CROs in India underscores the urgency for alternative treatment options beyond colistin. Hence, highlighting the critical importance of developing effective strategies to combat carbapenem resistance.
Collapse
Affiliation(s)
- Sonal Saxena
- Department of Microbiology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Prabhav Aggarwal
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Srestha Mitra
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India.
| | - Shweta Singh
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Manisha Kaim
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Anju Sharma
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
6
|
Gao J, Wei W, Ji C, Pan X, Chang J, Zhang Q, Zhao X, Jiang X, Zhang R, Che L, Lin Y, Fang Z, Zhuo Y, Feng B, Li J, Hua L, Wu D, Xu S. Effects of Yucca Extract on Nutrient Digestibility, Antioxidant Status, Estrus and Faecal Microorganism in Gilts. Animals (Basel) 2024; 14:3356. [PMID: 39682320 DOI: 10.3390/ani14233356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study was to investigate the effects of yucca extract (YE) supplementation on estrus, nutrient digestibility, antioxidant capacity and fecal microorganisms of gilts. Twenty gilts were randomly divided into two groups: basal diet (CONT) and basal diet + 0.25 g/kg YE (YETG). The results showed that supplementing 0.25 g/kg YE in the diet of gilts significantly increased the apparent digestibility of dietary energy, crude fat and crude protein (p < 0.05). In addition, YE could also improve the antioxidant capacity of gilts, significantly increase the serum total antioxidant capacity (T-AOC) activity and decrease the malondialdehyde (MDA) content of gilts (p < 0.05). In terms of fecal microorganisms, YE significantly increased the Shannon index and Simpson index of fecal microorganisms of gilts (p < 0.05), decreased the abundance of Proteobacteria, Actinobacteriota and Streptococcus sp., and increased the abundance of Muribaculaceae and Prevotalla sp. in the feces of gilts (p < 0.05). In conclusion, dietary YE increased the apparent digestibility of nutrients, improved the antioxidant status of gilts and increased the α diversity of fecal microorganisms. These results provide a reference for the application of YE in gilts production.
Collapse
Affiliation(s)
- Junjie Gao
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenyan Wei
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Ji
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xujing Pan
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Junlei Chang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianhou Zhang
- Shandong Huachang Animal Health Products Co., Ltd., Jinan 250000, China
| | - Xilun Zhao
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruinan Zhang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengfeng Fang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Restrepo-Arbeláez N, García-Betancur JC, Pallares CJ, El Ayoubi LW, Kiratisin P, Kanj SS, Villegas MV. Can risk factors and risk scores help predict colonization and infection in multidrug-resistant gram-negative bacteria? ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e196. [PMID: 39563931 PMCID: PMC11574599 DOI: 10.1017/ash.2024.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/21/2024]
Abstract
Antimicrobial resistance (AMR) is positioning as one of the most relevant threats to global public health and threatens the effective treatment of an ever-growing number of bacterial infections in various healthcare settings, particularly in acute care and surgical units, as well as in the community. Among multidrug-resistant (MDR) gram-negative bacteria (MDRGNB), Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii require special attention, since they account for most of the mortality associated with bacterial infections and are often MDR. It is clear that there is an important global variation in antibiotic resistance profiles among MDRGNB species. Extended-spectrum β-lactamase-producing Enterobacterales, carbapenem-resistant Enterobacterales, DTR-P. aeruginosa, and MDR-A. baumannii are the focus of this review. Here, we summarize a series of relevant studies on risk factors associated with colonization and infection with these MDRGNB. Likewise, we offer a comparative overview of those studies providing scoring systems to predict the risk of infection with these MDR pathogens, and their pros and cons. Despite the variable accuracy of published risk factors for predicting colonization or infection with MDRGNB, these scores are valuable tools that may help anticipate colonization and infection among those colonized. More importantly, they may help reduce unnecessary use of broad-spectrum antimicrobials and guiding the selection of an optimal treatment.
Collapse
Affiliation(s)
- Natalia Restrepo-Arbeláez
- Grupo de investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá D.C., Colombia
| | - Juan Carlos García-Betancur
- Grupo de investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá D.C., Colombia
| | - Christian José Pallares
- Grupo de investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá D.C., Colombia
- Clínica Imbanaco Grupo Quirónsalud, Cali, Colombia
| | - L'Emir Wassim El Ayoubi
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Souha S Kanj
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - María Virginia Villegas
- Grupo de investigación en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá D.C., Colombia
- Clínica Imbanaco Grupo Quirónsalud, Cali, Colombia
| |
Collapse
|
8
|
Lodise TP, Obi EN, Watanabe AH, Yucel E, Min J, Nathanson BH. Comparative evaluation of early treatment with ceftolozane/tazobactam versus ceftazidime/avibactam for non-COVID-19 patients with pneumonia due to multidrug-resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2024; 79:2954-2964. [PMID: 39258877 PMCID: PMC11531822 DOI: 10.1093/jac/dkae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Ceftolozane/tazobactam and ceftazidime/avibactam are commonly used in patients with MDR-Pseudomonas aeruginosa (PSA) pneumonia (PNA). This study compared outcomes between non-COVID-19 hospitalized patients with MDR-PSA PNA who received ceftolozane/tazobactam or ceftazidime/avibactam. METHODS The study included non-COVID-19 adult hospitalized patients with MDR-PSA PNA in the PINC AI Healthcare Database (2016-22) who received ceftolozane/tazobactam or ceftazidime/avibactam within 3 days of index culture for ≥2 days. Outcomes were mortality, recurrent MDR-PSA PNA, discharge destination, post-index culture day length of stay (LOS) and costs (in US dollars, USD), and hospital readmission. RESULTS The final sample included 197 patients (117 ceftolozane/tazobactam, 80 ceftazidime/avibactam). No significant differences were observed in mortality and post-index culture LOS and costs between groups. In the multivariable analyses, patients who received ceftolozane/tazobactam versus ceftazidime/avibactam had lower recurrent MDR-PSA PNA (7.9% versus 18.0%, P = 0.03) and 60 day PNA-related readmissions (11.1% versus 28.5%, P = 0.03) and were more likely to be discharged home (25.8% versus 9.8%, P = 0.03). Compared with ceftazidime/avibactam patients, ceftolozane/tazobactam patients had lower adjusted median total antibiotic costs (5052 USD versus 8099 USD, P = 0.003) and lower adjusted median comparator (ceftolozane/tazobactam or ceftazidime/avibactam) antibiotic costs (3938 USD versus 6441 USD, P = 0.005). In the desirability of outcome ranking (DOOR) analysis, a ceftolozane/tazobactam-treated patient was more likely to have a more favourable outcome than a ceftazidime/avibactam-treated patient [DOOR probability: 59.6% (95% CI: 52.5%-66.8%)]. CONCLUSIONS Early treatment with ceftolozane/tazobactam may offer some clinical and cost benefits over ceftazidime/avibactam in patients with MDR-PSA PNA. Further large-scale studies are necessary to comprehensively understand the outcomes associated with these treatments for MDR-PSA PNA.
Collapse
Affiliation(s)
- Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY, USA
| | - Engels N Obi
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, USA
| | | | - Emre Yucel
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, USA
| | - Jae Min
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, USA
| | | |
Collapse
|
9
|
Gutiérrez-Fernández J, Cerezo-Collado L, Garcés V, Alarcón-Guijo P, Delgado-López JM, Dominguez-Vera JM. Probiotic-Loaded Bacterial Cellulose as an Alternative to Combat Carbapenem-Resistant Bacterial Infections. Antibiotics (Basel) 2024; 13:1003. [PMID: 39596698 PMCID: PMC11591192 DOI: 10.3390/antibiotics13111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Carbapenems are one of the mainstays of treatment for antibiotic-resistant bacteria (ARB). This has made the rise of carbapenem-resistant bacteria a threat to global health. In fact, the World Health Organization (WHO) has identified carbapenem-resistant bacteria as critical pathogens, and the development of novel antibacterials capable of combating infections caused by these bacteria is a priority. Objective: With the aim of finding new alternatives to fight against ARB and especially against carbapenem-resistant bacteria, we have developed a series of living materials formed by incorporating the probiotics Lactobacillus plantarum (Lp), Lactobacillus fermentum (Lf), and a mixture of both (L. plantarum+L. fermentum) into bacterial cellulose (BC). Results: These probiotic-loaded bacterial celluloses inhibited the proliferation of three ARB, including two carbapenem-resistant enterobacteria (CRE), identified as Klebsiella pneumoniae and Enterobacter cloacae, and a carbapenem-resistant Pseudomonas aeruginosa. Interestingly, while the probiotics L. plantarum, L. fermentum, and the mixture of both were found to be inactive against these ARB, they became active once incorporated into BC. Conclusions: The increase in activity is due to the known effect that cells increase their activity once incorporated into a suitable matrix, forming a living material. For the same reasons, the probiotics in the living materials BC-L. plantarum, BC-L. fermentum, and BC-L. plantarum+L. fermentum showed increased stability, allowing them to be stored with bacterial activity for long periods of time (two months).
Collapse
Affiliation(s)
| | - Laura Cerezo-Collado
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Víctor Garcés
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Pablo Alarcón-Guijo
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - José M. Delgado-López
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Jose M. Dominguez-Vera
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| |
Collapse
|
10
|
Church DL, Griener T, Gregson D. Multi-year comparison of VITEK MS performance for identification of rarely encountered pathogenic Gram-negative organisms (GNOs) in a large integrated Canadian healthcare region. Microbiol Spectr 2024; 12:e0227624. [PMID: 39436124 PMCID: PMC11619596 DOI: 10.1128/spectrum.02276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
This multi-year study (2014-2019) compared identification of rare and unusual Gram-negative organisms (GNOs) by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) (VITEK MS, bioMérieux, Laval Que.) to 16S rRNA gene sequencing (16S) according to our laboratories routine workflow; 16S is done if initial MALDI-TOF MS gave discordant, wrong, or no results. GNB isolates were first analyzed by standard phenotypic methods and MALDI-TOF MS using direct deposit-full formic acid extraction; proteomics was repeated if no result occurred. Medically approved 16S analyses were done using fast protocols. Isolate sequences were analyzed using the Integrated Database Network System (IDNS3) bacterial database (SmartGene, Lausanne, Switzerland). Three hundred thirty-one GNOs including 251 (76%) aerobic Gram-negative bacilli (GNB), 63 (19%) fastidious Gram-negative coccobacilli (fGNCBs), and 17 (5%) Campylobacterales (CAMPB) isolates were recovered from 304 specimens; >1 isolate was recovered from 19 (6%). GNOs were mainly recovered from blood cultures (31.6%) and lower respiratory specimens (43%) (one-half were isolated from cystic fibrosis patients). Accurate genus vs species identities were obtained for 67.7% and 32.5% aerobic GNBs, 73% and 60% fGNCBs, and 23.5% CAMPB (with no discrepant species), respectively. Wrong or no results were obtained for 81 (32.3%) aerobic GNBs, 17 (27%) fGNCBs, and 13 (72.2%) CAMPB. No results or misidentifications occurred for 33% of aerobic GNBs, 26% of fGNCBs, and 76.5% of CAMPB due to absence of species in the instrument's database. VITEK MS performance remained stable for aerobic GNBs and fGNCBs but improved for CAMPB with addition of Campylobacter rectus and Campylobacter curvus to the database. 16S remains important for identification of GNOs when proteomics fails.IMPORTANCEMatrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has transformed the identification of commonly encountered Gram-negative organisms (GNOs) in the clinical laboratory, but rare and unusual organisms continue to challenge the technology. This study verified performance of VITEK MS for identification of a broad range of rare and unusual clinical GNO isolates by our large reference laboratory workflow over a multi-year period. Although most GNOs were accurately identified by MALDI-TOF MS, a small number of clinical isolates (~1%-6%) required 16S sequencing for identification depending on the GNO category. Approximately one-third of aerobic Gram-negative bacilli (GNBs) and two-thirds of Campylobacterales could not be accurately identified by proteomics due to lack of an organism in the instrument's database. MALDI-TOF MS databases should be continuously updated and validated, and laboratories should have a workflow for identification of unusual or rarely encountered aerobic, fastidious, and Campylobacterales GNOs that includes 16S rRNA gene sequencing whenever proteomics cannot give a definitive identification.
Collapse
Affiliation(s)
- D. L. Church
- Department of Pathology & Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Department of Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| | - T. Griener
- Department of Pathology & Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| | - D. Gregson
- Department of Pathology & Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Department of Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| |
Collapse
|
11
|
Harnan S, Kearns B, Scope A, Schmitt L, Jankovic D, Hamilton J, Srivastava T, Hill H, Ku CC, Ren S, Rothery C, Bojke L, Sculpher M, Woods B. Ceftazidime with avibactam for treating severe aerobic Gram-negative bacterial infections: technology evaluation to inform a novel subscription-style payment model. Health Technol Assess 2024; 28:1-230. [PMID: 39487661 PMCID: PMC11586833 DOI: 10.3310/yapl9347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
Abstract
Background To limit the use of antimicrobials without disincentivising the development of novel antimicrobials, there is interest in establishing innovative models that fund antimicrobials based on an evaluation of their value as opposed to the volumes used. The aim of this project was to evaluate the population-level health benefit of ceftazidime-avibactam in the NHS in England, for the treatment of severe aerobic Gram-negative bacterial infections when used within its licensed indications. The results were used to inform National Institute for Health and Care Excellence guidance in support of commercial discussions regarding contract value between the manufacturer and NHS England. Methods The health benefit of ceftazidime-avibactam was first derived for a series of high-value clinical scenarios. These represented uses that were expected to have a significant impact on patients' mortality risks and health-related quality of life. Patient-level costs and health-related quality of life of ceftazidime-avibactam under various usage scenarios compared with alternative management strategies in the high-value clinical scenarios were quantified using decision modelling. Results were reported as incremental net health effects expressed in quality-adjusted life-years, which were scaled to 20-year population in quality-adjusted life-years using infection number forecasts based on data from Public Health England. The outcomes estimated for the high-value clinical scenarios were extrapolated to other expected uses for ceftazidime-avibactam. Results The clinical effectiveness of ceftazidime-avibactam relative to its comparators was estimated by synthesising evidence on susceptibility of the pathogens of interest to the antimicrobials in a network meta-analysis. In the base case, ceftazidime-avibactam was associated with a statistically significantly higher susceptibility relative to colistin (odds ratio 7.24, 95% credible interval 2.58 to 20.94). The remainder of the treatments were associated with lower susceptibility than colistin (odds ratio < 1). The results were sensitive to the definition of resistance and the studies included in the analysis. In the base case, patient-level benefit of ceftazidime-avibactam was between 0.08 and 0.16 quality-adjusted life-years, depending on the site of infection and the usage scenario. There was a high degree of uncertainty surrounding the benefits of ceftazidime-avibactam across all subgroups, and the results were sensitive to assumptions in the meta-analysis used to estimate susceptibility. There was substantial uncertainty in the number of infections that are suitable for treatment with ceftazidime-avibactam, so population-level results are presented for a range of scenarios for the current infection numbers, the expected increases in infections over time, and rates of emergence of resistance. The population-level benefit varied substantially across the scenarios, from 531 to 2342 quality-adjusted life-years over 20 years. Conclusion This work has provided quantitative estimates of the value of ceftazidime-avibactam within its areas of expected usage within the NHS. Limitations Given existing evidence, the estimates of the value of ceftazidime-avibactam are highly uncertain. Future work Future evaluations of antimicrobials would benefit from improvements to NHS data linkages, research to support appropriate synthesis of susceptibility studies, and application of routine data and decision modelling to assess enablement value. Study registration No registration of this study was undertaken. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Policy Research Programme (NIHR award ref: NIHR135592), conducted through the Policy Research Unit in Economic Methods of Evaluation in Health and Social Care Interventions, PR-PRU-1217-20401, and is published in full in Health Technology Assessment; Vol. 28, No. 73. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Sue Harnan
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ben Kearns
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Alison Scope
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | - Dina Jankovic
- Centre for Health Economics, University of York, York, UK
| | - Jean Hamilton
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Tushar Srivastava
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Harry Hill
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Chu Chang Ku
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Shijie Ren
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Claire Rothery
- Centre for Health Economics, University of York, York, UK
| | - Laura Bojke
- Centre for Health Economics, University of York, York, UK
| | - Mark Sculpher
- Centre for Health Economics, University of York, York, UK
| | - Beth Woods
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|
12
|
Butler DA, Patel N, O'Donnell JN, Lodise TP. Combination therapy with IV fosfomycin for adult patients with serious Gram-negative infections: a review of the literature. J Antimicrob Chemother 2024; 79:2421-2459. [PMID: 39215642 DOI: 10.1093/jac/dkae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Treatment of patients with serious infections due to resistant Gram-negative bacteria remains highly problematic and has prompted clinicians to use existing antimicrobial agents in innovative ways. One approach gaining increased therapeutic use is combination therapy with IV fosfomycin. This article reviews the preclinical pharmacokinetic/pharmacodynamic (PK/PD) infection model and clinical data surrounding the use of combination therapy with IV fosfomycin for the treatment of serious infections caused by resistant Gram-negative bacteria. Data from dynamic in vitro and animal infection model studies of highly resistant Enterobacterales and non-lactose fermenters are positive and suggest IV fosfomycin in combination with a β-lactam, polymyxin or aminoglycoside produces a synergistic effect that rivals or surpasses that of other aminoglycoside- or polymyxin-containing regimens. Clinical studies performed to date primarily have involved patients with pneumonia and/or bacteraemia due to Klebsiella pneumoniae, Pseudomonas aeruginosa or Acinetobacter baumannii. Overall, the observed success rates with fosfomycin combination regimens were consistent with those reported for other combination regimens commonly used to treat these patients. In studies in which direct treatment comparisons can be derived, the results suggest that patients who received fosfomycin combination therapy had similar or improved outcomes compared with other therapies and combinations, especially when it was used in combination with a β-lactam that (1) targets PBP-3 and (2) has exceptional stability in the presence of β-lactamases. Collectively, the data indicate that combination therapy with IV fosfomycin should be considered as a potential alternative to aminoglycoside or polymyxin combinations for patients with antibiotic-resistant Gram-negative infections when benefits outweigh risks.
Collapse
Affiliation(s)
- David A Butler
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Nimish Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9255 Pharmacy Lane, La Jolla, CA, USA
| | - J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
13
|
Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. PHARMACY 2024; 12:142. [PMID: 39311133 PMCID: PMC11417830 DOI: 10.3390/pharmacy12050142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
AmpC enzymes are a class of beta-lactamases produced by Gram-negative bacteria, including several Enterobacterales. When produced in sufficient amounts, AmpCs can hydrolyze third-generation cephalosporins (3GCs) and piperacillin/tazobactam, causing resistance. In Enterobacterales, the AmpC gene can be chromosomal- or plasmid-encoded. Some species, particularly Enterobacter cloacae complex, Klebsiella aerogenes, and Citrobacter freundii, harbor an inducible chromosomal AmpC gene. The expression of this gene can be derepressed during treatment with a beta-lactam, leading to AmpC overproduction and the consequent emergence of resistance to 3GCs and piperacillin/tazobactam during treatment. Because of this phenomenon, the use of carbapenems or cefepime is considered a safer option when treating these pathogens. However, many areas of uncertainty persist, including the risk of derepression related to each beta-lactam; the role of piperacillin/tazobactam compared to cefepime; the best option for severe or difficult-to-treat cases, such as high-inoculum infections (e.g., ventilator-associated pneumonia and undrainable abscesses); the role of de-escalation once clinical stability is obtained; and the best treatment for species with a lower risk of derepression during treatment (e.g., Serratia marcescens and Morganella morganii). The aim of this review is to collate the most relevant information about the microbiological properties of and therapeutic approach to AmpC-producing Enterobacterales in order to inform daily clinical practice.
Collapse
Affiliation(s)
- Gianpiero Tebano
- Infectious Diseases Unit, Ravenna Hospital, AUSL Romagna, 48100 Ravenna, Italy
| | - Irene Zaghi
- Department of Infectious Diseases, University Hospital of Galway, H91 Galway, Ireland;
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Francesco Cristini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
- Infectious Diseases Unit, Forlì and Cesena Hospitals, AUSL Romagna, 47121 Forlì and Cesena, Italy
| |
Collapse
|
14
|
Kouraki A, Zheng AS, Miller S, Kelly A, Ashraf W, Bazzani D, Bonadiman A, Tonidandel G, Bolzan M, Vijay A, Nightingale J, Menni C, Ollivere BJ, Valdes AM. Metagenomic changes in response to antibiotic treatment in severe orthopedic trauma patients. iScience 2024; 27:110783. [PMID: 39286492 PMCID: PMC11403444 DOI: 10.1016/j.isci.2024.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
We investigated changes in microbiome composition and abundance of antimicrobial resistance (AMR) genes post-antibiotic treatment in severe trauma patients. Shotgun sequencing revealed beta diversity (Bray-Curtis) differences between 16 hospitalized multiple rib fractures patients and 10 age- and sex-matched controls (p = 0.043), and between antibiotic-treated and untreated patients (p = 0.015). Antibiotic-treated patients had lower alpha diversity (Shannon) at discharge (p = 0.003) and 12-week post-discharge (p = 0.007). At 12 weeks, they also exhibited a 5.50-fold (95% confidence interval [CI]: 2.86-8.15) increase in Escherichia coli (p = 0.0004) compared to controls. Differential analysis identified nine AMRs that increased in antibiotic-treated compared to untreated patients between hospital discharge and 6 and 12 weeks follow-up (false discovery rate [FDR] < 0.20). Two aminoglycoside genes and a beta-lactamase gene were directly related to antibiotics administered, while five were unrelated. In trauma patients, lower alpha diversity, higher abundance of pathobionts, and increases in AMRs persisted for 12 weeks post-discharge, suggesting prolonged microbiome disruption. Probiotic or symbiotic therapies may offer future treatment avenues.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Amy S Zheng
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Suzanne Miller
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Anthony Kelly
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Waheed Ashraf
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Jessica Nightingale
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Cristina Menni
- Department of Twin Research, King's College London, London SE1 7EH, UK
| | - Benjamin J Ollivere
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Ana M Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
15
|
Ugalde MJ, Caballero A, Martín Fernández M, Tamayo E, de la Varga-Martínez O. [Value of the biomarker soluble tyrosine kinase 1 type fms (sFLT-1) in the diagnosis and prognosis of sepsis: a systematic review]. Med Clin (Barc) 2024; 163:224-231. [PMID: 38851948 DOI: 10.1016/j.medcli.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION The present systematic review analyses the role of soluble fms-like tyrosine kinase-1 (sFLT-1) as an indirect biomarker of endothelial dysfunction in sepsis or septic shock from articles published in PubMed between 2010 and March 2022. MATERIALS AND METHODS A systematic review of studies studying sFLT-1 monitoring in intensive care units in adults with sepsis or septic shock vs. controls for sepsis diagnosis and prognosis has been carried out (PROSPERO CRD42023412929 Registry). RESULTS The endothelial dysfunction of sepsis is one of the keys to the development of the disease. VEGF binds to sFLT-1 acting as a competitive inhibitor of VEGF signalling in endothelial cells and thus neutralizes its pro-inflammatory effects. Endothelial dysfunction is reflected in increased sFLT-1 levels. High values of sFLT-1 were used for the differential diagnosis of sepsis versus other inflammatory pathologies, septic shock versus other types of shock, were elevated over time, estimation of disease prognosis, correlation with sepsis severity, organ dysfunction, and mortality prediction. CONCLUSIONS It is evident that sepsis is based on endothelial dysfunction. sFLT-1 is one of the main biomarkers of microvascular alteration and is a predictive diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
| | - Alberto Caballero
- Department of Anatomy and Radiology, Health Sciences Faculty, GIR: Physical Exercise and Aging, Campus Universitario Los Pajaritos, University of Valladolid Soria, España
| | - Marta Martín Fernández
- Department of Cellular Biology, Genetics, Histology and Pharmacology. University of Valladolid, Valladolid, España; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, España; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, España
| | - Eduardo Tamayo
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, España; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, España; Anestesia y Cuidados intensivos, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - Olga de la Varga-Martínez
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, España; Anestesiología y Reanimación, Hospital Universitario Infanta Leonor, Madrid, España
| |
Collapse
|
16
|
Chen J, Wang Q, Li S, Han R, Wang C, Cheng S, Yang B, Diao L, Yang T, Sun D, Zhang D, Dong Y, Wang T. Does Two-Step Infusion Improve the Pharmacokinetics/Pharmacodynamics Target Attainment of Meropenem in Critically Ill Patients? J Pharm Sci 2024; 113:2904-2914. [PMID: 38996917 DOI: 10.1016/j.xphs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The optimal method for administering meropenem remains controversial. This study was conducted to explore the optimal two-step infusion strategy (TIT), and to investigate whether TIT is superior to intermittent infusion therapy (IIT) and prolonged infusion therapy (PIT). A physiologically based pharmacokinetics model for critically ill patients was established and evaluated. The validated model was utilized to evaluate the pharmacokinetics/pharmacodynamics (PK/PD) target attainment of meropenem. The PK/PD target attainment of different TITs varied greatly, and the total infusion duration and the first-step dose greatly affected these values. The optimal TIT was 0.25 g (30 min) + 0.75 g (150 min) at MICs of ≤2 mg/L, and 0.25 g (45 min) + 0.75 g (255 min) at MICs of 4-8 mg/L. The PK/PD target attainment of optimal TIT, PIT, and IIT were 100 % at MICs of ≤1 mg/L. When MIC increased to 2-8 mg/L, the PK/PD target attainment of optimal TIT was similar to that of PIT and higher than IIT. In conclusion, TIT did not significantly improve the PK/PD target attainment of meropenem compared with PIT. IIT is adequate at MICs of ≤1 mg/L, and PIT may be the optimal meropenem infusion method in critically ill patients with MICs of 2-8 mg/L.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruiying Han
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiqi Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Baogui Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lizhuo Diao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tingting Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dan Sun
- Department of Pharmacy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Di Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
17
|
Park SY, Baek YJ, Kim JH, Seong H, Kim B, Kim YC, Yoon JG, Heo N, Moon SM, Kim YA, Song JY, Choi JY, Park YS. Guidelines for Antibacterial Treatment of Carbapenem-Resistant Enterobacterales Infections. Infect Chemother 2024; 56:308-328. [PMID: 39231504 PMCID: PMC11458495 DOI: 10.3947/ic.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 09/06/2024] Open
Abstract
This guideline aims to promote the prudent use of antibacterial agents for managing carbapenem-resistant Enterobacterales (CRE) infections in clinical practice in Korea. The general section encompasses recommendations for the management of common CRE infections and diagnostics, whereas each specific section is structured with key questions that are focused on antibacterial agents and disease-specific approaches. This guideline covers both currently available and upcoming antibacterial agents in Korea.
Collapse
Affiliation(s)
- Se Yoon Park
- Division of Infectious Diseases, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
| | - Yae Jee Baek
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Bongyoung Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yong Chan Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Namwoo Heo
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea
| | - Song Mi Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea.
| |
Collapse
|
18
|
El-Demerdash AS, Alfaraj R, Farid FA, Yassin MH, Saleh AM, Dawwam GE. Essential oils as capsule disruptors: enhancing antibiotic efficacy against multidrug-resistant Klebsiella pneumoniae. Front Microbiol 2024; 15:1467460. [PMID: 39282565 PMCID: PMC11392748 DOI: 10.3389/fmicb.2024.1467460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant global health threat due to its involvement in severe infections and high mortality rates. The emergence of MDR strains necessitates the exploration of alternative therapeutic strategies. Methods K. pneumoniae isolates were obtained from human and animal sources. Antibacterial susceptibility testing was performed, followed by the evaluation of essential oil activity through inhibition zone, MIC, and MBC determinations. Checkerboard assays were conducted to assess synergistic effects with amikacin. Gene expression analysis and transmission electron microscopy were employed to elucidate the mechanisms of action. Molecular docking studies were performed to identify potential binding targets of bioactive compounds. Results Klebsiella pneumoniae was isolated from 25 of the100 samples examined, representing a prevalence rate of 25%. All isolates were found to be multidrug-resistant. Tea tree and thyme essential oils exhibited potent antibacterial activity and synergistic effects with amikacin. Notably, these combinations significantly downregulated the expression of key capsule virulence genes (wcaG, rmpA, magA, uge, and wabG), suggesting a novel mechanism for enhancing amikacin efficacy. Transmission electron microscopy revealed disrupted cell integrity in MDR-KP cells treated with the combinations. Molecular docking analysis identified Terpinen-4-ol, Farnesol, 1,4-Dihydroxy-p-menth-2-ene, and 7-Oxabicyclo [4.1.0] heptane as potential bioactive compounds responsible for the observed effects. Conclusion By effectively combating MDR-KP, this research holds promise for reducing antibiotic resistance, improving treatment outcomes, and ultimately enhancing potential care.
Collapse
Affiliation(s)
- Azza SalahEldin El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faten A Farid
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed H Yassin
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
19
|
Ishii J, Nishikimi M, De Bus L, De Waele J, Takaba A, Kuriyama A, Kobayashi A, Tanaka C, Hashi H, Hashimoto H, Nashiki H, Shibata M, Kanamoto M, Inoue M, Hashimoto S, Katayama S, Fujiwara S, Kameda S, Shindo S, Komuro T, Kawagishi T, Kawano Y, Fujita Y, Kida Y, Hara Y, Yoshida H, Fujitani S, Shime N. No improvement in mortality among critically ill patients with carbapenems as initial empirical therapy and more detection of multi-drug resistant pathogens associated with longer use: a post hoc analysis of a prospective cohort study. Microbiol Spectr 2024; 12:e0034224. [PMID: 38864641 PMCID: PMC11218456 DOI: 10.1128/spectrum.00342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Whether empirical therapy with carbapenems positively affects the outcomes of critically ill patients with bacterial infections remains unclear. This study aimed to investigate whether the use of carbapenems as the initial antimicrobial administration reduces mortality and whether the duration of carbapenem use affects the detection of multidrug-resistant (MDR) pathogens. This was a post hoc analysis of data acquired from Japanese participating sites from a multicenter, prospective observational study [Determinants of Antimicrobial Use and De-escalation in Critical Care (DIANA study)]. A total of 268 adult patients with clinically suspected or confirmed bacterial infections from 31 Japanese intensive care units (ICUs) were analyzed. The patients were divided into two groups: patients who were administered carbapenems as initial antimicrobials (initial carbapenem group, n = 99) and those who were not administered carbapenems (initial non-carbapenem group, n = 169). The primary outcomes were mortality at day 28 and detection of MDR pathogens. Multivariate logistic regression analysis revealed that mortality at day 28 did not differ between the two groups [18 (18%) vs 27 (16%), respectively; odds ratio: 1.25 (95% confidence interval (CI): 0.59-2.65), P = 0.564]. The subdistribution hazard ratio for detecting MDR pathogens on day 28 per additional day of carbapenem use is 1.08 (95% CI: 1.05-1.13, P < 0.001 using the Fine-Gray model with death regarded as a competing event). In conclusion, in-hospital mortality was similar between the groups, and a longer duration of carbapenem use as the initial antimicrobial therapy resulted in a higher risk of detection of new MDR pathogens.IMPORTANCEWe found no statistical difference in mortality with the empirical use of carbapenems as initial antimicrobial therapy among critically ill patients with bacterial infections. Our study revealed a lower proportion of inappropriate initial antimicrobial administrations than those reported in previous studies. This result suggests the importance of appropriate risk assessment for the involvement of multidrug-resistant (MDR) pathogens and the selection of suitable antibiotics based on risk. To the best of our knowledge, this study is the first to demonstrate that a longer duration of carbapenem use as initial therapy is associated with a higher risk of subsequent detection of MDR pathogens. This finding underscores the importance of efforts to minimize the duration of carbapenem use as initial antimicrobial therapy when it is necessary.
Collapse
Affiliation(s)
- Junki Ishii
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuaki Nishikimi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Liesbet De Bus
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Akira Kuriyama
- Emergency and Critical Care Center, Kurashiki Central Hospital, Okayama, Japan
| | | | - Chie Tanaka
- Nippon Medical School Tama Nagayama Hospital, Tokyo, Japan
| | - Hideki Hashi
- Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | | | | | - Mami Shibata
- Department of Emergency and Critical Care Medicine, Wakayama Medical University Hospital, Wakayama, Japan
| | - Masafumi Kanamoto
- Department of Anesthesiology, Gunma Prefectural Cardiovascular Center, , Gunma, Japan
| | - Masashi Inoue
- Department of Anesthesiology, Nagoya City University Hospital, Aichi, Japan
| | - Satoru Hashimoto
- Non-Profit Organization ICU Collaboration Network (ICON), Tokyo, Japan
| | - Shinshu Katayama
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | - Shinya Kameda
- Jikei University School of Medicine Hospital, Tokyo, Japan
| | | | - Tetsuya Komuro
- Department of General Internal Medicine, TMG Muneoka Central Hospital, Saitama, Japan
| | | | | | | | - Yoshiko Kida
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuya Hara
- Yodogawa Christian Hospital, Osaka, Japan
| | - Hideki Yoshida
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Shigeki Fujitani
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - on behalf of the DIANA study Japanese group
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- JA Hiroshima General Hospital, Hiroshima, Japan
- Emergency and Critical Care Center, Kurashiki Central Hospital, Okayama, Japan
- Takarazuka City Hospital, Hyogo, Japan
- Nippon Medical School Tama Nagayama Hospital, Tokyo, Japan
- Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
- Hitachi General Hospital, Ibaraki, Japan
- Iwate Prefectural Central Hospital, Iwate, Japan
- Department of Emergency and Critical Care Medicine, Wakayama Medical University Hospital, Wakayama, Japan
- Department of Anesthesiology, Gunma Prefectural Cardiovascular Center, , Gunma, Japan
- Department of Anesthesiology, Nagoya City University Hospital, Aichi, Japan
- Non-Profit Organization ICU Collaboration Network (ICON), Tokyo, Japan
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
- National Hospital Organization Ureshino Medical Center, Saga, Japan
- Jikei University School of Medicine Hospital, Tokyo, Japan
- Omori Red Cross Hospital, Tokyo, Japan
- Department of General Internal Medicine, TMG Muneoka Central Hospital, Saitama, Japan
- Toyama University Hospital, Toyama, Japan
- Fukuoka University Hospital, Fukuoka, Japan
- Aichi Medical University Hospital, Aichi, Japan
- Yodogawa Christian Hospital, Osaka, Japan
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
20
|
Woods B, Schmitt L, Jankovic D, Kearns B, Scope A, Ren S, Srivastava T, Ku CC, Hamilton J, Rothery C, Bojke L, Sculpher M, Harnan S. Cefiderocol for treating severe aerobic Gram-negative bacterial infections: technology evaluation to inform a novel subscription-style payment model. Health Technol Assess 2024; 28:1-238. [PMID: 38938145 PMCID: PMC11229178 DOI: 10.3310/ygwr4511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Background To limit the use of antimicrobials without disincentivising the development of novel antimicrobials, there is interest in establishing innovative models that fund antimicrobials based on an evaluation of their value as opposed to the volumes used. The aim of this project was to evaluate the population-level health benefit of cefiderocol in the NHS in England, for the treatment of severe aerobic Gram-negative bacterial infections when used within its licensed indications. The results were used to inform the National Institute for Health and Care Excellence guidance in support of commercial discussions regarding contract value between the manufacturer and NHS England. Methods The health benefit of cefiderocol was first derived for a series of high-value clinical scenarios. These represented uses that were expected to have a significant impact on patients' mortality risks and health-related quality of life. The clinical effectiveness of cefiderocol relative to its comparators was estimated by synthesising evidence on susceptibility of the pathogens of interest to the antimicrobials in a network meta-analysis. Patient-level costs and health outcomes of cefiderocol under various usage scenarios compared with alternative management strategies were quantified using decision modelling. Results were reported as incremental net health effects expressed in quality-adjusted life-years, which were scaled to 20-year population values using infection number forecasts based on data from Public Health England. The outcomes estimated for the high-value clinical scenarios were extrapolated to other expected uses for cefiderocol. Results Among Enterobacterales isolates with the metallo-beta-lactamase resistance mechanism, the base-case network meta-analysis found that cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.32, 95% credible intervals 0.04 to 2.47), but the result was not statistically significant. The other treatments were also associated with lower susceptibility than colistin, but the results were not statistically significant. In the metallo-beta-lactamase Pseudomonas aeruginosa base-case network meta-analysis, cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.44, 95% credible intervals 0.03 to 3.94), but the result was not statistically significant. The other treatments were associated with no susceptibility. In the base case, patient-level benefit of cefiderocol was between 0.02 and 0.15 quality-adjusted life-years, depending on the site of infection, the pathogen and the usage scenario. There was a high degree of uncertainty surrounding the benefits of cefiderocol across all subgroups. There was substantial uncertainty in the number of infections that are suitable for treatment with cefiderocol, so population-level results are presented for a range of scenarios for the current infection numbers, the expected increases in infections over time and rates of emergence of resistance. The population-level benefits varied substantially across the base-case scenarios, from 896 to 3559 quality-adjusted life-years over 20 years. Conclusion This work has provided quantitative estimates of the value of cefiderocol within its areas of expected usage within the NHS. Limitations Given existing evidence, the estimates of the value of cefiderocol are highly uncertain. Future work Future evaluations of antimicrobials would benefit from improvements to NHS data linkages; research to support appropriate synthesis of susceptibility studies; and application of routine data and decision modelling to assess enablement value. Study registration No registration of this study was undertaken. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment Policy Research Programme (NIHR award ref: NIHR135591), conducted through the Policy Research Unit in Economic Methods of Evaluation in Health and Social Care Interventions, PR-PRU-1217-20401, and is published in full in Health Technology Assessment; Vol. 28, No. 28. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Beth Woods
- Centre for Health Economics, University of York, York, UK
| | | | - Dina Jankovic
- Centre for Health Economics, University of York, York, UK
| | - Benjamin Kearns
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Alison Scope
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Shijie Ren
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Tushar Srivastava
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Chu Chang Ku
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Jean Hamilton
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Claire Rothery
- Centre for Health Economics, University of York, York, UK
| | - Laura Bojke
- Centre for Health Economics, University of York, York, UK
| | - Mark Sculpher
- Centre for Health Economics, University of York, York, UK
| | - Sue Harnan
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
21
|
Mauritz MD, Claus B, Forster J, Petzold M, Schneitler S, Halfmann A, Hauswaldt S, Nurjadi D, Toepfner N. The EC-COMPASS: Long-term, multi-centre surveillance of Enterobacter cloacae complex - a clinical perspective. J Hosp Infect 2024; 148:11-19. [PMID: 38554809 DOI: 10.1016/j.jhin.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Enterobacter cloacae complex (ECCO) comprises closely related Enterobacterales, causing a variety of infections ranging from mild urinary tract infections to severe bloodstream infections. ECCO has emerged as a significant cause of healthcare-associated infections, particularly in neonatal and adult intensive care. AIM The Enterobacter Cloacae COMplex PASsive Surveillance (EC-COMPASS) aims to provide a detailed multi-centre overview of ECCO epidemiology and resistance patterns detected in routine microbiological diagnostics in four German tertiary-care hospitals. METHODS In a sentinel cluster of four German tertiary-care hospitals, all culture-positive ECCO results between 1st January 2020 and 31st December 2022, were analysed based on Hybase® laboratory data. FINDINGS Analysis of 31,193 ECCO datasets from 14,311 patients revealed a higher incidence in male patients (P<0.05), although no significant differences were observed in ECCO infection phenotypes. The most common sources of ECCO were swabs (42.7%), urine (17.5%), respiratory secretions (16.1%), blood cultures (8.9%) and tissue samples (5.6%). The annual bacteraemia rate remained steady at approximately 33 cases per hospital. Invasive ECCO infections were predominantly found in oncology and intensive care units. Incidences of nosocomial outbreaks were infrequent and limited in scope. Notably, resistance to carbapenems was consistently low. CONCLUSION EC-COMPASS offers a profound clinical perspective on ECCO infections in German tertiary-healthcare settings, highlighting elderly men in oncology and intensive care units as especially vulnerable to ECCO infections. Early detection strategies targeting at-risk patients could improve ECCO infection management.
Collapse
Affiliation(s)
- M D Mauritz
- Department of General Pediatrics and Adolescent Medicine, Children's and Adolescents' Hospital, Datteln, Germany; Department of Children's Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
| | - B Claus
- Department of Children's Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany; PedScience Research Institute, Datteln, Germany
| | - J Forster
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - M Petzold
- Institute for Medical Microbiology and Virology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - S Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - A Halfmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - S Hauswaldt
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - D Nurjadi
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - N Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
22
|
Wang C, Bai C, Chen K, Du Q, Cheng S, Zeng X, Wang Y, Dong Y. International guidelines for the treatment of carbapenem-resistant Gram-negative Bacilli infections: A comparison and evaluation. Int J Antimicrob Agents 2024; 63:107120. [PMID: 38417705 DOI: 10.1016/j.ijantimicag.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVES This study aimed to appraise clinical practice guidelines (CPGs) for the treatment of carbapenem-resistant Gram-negative Bacilli (CRGNB) infections and to summarise the recommendations. METHODS A systematic search of the literature published from January 2012 to March 2023 was undertaken to identify CPGs related to CRGNB infections treatment. The methodological and reporting quality of eligible CPGs were assessed using six domains of the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool and seven domains of the Reporting Items for practice Guidelines in HealThcare (RIGHT) checklist. Basic information and recommendations of included CPGs were extracted and compared. RESULTS A total of 21 CPGs from 7953 relevant articles were included. The mean overall AGREE II score was 62.7%, and was highest for "clarity of presentation" (90.2%) and lowest for "stakeholder involvement" (44.8%). The overall reporting quality of all of the CPGs was suboptimal, with the proportion of eligible items ranging from 45.7 to 85.7%. The treatment of CRGNB infections is related to the type of pathogen, the sensitivity of antimicrobial agents, and the site of infection. In general, the recommended options mainly included novel β-lactam/ β-lactamase inhibitors, cefiderocol, ampicillin-sulbactam (mainly for carbapenem-resistant Acinetobacter baumannii [CRAB]), and combination therapy, involving polymyxin B/colistin, tigecycline (except for carbapenem-resistant Pseudomonas aeruginosa), aminoglycosides, carbapenems, fosfomycin, and sulbactam (mainly for CRAB). CONCLUSIONS The methodological and reporting quality of CPGs for the treatment of CRGNB infections are generally suboptimal and need further improvement. Both monotherapy with novel drugs and combination therapy play important roles in the treatment.
Collapse
Affiliation(s)
- Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chuqi Bai
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Keyu Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiqi Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
23
|
Jenkins DR, Auckland C, Chadwick C, Dodgson AR, Enoch DA, Goldenberg SD, Hussain A, Martin J, Spooner E, Whalley T. A practical approach to screening for carbapenemase-producing Enterobacterales- views of a group of multidisciplinary experts from English hospitals. BMC Infect Dis 2024; 24:444. [PMID: 38671365 PMCID: PMC11046869 DOI: 10.1186/s12879-024-09307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Carbapenemase-producing Enterobacterales (CPE) are an important public health threat, with costly operational and economic consequences for NHS Integrated Care Systems and NHS Trusts. UK Health Security Agency guidelines recommend that Trusts use locally developed risk assessments to accurately identify high-risk individuals for screening, and implement the most appropriate method of testing, but this presents many challenges. METHODS A convenience sample of cross-specialty experts from across England met to discuss the barriers and practical solutions to implementing UK Health Security Agency framework into operational and clinical workflows. The group derived responses to six key questions that are frequently asked about screening for CPE. KEY FINDINGS Four patient groups were identified for CPE screening: high-risk unplanned admissions, high-risk elective admissions, patients in high-risk units, and known positive contacts. Rapid molecular testing is a preferred screening method for some of these settings, offering faster turnaround times and more accurate results than culture-based testing. It is important to stimulate action now, as several lessons can be learnt from screening during the COVID-19 pandemic, as well as from CPE outbreaks. CONCLUSION Further decisive and instructive information is needed to establish CPE screening protocols based on local epidemiology and risk factors. Local management should continually evaluate local epidemiology, analysing data and undertaking frequent prevalence studies to understand risks, and prepare resources- such as upscaled screening- to prevent increasing prevalence, clusters or outbreaks. Rapid molecular-based methods will be a crucial part of these considerations, as they can reduce unnecessary isolation and opportunity costs.
Collapse
Affiliation(s)
- D R Jenkins
- University Hospitals of Leicester NHS Trust, Leicester, UK.
| | - C Auckland
- Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - C Chadwick
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - A R Dodgson
- Manchester University NHS FT, Manchester, UK
| | - D A Enoch
- Cambridge University NHS Foundation Trust, Cambridge, UK
| | - S D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| | - A Hussain
- University Hospitals Birmingham NHS Foundation Trust, West Midlands, UK
| | - J Martin
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - E Spooner
- Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - T Whalley
- Lancashire & South Cumbria ICB, Preston, UK
| |
Collapse
|
24
|
Castillo-Polo JA, Hernández-García M, Maruri-Aransolo A, de la Vega C, Ruiz-Garbajosa P, Cantón R. Evolution of ceftazidime-avibactam and cefiderocol resistance in ST131-H30R1- Escherichia coli isolates with KPC-3 mutants and application of FTIR biotyping. Microbiol Spectr 2024; 12:e0277623. [PMID: 38415657 PMCID: PMC10986490 DOI: 10.1128/spectrum.02776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Ceftazidime-avibactam and cefiderocol represent two of the few alternatives for infections by KPC-producing Enterobacterales. We reported the emergence of resistance to both ceftazidime-avibactam and cefiderocol in a KPC-producing ST131-Escherichia coli (KPC-ST131-Ec) clinical isolate. Antimicrobial susceptibility testing, Fourier-transform infrared (FTIR) spectroscopy, whole-genome sequencing, and cloning experiments were performed. A KPC-49-Ec isolate resistant to ceftazidime-avibactam (MICCZA > 16/4 mg/L) and susceptible to cefiderocol (MICFDC: 2 mg/L) was recovered in a blood sample from an oncologic patient hospitalized in the medical ICU (June 2019) during ceftazidime-avibactam treatment. After 44 days, a KPC-31-Ec resistant to both ceftazidime-avibactam and cefiderocol (MICCZA > 16/4 mg/L, MICFDC: 8 mg/L) was found in a rectal sample during a second cycle of ceftazidime-avibactam treatment. Both KPC-49 (R163S) and KPC-31 (D179Y) were detected in the epidemic ST131-H30R1-Ec high-risk clone and showed a phenotype resembling that of ESBL producers. FTIR spectroscopy managed to differentiate cefiderocol-susceptible and resistant ST131-Ec isolates, and these from others belonging to different clones. After cloning and transformation experiments, KPC-49 and KPC-31 were responsible for ceftazidime-avibactam resistance (MICCZA > 16/4 mg/L) and decreased carbapenem MICs (MICMER ≤ 0.12 mg/L, MICIMI ≤ 1 mg/L). KPC-31 was also shown to be associated with increased MICs of cefiderocol (twofold and threefold dilutions over KPC-3 and KPC-49, respectively). However, mutations in proteins participating in outer membrane stability and integrity, such as TolR, could have a more relevant role in cefiderocol resistance. The effects of ceftazidime-avibactam and cefiderocol co-resistance in clinical isolates of Enterobacterales producing KPC mutants make their identification challenging for clinical laboratories.IMPORTANCEThroughout four admissions in our hospital of a single patient, different KPC-3 variants (KPC-3, KPC-49, and KPC-31) were found in surveillance and clinical ST131-Escherichia coli isolates, after prolonged therapies with meropenem and ceftazidime-avibactam. Different patterns of resistance to cefiderocol and ceftazidime-avibactam emerged, accompanied by restored carbapenem susceptibility. The inability to detect these variants with some phenotypic methods, especially KPC-31 by immunochromatography, and the expression of a phenotype similar to that of ESBL producers, posed challenge to identify these variants in the clinical microbiology laboratory. Molecular methods and whole-genome sequencing are necessary and new techniques able to cluster or differentiate related isolates could also be helpful; this is the case of Fourier-transform infrared spectroscopy, which managed in our study to discriminate isolates by cefiderocol susceptibility within ST131, and those from the non-ST131 ones.
Collapse
Affiliation(s)
- Juan Antonio Castillo-Polo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhize Maruri-Aransolo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen de la Vega
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Omrani AS, Abujarir SH, Ben Abid F, Shaar SH, Yilmaz M, Shaukat A, Alsamawi MS, Elgara MS, Alghazzawi MI, Shunnar KM, Zaqout A, Aldeeb YM, Alfouzan W, Almaslamani MA. Switch to oral antibiotics in Gram-negative bacteraemia: a randomized, open-label, clinical trial. Clin Microbiol Infect 2024; 30:492-498. [PMID: 37858867 DOI: 10.1016/j.cmi.2023.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES To evaluate the safety and efficacy of switching from intravenous (IV) to oral antimicrobial therapy in patients with Enterobacterales bacteraemia, after completion of 3-5 days of microbiologically active IV therapy. METHODS A multicentre, open-label, randomized trial of adults with monomicrobial Enterobacterales bacteraemia caused by a strain susceptible to ≥1 oral beta-lactam, quinolone, or trimethoprim/sulfamethoxazole. Inclusion criteria included completion of 3-5 days of microbiologically active IV therapy, being afebrile and haemodynamically stable for ≥48 hours, and absence of an uncontrolled source of infection. Pregnancy, endocarditis, and neurological infections were exclusion criteria. Randomization, stratified by urinary source of bacteraemia, was to continue IV (IV Group) or to switch to oral therapy (Oral Group). Agents and duration of therapy were determined by the treating physicians. The primary endpoint was treatment failure, defined as death, need for additional antimicrobial therapy, microbiological relapse, or infection-related re-admission within 90 days. Non-inferiority threshold was set at 10% in the 95% CI for the difference in the proportion with treatment failure between the Oral and IV Groups in the modified intention-to-treat population. The protocol was registered at ClinicalTrials.gov (NCT04146922). RESULTS In the modified intention-to-treat population, treatment failure occurred in 21 of 82 (25.6%) in the IV Group, and 18 of 83 (21.7%) in the Oral Group (risk difference -3.7%, 95% CI -16.6% to 9.2%). The proportions of subjects with any adverse events (AE), serious AE, or AE leading to treatment discontinuation were comparable. DISCUSSION In patients with Enterobacterales bacteraemia, oral switch, after initial IV antimicrobial therapy, clinical stability, and source control, is non-inferior to continuing IV therapy.
Collapse
Affiliation(s)
- Ali S Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar; Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar; Qatar University College of Medicine, Doha, Qatar.
| | - Sulieman H Abujarir
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar; Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Fatma Ben Abid
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar; Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar; Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shahd H Shaar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Mesut Yilmaz
- Department of Infectious Diseases and Microbiology, Istanbul Medipol University, Istanbul, Turkiye
| | - Adila Shaukat
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar; Division of Infectious Diseases, Department of Medicine, Al Wakra Hospital, Hamad Medical Corporation, Al Wakra, Qatar
| | - Mussad S Alsamawi
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar; Division of Infectious Diseases, Department of Medicine, Al Khor Hospital, Hamad Medical Corporation, Al Khor, Qatar
| | - Mohamed S Elgara
- Division of Internal Medicine, Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed Islam Alghazzawi
- Division of Internal Medicine, Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Khaled M Shunnar
- Division of Internal Medicine, Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar; Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Yasser M Aldeeb
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar; Division of Infectious Diseases, Department of Medicine, Al Khor Hospital, Hamad Medical Corporation, Al Khor, Qatar
| | - Wadha Alfouzan
- Department of Microbiology, Farwania Hospital, Kuwait City, Kuwait; Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Muna A Almaslamani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar; Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
26
|
Benbow A, Clarke M, Yates C, Montgomery R, Staniforth K, Boswell T, Prescott K, Mahida N. Hospital-wide healthcare-associated carbapenemase-producing Enterobacterales outbreak: risks of electric floor scrubbers in catering facilities and kitchens. J Hosp Infect 2024; 146:59-65. [PMID: 38341149 DOI: 10.1016/j.jhin.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales (CPE) are associated with poor clinical outcomes and can spread rapidly in healthcare settings. Environmental reservoirs are increasingly recognized as playing an important part in some nosocomial outbreaks. AIM To describe the investigation and control of a CPE outbreak, lasting several years, across two separate hospital sites within one organization. METHODS Investigation of multiple ward-level CPE cross-transmissions with a number of sporadic cases. Environmental sampling of ward environments, catering facilities and electric floor scrubbers was undertaken. FINDINGS Eleven patients over a 19-month period were identified as carrying healthcare-associated New Delhi metallo-beta-lactamase (NDM)-producing Enterobacter cloacae, and a further patient carried NDM Escherichia coli. E. cloacae isolates were indistinguishable on pulsed-field gel electrophoresis typing, supporting acquisition with a single point source. Environmental sampling found contamination of the electric floor scrubbers used for cleaning the hospital catering facilities and in the associated toilets. Standard outbreak response measures achieved control of ward outbreaks. Sporadic cases and hospital-wide cross-transmission were controlled after interventions on the central food-handling unit and by decommissioning affected floor scrubbers. Electric floor scrubbers were found to have the potential to disperse Gram-negative bacteria into the surrounding environment under experimental conditions. CONCLUSION This outbreak report demonstrates that catering facilities and kitchens can be involved in widespread healthcare outbreaks of enteric organisms. This is also the first report of the potential role of electric floor scrubbers in causing significant environmental contamination with CPE which may indicate a role in nosocomial transmission.
Collapse
Affiliation(s)
- A Benbow
- Department of Medical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - M Clarke
- Infection Prevention and Control Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - C Yates
- Infection Prevention and Control Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - R Montgomery
- Infection Prevention and Control Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - K Staniforth
- HCAI, Fungal, AMR, AMU and Sepsis Division, United Kingdom Health Security Agency, UK
| | - T Boswell
- Department of Medical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - K Prescott
- Department of Medical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - N Mahida
- Department of Medical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
27
|
Carrara E, Grossi PA, Gori A, Lambertenghi L, Antonelli M, Lombardi A, Bongiovanni F, Magrini N, Manfredi C, Stefani S, Tumbarello M, Tacconelli E. How to tailor recommendations on the treatment of multi-drug resistant Gram-negative infections at country level integrating antibiotic stewardship principles within the GRADE-ADOLOPMENT framework. THE LANCET. INFECTIOUS DISEASES 2024; 24:e113-e126. [PMID: 37678308 DOI: 10.1016/s1473-3099(23)00435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 09/09/2023]
Abstract
Promoting the optimal use of antibiotics through evidence-based recommendations should be regarded as a crucial step in the global fight against antimicrobial resistance. Within this scope, several guidelines and guidance documents for antibiotic therapy have been published in recent years. All documents underline the limitations of existing evidence and remark on the need for tailoring recommendations at the national level, based on local epidemiology, availability of diagnostics and drugs, and antimicrobial stewardship principles. The GRADE-ADOLOPMENT methodology is an evidence-based methodology that allows the adoption, adaptation, and update of existing recommendations to specific settings without performing de novo systematic reviews and grading of the evidence. However, procedures to integrate this evidence with stewardship principles, countries' surveillance data, and capacity in terms of diagnostics and antibiotics' availability have never been defined. This Personal View provides the first example of a country's calibration of international evidence-based guidance documents on treating infections caused by multidrug-resistant bacteria. A panel of experts convened by the Italian Medicine Agency (AIFA) used the GRADE methodology for systematically extracting and evaluating 100 recommendations on the treatment of infections due to multidrug-resistant Gram-negative bacteria from 11 guidance documents and 24 systematic reviews. The ADOLOPMENT procedure was used to calibrate the existing recommendations to the national context, leading to the adoption of 64, the adaptation of 27, and the rejection of nine recommendations. We discuss the technical details of the GRADE-ADOLOPMENT application, the calibration process, and the human resources required to support such an effort. This Personal View also covers the challenges of integrating antibiotic stewardship principles in evidence-based recommendations for treating infections with very limited therapeutic and diagnostic options. The details presented here could support the easy transferability of the methodology to other countries and settings, particularly where the incidence of antibiotic-resistant infections is high.
Collapse
Affiliation(s)
- Elena Carrara
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Paolo Antonio Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery University of Insubria and ASST-Sette Laghi, Varese, Italy
| | - Andrea Gori
- Centre for Multidisciplinary Research in Health Science, Department of Infectious Diseases Ospedale Luigi Sacco, University of Milan, Milan, Italy
| | - Lorenza Lambertenghi
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Infectious Diseases Unit, Milan, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Nicola Magrini
- Italian Medicines Agency, Rome, Italy; NHS Clinical Governance Unit, Romagna Health Authority, Forli, Italy; WHO Collaborating Centre in Evidence Synthesis and Guideline Development, Health Directorate Regione Emilia Romagna, Bologna, Italy
| | - Carlo Manfredi
- Order of Physicians, Surgeons and Dentists of Massa Carrara- Health Authority Toscana North-West, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Biological Tower, University of Catania, Catania, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Evelina Tacconelli
- Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
| |
Collapse
|
28
|
Saxena D, Maitra R, Bormon R, Czekanska M, Meiers J, Titz A, Verma S, Chopra S. Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:17. [PMID: 39843585 PMCID: PMC11721184 DOI: 10.1038/s44259-023-00016-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2025]
Abstract
Emerging resistance to all available antibiotics highlights the need to develop new antibiotics with novel mechanisms of action. Most of the currently used antibiotics target Gram-positive bacteria while Gram-negative bacteria easily bypass the action of most drug molecules because of their unique outer membrane. This additional layer acts as a potent barrier restricting the entry of compounds into the cell. In this scenario, several approaches have been elucidated to increase the accumulation of compounds into Gram-negative bacteria. This review includes a brief description of the physicochemical properties that can aid compounds to enter and accumulate in Gram-negative bacteria and covers different strategies to target or bypass the outer membrane-mediated barrier in Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Deepanshi Saxena
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Rahul Maitra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Rakhi Bormon
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, UP, India
| | - Marta Czekanska
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123, Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123, Saarbrücken, Germany.
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany.
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, UP, India.
- Center for Nanoscience, IIT Kanpur, Kanpur, 208016, UP, India.
| | - Sidharth Chopra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Pipoyan D, Beglaryan M, Chirkova V, Mantovani A. Exposure Assessment of Nitrofuran Metabolites in Fish and Honey Produced in Armenia: A Pilot Investigation. Foods 2023; 12:3459. [PMID: 37761168 PMCID: PMC10529666 DOI: 10.3390/foods12183459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In Armenia, the presence of nitrofuran residues in food products is unacceptable for both domestic sales and export. However, food may contain nitrofuran metabolites (NMs) due to the illegal use of these drugs in the agrofarming practice. This study aimed to identify NMs as the marker residues for nitrofurans in fish and honey produced in Armenia and assess the potential health risks associated with consuming these foods. The commodities studied were natural honey and three species of farmed fish produced by various regions nationwide. Concentrations of the marker metabolites (3-amino-2-oxazolidinone (AOZ), 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ), 1-aminohydantoin (AHD), and semicarbazide (SEM)) were determined through an enzyme-linked immunosorbent assay (ELISA) and verified using liquid chromatography-mass spectrometry (LC-MS/MS). Consumer groups were identified based on their average daily intake of foods. Health risk was assessed by calculating the margin of exposure (MOE). Reference values for health risk assessment were obtained from the European Food Safety Authority (EFSA). Results showed that 33.3% of fish samples and 44.4% of honey samples contained NMs, the mean concentrations ranging from 0.05 μg/kg to 0.52 μg/kg. All MOE values obtained were over 10,000, indicating that the detected concentrations of NMs in fish and honey produced in Armenia pose no health risk to consumers. However, these results highlight the illicit use of highly toxic substances and the need for improved control of farming practices.
Collapse
Affiliation(s)
- Davit Pipoyan
- Center for Ecological-Noosphere Studies, NAS RA, Abovyan Street 68, Yerevan 0025, Armenia; (D.P.); (V.C.)
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies, NAS RA, Abovyan Street 68, Yerevan 0025, Armenia; (D.P.); (V.C.)
| | - Victoria Chirkova
- Center for Ecological-Noosphere Studies, NAS RA, Abovyan Street 68, Yerevan 0025, Armenia; (D.P.); (V.C.)
| | - Alberto Mantovani
- Italian National Food Safety Committee, Lungotevere Ripa 1, 00153 Rome, Italy;
| |
Collapse
|
30
|
Attalla ET, Khalil AM, Zakaria AS, Baker DJ, Mohamed NM. Genomic characterization of colistin-resistant Klebsiella pneumoniae isolated from intensive care unit patients in Egypt. Ann Clin Microbiol Antimicrob 2023; 22:82. [PMID: 37689686 PMCID: PMC10492301 DOI: 10.1186/s12941-023-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen. METHODS Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms. RESULTS Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum β-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with blaCTX-M-15, blaNDM-5, and blaOXA-48 reaching 64.71%, 82.35%, and 82.35%, respectively. Chromosomal alterations in mgrB (82.35%) were the most prevailing colistin resistance-associated genetic change followed by deleterious mutations in ArnT (23.53%, L54H and G164S), PmrA (11.76%, G53V and D86E), PmrB (11.76%, T89P and T134P), PmrC (11.76%, S257L), PhoQ (5.88%, L322Q and Q435H), and ArnB (5.88%, G47D) along with the acquisition of mcr-1.1 by a single isolate of ST525. CONCLUSIONS In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.
Collapse
Affiliation(s)
- Eriny T. Attalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Amal M. Khalil
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Azza S. Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | | | - Nelly M. Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| |
Collapse
|
31
|
Ade J, Riehm JM, Stadler J, Klose C, Zablotski Y, Ritzmann M, Kümmerlen D. Antimicrobial Susceptibility from a One Health Perspective Regarding Porcine Escherichia coli from Bavaria, Germany. Antibiotics (Basel) 2023; 12:1424. [PMID: 37760720 PMCID: PMC10525436 DOI: 10.3390/antibiotics12091424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is one of the most crucial One Health topics worldwide. Consequently, various national and international surveillance programs collect data and report trends regularly. Ceftiofur, colistin and enrofloxacin belong to the most important and critical class of anti-infective medications in both human and veterinary medicine. In the present study, antimicrobial resistance was analyzed using the epidemiological cut-off (ECOFF) value on 6569 Escherichia coli isolated from pigs in Bavaria, Germany, during five years, from 2016 to 2020. The statistically relevant results regarding antimicrobial resistance revealed a decrease for colistin, an increase for enrofloxacin, and a constant level for ceftiofur. In Germany, the usage of all three antimicrobial substances in livestock has fallen by 43.6% for polypeptides, 59.0% for fluoroquinolones and 57.8% for the 3rd + 4th generation cephalosporines during this time. Despite the decline in antimicrobial usage, a reduction regarding antimicrobial resistance was solely observed for colistin. This finding illustrates that in addition to the restriction of pharmaceutical consumption, further measures should be considered. Improved biosecurity concepts, a reduction in crowding, and controlled animal movements on farms may play a key role in finally containing the resistance mechanisms of bacteria in farm animals.
Collapse
Affiliation(s)
- Julia Ade
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München Sonnenstrasse 16, 85764 Oberschleissheim, Germany; (J.A.); (J.S.)
| | - Julia M. Riehm
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleissheim, Germany (C.K.)
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München Sonnenstrasse 16, 85764 Oberschleissheim, Germany; (J.A.); (J.S.)
| | - Corinna Klose
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleissheim, Germany (C.K.)
| | - Yury Zablotski
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München Sonnenstrasse 16, 85764 Oberschleissheim, Germany; (J.A.); (J.S.)
| | - Dolf Kümmerlen
- Division of Swine Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Ávila-Núñez M, Lima O, Sousa A, Represa M, Rubiñán P, Celestino P, Garrido-Ventín M, García-Formoso L, Vasallo-Vidal F, Martinez-Lamas L, Pérez-Landeiro A, Rubianes M, Pérez-Rodríguez MT. Carbapenem alternatives for treatment of bloodstream infections due to AmpC producing enterobacterales. Ann Clin Microbiol Antimicrob 2023; 22:75. [PMID: 37592268 PMCID: PMC10436381 DOI: 10.1186/s12941-023-00624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Carbapenems (CR) have traditionally been the first line treatment for bacteremia caused by AmpC-producing Enterobacterales. However, CR have a high ecological impact, and carbapenem-resistant strains continue rising. Thus, other treatment alternatives like Piperacillin-Tazobactam (P-T) or Cefepime (CEF) and oral sequential therapy (OST) are being evaluated. METHODS We conducted a retrospective, single-centre observational study. All adult patients with AmpC-producing Enterobacterales bacteremia were included. The primary endpoint was clinical success defined as a composite of clinical cure, 14-day survival, and no adverse events. We evaluated the evolution of patients in whom OST was performed. RESULTS Seventy-seven patients were included, 22 patients in the CR group and 55 in the P-T/CEF group (37 patients received CEF and 18 P-T). The mean age of the patients was higher in the P-T/CEF group (71 years in CR group vs. 76 years in P-T/CEF group, p = 0.053). In the multivariate analysis, age ≥ 70 years (OR 0.08, 95% CI [0.007-0.966], p = 0.047) and a Charlson index ≥ 3 (OR 0.16, 95% CI [0.026-0.984], p = 0.048), were associated with a lower clinical success. Treatment with P-T/CEF was associated with higher clinical success (OR 7.75, 95% CI [1.273-47.223], p = 0.026). OST was performed in 47% of patients. This was related with a shorter in-hospital stay (OST 14 days [7-22] vs. non-OST 18 days [13-38], p = 0.005) without difference in recurrence (OST 3% vs. non-OST 5%, p = 0.999). CONCLUSIONS Targeted treatment with P-T/CEF and OST could be safe and effective treatments for patients with AmpC-producing Enterobacterales bacteremia.
Collapse
Affiliation(s)
- M Ávila-Núñez
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - O Lima
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| | - A Sousa
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - M Represa
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - P Rubiñán
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - P Celestino
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - M Garrido-Ventín
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - L García-Formoso
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - F Vasallo-Vidal
- Microbiology Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - L Martinez-Lamas
- Microbiology Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - A Pérez-Landeiro
- Pharmacy Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - M Rubianes
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
| | - M T Pérez-Rodríguez
- Infectious Diseases Unit. Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, Galicia, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
33
|
Kunhikannan S, Thomas CJ, Sumana MN, Franks AE, Kumar S, Nagarathna S, Petrovski S, Shindler AE. Exploring the antibiogram of soil isolates from an indian hospital precinct: link to antibiotic usage. BMC Res Notes 2023; 16:173. [PMID: 37582810 PMCID: PMC10428574 DOI: 10.1186/s13104-023-06450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
OBJECTIVE Hospitals serve as hotspots of antibiotic resistance. Despite several studies exploring antibiotic resistance in hospitals, none have explored the resistance profile of soil bacteria from a hospital precinct. This study examined and compared the antibiogram of the soil isolates from a hospital and its affiliated university precinct, to determine if antibiotic resistant bacteria were present closer to the hospital. RESULTS 120 soil samples were collected from JSS Hospital and JSS University in Mysore, India across three consecutive seasons (monsoon, winter and summer). 366 isolates were randomly selected from culture. Antibiotic susceptibility testing was performed on 128 isolates of Pseudomonas (n = 73), Acinetobacter (n = 30), Klebsiella species (n = 15) and Escherichia coli (n = 10). Pseudomonas species exhibited the highest antibiotic resistance. Ticarcillin-clavulanic acid, an extended-spectrum carboxypenicillin antibiotic used to treat moderate-to-severe infections, ranked highest amongst the antibiotics to whom these isolates were resistant (n = 51 out of 73, 69.9%). Moreover, 56.8% (n = 29) were from the hospital and 43.1% (n = 22) were from the university precinct, indicating antibiotic resistant bacteria were closer to the hospital setting. This study highlights the effect of antibiotic usage in hospitals and the influence of anthropogenic activities in the hospital on the dissemination of antibiotic resistance into hospital precinct soil.
Collapse
Affiliation(s)
- Shalini Kunhikannan
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
- Department of Microbiology, JSS Medical College and Hospital, Mysuru, Karnataka, India
| | - Colleen J Thomas
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
- Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Pre-clinical Critical Care Unit, University of Melbourne, Melbourne, VIC, Australia
| | - M N Sumana
- Department of Microbiology, JSS Medical College and Hospital, Mysuru, Karnataka, India
| | - Ashley E Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
- Centre for Future Landscapes, La Trobe University, Bundoora, VIC, Australia
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - S Nagarathna
- Professor and Head, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Anya E Shindler
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
34
|
Cai X, Yan H, Zhang W, Zhao W, Zhang L, Wang X, Wu X, Hao Z, Guo J. Intra-abdominal infection after tumor surgery: tigecycline combined with β-lactam antibiotics versus tigecycline alone. BMC Cancer 2023; 23:682. [PMID: 37474892 PMCID: PMC10357740 DOI: 10.1186/s12885-023-11169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDS Tigecycline has a broad spectrum of antimicrobial activity and has been approved for the treatment of complicated intra-abdominal infections. However, it is debatable whether tigecycline should be used alone or in combination. This study aimed to investigate whether tigecycline plus β-lactam antibiotics (combination therapy [CT] group) are superior to tigecycline alone (monotherapy [MT] group) in non-critically ill intra-abdominal infection patients after tumor surgery. METHODS This was a multicenter, retrospective cohort study. The primary outcome was mortality during the hospital stay. Secondary outcomes were clinical success rate, microbial eradication rate, relapse rate within one week, course of treatment, and adverse effects. Propensity score matching (PSM) was used to adjust the degree of infection before medication between the MT and CT groups. Univariate comparisons were performed using the chi-squared test for qualitative variables and Student's t-test or the Mann-Whitney U-test for continuous variables, as appropriate. Multivariate logistic regression analysis was performed to examine the relationship between antimicrobial treatments and mortality during hospitalization. The paired samples Wilcoxon test was used to compare the parameters before and after medication. RESULTS In total, 291 patients were included in the final analysis: 128 in MT group and 163 in CT group. Mortality rate was 6.25% in the MT group and 6.13% in the CT group (P = 0.97). Multivariate logistic regression model showed that carbapenem-resistant organisms (OR: 4.35, 95% CI: 2.36 ~ 61.70) and age > 65 (OR: 1.32, 95% CI:1.19 ~ 3.01) were independent risk factors for death. CT group had a shorter defervescence time (P < 0.05), with less likelihood of relapse (P < 0.05) but had a more significant effect on activated partial thromboplastin and prothrombin time. CONCLUSIONS Tigecycline plus β-lactam wasn't superior to tigecycline monotherapy for the treatment of non-critically ill patients with intra-abdominal infection. But for advanced age patients with cancer, tigecycline combination therapy maybe a better choice in terms of mortality.
Collapse
Affiliation(s)
- Xinfeng Cai
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Zhigongxincun Street 3#, 030012, Taiyuan, Shanxi, P. R. China
| | - Hongxia Yan
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Zhigongxincun Street 3#, 030012, Taiyuan, Shanxi, P. R. China
| | - Wenjun Zhang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Wei Zhao
- Department of Pharmacy, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Lei Zhang
- Department of Pharmacy, Shanxi Provincial People's Hospital, Shuangtasi Street 59#, 030001, Taiyuan, Shanxi, P. R. China
| | - Xu Wang
- Department of Literature search, Shanxi Research Center for Information and Strategy of Science and Technology, Taiyuan, Shanxi, P. R. China
| | - Xinjing Wu
- Department of Pharmacy, Yuncheng Central Hospital, Taiyuan, Shanxi, P. R. China
| | - Zhiying Hao
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Zhigongxincun Street 3#, 030012, Taiyuan, Shanxi, P. R. China.
| | - Jinlin Guo
- Department of Pharmacy, Shanxi Provincial People's Hospital, Shuangtasi Street 59#, 030001, Taiyuan, Shanxi, P. R. China.
| |
Collapse
|
35
|
Hong S, Jiang W, Ding Q, Lin K, Zhao C, Wang X. The Current Progress of Tetrahedral DNA Nanostructure for Antibacterial Application and Bone Tissue Regeneration. Int J Nanomedicine 2023; 18:3761-3780. [PMID: 37457798 PMCID: PMC10348378 DOI: 10.2147/ijn.s403882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Recently, programmable assembly technologies have enabled the application of DNA in the creation of new nanomaterials with unprecedented functionality. One of the most common DNA nanostructures is the tetrahedral DNA nanostructure (TDN), which has attracted great interest worldwide due to its high stability, simple assembly procedure, high predictability, perfect programmability, and excellent biocompatibility. The unique spatial structure of TDN allows it to penetrate cell membranes in abundance and regulate cellular biological properties as a natural genetic material. Previous studies have demonstrated that TDNs can regulate various cellular biological properties, including promoting cells proliferation, migration and differentiation, inhibiting cells apoptosis, as well as possessing anti-inflammation and immunomodulatory capabilities. Furthermore, functional molecules can be easily modified at the vertices of DNA tetrahedron, DNA double helix structure, DNA tetrahedral arms or DNA tetrahedral cage structure, enabling TDN to be used as a nanocarrier for a variety of biological applications, including targeted therapies, molecular diagnosis, biosensing, antibacterial treatment, antitumor strategies, and tissue regeneration. In this review, we mainly focus on the current progress of TDN-based nanomaterials for antimicrobial applications, bone and cartilage tissue repair and regeneration. The synthesis and characterization of TDN, as well as the biological merits are introduced. In addition, the challenges and prospects of TDN-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Shebin Hong
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Weidong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Qinfeng Ding
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Cancan Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| |
Collapse
|
36
|
Frost KJ, Hamilton RA, Hughes S, Jamieson C, Rafferty P, Troise O, Jenkins A. Systematic review of high-dose amikacin regimens for the treatment of Gram-negative infections based on EUCAST dosing recommendations. Eur J Hosp Pharm 2023; 30:189-195. [PMID: 36344247 PMCID: PMC10359793 DOI: 10.1136/ejhpharm-2022-003421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Updated European Committee on Antimicrobial Susceptibility Testing (EUCAST) amikacin breakpoints for Enterobacterales and Pseudomonas aeruginosa included revised dosing recommendations of 25-30 mg/kg to achieve key pharmacokinetic/pharmacodynamic parameters, higher than recommended in the British National Formulary. The objectives of this review were to identify clinical evidence for high-dose amikacin regimens and to determine drug exposures that are related to adverse events and toxicity. METHODS The literature search was conducted in October 2021 and updated in May 2022 using electronic databases for any study reporting adult participants treated with amikacin at doses ≥20 mg/kg/day. Reference lists of included papers were also screened for potential papers. Data were extracted for pharmacokinetic parameters and clinical outcomes, presented in a summary table and consolidated narratively. Meta-analysis was not possible. Each study was assessed for bias before, during and after the intervention using the ROBINS-I tool. RESULTS Nine studies (total 501 participants in 10 reports) were identified and included, eight of which were observational studies. Assessment of bias showed substantial flaws. Dosing regimens ranged from 25 to 30 mg/kg/day. Six studies adjusted the dose in obesity when participants had a body mass index of ≥30 kg/m2. Target peak serum concentrations ranged from 60 mg/L to 80 mg/L and 59.6-81.8% of patients achieved these targets, but there was no information on clinical outcomes. Two studies reported the impact of high-dose amikacin on renal function. No studies reporting auditory or vestibular toxicity were identified. CONCLUSION All included papers were limited by a significant risk of bias, while methodological and reporting heterogeneity made drawing conclusions challenging. Lack of information on the impact on renal function or ototoxicity means high-dose regimens should be used cautiously in older people. There is a need for a consensus guideline for high-dose amikacin to be written. TRIAL REGISTRATION NUMBER PROSPERO (CRD42021250022).
Collapse
Affiliation(s)
| | - Ryan A Hamilton
- Pharmacy, De Montfort University, Leicester, UK
- Pharmacy, Kettering General Hospital NHS Foundation Trust, Kettering, UK
| | - Stephen Hughes
- Pharmacy, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Conor Jamieson
- NHS England and NHS Improvement Midlands, Birmingham, UK
| | - Paul Rafferty
- Pharmacy, Southern Health and Social Care Trust, Portadown, UK
| | - Oliver Troise
- Pharmacy, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Abi Jenkins
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
37
|
Ooi N, Cooper IR, Norman B, Gallagher JA, Sireau N, Bou-Gharios G, Ranganath LR, Savage VJ. Evaluation of Homogentisic Acid, a Prospective Antibacterial Agent Highlighted by the Suitability of Nitisinone in Alkaptonuria 2 (SONIA 2) Clinical Trial. Cells 2023; 12:1683. [PMID: 37443717 PMCID: PMC10341174 DOI: 10.3390/cells12131683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway, showed that the compound had innate activity against Gram-positive and Gram-negative bacteria, which was lost following conversion into the degradation product benzoquinone acetic acid (BQA). Anti-staphylococcal activity of HGA can be attributed to effects on bacterial membranes. Despite an absence of haemolytic activity, the compound was cytotoxic to human HepG2 cells. We conclude that the antibacterial activity and in vitro safety profile of HGA render it more suitable for use as a topical agent or for inclusion in a small-molecule medicinal chemistry program.
Collapse
Affiliation(s)
- Nicola Ooi
- Infex Therapeutics, Alderley Park, Macclesfield SK10 4TG, UK
| | - Ian R. Cooper
- Infex Therapeutics, Alderley Park, Macclesfield SK10 4TG, UK
| | - Brendan Norman
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool L7 8TX, UK
| | - James A. Gallagher
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool L7 8TX, UK
| | | | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool L7 8TX, UK
| | - Lakshminarayan R. Ranganath
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool L7 8TX, UK
- Departments of Clinical Biochemistry and Metabolic Medicine, Liverpool University Hospitals NHS Foundation Trusts, Liverpool L7 8XP, UK
| | | |
Collapse
|
38
|
Negm EM, Elgharabawy ES, Badran SG, Soliman ALZM, El Sayed AM, Raafat AON, Soliman ST, Mahmoud HM, Tawfik AE, El Hawary AT, El Hawary A, Elhewala A, El-Sokkary RH. Analysis of cumulative antibiogram reports in intensive care units at an Egyptian University Hospital. J Infect Public Health 2023; 16:1220-1229. [PMID: 37276716 DOI: 10.1016/j.jiph.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Institutions must have access to antibiograms to monitor changes in antimicrobial resistance and direct empirical antibiotic therapy. The first facility-specific cumulative antibiogram was launched in the ICU in 2019. Consequently, many antibiogram-operation-related actions have been adopted in the institution based on reported data. This study aimed to analyze the cumulative antibiogram reports for multiple intensive care units (ICUs) for 2020, and compare the antimicrobial susceptibility testing (AST) patterns between the 2019 and 2020 years in an academic medical center. METHODS This cross-sectional study was performed of routine bacterial culture and AST data extracted from a laboratory information system in a 2252-bed capacity hospital. Only the first diagnostic isolate of a given species per patient per year was included in the study. Interpretation and reporting were done in accordance with the applicable Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing guidelines. RESULTS Of the 46,791 clinical isolates, the Gram-negative bacilli isolation rate witnessed a significant increase: 35,670 isolates in 2020 versus. 33,652 isolates in 2019. Klebsiella pneumoniae showed a statistically significant increase, mainly in pediatric, emergency, and cardiothoracic ICUs (p < 0.001). Neonatal and pediatric ICUs showed statistically significant increases in Pseudomonas aeruginosa and Proteus mirabilis isolates (p < 0.001). A statistically significant decrease was noted in the prevalence of Acinetobacter, Escherichia coli, Burkholderia cepacia, and Enterobacter cloacae. The sensitivities of K. pneumoniae and E. coli to imipenem and tigecycline significantly improved (p < 0.001). The sensitivity to colistin was significantly decreased (p < 0.001). The sensitivity of P. aeruginosa isolates to colistin and carbapenems was improved (p < 0.001). We reported a statistically significant decrease in all Gram-positive cocci (11,121 in 2020 versus. 11,528 in 2019). Staphylococcus aureus showed a statistically significant increase (p < 0.001), particularly in the medical ICU. CONCLUSION The high susceptibility rates of Enterobacteriaceae toward colistin and tigecycline, should be cautiously considered in empiric therapy while looking for alternatives. The majority of isolates of Gram-positive cocci were coagulase negative staphylococci (CONS), we still need to confirm whether they are true pathogens or commensals before considering anti-staphylococcal agents in the empirical therapy. We underscored some corrective actions that might have improved the susceptibility rates, such as antibiotic cycling.
Collapse
Affiliation(s)
- Essamedin M Negm
- Anasthesia, Intensive Care And Pain Management, Zagazig University, Egypt
| | | | | | | | - Aya M El Sayed
- Clinical Pharmacist, Zagazig University Hospitals, Egypt
| | - Aya O N Raafat
- Clinical Pharmacist, Zagazig University Hospitals, Egypt; Clinical Nutritionists, Zagazig University Hospitals, Egypt
| | - Sara T Soliman
- Clinical Pharmacist, Zagazig University Hospitals, Egypt
| | - Heba M Mahmoud
- Clinical Pharmacist, Zagazig University Hospitals, Egypt
| | - Ahmed E Tawfik
- Clinical Pharmacist, Zagazig University Hospitals, Egypt
| | | | | | | | | |
Collapse
|
39
|
Kowalska-Krochmal B, Mączyńska B, Smutnicka D, Secewicz A, Krochmal G, Laufer K, Dudek-Wicher R. Reliability of E-Tests and the Phoenix Automated Method in Assessing Susceptibility to IV Fosfomycin-Comparative Studies Relative to the Reference Method. Pathogens 2023; 12:pathogens12050700. [PMID: 37242370 DOI: 10.3390/pathogens12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The agar dilution method (ADM) recommended for IV fosfomycin (IV FOS) is complex and labor-intensive. Keeping in mind the reality of everyday laboratory work, we have evaluated the agreement of IV FOS susceptibility results obtained using the E-test and the Phoenix system with the results obtained using the ADM. MATERIALS AND METHODS The tests were performed on 860 strains. To evaluate susceptibility to IV FOS, BioMerieux E-tests (bioMerieux, Warsaw, Poland), BD Phoenix panels (BD Phoenix, Sparks, MD, USA), and the ADM were used. Clinical interpretation was performed in accordance with EUCAST Guidance (v12.0, 2021). The significance of the E-test and the Phoenix was analyzed in relation to the ADM by defining categorical agreement (CA), major error (ME), and very major error (VME). Essential agreement (EA) has also been defined for the E-test. A method was considered reliable, in accordance with ISO 20776-2:2007, when CA and EA were above 89.9% and VME was <3%. RESULTS A categorical agreement of >98.9% was demonstrated between the E-test and the ADM for overall strains and for Echerichia coli, ESBL-producing Enterobacterales, and Staphylococcus aureus, while between the Phoenix and the ADM, a CA of >98.9% was shown only for Escherichia coli, Staphylococcus aureus, and Proteus spp. A very major error rate of <3% was obtained only for Staphylococcus aureus and MBL-producing Pseudomonas evaluated by both the E-test and the Phoenix. An essential agreement of >98.9% between the E-test and the ADM has not been demonstrated for any of the tested groups of strains. The Phoenix yielded more VMEs than the E-test (50 and 46, respectively). The highest VME rate was demonstrated using the Phoenix method for Enterobacter spp. (53.83%). CONCLUSIONS Both the E-test and the Phoenix have turned out to be reliable in assessing IV FOS susceptibility only for Staphylococcus aureus (CA > 89.9% and VME < 3%). For the remaining tested groups of strains and genera, the simultaneous high CA rate and low VME rate required by ISO were not achieved. Both methods fared particularly badly in detecting strains resistant to IV.
Collapse
Affiliation(s)
- Beata Kowalska-Krochmal
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, 50-556 Wroclaw, Poland
| | - Beata Mączyńska
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, 50-556 Wroclaw, Poland
| | - Danuta Smutnicka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, 50-556 Wroclaw, Poland
| | - Anna Secewicz
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, 50-556 Wroclaw, Poland
| | - Grzegorz Krochmal
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, 50-556 Wroclaw, Poland
| | - Klaudyna Laufer
- Laboratory Diagnostics Department, Jan Mikulicz-Radecki University Teaching Hospital, 50-556 Wroclaw, Poland
| | - Ruth Dudek-Wicher
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, 50-556 Wroclaw, Poland
| |
Collapse
|
40
|
Li X, Zhang X, Cai H, Zhu Y, Ji J, Qu T, Tu Y, Zhou H, Yu Y. Overexpression of bla GES-1 due to a strong promoter in the class 1 integron contributes to decreased ceftazidime-avibactam susceptibility in carbapenem-resistant Pseudomonas aeruginosa ST235. Drug Resist Updat 2023; 69:100973. [PMID: 37148599 DOI: 10.1016/j.drup.2023.100973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/10/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Sequence type 235 (ST235) Pseudomonas aeruginosa, harboring so-called international, high-risk, or widespread clones, is associated with relatively high morbidity and mortality, partly due to multiantibiotic and high-level antibiotic resistance. Treatment of infections caused by such strains with ceftazidime-avibactam (CZA) is often successful. However, CZA resistance in carbapenem-resistant P. aeruginosa (CRPA) strains has been consistently reported with the increasing use of this drug. Likewise, we identified thirty-seven CZA-resistant ST235 P. aeruginosa strains from among 872 CRPA isolates. A total of 10.8% of the ST235 CRPA strains were resistant to CZA. Site-directed mutagenesis, cloning, expression, and whole-genome sequencing analysis revealed that overexpression of blaGES-1, which was carried in a class 1 integron of the complex transposon Tn6584, occurred due to a strong promoter, contributing to CZA resistance. Moreover, such overexpression of blaGES-1 combined with an efflux pump resulted in high-level resistance to CZA, considerably reducing the therapeutic options available for treating infections caused by ST235 CRPA. Considering the widespread presence of ST235 P. aeruginosa strains, clinicians should be aware of the risk of CZA resistance development in high-risk ST235 P. aeruginosa. Surveillance initiatives for preventing further dissemination of high-risk ST235 CRPA isolates with CZA resistance are essential.
Collapse
Affiliation(s)
- Xi Li
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
| | - Xiaofan Zhang
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yiwei Zhu
- Department of Critical Care Medicine, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingshu Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yuexing Tu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, Zhejiang 310012, China.
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
41
|
Alves J, Abreu B, Palma P, Alp E, Vieceli T, Rello J. Antimicrobial Stewardship on Patients with Neutropenia: A Narrative Review Commissioned by Microorganisms. Microorganisms 2023; 11:1127. [PMID: 37317101 DOI: 10.3390/microorganisms11051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
The emergence of antibiotic resistance poses a global health threat. High-risk patients such as those with neutropenia are particularly vulnerable to opportunistic infections, sepsis, and multidrug-resistant infections, and clinical outcomes remain the primary concern. Antimicrobial stewardship (AMS) programs should mainly focus on optimizing antibiotic use, decreasing adverse effects, and improving patient outcomes. There is a limited number of published studies assessing the impact of AMS programs on patients with neutropenia, where early appropriate antibiotic choice can be the difference between life and death. This narrative review updates the current advances in strategies of AMS for bacterial infections among high-risk patients with neutropenia. Diagnosis, drug, dose, duration, and de-escalation (5D) are the core variables among AMS strategies. Altered volumes of distribution can make standard dose regimens inadequate, and developing skills towards a personalized approach represents a major advance in therapy. Intensivists should partner antibiotic stewardship programs to improve patient care. Assembling multidisciplinary teams with trained and dedicated professionals for AMS is a priority.
Collapse
Affiliation(s)
- Joana Alves
- Infectious Diseases Department, Hospital de Braga, 4710-243 Braga, Portugal
| | - Betânia Abreu
- Pharmaceuticals Department, Hospital de Braga, 4710-243 Braga, Portugal
| | - Pedro Palma
- Infectious Diseases Department, Centro Hospitalar do Tâmega e Sousa, 4564-007 Penafiel, Portugal
| | - Emine Alp
- Infectious Diseases and Clinical Microbiology Department, Ankara Yıldırım Beyazıt University, 06760 Ankara, Turkey
| | - Tarsila Vieceli
- Infectious Diseases Department, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Jordi Rello
- Clinical Research in Pneumonia & Sepsis (CRIPS), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- FOREVA Research Pôle, Centre Hôpitalaire Universitaire de Nîmes, 30900 Nîmes, France
| |
Collapse
|
42
|
El-Mekkawy RM, Hamour NE, Hassanein WA, Allam AA. Evaluation of the antibacterial activity of Weissella confusa K3 cell-free supernatant against extended-spectrum βeta lactamase (ESBL) producing uropathogenic Escherichia coli U60. Saudi J Biol Sci 2023; 30:103595. [PMID: 36873575 PMCID: PMC9974428 DOI: 10.1016/j.sjbs.2023.103595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Different strategies have been approved for controlling extended-spectrum βeta lactamase (ESBL) producing uropathogenic bacteria. The antibacterial activity of Lactic acid bacteria (LAB) is an effective strategy due to its probiotic characteristics and beneficial effects on human health. The antibiotic susceptibility test, disk diffusion method, and double disc synergy test indicated that five enteric uropathogenic isolates were ESBL producers during the present study. They recorded diameters of inhibition zones as ≤ 18, ≤ 8, ≤ 19, and ≤ 8 mm against cefotaxime (CTX), ceftazidime (CAZ), aztreonam (ATM), and ceftriaxone (CRO). Genotypically, blaTEM genes are the most common, with (100 %) occurrence in all the five enteric tested uropathogens, followed by blaSHV and blaCTX genes (60 %). In addition, out of 10 LAB isolates from dairy products, the CFS of isolate no. K3 had high antibacterial activity against the tested ESBLs, especially no. U60, with a MIC of 600 µl. Additionally, the MIC and sub-MIC of K3 CFS inhibited the production of antibiotic-resistant bla TEM genes of U60. Analyzing the 16S rRNA sequence confirmed that the most potent ESBL-producing bacteria (U60) and LAB (K3) isolates were identified as Escherichia coli U60.1 and Weissella confuse K3 with accession numbers MW173246 and MW173299.1, respectively, in GenBank.
Collapse
Key Words
- Antibacterial activity
- Antibiotic resistance
- ECU60, Escherichia coli U60
- ESBL, extended-spectrum beta-lactamase
- Extended-spectrum beta-lactamase
- LAB, lactic acid bacteria
- Lactic acid bacteria
- MHA, Mueller–Hinton agar
- MRD, Multidrug resistance
- MRS, De Man, Rogosa, and Sharpe
- U, Urine sample
- UTI, Urinary tract infection
- Urinary tract infection
- WC K3, Weissella confusa K3
Collapse
Affiliation(s)
- Rasha M. El-Mekkawy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, 44519, Egypt
| | - Noura E. Hamour
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, 44519, Egypt
| | - Wesam A. Hassanein
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, 44519, Egypt
| | - Ayman A. Allam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
43
|
Tchesnokova V, Larson L, Basova I, Sledneva Y, Choudhury D, Heng J, Solyanik T, Bonilla T, Pham S, Schartz E, Madziwa L, Holden E, Weissman S, Ralston J, Sokurenko E. Increase in the Rate of Gut Carriage of Fluoroquinolone-Resistant Escherichia coli despite a Reduction in Antibiotic Prescriptions. RESEARCH SQUARE 2023:rs.3.rs-2426668. [PMID: 36712036 PMCID: PMC9882669 DOI: 10.21203/rs.3.rs-2426668/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background : Fluoroquinolone use for urinary tract infections has been steadily declining. Gut microbiota is the main reservoir for uropathogenic Escherichia coli but whether the carriage of fluoroquinolone-resistant E. coli has been changing is unknown. Methods . We determined the frequency of isolation and other characteristics of E. coli nonsuceptible to fluoroquinolones (at ³0.5 mg/L of ciprofloxacin) in 515 and 1605 E. coli -positive fecal samples collected in 2015 and 2021, respectively, from non-antibiotic- taking women of age 50+ receiving care in the Seattle area Kaiser Permanente Washington healthcare system. Results . Between 2015 and 2021 the prescription of fluoroquinolones dropped nearly three-fold in the study population. During the same period, the rates of gut carriage of fluoroquinolone-resistant E. coli increased from 14.4 % to 19.9% (P=.005), driven by a significant increase of isolates from the recently emerged, pandemic multi-drug resistant clonal group ST1193 (1.7% to 4.3%; P=.007) and those with an incomplete set of or no fluoroquinolone-resistance determining mutations (2.3% to 7.5%; P<.001). While prevalence of the resistance-associated mobile genes among the isolates dropped from 64.1% to 32.6% (P<.001), co-resistance to third generation cephalosporins has increased 21.5% to 33.1%, P=.044). Conclusion . Despite reduction in fluoroquinolone prescriptions, gut carriage of fluoroquinolone-resistant uropathogenic E. coli increased with a rise of previously sporadic lineages and co-resistance to third generation cephalosporins. Thus, to reduce the rates of antibiotic resistant urinary tract infections, greater focus should be on controlling the gut carriage of resistant bacteria.
Collapse
|
44
|
Shi Q, Huang C, Chen W, Wu S, Ji J, Ying C, Wu H, Xiao Y. Cefepime, not Piperacillin/Tazobactam use, for empirical treatment of bloodstream infections caused by Enterobacter spp.: Results from a population pharmacokinetic/pharmacodynamic analysis. Eur J Pharm Sci 2023; 180:106334. [PMID: 36402309 DOI: 10.1016/j.ejps.2022.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE There is a paucity of published data to evaluate the efficacy and safety of imipenem, cefepime and piperacillin/tazobactam dosing regimens against bloodstream infections caused by Klebsiella aerogenes (BSIs-Kae) and Enterobacter cloacae complex (BSIs-Ecc) in patients with various degrees of renal function. METHODS Pathogens were isolated from China's blood bacterial resistant investigation network. The dosing regimens of imipenem, cefepime and piperacillin were simulated with intermittent infusion and extended infusion. Monte Carlo simulation was performed to calculate the probability of target attainment and a cumulative fraction of response (CFR) against BSIs-Kae/Ecc. RESULTS In total, 203 BSIs-Kae, and 785 BSIs-Ecc were isolated from the surveillance network. Imipenem showed the highest in vitro activity against BSIs-Kae/Ecc, followed by cefepime (85%) and piperacillin/tazobactam (70-80%). The MIC90 values of imipenem, cefepime and piperacillin/tazobactam aginst BSIs-Kae and BSIs-Ecc were 1/1 mg/L, 16/16 mg/L, and 64/128 mg/L, respectively. The simulation results showed imipenem achieved the highest CFRs in patients with normal or decreased renal function, with values of 91-99%, followed by FEP (88-96%), without risk of excessive dosing. However, the intermittent and extended dosing regimens of piperacillin/tazobactam were unlikely to provide adequate exposure for empirical management of BSIs-Kae/Ecc (CFRs, 50-80%), regardless of renal function. Besides, the traditional intermittent piperacillin/tazobactam dosing regimens were highly likely to contribute to suboptimal therapeutic exposure when MIC was close to clinical breakpoints. CONCLUSIONS Cefepime, not piperacillin/tazobactam, can be a reasonable carbapenem-sparing option in empirically treating BSIs-Kae/Ecc.
Collapse
Affiliation(s)
- Qingyi Shi
- Department of Immunology and Rheumatology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Chen Huang
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Weizhuang Chen
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Shibo Wu
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongcheng Wu
- Department of Respiratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China..
| |
Collapse
|
45
|
Marino A, Stracquadanio S, Campanella E, Munafò A, Gussio M, Ceccarelli M, Bernardini R, Nunnari G, Cacopardo B. Intravenous Fosfomycin: A Potential Good Partner for Cefiderocol. Clinical Experience and Considerations. Antibiotics (Basel) 2022; 12:antibiotics12010049. [PMID: 36671250 PMCID: PMC9854867 DOI: 10.3390/antibiotics12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Multidrug resistant Gram-negative bacteremia represents a therapeutic challenge clinicians have to deal with. This concern becomes more difficult when causing germs are represented by carbapenem resistant Acinetobacter baumannii or difficult-to-treat Pseudomonas aeruginosa. Few antibiotics are available against these cumbersome bacteria, although literature data are not conclusive, especially for Acinetobacter. Cefiderocol could represent a valid antibiotic choice, being a molecule with an innovative mechanism of action capable of overcoming common resistance pathways, whereas intravenous fosfomycin may be an appropriate partner either enhancing cefiderocol activity or avoiding resistance development. Here we report two patients with MDR Gram negative bacteremia who were successfully treated with a cefiderocol/fosfomycin combination.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Edoardo Campanella
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Antonio Munafò
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Maria Gussio
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Manuela Ceccarelli
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
46
|
Burillo A, Bouza E. Controversies over the management of infections caused by Amp-C- and ESBL-producing Enterobacterales : what questions remain for future studies? Curr Opin Infect Dis 2022; 35:575-582. [PMID: 35942862 DOI: 10.1097/qco.0000000000000863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The continuous rise in infections caused by third-generation cephalosporin-resistant Enterobacterales (e.g. extended-spectrum beta-lactamase- or AmpC-producing Enterobacterales ) is a major health concern. Carbapenems are regarded as the antibiotics of choice for the treatment of these infections. However, their indiscriminant use is not without consequences, and has contributed to the emergence of carbapenem-resistant Enterobacterales .In this review, we discuss the available evidence supporting the use of other betalactams, nonbetalactams and the new betalactams/beta-lactamase inhibitors (BLA/BLI) to treat these infections. We also analyze unresolved issues in this field. RECENT FINDINGS Piperacillin tazobactam (PTZ) was classically recommended as a carbapenem-sparing agent. However, data have emerged against its use and it is now a controversial recommendation. IDSA, European and British guidelines reject the empirical use of PTZ for these pathogens, reserving its use for rare clinical situations.Other issues that continue to generate debate are the use of extended infusion (3 h) PTZ, the use of older antibiotics, a shortened course of carbapenems and reserving the new BLA/BLI for these infections. SUMMARY New treatment strategies should be based on clinical evidence, local epidemiology and the microbiological activity of these drugs.
Collapse
Affiliation(s)
- Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón.,Medicine Department, School of Medicine, Universidad Complutense de Madrid.,Instituto de Investigación Sanitaria Gregorio Marañón
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón.,Medicine Department, School of Medicine, Universidad Complutense de Madrid.,Instituto de Investigación Sanitaria Gregorio Marañón.,CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| |
Collapse
|
47
|
Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens 2022; 11:pathogens11121441. [PMID: 36558775 PMCID: PMC9786176 DOI: 10.3390/pathogens11121441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Multidrug resistance of bacteria has prompted intensive development work on new medicines, but also the search for effective options among the oldest antibiotics. Although intravenous fosfomycin (IVFOS) seems to be an interesting proposal, the recommended agar dilution method for susceptibility determination poses a major problem in routine diagnostic testing. As a consequence, there is a lack of comprehensive data on the frequency of isolation of susceptible or resistant strains. This fact triggered the disposition of EUCAST concerning the revision of IVFOS breakpoints (BPs), including withdrawal of BPs for Enterobacterales (excluding E. coli) and coagulase-negative staphylococci. Therefore, the aim of this study was to assess the activity of fosfomycin against numerous clinical strains using recommended methods. Materials and methods: A total of 997 bacterial strains were tested from the following genera: Enterobacterales, Pseudomonas spp., Staphylococcus spp., Acinetobacter spp., and Enterococcus spp., for which there are currently no BPs. The strains were isolated from various clinical materials from patients hospitalized in five hospitals. During the investigation, the recommended agar dilution method was used. Susceptibility to other antibiotics and resistance mechanisms were determined using an automatic method (Phoenix) the disk diffusion method, and E-tests. MIC values of fosfomycin were estimated for all strains and for susceptible and multidrug-resistant (MDR) strains individually. Results: Except for Acinetobacter and Enterococcus, 83% of the strains were susceptible to IVFOS, including the largest percentage of S. aureus and E. coli. Klebsiella spp. turned out to be the least susceptible strains (66%). The highest proportion of susceptibility to fosfomycin was found among strains that were sensitive to other antibiotics (80.9%), and the lowest was found among Gram-negative carbapenemase-producing bacteria (55.6%) and ESBL+ bacteria (61.6%). The MIC evaluation revealed the lowest MIC50 and MIC90 values for S. aureus (0.5 mg/L and 1 mg/L, respectively) and E. coli (4 mg/L and 32 mg/L, respectively). The highest values of MIC50 were found for Acinetobacter spp. (256 mg/L), while the highest values of MIC90 were found for Acinetobacter spp. and Klebsiella spp. (256 mg/L and 512 mg/L, respectively). Conclusions: IVFOS appears to be suitable for the treatment of many infections, including the empirical treatment of polymicrobial infections and those caused by MDR strains, since the sensitivity of the studied strains to this antibiotic in different groups ranged from 66% to as much as 99%. Sensitivity to fosfomycin was also demonstrated by 60% of carbapenem-resistant strains; therefore, IVFOS is one of the few therapeutic options that can be effective against the most resistant Gram-negative rods. In light of the general consultation posted by EUCAST, obtaining data such as IVFOS MIC value distributions may be vital for the decision of implementing fosfomycin into breakpoint tables.
Collapse
|
48
|
Alfieri A, Di Franco S, Donatiello V, Maffei V, Fittipaldi C, Fiore M, Coppolino F, Sansone P, Pace MC, Passavanti MB. Plazomicin against Multidrug-Resistant Bacteria: A Scoping Review. Life (Basel) 2022; 12:1949. [PMID: 36556314 PMCID: PMC9784334 DOI: 10.3390/life12121949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Plazomicin is a next-generation semisynthetic aminoglycoside antibiotic that can be used to treat infections by multi-resistant bacteria. It is effective against many bacteria-producing carbapenemases or other specific hydrolases. This scoping review aims to define the role acquired by plazomicin from its approval by the FDA (US Food and Drug Administration) in 2018 to the present day. Furthermore, we aim to provide a base for a future meta-analysis. This project was conducted following the recommendations presented in the PRISMA extension for scoping reviews and the JBI Manual for Evidence Synthesis. Among 901 potentially engaging citations, 345 duplicates were removed, and only 81 articles were selected for the analysis. According to the data analysis, plazomicin has been used to treat urinary tract infections, bloodstream infections, and ventilation-associated pneumonia. The pathogens killed included multi-resistant E. coli, K. pneumoniae, A. baumannii, P. aeruginosa, and S. aureus. Plazomicin can be a manageable, valid non-beta-lactam alternative for treating multi-resistant bacteria infections.
Collapse
Affiliation(s)
- Aniello Alfieri
- Department of Elective Surgery, Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Viale Antonio Cardarelli 9, 80131 Naples, Italy
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Valerio Donatiello
- Department of Elective Surgery, Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Viale Antonio Cardarelli 9, 80131 Naples, Italy
| | - Vincenzo Maffei
- Department of Elective Surgery, Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Viale Antonio Cardarelli 9, 80131 Naples, Italy
| | - Ciro Fittipaldi
- Unit of Critical Care, Hospital “Ospedale Pellegrini”, Via Portamedina alla Pignasecca 41, 80134 Naples, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Francesco Coppolino
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
49
|
González-Villarreal JA, González-Lozano KJ, Aréchiga-Carvajal ET, Morlett-Chávez JA, Luévanos-Escareño MP, Balagurusamy N, Salinas-Santander MA. Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Exp Ther Med 2022; 24:753. [PMID: 36561977 PMCID: PMC9748766 DOI: 10.3892/etm.2022.11689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation.
Collapse
Affiliation(s)
| | - Katia Jamileth González-Lozano
- Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico
| | - Jesús Antonio Morlett-Chávez
- Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico
| | | | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón, Coahuila 27275, Mexico
| | - Mauricio Andrés Salinas-Santander
- Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico,Correspondence to: Dr Mauricio Andrés Salinas-Santander, Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Calle Francisco Murguía Sur 205, Zona Centro, Saltillo, Coahuila 25000, Mexico
| |
Collapse
|
50
|
Mackay B, Parcell BJ, Shirran SL, Coote PJ. Carbapenem-Only Combination Therapy against Multi-Drug Resistant Pseudomonas aeruginosa: Assessment of In Vitro and In Vivo Efficacy and Mode of Action. Antibiotics (Basel) 2022; 11:1467. [PMID: 36358122 PMCID: PMC9686798 DOI: 10.3390/antibiotics11111467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 04/28/2024] Open
Abstract
The aim of the study was to determine the efficacy of carbapenem-only combination treatments derived from four approved drugs (meropenem, doripenem, ertapenem and imipenem) against a MDR strain of P. aeruginosa in a Galleria mellonella larvae infection model. G. mellonella larvae were infected with P. aeruginosa NCTC 13437 (carrying the VIM 10 carbapenamase) and the efficacy of the six possible dual, four triple, and one quadruple carbapenem combination(s) were compared to their constituent monotherapies. Four of these combinations showed significantly enhanced survival compared to monotherapies and reduced the bacterial burden inside infected larvae but without complete elimination. Bacteria that survived combination therapy were slower growing, less virulent but with unchanged carbapenem MICs-observations that are consistent with a persister phenotype. In vitro time-kill assays confirmed that the combinations were bactericidal and confirmed that a low number of bacteria survived exposure. Mass spectrometry was used to quantify changes in the concentration of carbapenems in the presence of carbapenemase-carrying P. aeruginosa. The rate of degradation of individual carbapenems was altered, and often significantly reduced, when the drugs were in combinations compared with the drugs alone. These differences may account for the enhanced inhibitory effects of the combinations against carbapenem-resistant P. aeruginosa and are consistent with a 'shielding' hypothesis. In conclusion, carbapenem combinations show promise in combating MDR P. aeruginosa and are worthy of additional study and development.
Collapse
Affiliation(s)
- Brendan Mackay
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Benjamin J. Parcell
- NHS Tayside, Medical Microbiology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Peter J. Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|