1
|
Condamine B, Morel-Journel T, Tesson F, Royer G, Magnan M, Bernheim A, Denamur E, Blanquart F, Clermont O. Strain phylogroup and environmental constraints shape Escherichia coli dynamics and diversity over a 20-year human gut time series. THE ISME JOURNAL 2025; 19:wrae245. [PMID: 39665373 PMCID: PMC11728103 DOI: 10.1093/ismejo/wrae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Escherichia coli is an increasingly antibiotic-resistant opportunistic pathogen. Few data are available on its ecological and evolutionary dynamics in its primary commensal niche, the vertebrate gut. Using Illumina and/or Nanopore technologies, we sequenced whole genomes of 210 E. coli isolates from 22 stools sampled during a 20-year period from a healthy man (ED) living in Paris, France. All phylogroups, except C, were represented, with a predominance of B2 (34.3%), followed by A and F (19% each) phylogroups. Thirty-five clones were identified based on their haplogroup and pairwise genomic single nucleotide polymorphism distance and classified in three phenotypes according to their abundance and residence time: 25 sub-dominant/transient (52 isolates), five dominant/transient (48 isolates) and five dominant/resident (110 isolates). Four over five dominant/resident clones belonged to B2 and closely related F phylogroups, whereas sub-dominant/transient clones belonged mainly to B1, A and D phylogroups. The long residence times of B2 clones seemed to be counterbalanced by lower colonization abilities. Clones with larger within-host frequency persisted for longer. By comparing ED strain genomes to a collection of commensal E. coli genomes from 359 French individuals, we identified ED-specific genomic properties including an enrichment in genes involved in a metabolic pathway (mhp cluster) and the presence of a very rare antiviral defense island. The E. coli colonization within the gut microbiota was shaped by both the intrinsic properties of the strain lineages, in particular longer residence of phylogroup B2, and the environmental constraints such as diet or phages.
Collapse
Affiliation(s)
| | - Thibaut Morel-Journel
- Université Paris Cité, INSERM, IAME, Paris 75018, France
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny 93000, France
| | - Florian Tesson
- Université Paris Cité, INSERM, IAME, Paris 75018, France
- Institut Pasteur, Université Paris Cité, INSERM, Molecular Diversity of Microbes Lab, Paris 75015, France
| | - Guilhem Royer
- Université Paris Cité, INSERM, IAME, Paris 75018, France
- Unité de Bactériologie, Département de Prévention, Diagnostic et Traitement des Infections, AP-HP, Hôpital Henri Mondor, Créteil 94000, France
- EA 7380 Dynamyc, EnvA, UPEC, University of Paris-Est, Créteil 94000, France
| | - Mélanie Magnan
- Université Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, Paris 75014, France
| | - Aude Bernheim
- Institut Pasteur, Université Paris Cité, INSERM, Molecular Diversity of Microbes Lab, Paris 75015, France
| | - Erick Denamur
- Université Paris Cité, INSERM, IAME, Paris 75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris 75018, France
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris 75005, France
| | | |
Collapse
|
2
|
Marin J, Walewski V, Braun T, Dziri S, Magnan M, Denamur E, Carbonnelle E, Bridier-Nahmias A. Genomic evidence of Escherichia coli gut population diversity translocation in leukemia patients. mSphere 2024; 9:e0053024. [PMID: 39365076 PMCID: PMC11520291 DOI: 10.1128/msphere.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.
Collapse
Affiliation(s)
- Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Violaine Walewski
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Thorsten Braun
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Mélanie Magnan
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Erick Denamur
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Etienne Carbonnelle
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Antoine Bridier-Nahmias
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| |
Collapse
|
3
|
Allain M, Morel-Journel T, Condamine B, Gibeaux B, Gachet B, Gschwind R, Denamur E, Landraud L. IncC plasmid genome rearrangements influence the vertical and horizontal transmission tradeoff in Escherichia coli. Antimicrob Agents Chemother 2024; 68:e0055424. [PMID: 39194203 PMCID: PMC11459957 DOI: 10.1128/aac.00554-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
It has been shown that an evolutionary tradeoff between vertical (host growth rate) and horizontal (plasmid conjugation) transmissions contributes to global plasmid fitness. As conjugative IncC plasmids are important for the spread of multidrug resistance (MDR), in a broad range of bacterial hosts, we investigated vertical and horizontal transmissions of two multidrug-resistant IncC plasmids according to their backbones and MDR-region rearrangements, upon plasmid entry into a new host. We observed plasmid genome deletions after conjugation in three diverse natural Escherichia coli clinical strains, varying from null to high number depending on the plasmid, all occurring in the MDR region. The plasmid burden on bacterial fitness depended more on the strain background than on the structure of the MDR region, with deletions appearing to have no impact. Besides, we observed an increase in plasmid transfer rate, from ancestral host to new clinical recipient strains, when the IncC plasmid was rearranged. Finally, using a second set of conjugation experiments, we investigated the evolutionary tradeoff of the IncC plasmid during the critical period of plasmid establishment in E. coli K-12, by correlating the transfer rates of deleted or non-deleted IncC plasmids and their costs on the recipient strain. Plasmid deletions strongly improved conjugation efficiency with no negative growth effect. Our findings indicate that the flexibility of the MDR-region of the IncC plasmids can promote their dissemination, and provide diverse opportunities to capture new resistance genes. In a broader view, they suggest that the vertical-horizontal transmission tradeoff can be manipulated by the plasmid to improve its fitness.
Collapse
Affiliation(s)
- Margaux Allain
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Thibaut Morel-Journel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Bénédicte Condamine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Benoist Gibeaux
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Benoit Gachet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Rémi Gschwind
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Erick Denamur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Luce Landraud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| |
Collapse
|
4
|
Butters A, Jovel J, Gow S, Liljebjelke K, Waldner C, Checkley SL. PmrB Y358N, E123D amino acid substitutions are not associated with colistin resistance but with phylogeny in Escherichia coli. Microbiol Spectr 2024; 12:e0053224. [PMID: 39162501 PMCID: PMC11451601 DOI: 10.1128/spectrum.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Colistin resistance in Escherichia coli is of public health significance for its use to treat multidrug-resistant Gram-negative infections. Amino acid variations in PmrB have been implicated in colistin resistance in E. coli. In this cross-sectional study, 288 generic E. coli isolates from surveillance of broiler chicken and feedlot cattle feces, retail meat, wastewater, and well water were whole-genome sequenced. Phylogroup designation and screening for two amino acid substitutions in PmrB putatively linked to colistin resistance (Y358N, E123D) were performed in silico. Three additional data sets of publicly available E. coli assemblies were similarly scrutinized: (i) E. coli isolates from studies identifying the Y358N or E123D substitutions, (ii) colistin-susceptible E. coli isolates reported in the literature, and (iii) a random sampling of 14,700 E. coli assemblies available in the National Center for Biotechnology Information public database. Within all data sets, ≥95% of phylogroup B1 and C isolates have the PmrB Y358N variation. The PmrB E123D amino acid substitution was only identified in phylogroup B2 isolates, of which 94%-100% demonstrate the substitution. Both PmrB amino acid variations were infrequent in other phylogroups. Among published colistin susceptible isolates, colistin minimum inhibitory concentrations (MICs) were not higher in isolates bearing the E123D and Y358N amino acid variations than in isolates without these PmrB substitutions. The E123D and Y358N PmrB amino acid substitutions in E. coli appear strongly associated with phylogroup. The previously observed associations between Y358N and E123D amino acid substitutions in PmrB and colistin resistance in E. coli may be spurious. IMPORTANCE Colistin is a critical last-resort treatment for extensively drug-resistant Gram-negative infections in humans. Therefore, accurate identification of the genetic mechanisms of resistance to this antimicrobial is crucial to effectively monitor and mitigate the spread of resistance. Examining over 16,000 whole-genome sequenced Escherichia coli isolates, this study identifies that PmrB E123D and Y358N amino acid substitutions previously associated with colistin resistance in E. coli are strongly associated with phylogroup and are alone not sufficient to confer a colistin-resistant phenotype. This is a critical clarification, as both substitutions are identified as putative mechanisms of colistin resistance in many publications and a common bioinformatic tool. Given the potential spurious nature of initial associations of these substitutions with colistin resistance, this study's findings emphasize the importance of appropriate experimental design and consideration of relevant biological factors such as phylogroup when ascribing causal mechanisms of resistance to chromosomal variations.
Collapse
Affiliation(s)
- Alyssa Butters
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Juan Jovel
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
| | - Sheryl Gow
- Canadian Integrated
Program for Antimicrobial Resistance Surveillance/FoodNet, Public Health
Agency of Canada, Ottawa,
Ontario, Canada
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Karen Liljebjelke
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Cheryl Waldner
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Sylvia L. Checkley
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| |
Collapse
|
5
|
Hide M, Meng S, Cheng S, Bañuls AL, Ky S, Yay C, Laurent D, Delvallez G. Colistin resistance in ESBL- and Carbapenemase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Cambodia. J Glob Antimicrob Resist 2024; 38:236-244. [PMID: 39004342 DOI: 10.1016/j.jgar.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES Despite the critical importance of colistin as a last-resort antibiotic, limited studies have investigated colistin resistance in human infections in Cambodia. This study aimed to investigate the colistin resistance and its molecular determinants among Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing (CP) Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) isolated in Cambodia between 2016 and 2020. METHODS E. coli (n = 223) and K. pneumoniae (n = 39) were tested for colistin minimum inhibitory concentration (MIC) by broth microdilution. Resistant isolates were subjected to polymerase chain reaction (PCR) for detection of mobile colistin resistance genes (mcr) and chromosomal mutations in the two-component system (TCS). RESULTS Eighteen isolates (10 K. pneumoniae and 8 E. coli) revealed colistin resistance with a rate of 5.9% in E. coli and 34.8% in K. pneumoniae among ESBL isolates, and 1% in E. coli and 12.5% in K. pneumoniae among CP isolates. The resistance was associated with mcr variants (13/18 isolates, mcr-1, mcr-3, and mcr-8.2) and TCS mutations within E. coli and K. pneumoniae, with the first detection of mcr-8.2 in Cambodia, the discovery of new mutations potentially associated to colistin resistance in the TCS of E. coli (PhoP I47V, PhoQ N352K, PmrB G19R, and PmrD G85R) and the co-occurrence of mcr genes and colistin resistance conferring TCS mutations in 11 of 18 isolates. CONCLUSIONS The findings highlight the presence of colistin resistance in ESBL- and CP- Enterobacteriaceae involved in human infections in Cambodia as well as chromosomal mutations in TCS and the emergence of mcr-8.2 in E. coli and K. pneumoniae. It underscores the need for continuous surveillance, antimicrobial stewardship, and control measures to mitigate the spread of colistin resistance.
Collapse
Affiliation(s)
- Mallorie Hide
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Soda Meng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokleaph Cheng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Anne-Laure Bañuls
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Santy Ky
- Kantha Bopha Hospital, Phnom Penh, Cambodia
| | | | - Denis Laurent
- Kantha Bopha Hospital, Phnom Penh, Cambodia; Jayavarman VII Hospital, Siem Reap, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
6
|
Alsahlani F, Haeili M. Genetic Alterations Associated with Colistin Resistance Development in Escherichia coli. Microb Drug Resist 2024; 30:325-331. [PMID: 38905152 DOI: 10.1089/mdr.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Background: The increased incidence of infections due to multidrug-resistant Gram-negative bacteria has led to the renewed interest in the use of 'forgotten' antibiotics such as colistin. In this work, we studied the chromosomal colistin resistance mechanisms among laboratory-induced colistin-resistant Escherichia coli isolates. Methods: Three colistin-susceptible (ColS) clinical isolates of E. coli assigning to ST131, ST405, and ST361 were exposed to successively increasing concentrations of colistin. The nucleotide sequences of pmrA, pmrB, pmrD, phoP, phoQ, and mgrB genes were determined. The fitness burden associated with colistin resistance acquisition was determined by measuring the in vitro growth rate. Results: Colistin resistance induction resulted in 16-64 times increase in colistin MICs in mutants (n = 8) compared with parental isolates. Analysis of chromosomal genes in colistin-resistant mutants compared with those of ColS ancestors revealed genetic alterations confined to PmrAB two-component system and included PmrA G53R/R81S/L105P and PmrB E121K/E121A/A159P/A159V/G302E changes. The PmrB E121 was found as a critical position for colistin resistance development being altered in three mutants with different ancestors. The acquired colistin-resistance phenotype was stable following 10 consecutive passages in the absence of selective pressure of colistin and it did not alter the susceptibility of mutants to other antimicrobial agents. All mutants exhibited growth rates similar to their respective ColS ancestors, except for one isolate, which revealed a significant growth defect. Conclusion: Our results revealed that colistin resistance in E. coli was more related to PmrAB alterations, which did not impose a fitness cost in most cases.
Collapse
Affiliation(s)
- Fatemeh Alsahlani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Sokal A, Royer G, Esposito-Farese M, Clermont O, Condamine B, Laouénan C, Lefort A, Denamur E, de Lastours V. Clinical and Bacteriological Specificities of Escherichia coli Bloodstream Infections From Biliary Portal of Entries. J Infect Dis 2024; 229:1679-1687. [PMID: 38214565 DOI: 10.1093/infdis/jiad586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Escherichia coli is frequently responsible for bloodstream infections (BSIs). Among digestive BSIs, biliary infections appear to be less severe. Respective roles of host factors, bacterial determinants (phylogroups, virulence, and antibiotic resistance), and portal of entry on outcome are unknown. METHODS Clinical characteristics and prognosis of 770 episodes of E coli BSI were analyzed and isolates sequenced (Illumina technology) comparing phylogroups, multilocus sequence type, virulence, and resistance gene content. BSI isolates were compared with 362 commensal E coli from healthy subjects. RESULTS Among 770 episodes, 135 were biliary, 156 nonbiliary digestive, and 479 urinary. Compared to urinary infections, BSIs of digestive origin occurred significantly more in men, comorbid, and immunocompromised patients. Digestive portal of entry was significantly associated with septic shock and death. Among digestive infections, patients with biliary infections were less likely to die (P = .032), despite comparable initial severity. Biliary E coli resembled commensals (phylogroup distribution, sequence type, and few virulence-associated genes) whereas nonbiliary digestive and urinary strains carried many virulence-associated genes. CONCLUSIONS Escherichia coli strains responsible for biliary infections exhibit commensal characteristics and are associated with lower mortality rates, despite similar initial severity, than other digestive BSIs. Biliary drainage in addition to antibiotics in the management of biliary infections may explain improved outcome.
Collapse
Affiliation(s)
- Aurélien Sokal
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
| | - Guilhem Royer
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil
- Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Institut Pasteur, Unité mixte de recherche Centre National de la recherche Scientifique 6047, Université Paris Cité, Paris
| | | | - Olivier Clermont
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Bénédicte Condamine
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Cedric Laouénan
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Département d'épidémiologie, biostatistiques et recherche clinique
| | - Agnès Lefort
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Erick Denamur
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | - Victoire de Lastours
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| |
Collapse
|
8
|
Allain M, Mahérault AC, Gachet B, Martinez C, Condamine B, Magnan M, Kempf I, Denamur E, Landraud L. Dissemination of IncI plasmid encoding bla CTX-M-1 is not hampered by its fitness cost in the pig's gut. Antimicrob Agents Chemother 2023; 67:e0011123. [PMID: 37702541 PMCID: PMC10583664 DOI: 10.1128/aac.00111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/01/2023] [Indexed: 09/14/2023] Open
Abstract
Multiresistance plasmids belonging to the IncI incompatibility group have become one of the most pervasive plasmid types in extended-spectrum beta-lactamase-producing Escherichia coli of animal origin. The extent of the burden imposed on the bacterial cell by these plasmids seems to modulate the emergence of "epidemic" plasmids. However, in vivo data in the natural environment of the strains are scarce. Here, we investigated the cost of a bla CTX-M-1-IncI1 epidemic plasmid in a commensal E. coli animal strain, UB12-RC, before and after oral inoculation of 15 6- to 8-week- old specific-pathogen-free pigs. Growth rate in rich medium was determined on (i) UB12-RC and derivatives, with or without plasmid, in vivo and/or in vitro evolved, and (ii) strains that acquired the plasmid in the gut during the experiment. Although bla CTX-M-1-IncI1 plasmid imposed no measurable burden on the recipient strain after conjugation and during the longitudinal carriage in the pig's gut, we observed a significant difference in the bacterial growth rate between IncI1 plasmid-carrying and plasmid-free isolates collected during in vivo carriage. Only a few mutations on the chromosome of the UB12-RC derivatives were detected by whole-genome sequencing. RNA-Seq analysis of a selected set of these strains showed that transcriptional responses to the bla CTX-M-1-IncI1 acquisition were limited, affecting metabolism, stress response, and motility functions. Our data suggest that the effect of IncI plasmid on host cells is limited, fitness cost being insufficient to act as a barrier to IncI plasmid spread among natural population of E. coli in the gut niche.
Collapse
Affiliation(s)
- Margaux Allain
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Anne Claire Mahérault
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Benoit Gachet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Caroline Martinez
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Bénédicte Condamine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Mélanie Magnan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Erick Denamur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Luce Landraud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| |
Collapse
|
9
|
Aubry R, Buyck J, Prouvensier L, Decousser JW, Nordmann P, Wicha SG, Marchand S, Grégoire N. An improved PKPD modeling approach to characterize the pharmacodynamic interaction over time between ceftazidime/avibactam and colistin from in vitro time-kill experiments against multidrug-resistant Klebsiella pneumoniae isolates. Antimicrob Agents Chemother 2023; 67:e0030123. [PMID: 37681977 PMCID: PMC10583682 DOI: 10.1128/aac.00301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023] Open
Abstract
In contrast to the checkerboard method, bactericidal experiments [time-kill curves (TKCs)] allow an assessment of pharmacodynamic (PD) interactions over time. However, TKCs in combination pose interpretation problems. The objective of this study was to characterize the PD interaction over time between ceftazidime/avibactam (CZA) and colistin (CST) using TKC against four multidrug-resistant Klebsiella pneumoniae susceptible to both antibiotics and expressing a widespread carbapenemase determinant KPC-3. In vitro TKCs were performed and analyzed using pharmacokinetic/pharmacodynamic (PKPD) modeling. The general pharmacodynamic interaction model was used to characterize PD interactions between drugs. The 95% confidence intervals (95%CIs) of the expected additivity and of the observed interaction were built using parametric bootstraps and compared to evaluate the in vitro PD interaction over time. Further simulations were conducted to investigate the effect of the combination at varying concentrations typically observed in patients. Regrowth was observed in TKCs at high concentrations of drugs alone [from 4 to 32× minimum inhibitory concentrations (MIC)], while the combination systematically prevented the regrowth at concentrations close to the MIC. Significant synergy or antagonism were observed under specific conditions but overall 95%CIs overlapped widely over time indicating an additive interaction between antibiotics. Moreover, simulations of typical PK profile at standard dosages indicated that the interaction should be additive in clinical conditions. The nature of the PD interaction varied with time and concentration in TKC. Against the four K. pneumoniae isolates, the bactericidal effect of CZA + CST combination was predicted to be additive and to prevent the emergence of resistance at clinical concentrations.
Collapse
Affiliation(s)
- Romain Aubry
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France
| | - Julien Buyck
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France
| | - Laure Prouvensier
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France
- Laboratoire de Toxicologie-Pharmacologie, CHU de Poitiers, Poitiers, France
| | - Jean-Winoc Decousser
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
- Faculté de Médecine de Créteil, Ecole nationale vétérinaire d'Alfort (EnvA), EA 7380 Dynamyc Université Paris - Est Créteil (UPEC), Créteil, France
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Sandrine Marchand
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France
- Laboratoire de Toxicologie-Pharmacologie, CHU de Poitiers, Poitiers, France
| | - Nicolas Grégoire
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France
- Laboratoire de Toxicologie-Pharmacologie, CHU de Poitiers, Poitiers, France
| |
Collapse
|
10
|
Kroemer N, Martens M, Decousser JW, Grégoire N, Nordmann P, Wicha SG. Evaluation of in vitro pharmacodynamic drug interactions of ceftazidime/avibactam and fosfomycin in Escherichia coli. J Antimicrob Chemother 2023; 78:2524-2534. [PMID: 37624929 DOI: 10.1093/jac/dkad264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Combination therapy can increase efficacy of antibiotics and prevent emergence of resistance. Ceftazidime/avibactam and fosfomycin may be empirically combined for this purpose, but a systematic and quantitative evaluation of this combination is needed. OBJECTIVES In this study, a systematic analysis of the pharmacodynamic interactions of ceftazidime/avibactam and fosfomycin in clinical and isogenic Escherichia coli strains carrying genes coding for several carbapenemases or ESBLs was performed and pharmacodynamic interactions were quantified by modelling and simulations. METHODS Pharmacodynamic interactions were evaluated in 'dynamic' chequerboard experiments with quantification of viable bacteria in eight isogenic and six clinical E. coli strains. Additionally, supplemental time-kill experiments were performed and genomic analyses were conducted on representative fosfomycin-resistant subpopulations. Models were fitted to all data using R and NONMEM®. RESULTS Synergistic drug interactions were identified for 67% of the clinical and 75% of the isogenic isolates with a mean EC50 reduction of >50%. Time-kill experiments confirmed the interactions and modelling quantified EC50 reductions up to 97% in combination and synergy prevented regrowth of bacteria by enhanced killing effects. In 9 out of 12 fosfomycin-resistant mutants, genomic analyses identified previously reported mutations. CONCLUSIONS The broad synergistic in vitro activity of ceftazidime/avibactam and fosfomycin confirms the potential of the application of this drug combination in clinics. The substantial reduction of the EC50 in combination may allow use of lower doses or treatment of organisms with higher MIC values and encourage further research translating these findings into the clinical setting.
Collapse
Affiliation(s)
- Niklas Kroemer
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Miklas Martens
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Jean-Winoc Decousser
- Dynamic Team-EA 7380, Faculté de santé, Université Paris-Est-Créteil Val-De-Marne, Créteil, France
| | - Nicolas Grégoire
- Inserm U1070, Pharmacologie des Anti-infectieux et Antibiorésistance, Poitiers, France
- Université de Poitiers, UFR de Médecine Pharmacie, Poitiers, France
- CHU de Poitiers, Laboratoire de Toxicologie-Pharmacologie, Poitiers, France
| | - Patrice Nordmann
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Jacquier H, Assao B, Chau F, Guindo O, Condamine B, Magnan M, Bridier-Nahmias A, Sayingoza-Makombe N, Moumouni A, Page AL, Langendorf C, Coldiron ME, Denamur E, de Lastours V. Faecal carriage of extended-spectrum β-lactamase-producing Escherichia coli in a remote region of Niger. J Infect 2023; 87:199-209. [PMID: 37369264 DOI: 10.1016/j.jinf.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Whole genome sequencing (WGS) of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-E. coli) in developing countries is lacking. Here we describe the population structure and molecular characteristics of ESBL-E. coli faecal isolates in rural Southern Niger. METHODS Stools of 383 healthy participants were collected among which 92.4% were ESBL-Enterobacterales carriers. A subset of 90 ESBL-E. coli containing stools (109 ESBL-E. coli isolates) were further analysed by WGS, using short- and long-reads. RESULTS Most isolates belonged to the commensalism-adapted phylogroup A (83.5%), with high clonal diversity. The blaCTX-M-15 gene was the major ESBL determinant (98.1%), chromosome-integrated in approximately 50% of cases, in multiple integration sites. When plasmid-borne, blaCTX-M-15 was found in IncF (57.4%) and IncY plasmids (26.2%). Closely related plasmids were found in different genetic backgrounds. Genomic environment analysis of blaCTX-M-15 in closely related strains argued for mobilisation between plasmids or from plasmid to chromosome. CONCLUSIONS Massive prevalence of community faecal carriage of CTX-M-15-producing E. coli was observed in a rural region of Niger due to the spread of highly diverse A phylogroup commensalism-adapted clones, with frequent chromosomal integration of blaCTX-M-15. Plasmid spread was also observed. These data suggest a risk of sustainable implementation of ESBL in community faecal carriage.
Collapse
Affiliation(s)
- Hervé Jacquier
- Université Paris Cité, IAME UMR 1137, INSERM, 75018 Paris, France; Assistance Publique - Hôpitaux de Paris, Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, 94000 Créteil, France.
| | - Bachir Assao
- Epicentre, Médecins Sans Frontières, Maradi, Niger
| | - Françoise Chau
- Université Paris Cité, IAME UMR 1137, INSERM, 75018 Paris, France
| | | | | | - Mélanie Magnan
- Université Paris Cité, IAME UMR 1137, INSERM, 75018 Paris, France
| | | | | | | | | | | | | | - Erick Denamur
- Université Paris Cité, IAME UMR 1137, INSERM, 75018 Paris, France; Assistance Publique - Hôpitaux de Paris, Laboratoire de Génétique Moléculaire, Hôpital Universitaire Bichat, 75018 Paris, France
| | - Victoire de Lastours
- Université Paris Cité, IAME UMR 1137, INSERM, 75018 Paris, France; Assistance Publique - Hôpitaux de Paris, Service de Médecine Interne, Hôpital Universitaire Beaujon, 92110 Clichy, France
| |
Collapse
|
12
|
Burgaya J, Marin J, Royer G, Condamine B, Gachet B, Clermont O, Jaureguy F, Burdet C, Lefort A, de Lastours V, Denamur E, Galardini M, Blanquart F. The bacterial genetic determinants of Escherichia coli capacity to cause bloodstream infections in humans. PLoS Genet 2023; 19:e1010842. [PMID: 37531401 PMCID: PMC10395866 DOI: 10.1371/journal.pgen.1010842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen causing bloodstream infections (BSI). A systematic analysis characterizing the genomic determinants of extra-intestinal pathogenic vs. commensal isolates in human populations, which could inform mechanisms of pathogenesis, diagnostic, prevention and treatment is still lacking. We used a collection of 912 BSI and 370 commensal E. coli isolates collected in France over a 17-year period (2000-2017). We compared their pangenomes, genetic backgrounds (phylogroups, STs, O groups), presence of virulence-associated genes (VAGs) and antimicrobial resistance genes, finding significant differences in all comparisons between commensal and BSI isolates. A machine learning linear model trained on all the genetic variants derived from the pangenome and controlling for population structure reveals similar differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable trait, with up to 69% of the variance explained by bacterial genetic variants. Lastly, complementing our commensal collection with an older collection from 1980, we predict that pathogenicity continuously increased through 1980, 2000, to 2010. Together our findings imply that E. coli exhibit substantial genetic variation contributing to the transition between commensalism and pathogenicity and that this species evolved towards higher pathogenicity.
Collapse
Affiliation(s)
- Judit Burgaya
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Guilhem Royer
- Université Paris Cité, INSERM, IAME, Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
- Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Institut Pasteur, UMR CNRS 6047, Université Paris-Cité, Paris, France
| | | | | | | | | | | | - Agnès Lefort
- Université Paris Cité, INSERM, IAME, Paris, France
| | | | - Erick Denamur
- Université Paris Cité, INSERM, IAME, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241 / INSERM U1050, PSL Research University, Paris, France
| |
Collapse
|
13
|
Schumann A, Cohn AR, Gaballa A, Wiedmann M. Escherichia coli B-Strains Are Intrinsically Resistant to Colistin and Not Suitable for Characterization and Identification of mcr Genes. Microbiol Spectr 2023; 11:e0089423. [PMID: 37199645 PMCID: PMC10269513 DOI: 10.1128/spectrum.00894-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Antimicrobial resistance is an increasing threat to human and animal health. Due to the rise of multi-, extensive, and pandrug resistance, last resort antibiotics, such as colistin, are extremely important in human medicine. While the distribution of colistin resistance genes can be tracked through sequencing methods, phenotypic characterization of putative antimicrobial resistance (AMR) genes is still important to confirm the phenotype conferred by different genes. While heterologous expression of AMR genes (e.g., in Escherichia coli) is a common approach, so far, no standard methods for heterologous expression and characterization of mcr genes exist. E. coli B-strains, designed for optimum protein expression, are frequently utilized. Here, we report that four E. coli B-strains are intrinsically resistant to colistin (MIC 8-16 μg/mL). The three tested B-strains that encode T7 RNA polymerase show growth defects when transformed with empty or mcr-expressing pET17b plasmids and grown in the presence of IPTG; K-12 or B-strains without T7 RNA polymerase do not show these growth defects. E. coli SHuffle T7 express carrying empty pET17b also skips wells in colistin MIC assays in the presence of IPTG. These phenotypes could explain why B-strains were erroneously reported as colistin susceptible. Analysis of existing genome data identified one nonsynonymous change in each pmrA and pmrB in all four E. coli B-strains; the E121K change in PmrB has previously been linked to intrinsic colistin resistance. We conclude that E. coli B-strains are not appropriate heterologous expression hosts for identification and characterization of mcr genes. IMPORTANCE Given the rise in multidrug, extensive drug, and pandrug resistance in bacteria and the increasing use of colistin to treat human infections, occurrence of mcr genes threatens human health, and characterization of these resistance genes becomes more important. We show that three commonly used heterologous expression strains are intrinsically resistant to colistin. This is important because these strains have previously been used to characterize and identify new mobile colistin resistance (mcr) genes. We also show that expression plasmids (i.e., pET17b) without inserts cause cell viability defects when carried by B-strains with T7 RNA polymerase and grown in the presence of IPTG. Our findings are important as they will facilitate improved selection of heterologous strains and plasmid combinations for characterizing AMR genes, which will be particularly important with a shift to Culture-independent diagnostic tests where bacterial isolates become increasingly less available for characterization.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Alexa R. Cohn
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Rondinaud E, Clermont O, Petitjean M, Ruppé E, Esposito-Farèse M, Nazimoudine A, Coignard B, Matheron S, Andremont A, Denamur E, Armand-Lefevre L. Acquisition of Enterobacterales carrying the colistin resistance gene mcr following travel to the tropics. J Travel Med 2023; 30:6851135. [PMID: 36444951 DOI: 10.1093/jtm/taac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Colistin is an antibiotic of last resort in the management of highly drug-resistant Enterobacterales infections. Travel to some destinations presents a high risk of acquiring multidrug-resistant Enterobacterales, but little data are available on the risk of acquiring colistin-resistant strains. Here, we use the VOYAG-R sample collection (2012-2013) in order to evaluate the rate of acquisition of colistin-resistant Enterobacterales, excluding species with intrinsic resistance (CRE), following travel to tropical regions. METHODS A total of 574 frozen stool samples of travellers returning from tropical regions were screened for colistin-resistant strains using ChromID Colistin R agar (bioMerieux®) after pre-enrichment culture with 1 mg/L of colistin. Genomes were obtained by Illumina sequencing and genetic determinants of colistin resistance (mutational events and mcr genes) were searched. RESULTS A total of 22 travellers (3.8%) acquired colistin-resistant Enterobacterales carrying an mcr gene. Acquisition rates varied between visited regions: 9.2% (18/195) for Asia (southeast Asia: 17/18), 2.2% (4/184) for Latin America (Peru: 4/4) and 0% from Africa (0/195). Acquired strains were predominantly Escherichia coli (92%) and carried mostly the mcr-1 variant (83%). Escherichia coli strains belonged mainly to commensal phylogroups A and B1, and were genetically highly diverse (5 non-clonal sequence type (ST)10 and 17 ST singletons). Only four non mcr colistin-resistant strains (two E. coli and two Enterobacter cloacae complex) were identified. Among all the strains, two also carried extended-spectrum beta-lactamase genes. CONCLUSIONS Travel to tropical regions, and particularly to Southeast Asia, is a risk factor for the acquisition of mcr-carrying Enterobacterales. This study highlights the community dissemination of mcr in humans as early as 2012, 4 years prior to its first published description.
Collapse
Affiliation(s)
- Emilie Rondinaud
- Bacteriology Laboratory, Bichat-Claude Bernard Hospital, AP-HP Nord-Université Paris Cité, F-75018 Paris, France
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018 Paris, France
| | - Olivier Clermont
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018 Paris, France
| | - Marie Petitjean
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018 Paris, France
| | - Etienne Ruppé
- Bacteriology Laboratory, Bichat-Claude Bernard Hospital, AP-HP Nord-Université Paris Cité, F-75018 Paris, France
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018 Paris, France
| | - Marina Esposito-Farèse
- URC HUPNVS, Paris, France; INSERM CIC 1425-EC, UMR1123, Clinical Investigation Center, Bichat-Claude Bernard Hospital, AP-HP Nord-Université Paris Cité, F-75018 Paris, France
| | - Anissa Nazimoudine
- Bacteriology Laboratory, Bichat-Claude Bernard Hospital, AP-HP Nord-Université Paris Cité, F-75018 Paris, France
| | | | | | - Sophie Matheron
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018 Paris, France
- Department of Infectious and Tropical Diseases, Bichat-Claude Bernard Hospital, AP-HP Nord-Paris Cité University, F-75018 Paris, France
| | - Antoine Andremont
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018 Paris, France
| | - Erick Denamur
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018 Paris, France
- Molecular Genetics Laboratory, Bichat-Claude Bernard Hospital, AP-HP Nord-Université Paris Cité, F-75018 Paris, France
| | - Laurence Armand-Lefevre
- Bacteriology Laboratory, Bichat-Claude Bernard Hospital, AP-HP Nord-Université Paris Cité, F-75018 Paris, France
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018 Paris, France
| |
Collapse
|
15
|
Treilles M, Châtre P, Drapeau A, Madec JY, Haenni M. Spread of the mcr-1 colistin-resistance gene in Escherichia coli through plasmid transmission and chromosomal transposition in French goats. Front Microbiol 2023; 13:1023403. [PMID: 36687643 PMCID: PMC9846274 DOI: 10.3389/fmicb.2022.1023403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Colistin-resistance widely disseminated in food-producing animals due to decades of colistin use to treat diarrhea. The plasmid-borne mcr-1 gene has been extensively reported from bovine, swine and chicken worldwide, but smaller productions such as the goat farming sector were much less surveyed. Methods We looked for colistin-resistant isolates presenting plasmid-borne genes of the mcr family in both breeding (n=80) and fattening farms (n=5). Localization of the mcr-1 gene was performed using Southern blot analysis coupled to short-read and long-read sequencing. Results Only the mcr-1 gene was identified in 10% (8/80) of the breeding farms and four over the five fattening farms. In total, 4.2% (65/1561) of the animals tested in breeding farms and 60.0% (84/140) of those tested in fattening farms presented a mcr-1-positive E. coli. The mcr-1 gene was located either on the chromosome (32.2%) or on IncX4 (38.9%) and IncHI2 (26.8%) plasmids. As expected, both clonal expansion and plasmidic transfers were observed in farms where the mcr-1 gene was carried by plasmids. Tn6330 transposition was observed in the chromosome of diverse E. coli sequence types within the same farm. Discussion Our results show that the mcr-1 gene is circulating in goat production and is located either on plasmids or on the chromosome. Evidence of Tn6330 transposition highlighted the fact that chromosomal insertion does not impair the transmission capability of the mcr-1 gene. Only strict hygiene and biosecurity procedures in breeding farms, as well as a prudent use of antibiotics in fattening farms, can avoid such complex contamination pathways.
Collapse
Affiliation(s)
- Michaël Treilles
- Laboratoire d’Analyse Qualyse, Champdeniers Saint-Denis, France,Association Régionale de Prévention contre la résistance aux Antimicrobiens, Champdeniers Saint Denis, France
| | - Pierre Châtre
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France,*Correspondence: Marisa Haenni, ✉
| |
Collapse
|
16
|
The Population Genomics of Increased Virulence and Antibiotic Resistance in Human Commensal Escherichia coli over 30 Years in France. Appl Environ Microbiol 2022; 88:e0066422. [PMID: 35862685 PMCID: PMC9361829 DOI: 10.1128/aem.00664-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli is a commensal species of the lower intestine but is also a major pathogen causing intestinal and extraintestinal infections that is increasingly prevalent and resistant to antibiotics. Most studies on genomic evolution of E. coli used isolates from infections. Here, instead, we whole-genome sequenced a collection of 403 commensal E. coli isolates from fecal samples of healthy adult volunteers in France (1980 to 2010). These isolates were distributed mainly in phylogroups A and B2 (30% each) and belonged to 152 sequence types (STs), the five most frequent being ST10 (phylogroup A; 16.3%), ST73 and ST95 (phylogroup B2; 6.3 and 5.0%, respectively), ST69 (phylogroup D; 4.2%), and ST59 (phylogroup F; 3.9%), and 224 O:H serotypes. ST and serotype diversity increased over time. The O1, O2, O6, and O25 groups used in bioconjugate O-antigen vaccine against extraintestinal infections were found in 23% of the strains of our collection. The increase in frequency of virulence-associated genes and antibiotic resistance was driven by two evolutionary mechanisms. Evolution of virulence gene frequency was driven by both clonal expansion of STs with more virulence genes ("ST-driven") and increases in gene frequency within STs independent of changes in ST frequencies ("gene-driven"). In contrast, the evolution of resistance was dominated by increases in frequency within STs ("gene-driven"). This study provides a unique picture of the phylogenomic evolution of E. coli in its human commensal habitat over 30 years and will have implications for the development of preventive strategies. IMPORTANCE Escherichia coli is an opportunistic pathogen with the greatest burden of antibiotic resistance, one of the main causes of bacterial infections and an increasing concern in an aging population. Deciphering the evolutionary dynamics of virulence and antibiotic resistance in commensal E. coli is important to understand adaptation and anticipate future changes. The gut of vertebrates is the primary habitat of E. coli and probably where selection for virulence and resistance takes place. Unfortunately, most whole-genome-sequenced strains are isolated from pathogenic conditions. Here, we whole-genome sequenced 403 E. coli commensals isolated from healthy French subjects over a 30-year period. Virulence genes increased in frequency by both clonal expansion of clones carrying them and increases in frequency within clones, whereas resistance genes increased by within-clone increased frequency. Prospective studies of E. coli commensals should be performed worldwide to have a broader picture of evolution and adaptation of this species.
Collapse
|
17
|
Marciano DC, Wang C, Hsu TK, Bourquard T, Atri B, Nehring RB, Abel NS, Bowling EA, Chen TJ, Lurie PD, Katsonis P, Rosenberg SM, Herman C, Lichtarge O. Evolutionary action of mutations reveals antimicrobial resistance genes in Escherichia coli. Nat Commun 2022; 13:3189. [PMID: 35680894 PMCID: PMC9184624 DOI: 10.1038/s41467-022-30889-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Since antibiotic development lags, we search for potential drug targets through directed evolution experiments. A challenge is that many resistance genes hide in a noisy mutational background as mutator clones emerge in the adaptive population. Here, to overcome this noise, we quantify the impact of mutations through evolutionary action (EA). After sequencing ciprofloxacin or colistin resistance strains grown under different mutational regimes, we find that an elevated sum of the evolutionary action of mutations in a gene identifies known resistance drivers. This EA integration approach also suggests new antibiotic resistance genes which are then shown to provide a fitness advantage in competition experiments. Moreover, EA integration analysis of clinical and environmental isolates of antibiotic resistant of E. coli identifies gene drivers of resistance where a standard approach fails. Together these results inform the genetic basis of de novo colistin resistance and support the robust discovery of phenotype-driving genes via the evolutionary action of genetic perturbations in fitness landscapes.
Collapse
Affiliation(s)
- David C Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teng-Kuei Hsu
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benu Atri
- Structural and Computational Biology & Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Clara Analytics Inc., 451 El Camino Real #201, Santa Clara, CA, 95050, USA
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth A Bowling
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Taylor J Chen
- Integrative Molecular & Biomedical Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pamela D Lurie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- The Verna and Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Molecular & Biomedical Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Structural and Computational Biology & Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11060659. [PMID: 35745513 PMCID: PMC9230117 DOI: 10.3390/pathogens11060659] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Antimicrobial resistance is a serious public-health problem throughout the world. Escherichia coli, the most common Gram-negative microorganism, has developed different resistance mechanisms, making treating infections difficult. Colistin is considered a last-resort drug in the treatment of infections caused by E. coli. Plasmid-mediated mobile-colistin-resistant (mcr) genes in E. coli, now disseminated globally, are considered a major public-health threat. Humans, chickens, and pigs are the main reservoirs for E. coli and the sources of antibiotic resistance. Hence, an up-to-date and precise estimate of the global prevalence of mcr resistance genes in these reservoirs is necessary to understand more precisely the worldwide spread and to more effectively implement control and prevention strategies. Methodology: Publications were identified in the PubMed database on the basis of the PRISMA guidelines. English full-text articles were selected from December 2014 to March 2021. Descriptive statistics and a meta-analysis were performed in Excel and R software, respectively. Colistin resistance was defined as the molecular-genetic detection of the mcr genes. The crude and estimated prevalence were calculated for each host and continent. The studies were divided into two groups; community-based when they involved isolates from healthy humans, chickens, or pigs, and clinical studies when they involved only hospital, outpatient, or laboratory isolates. Results: A total of 1278 studies were identified and 218 were included in this systematic review and meta-analysis, divided into community studies (159 studies) and clinical studies (59 studies). The general prevalence of mcr-mediated colistin-resistant E. coli (mcrMCRE) was 6.51% (n = 11,583/177,720), reported in 54 countries and on five continents; Asia with 119 studies followed by Europe with 61 studies registered the most articles. Asia reported the major diversity of mcr-variants (eight of nine, except mcr-2). Worldwide, chickens and pigs proved to be the principal reservoir of mcr with an estimated prevalence of 15.8% and 14.9%, respectively. Healthy humans and clinical isolates showed a lower prevalence with 7.4% and 4.2% respectively. Conclusions: In this systematic review and meta-analysis, the worldwide prevalence of mcr in E. coli isolated from healthy humans, chickens, and pigs was investigated. A wide prevalence and distribution of mcr genes was demonstrated on all continents in E. coli isolates from the selected reservoirs. Understanding the epidemiology and occurrence in the reservoirs of mcr in E. coli on different continents of the world facilitates tracing how mcr genes are transmitted and determining the infection risks for humans. This knowledge can be used to reduce the incidence of zoonotic transmission by implementing the appropriate control programs.
Collapse
|
19
|
A prospective matched case-control study on the genomic epidemiology of colistin-resistant Enterobacterales from Dutch patients. COMMUNICATIONS MEDICINE 2022; 2:55. [PMID: 35607432 PMCID: PMC9122983 DOI: 10.1038/s43856-022-00115-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract
Background
Colistin is a last-resort treatment option for infections with multidrug-resistant Gram-negative bacteria. However, colistin resistance is increasing.
Methods
A six-month prospective matched case-control study was performed in which 22 Dutch laboratories with 32 associated hospitals participated. Laboratories were invited to send a maximum of five colistin-resistant Escherichia coli or Klebsiella pneumoniae (COLR-EK) isolates and five colistin-susceptible isolates (COLS-EK) to the reference laboratory, matched for patient location, material of origin and bacterial species. Epidemiological/clinical data were collected and included in the analysis. Characteristics of COLR-EK/COLS-EK isolates were compared using logistic regression with correction for variables used for matching. Forty-six ColR-EK/ColS-EK pairs were analysed by next-generation sequencing (NGS) for whole-genome multi-locus sequence typing and identification of resistance genes, including mcr genes. To identify chromosomal mutations potentially leading to colistin resistance, NGS reads were mapped against gene sequences of pmrAB, phoPQ, mgrB and crrB.
Results
In total, 72 COLR-EK/COLS-EK pairs (75% E. coli and 25% K. pneumoniae) were included. Twenty-one percent of COLR-EK patients had received colistin, in contrast to 3% of COLS-EK patients (OR > 2.9). Of COLR-EK isolates, five contained mcr-1 and two mcr-9. One isolate lost mcr-9 after repeated sub-culturing, but retained colistin resistance. Among 46 sequenced COLR-EK isolates, genetic diversity was large and 19 (41.3%) isolates had chromosomal mutations potentially associated with colistin resistance.
Conclusions
Colistin resistance is present but uncommon in the Netherlands and caused by the mcr gene in a minority of COLR-EK isolates. There is a need for surveillance of colistin resistance using appropriate susceptibility testing methods.
Collapse
|
20
|
Reduced chlorhexidine susceptibility is associated with tetracycline resistance tet genes in clinical isolates of Escherichia coli. Antimicrob Agents Chemother 2022; 66:e0197221. [PMID: 35225650 DOI: 10.1128/aac.01972-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorhexidine is a widely used antiseptic in hospital and community healthcare. Decreased susceptibility to this compound has been recently described in Klebsiella pneumoniae and Pseudomonas aeruginosa, together with cross-resistance to colistin. Surprisingly, few data are available for Escherichia coli, the main species responsible for community and healthcare-associated infections. In order to decipher chlorhexidine resistance mechanisms in E. coli, we studied both in vitro derived and clinical isolates through whole-genome sequence analysis. Comparison of strains grown in vitro under chlorhexidine pressure identified mutations in the gene mlaA coding for a phospholipid transport system. Phenotypic analyses of single-gene mutant from the Keio collection confirmed the role of this mutation in the decreased susceptibility to chlorhexidine. However, mutations in mlaA were not found in isolates from large clinical collections. In contrast, genome wide association studies (GWAS) showed that, in clinical strains, chlorhexidine reduced susceptibility was associated with the presence of tetA genes of class B coding for efflux pumps and located in a Tn10 transposon. Construction of recombinant strains in E. coli K-12 confirmed the role of tetA determinant in acquired resistance to both chlorhexidine and tetracycline. Our results reveal two different evolutionary paths leading to chlorhexidine decreased susceptibility: one restricted to in vitro evolution conditions and involving a retrograde phospholipid transport system; the other observed in clinical isolates associated with efflux pump TetA. None of these mechanisms provides cross-resistance to colistin. This work demonstrates the GWAS power to identify new resistance mechanisms in bacterial species.
Collapse
|
21
|
Kucukyildirim S. Whole-population genomic sequencing reveals the mutational profiles of the antibiotic-treated Escherichia coli populations. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Dierikx CM, Meijs AP, Hengeveld PD, van der Klis FRM, van Vliet J, Gijsbers EF, Rozwandowicz M, van Hoek AHAM, Hendrickx APA, Hordijk J, Van Duijkeren E. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac041. [PMID: 35445193 PMCID: PMC9015910 DOI: 10.1093/jacamr/dlac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Plasmid-mediated colistin resistance can be transferred from animals to humans. We investigated the prevalence of carriage of mcr-mediated colistin-resistant Escherichia coli and Klebsiella pneumoniae (ColR-E/K) in veterinary healthcare workers and in the general population in the Netherlands. Methods Two cross-sectional population studies were performed: one among veterinary healthcare workers and one in the general population. Participants sent in a faecal sample and filled in a questionnaire. Samples were analysed using selective enrichment and culture. Mobile colistin resistance genes (mcr) were detected by PCR and ColR-E/K were sequenced using Illumina and Nanopore technologies. Results The prevalence of mcr-mediated ColR-E/K was 0.2% (1/482, 95% CI 0.04%–1.17%) among veterinary personnel and 0.8% (5/660, 95% CI 0.3%–1.8%) in the population sample. mcr-1 was found in E. coli from four persons, mcr-8 in K. pneumoniae from one person and another person carried both mcr-1 and mcr-8 in a K. pneumoniae isolate. mcr-1 was found on different plasmid types (IncX4, IncI1 and IncI2), while mcr-8 was found on IncF plasmids only. Conclusions mcr-mediated ColR-E/K resistance was uncommon in both populations. Professional contact with animals does not increase the chance of carriage of these bacteria in the Netherlands at present. mcr-8 was found for the first time in the Netherlands. Surveillance of colistin resistance and its underlying mechanisms in humans, livestock and food is important in order to identify emerging trends in time.
Collapse
Affiliation(s)
- C. M. Dierikx
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
- Corresponding author. E-mail:
| | - A. P. Meijs
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - P. D. Hengeveld
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - F. R. M. van der Klis
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - J. van Vliet
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - E. F. Gijsbers
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - M. Rozwandowicz
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - A. H. A. M. van Hoek
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - A. P. A. Hendrickx
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - J. Hordijk
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| | - E. Van Duijkeren
- National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands
| |
Collapse
|
23
|
Milenkov M, Rasoanandrasana S, Rahajamanana LV, Rakotomalala RS, Razafindrakoto CA, Rafalimanana C, Ravelomandranto E, Ravaoarisaina Z, Westeel E, Petitjean M, Mullaert J, Clermont O, Raskine L, Samison LH, Endtz H, Andremont A, Denamur E, Komurian-Pradel F, Armand-Lefevre L. Prevalence, Risk Factors, and Genetic Characterization of Extended-Spectrum Beta-Lactamase Escherichia coli Isolated From Healthy Pregnant Women in Madagascar. Front Microbiol 2021; 12:786146. [PMID: 35003019 PMCID: PMC8740230 DOI: 10.3389/fmicb.2021.786146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance is a major public health concern worldwide affecting humans, animals and the environment. However, data is lacking especially in developing countries. Thus, the World Health Organization developed a One-Health surveillance project called Tricycle focusing on the prevalence of ESBL-producing Escherichia coli in humans, animals, and the environment. Here we present the first results of the human community component of Tricycle in Madagascar. From July 2018 to April 2019, rectal swabs from 492 pregnant women from Antananarivo, Mahajanga, Ambatondrazaka, and Toamasina were tested for ESBL-E. coli carriage. Demographic, sociological and environmental risk factors were investigated, and E. coli isolates were characterized (antibiotic susceptibility, resistance and virulence genes, plasmids, and genomic diversity). ESBL-E. coli prevalence carriage in pregnant women was 34% varying from 12% (Toamasina) to 65% (Ambatondrazaka). The main risk factor associated with ESBL-E. coli carriage was the rainy season (OR = 2.9, 95% CI 1.3-5.6, p = 0.009). Whole genome sequencing was performed on 168 isolates from 144 participants. bla CTX-M-15 was the most frequent ESBL gene (86%). One isolate was resistant to carbapenems and carried the bla NDM-5 gene. Most isolates belonged to commensalism associated phylogenetic groups A, B1, and C (90%) and marginally to extra-intestinal virulence associated phylogenetic groups B2, D and F (10%). Multi locus sequence typing showed 67 different sequence types gathered in 17 clonal complexes (STc), the most frequent being STc10/phylogroup A (35%), followed distantly by the emerging STc155/phylogroup B1 (7%), STc38/phylogroup D (4%) and STc131/phylogroup B2 (3%). While a wide diversity of clones has been observed, SNP analysis revealed several genetically close isolates (n = 34/168) which suggests human-to-human transmissions. IncY plasmids were found with an unusual prevalence (23%), all carrying a bla CTX-M-15. Most of them (85%) showed substantial homology (≥85%) suggesting a dissemination of IncY ESBL plasmids in Madagascar. This large-scale study reveals a high prevalence of ESBL-E. coli among pregnant women in four cities in Madagascar associated with warmth and rainfall. It shows the great diversity of E. coli disseminating throughout the country but also transmission of specific clones and spread of plasmids. This highlights the urgent need of public-health interventions to control antibiotic resistance in the country.
Collapse
Affiliation(s)
- Milen Milenkov
- Fondation Mérieux, Lyon, France
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
| | - Saida Rasoanandrasana
- Laboratoire de Bactériologie, CHU Joseph Raseta Befelatanana, RESAMAD Network, Antananarivo, Madagascar
| | | | | | | | - Christian Rafalimanana
- Laboratoire de Bactériologie, CHU Joseph Ravoahangy Andrianavalona, RESAMAD Network, Antananarivo, Madagascar
| | - Emile Ravelomandranto
- Laboratoire de Bactériologie, CHRR Alaotra Mangoro, RESAMAD Network, Ambatondrazaka, Madagascar
| | | | | | | | - Jimmy Mullaert
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Luc Hervé Samison
- Centre d’Infectiologie Charles Mérieux, University of Antananarivo, Antananarivo, Madagascar
| | - Hubert Endtz
- Fondation Mérieux, Lyon, France
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | | | - Erick Denamur
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| | | | - Laurence Armand-Lefevre
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| |
Collapse
|
24
|
Dadashi M, Sameni F, Bostanshirin N, Yaslianifard S, Khosravi-Dehaghi N, Nasiri MJ, Goudarzi M, Hashemi A, Hajikhani B. Global Prevalence and Molecular Epidemiology of mcr-Mediated Colistin Resistance in Escherichia coli Clinical Isolates: A Systematic Review. J Glob Antimicrob Resist 2021; 29:444-461. [PMID: 34788692 DOI: 10.1016/j.jgar.2021.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIM The continuing rise in infections caused by multi-drug resistant (MDR) bacteria is one of the most serious public health issues in today's societies. Colistin is a last-resort antimicrobial medication used to treat infections caused by MDR gram-negative bacteria; therefore resistance to this antibiotic is extremely hazardous. The current study aimed to evaluate the global prevalence and distribution of colistin resistance genes among human clinical isolates of Escherichia coli (E. coli) as a systematic review. METHODS PubMed, Embase, and Web of Science databases were systematically searched. For further evaluation, all original English-language articles that demonstrated colistin resistance in E. coli clinical isolates published between 2000 and 2020 were examined. RESULTS Out of 4857 initial articles, after various stages of review and evaluation, 190 related articles were selected. More than 79 % of the publications selected in this research were published from 2014 to 2020. In Asia, Europe, America, Africa, and Oceania, the prevalence of mobilized colistin resistance (mcr) producing colistin-resistant E. coli was 66.72%, 25.48%, 5.19%, 2.27%, and 0.32 %, respectively. CONCLUSION The recent widespread spreading of E. coli strains harboring mcr conferring colistin resistance, especially in Asia and Europe, is concerning and needs more attention.
Collapse
Affiliation(s)
- Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Sameni
- Department of Microbiology, School of Medicine, Shahed University, Tehran, Iran
| | - Nazila Bostanshirin
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nafiseh Khosravi-Dehaghi
- Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran; Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
26
|
Strepis N, Voor In 't Holt AF, Vos MC, Zandijk WHA, Heikema AP, Hays JP, Severin JA, Klaassen CHW. Genetic Analysis of mcr-1-Carrying Plasmids From Gram-Negative Bacteria in a Dutch Tertiary Care Hospital: Evidence for Intrapatient and Interspecies Transmission Events. Front Microbiol 2021; 12:727435. [PMID: 34552574 PMCID: PMC8450869 DOI: 10.3389/fmicb.2021.727435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
The role of plasmids in the complex pandemic of antimicrobial resistance is increasingly being recognized. In this respect, multiple mobile colistin resistance (mcr) gene-carrying plasmids have been described. However, the characteristics and epidemiology of these plasmids within local healthcare settings are largely unknown. We retrospectively characterized the genetic composition and epidemiology of plasmids from mcr-1-positive bacterial isolates identified from patients from a large academic hospital in the Netherlands. Clinical Gram-negative bacteria with an MIC > 2 μg/mL for colistin, obtained from patients hospitalized at the Erasmus MC University Medical Center Rotterdam during the years 2010-2018, were screened for presence of the mcr-1 gene. Extracted plasmids from mcr-1-positive isolates were sequenced using a combination of short- and long-read sequencing platforms, characterized by incompatibility type and genetic composition and compared to publicly available mcr-1-carrying plasmid sequences. In 21 isolates from 14 patients, mcr-1 was located on a plasmid. These plasmids were of diverse genetic background involving Inc types IncX4, IncI2(delta), IncHI2, as well as double Inc types IncHI2/IncN and IncHI2/IncQ. mcr-1-carrying plasmids were found in Escherichia coli, Klebsiella pneumoniae, and Kluyvera georgiana, and within the chromosome of an ST147 K. pneumoniae isolate. In depth analysis indicated intrapatient, interpatient, and interspecies transmission events of mcr-1-carrying plasmids. In addition, our results show that the mcr-1 gene resides in a rich environment full of other (mcr-1 negative) plasmids and of many different Inc types, enabling interplasmidal transfer events and facilitating widespread dissemination of the mcr-1 gene. Multiple mcr-1-carrying plasmid transmission events had likely occurred among isolates from hospitalized patients. Recognition and identification of plasmid transmission events within hospitals is necessary in order to design and implement effective infection control measures.
Collapse
Affiliation(s)
- Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Willemien H A Zandijk
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Astrid P Heikema
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Juliëtte A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
27
|
Smelikova E, Tkadlec J, Krutova M. How to: screening for mcr-mediated resistance to colistin. Clin Microbiol Infect 2021; 28:43-50. [PMID: 34537365 DOI: 10.1016/j.cmi.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Colistin belongs to the last-resort antibiotics. The discovery of plasmid-bound colistin resistance mediated by the mcr-gene(s) is of great concern because, given its biological potential, there is a risk of its rapid spread. OBJECTIVES To discuss the current literature on the methods for the screening for mcr-mediated resistance to colistin. SOURCES Literature was drawn from a search of PubMed from 1 January 2016 to 26 April 2021. CONTENT The selective culture-based or culture-independent approach can be used for the screening of mcr-mediated resistance to colistin in clinical samples. Rapid Polymyxin NP, Colistin Drop or Colistin Agar Spot tests are applicable for the selection of isolates with a suspected resistance to colistin that has to be confirmed by broth microdilution. The mcr-mediated resistance to colistin can be confirmed by the detection of the causal gene(s) or by phenotype using EDTA-colistin broth disc elution; production of the MCR-1 enzyme can be confirmed with lateral flow immunoassay, using matrix-assisted laser desorption/ionization time-of flight or liquid chromatography-based mass spectrometry. Whole-genome sequencing (WGS) is the ultimate typing method. When a WGS platform is not available at a healthcare facility, a WGS-outsourced service, in combination with freely available bioinformatics tools, allows for the characterization of the mcr-gene(s) carrying isolates. IMPLICATIONS mcr-mediated colistin resistance should be monitored through active targeted screening. The broth microdilution method is required for colistin susceptibility testing but as only a selected number of clinical isolates are tested, colistin resistance, including mcr-mediated, may remain undetected. In mcr-1-positive Escherichia coli isolates, the MIC to colistin can range from 2 to 8 mg/L, so it is proposed that Enterobacterales with a colistin MIC of 2 mg/L should also be included in the mcr-mediated colistin resistance screening and those with a confirmed mcr-genotype and/or MCR-phenotype should be considered to be colistin-resistant.
Collapse
Affiliation(s)
- Eva Smelikova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Jan Tkadlec
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic.
| |
Collapse
|
28
|
Clermont O, Condamine B, Dion S, Gordon DM, Denamur E. The E phylogroup of Escherichia coli is highly diverse and mimics the whole E. coli species population structure. Environ Microbiol 2021; 23:7139-7151. [PMID: 34431197 DOI: 10.1111/1462-2920.15742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
To get a global picture of the population structure of the Escherichia coli phylogroup E, encompassing the O157:H7 EHEC lineage, we analysed the whole genome of 144 strains isolated from various continents, hosts and lifestyles and representative of the phylogroup diversity. The strains possess 4331 to 5440 genes with a core genome of 2771 genes and a pangenome of 33 722 genes. The distribution of these genes among the strains shows an asymmetric U-shaped distribution. E phylogenetic strains have the largest genomes of the species, partly explained by the presence of mobile genetic elements. Sixty-eight lineages were delineated, some of them exhibiting extra-intestinal virulence genes and being virulent in the mouse sepsis model. Except for the EHEC lineages and the reference EPEC, EIEC and ETEC strains, very few strains possess intestinal virulence genes. Most of the strains were devoid of acquired resistance genes, but eight strains possessed extended-spectrum beta-lactamase genes. Human strains belong to specific lineages, some of them being virulent and antibiotic-resistant [sequence type complexes (STcs) 350 and 2064]. The E phylogroup mimics all the features of the species as a whole, a phenomenon already observed at the STc level, arguing for a fractal population structure of E. coli.
Collapse
Affiliation(s)
- Olivier Clermont
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
| | | | - Sara Dion
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
| | - David M Gordon
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| |
Collapse
|
29
|
Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics (Basel) 2021; 10:antibiotics10091041. [PMID: 34572623 PMCID: PMC8466100 DOI: 10.3390/antibiotics10091041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
An antibiotic susceptibility monitoring programme was conducted from 2004 to 2010, resulting in a collection of 143 Escherichia coli cultured from bovine faecal samples (diarrhoea) and milk-aliquots (mastitis). The isolates were subjected to whole-genome sequencing and were distributed in phylogroups A, B1, B2, C, D, E, and G with no correlation for particular genotypes with pathotypes. In fact, the population structure showed that the strains belonging to the different phylogroups matched broadly to ST complexes; however, the isolates are randomly associated with the diseases, highlighting the necessity to investigate the virulence factors more accurately in order to identify the mechanisms by which they cause disease. The antimicrobial resistance was assessed phenotypically, confirming the genomic prediction on three isolates that were resistant to colistin, although one isolate was positive for the presence of the gene mcr-1 but susceptible to colistin. To further characterise the genomic context, the four strains were sequenced by using a single-molecule long read approach. Genetic analyses indicated that these four isolates harboured complex and diverse plasmids encoding not only antibiotic resistant genes (including mcr-1 and bla) but also virulence genes (siderophore, ColV, T4SS). A detailed description of the plasmids of these four E. coli strains, which are linked to bovine mastitis and diarrhoea, is presented for the first time along with the characterisation of the predicted antibiotic resistance genes. The study highlighted the diversity of incompatibility types encoding complex antibiotic resistance elements such as Tn6330, ISEcp1, Tn6029, and IS5075. The mcr-1 resistance determinant was identified in IncHI2 plasmids pCFS3273-1 and pCFS3292-1, thus providing some of the earliest examples of mcr-1 reported in Europe, and these sequences may be a representative of the early mcr-1 plasmidome characterisation in the EU/EEA.
Collapse
|
30
|
Armand-Lefèvre L, Rondinaud E, Desvillechabrol D, Mullaert J, Clermont O, Petitjean M, Ruppe E, Cokelaer T, Bouchier C, Tenaillon O, Ma L, Nooroya Y, Matheron S, The Voyag-R Study Group, Andremont A, Denamur E, Kennedy SP. Dynamics of extended-spectrum beta-lactamase-producing Enterobacterales colonization in long-term carriers following travel abroad. Microb Genom 2021; 7. [PMID: 34279212 PMCID: PMC8477403 DOI: 10.1099/mgen.0.000576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Travel to tropical regions is associated with high risk of acquiring extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) that are typically cleared in less than 3 months following return. The conditions leading to persistent carriage that exceeds 3 months in some travellers require investigation. Whole-genome sequencing (Illumina MiSeq) was performed on the 82 ESBL-E isolates detected upon return and 1, 2, 3, 6 and 12 months later from the stools of 11 long-term (>3 months) ESBL-E carriers following travel abroad. One to five different ESBL Escherichia coli strains were detected per traveller upon return, and this diminished to one after 3 months. Long-term carriage was due to the presence of the same ESBL E. coli strain, for more than 3 months, in 9 out of 11 travellers, belonging to epidemic sequence type complexes (STc 10, 14, 38, 69, 131 and 648). The mean carriage duration of strains belonging to phylogroups B2/D/F, associated with extra-intestinal virulence, was higher than that for commensal-associated A/B1/E phylogroups (3.5 vs 0.5 months, P=0.021). Genes encoding iron capture systems (fyuA, irp), toxins (senB, sat), adhesins (flu, daaF, afa/nfaE, pap, ecpA) and colicin (cjrA) were more often present in persistent strains than in transient ones. Single-nucleotide polymorphism (SNP) analysis in persistent strains showed a maximum divergence of eight SNPs over 12 months without signs of adaptation. Genomic plasticity was observed during the follow-up with the loss or gain of mobile genetic elements such as plasmids, integrons and/or transposons that may contain resistance genes at different points in the follow-up. Long-term colonization of ESBL-E following travel is primarily due to the acquisition of E. coli strains belonging to epidemic clones and harbouring ‘virulence genes’, allowing good adaptation to the intestinal microbiota.
Collapse
Affiliation(s)
- Laurence Armand-Lefèvre
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, F-75018 Paris, France.,Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France
| | - Emilie Rondinaud
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, F-75018 Paris, France.,Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France
| | - Dimitri Desvillechabrol
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Jimmy Mullaert
- Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France
| | - Olivier Clermont
- Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France
| | - Marie Petitjean
- Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France
| | - Etienne Ruppe
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, F-75018 Paris, France.,Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France
| | - Thomas Cokelaer
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France.,Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, F-75015 Paris, France
| | - Christiane Bouchier
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | | | - Laurence Ma
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Yasmine Nooroya
- Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France
| | - Sophie Matheron
- Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France.,Service de Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, F-75018 Paris, France
| | | | - Antoine Andremont
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, F-75018 Paris, France.,Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France
| | - Erick Denamur
- Université de Paris, IAME, INSERM UMR 1137, F-75018 Paris, France.,Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, F-75018 Paris, France
| | - Sean P Kennedy
- Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, F-75015 Paris, France
| |
Collapse
|
31
|
A Resistance Mechanism in Non- mcr Colistin-Resistant Escherichia coli in Taiwan: R81H Substitution in PmrA Is an Independent Factor Contributing to Colistin Resistance. Microbiol Spectr 2021; 9:e0002221. [PMID: 34259551 PMCID: PMC8552686 DOI: 10.1128/spectrum.00022-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colistin resistance due to the mcr-type genes in Escherichia coli is well characterized. In order to study the resistance mechanism in mcr-negative colistin-resistant E. coli, strains were selected from a nationwide antimicrobial resistance surveillance program in Taiwan for further investigation. A total of 11 mcr-negative colistin-resistant isolates among 7,942 (0.1%) clinical E. coli isolates were identified between 2008 and 2018. Their prevalence was low and remained stable during the study period. Since 2012, ST131 and ST1193 clones with multiple drug-resistant phenotypes have emerged. All resistant strains displayed higher expression levels of the operons pmrHFIJKLM and pmrCAB than the control MG1655 strain. Although several amino acid substitutions were identified in PmrA or PmrB, only R81H in PmrA was associated with overexpression of pmrHFIJKLM and colistin resistance. The effect of substitution R81H in PmrA in colistin resistance was confirmed by complementation experiments. Although some strains harbored substitutions in PmrB, the identified mutations in pmrB did not contribute to colistin resistance. In conclusion, the amino acid substitution R81H in PmrA is an independent factor contributing to colistin resistance in non-mcrE. coli. IMPORTANCE The molecular epidemiology and resistance mechanisms of mcr-negative colistin-resistant E. coli are not well described. In this study, a total of 11 mcr-negative colistin-resistant E. coli isolates were selected from a nationwide antimicrobial resistance surveillance program in Taiwan for further investigation. We determined the resistance mechanism of non-mcr colistin-resistant strains using gene knockout and complementation experiments. We observed the occurrence of the global multiple-drug-resistant E. coli clones ST131 and ST1193 starting in 2012. Moreover, for the first time, we proved that the amino acid substitution R81H in PmrA is an independent factor contributing to colistin resistance in non-mcrE. coli. The study results helped to gain an insight into the diversity and complexity of chromosome-encoded colistin resistance in E. coli.
Collapse
|
32
|
Royer G, Poirel L, La Combe B, Clermont O, Chau F, Mercier-Darty M, Denamur E, Nordmann P, Ricard JD, Decousser JW. Lack of association between colistin resistance and chlorhexidine reduced susceptibility in clinical isolates of Escherichia coli. J Antimicrob Chemother 2021; 76:2736-2737. [PMID: 34245272 DOI: 10.1093/jac/dkab235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guilhem Royer
- Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France.,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91000 Evry, France.,Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, APHP, 94000 Créteil, France
| | - Laurent Poirel
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Béatrice La Combe
- Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France.,APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, 92700 Colombes, France.,Service de Réanimation polyvalente, Hôpital du Scorff - Groupe Hospitalier Bretagne Sud Lorient, 5 Avenue Choiseul, 56322 Lorient, France
| | - Olivier Clermont
- Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France
| | - Françoise Chau
- Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France
| | - Mélanie Mercier-Darty
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, APHP, 94000 Créteil, France
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France.,Laboratoire de Génétique Moléculaire, Hôpital Bichat, APHP, 75018 Paris, France
| | - Patrice Nordmann
- Laboratoire Européen Associé INSERM, Emerging Antibiotic Resistance in Gram-Negative Bacteria, Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Reference Centre for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Jean-Damien Ricard
- Université de Paris, IAME, UMR 1137, INSERM, 75018 Paris, France.,APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, 92700 Colombes, France
| | - Jean-Winoc Decousser
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, APHP, 94000 Créteil, France.,EA 7380 Dynamyc, Université Paris-Est Créteil, 94000 Créteil, France
| |
Collapse
|
33
|
de Lastours V, Laouénan C, Royer G, Carbonnelle E, Lepeule R, Esposito-Farèse M, Clermont O, Duval X, Fantin B, Mentré F, Decousser JW, Denamur E, Lefort A. Mortality in Escherichia coli bloodstream infections: antibiotic resistance still does not make it. J Antimicrob Chemother 2021; 75:2334-2343. [PMID: 32417924 DOI: 10.1093/jac/dkaa161] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Escherichia coli bloodstream infections (BSIs) account for high mortality rates (5%-30%). Determinants of death are unclear, especially since the emergence of ESBL producers. OBJECTIVES To determine the relative weight of host characteristics, bacterial virulence and antibiotic resistance in the outcome of patients suffering from E. coli BSI. METHODS All consecutive patients suffering from E. coli BSI in seven teaching hospitals around Paris were prospectively included for 10 months. E. coli isolates were sequenced using Illumina NextSeq technology to determine the phylogroup, ST/ST complex (STc), virulence and antimicrobial resistance gene content. Risk factors associated with death at discharge or Day 28 were determined. RESULTS Overall, 545 patients (mean ± SD age 68.5 ± 16.5 years; 52.5% male) were included. Mean Charlson comorbidity index (CCI) was 5.6 (± 3.1); 19.6% and 12.8% presented with sepsis and septic shock, respectively. Portals of entry were mainly urinary (51.9%), digestive (41.9%) and pulmonary (3.5%); 98/545 isolates (18%) were third-generation cephalosporin resistant (3GC-R), including 86 ESBL producers. In-hospital death (or at Day 28) was 52/545 (9.5%). Factors independently associated with death were a pulmonary portal of entry [adjusted OR (aOR) 6.54, 95% CI 2.23-19.2, P = 0.0006], the iha_17 virulence gene (aOR 4.41, 95% CI 1.23-15.74, P = 0.022), the STc88 (aOR 3.62, 95% CI 1.30-10.09, P = 0.014), healthcare-associated infections (aOR 1.98, 95% CI 1.04-3.76, P = 0.036) and high CCI (aOR 1.14, 95% CI 1.04-1.26, P = 0.006), but not ESBL/3GC-R. CONCLUSIONS Host factors, portal of entry and bacterial characteristics remain major determinants associated with mortality in E. coli BSIs. Despite a high prevalence of ESBL producers, antibiotic resistance did not impact mortality. (ClinicalTrials.gov identifier: NCT02890901.).
Collapse
Affiliation(s)
- V de Lastours
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Service de Médecine Interne, Hôpital Beaujon, APHP, F-92100 Clichy, France
| | - C Laouénan
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Département d'épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, F-75018 Paris, France.,Unité de recherche clinique, HUPNVS, Hôpital Bichat, AP-HP F-75018 Paris, France
| | - G Royer
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France.,Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000 Créteil, France
| | - E Carbonnelle
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Service de Microbiologie, Hôpital Avicenne, AP-HP, F-93000 Bobigny, France
| | - R Lepeule
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000 Créteil, France
| | - M Esposito-Farèse
- Département d'épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, F-75018 Paris, France.,Unité de recherche clinique, HUPNVS, Hôpital Bichat, AP-HP F-75018 Paris, France
| | - O Clermont
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France
| | - X Duval
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Centre Investigation Clinique INSERM CIC-1425, Bichat Hospital, F-75018 France
| | - B Fantin
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Service de Médecine Interne, Hôpital Beaujon, APHP, F-92100 Clichy, France
| | - F Mentré
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Département d'épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, F-75018 Paris, France.,Unité de recherche clinique, HUPNVS, Hôpital Bichat, AP-HP F-75018 Paris, France
| | - J W Decousser
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000 Créteil, France
| | - E Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, F-75018 Paris, France
| | - A Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris F-75018, France.,Service de Médecine Interne, Hôpital Beaujon, APHP, F-92100 Clichy, France
| |
Collapse
|
34
|
Janssen AB, van Hout D, Bonten MJM, Willems RJL, van Schaik W. Microevolution of acquired colistin resistance in Enterobacteriaceae from ICU patients receiving selective decontamination of the digestive tract. J Antimicrob Chemother 2021; 75:3135-3143. [PMID: 32712659 DOI: 10.1093/jac/dkaa305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colistin is an antibiotic that targets the LPS molecules present in the membranes of Gram-negative bacteria. It is used as a last-resort drug to treat infections with MDR strains. Colistin is also used in selective decontamination of the digestive tract (SDD), a prophylactic therapy used in patients hospitalized in ICUs to selectively eradicate opportunistic pathogens in the oropharyngeal and gut microbiota. OBJECTIVES To unravel the mechanisms of acquired colistin resistance in Gram-negative opportunistic pathogens obtained from SDD-treated patients. RESULTS Routine surveillance of 428 SDD-treated patients resulted in 13 strains with acquired colistin resistance (Escherichia coli, n = 9; Klebsiella aerogenes, n = 3; Enterobacter asburiae, n = 1) from 5 patients. Genome sequence analysis showed that these isolates represented multiple distinct colistin-resistant clones but that colistin-resistant strains within the same patient were clonally related. We identified previously described mechanisms that lead to colistin resistance, i.e. a G53 substitution in the response regulator PmrA/BasR and the acquisition of the mobile colistin resistance gene mcr-1.1, but we also observed novel variants of basR with an 18 bp deletion and a G19E substitution in the sensor histidine kinase BasS. We experimentally confirmed that these variants contribute to reduced colistin susceptibility. In a single patient, we observed that colistin resistance in a single E. coli clone evolved through two unique variants in basRS. CONCLUSIONS We show that prophylactic use of colistin during SDD can select for colistin resistance in species that are not intrinsically colistin resistant. This highlights the importance of continued surveillance for strains with acquired colistin resistance in patients treated with SDD.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Denise van Hout
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Royer G, Darty MM, Clermont O, Condamine B, Laouenan C, Decousser JW, Vallenet D, Lefort A, de Lastours V, Denamur E. Phylogroup stability contrasts with high within sequence type complex dynamics of Escherichia coli bloodstream infection isolates over a 12-year period. Genome Med 2021; 13:77. [PMID: 33952335 PMCID: PMC8097792 DOI: 10.1186/s13073-021-00892-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Background Escherichia coli is the leading cause of bloodstream infections, associated with a significant mortality. Recent genomic analyses revealed that few clonal lineages are involved in bloodstream infections and captured the emergence of some of them. However, data on within sequence type (ST) population genetic structure evolution are rare. Methods We compared whole genome sequences of 912 E. coli isolates responsible for bloodstream infections from two multicenter clinical trials that were conducted in the Paris area, France, 12 years apart, in teaching hospitals belonging to the same institution (“Assistance Publique-Hôpitaux de Paris”). We analyzed the strains at different levels of granularity, i.e., the phylogroup, the ST complex (STc), and the within STc clone taking into consideration the evolutionary history, the resistance, and virulence gene content as well as the antigenic diversity of the strains. Results We found a mix of stability and changes overtime, depending on the level of comparison. Overall, we observed an increase in antibiotic resistance associated to a restricted number of genetic determinants and in strain plasmidic content, whereas phylogroup distribution and virulence gene content remained constant. Focusing on STcs highlighted the pauci-clonality of the populations, with only 11 STcs responsible for more than 73% of the cases, dominated by five STcs (STc73, STc131, STc95, STc69, STc10). However, some STcs underwent dramatic variations, such as the global pandemic STc131, which replaced the previously predominant STc95. Moreover, within STc131, 95 and 69 genomic diversity analysis revealed a highly dynamic pattern, with reshuffling of the population linked to clonal replacement sometimes coupled with independent acquisitions of virulence factors such as the pap gene cluster bearing a papGII allele located on various pathogenicity islands. Additionally, STc10 exhibited huge antigenic diversity evidenced by numerous O:H serotype/fimH allele combinations, whichever the year of isolation. Conclusions Altogether, these data suggest that the bloodstream niche is occupied by a wide but specific phylogenetic diversity and that highly specialized extra-intestinal clones undergo frequent turnover at the within ST level. Additional worldwide epidemiological studies overtime are needed in different geographical and ecological contexts to assess how generalizable these data are. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00892-0.
Collapse
Affiliation(s)
- Guilhem Royer
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France.,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France.,Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000, Créteil, France
| | - Mélanie Mercier Darty
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000, Créteil, France
| | - Olivier Clermont
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France
| | | | - Cédric Laouenan
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France.,Département d'épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, F-75018, Paris, France
| | - Jean-Winoc Decousser
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000, Créteil, France
| | - David Vallenet
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, F-92100, Clichy, France
| | - Victoire de Lastours
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, F-92100, Clichy, France
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France. .,Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, F-75018, Paris, France.
| | | |
Collapse
|
36
|
Plasmid-mediated Kluyvera-like arnBCADTEF operon confers colistin (hetero)resistance to Escherichia coli. Antimicrob Agents Chemother 2021; 65:AAC.00091-21. [PMID: 33685891 PMCID: PMC8092862 DOI: 10.1128/aac.00091-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of colistin as a last resort antimicrobial is compromised by the emergence of resistant enterobacteria with acquired determinants like mcr genes, mutations that activate the PmrAB system and by still unknown mechanisms. This work analyzed 74 E. coli isolates from healthy swine, turkey or bovine, characterizing their colistin resistance determinants. The mcr-1 gene, detected in 69 isolates, was the main determinant found among which 45% were carried by highly mobile plasmids, followed by four strains lacking previously known resistance determinants or two with mcr-4 (one in addition to mcr-1), whose phenotypes were not transferred by conjugation. Although a fraction of isolates carrying mcr-1 or mcr-4 genes also presented missense polymorphisms in pmrA or pmrB, constitutive activation of PmrAB was not detected, in contrast to strains with mutations that confer colistin resistance. The expression of mcr genes negatively controls the transcription of the arnBCADTEF operon itself, a down-regulation that was also observed in the four isolates lacking known resistance determinants, three of them sharing the same macrorestriction and plasmid profiles. Genomic sequencing of one of these strains, isolated from a bovine in 2015, revealed a IncFII plasmid of 62.1 Kb encoding an extra copy of the arnBCADTEF operon closely related to Kluyvera ascorbata homologs. This element, called pArnT1, was cured by ethidium bromide and the cells lost resistance to colistin in parallel. Furthermore, a susceptible E. coli strain acquired heteroresistance after transformation with pArnT1 or pBAD24 carrying the Kluyvera-like arnBCADTEF operon, revealing it as a new colistin resistance determinant.
Collapse
|
37
|
Tkadlec J, Kalova A, Brajerova M, Gelbicova T, Karpiskova R, Smelikova E, Nyc O, Drevinek P, Krutova M. The Intestinal Carriage of Plasmid-Mediated Colistin-Resistant Enterobacteriaceae in Tertiary Care Settings. Antibiotics (Basel) 2021; 10:258. [PMID: 33806455 PMCID: PMC8002115 DOI: 10.3390/antibiotics10030258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background: In order to estimate the prevalence of plasmid borne colistin resistance and to characterize in detail the mcr-positive isolates, we carried out a sentinel testing survey on the intestinal carriage of plasmid-mediated colistin-resistant Enterobacteriaceae in hospitalized patients. Methods: Between June 2018 and September 2019, 1922 faecal samples from hospitalised patients were analysed by selective culture in presence of colistin (3.5 mg/L), and in parallel by direct detection of the mcr-1 to mcr-8 genes by qPCR. The mcr-positive isolates were characterised by whole-genome sequencing. Results: The prevalence of the mcr-1 gene was 0.21% (n = 4/1922); the mcr-2 to 8 genes were not detected. The mcr-1 gene was found to be localised in the IncX4 (n = 3) and IncHI2 (n = 1) plasmid type. One Escherichia coli isolate was susceptible to colistin due to the inactivation of the mcr-1 gene through the insertion of the IS2 element; however, the colistin resistance was inducible by culture in low concentrations of colistin. One human mcr-1 positive E. coli isolate was related genetically to the mcr-1 E. coli isolate derived from turkey meat of Czech origin. Conclusions:mcr-mediated colistin resistance currently poses little threat to patients hospitalised in Czech healthcare settings. The presence of the mcr-1 gene in the human population has a possible link to domestically produced, retail meat.
Collapse
Affiliation(s)
- Jan Tkadlec
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Alzbeta Kalova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.); (A.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Marie Brajerova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Tereza Gelbicova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.); (A.K.)
| | - Renata Karpiskova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.); (A.K.)
| | - Eva Smelikova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Otakar Nyc
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| |
Collapse
|
38
|
Janssen AB, van Schaik W. Harder, better, faster, stronger: Colistin resistance mechanisms in Escherichia coli. PLoS Genet 2021; 17:e1009262. [PMID: 33411745 PMCID: PMC7790288 DOI: 10.1371/journal.pgen.1009262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Axel B. Janssen
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Galardini M, Clermont O, Baron A, Busby B, Dion S, Schubert S, Beltrao P, Denamur E. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet 2020; 16:e1009065. [PMID: 33112851 PMCID: PMC7592755 DOI: 10.1371/journal.pgen.1009065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Escherichia is composed of several species and cryptic clades, including E. coli, which behaves as a vertebrate gut commensal, but also as an opportunistic pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence within the genus, we carried out an unbiased genome-wide association study (GWAS) on 370 commensal, pathogenic and environmental strains representative of the Escherichia genus phylogenetic diversity and including E. albertii (n = 7), E. fergusonii (n = 5), Escherichia clades (n = 32) and E. coli (n = 326), tested in a mouse model of sepsis. We found that the presence of the high-pathogenicity island (HPI), a ~35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing other associated genetic factors also related to iron uptake, such as the aerobactin and the sitABCD operons. We confirmed the association in vivo by deleting key genes of the HPI in E. coli strains in two phylogenetic backgrounds. We then searched for correlations between virulence, iron capture systems and in vitro growth in a subset of E. coli strains (N = 186) previously phenotyped across growth conditions, including antibiotics and other chemical and physical stressors. We found that virulence and iron capture systems are positively correlated with growth in the presence of numerous antibiotics, probably due to co-selection of virulence and resistance. We also found negative correlations between virulence, iron uptake systems and growth in the presence of specific antibiotics (i.e. cefsulodin and tobramycin), which hints at potential “collateral sensitivities” associated with intrinsic virulence. This study points to the major role of iron capture systems in the extra-intestinal virulence of the genus Escherichia. Bacterial isolates belonging to the genus Escherichia can be human commensals but also opportunistic pathogens, with the ability to cause extra-intestinal infection. There is therefore the need to identify the genetic elements that favour extra-intestinal virulence, so that virulent bacterial isolates can be identified through genome analysis and potential treatment strategies be developed. To reduce the influence of host variability on virulence, we have used a mouse model of sepsis to characterize the virulence of 370 strains belonging to the genus Escherichia, for which whole genome sequences were also available. We have used a statistical approach called Genome-Wide Association Study (GWAS) to show how the presence of genes that encode for iron scavenging are significantly associated with the propensity of a bacterial isolate to cause extra-intestinal infections. Taking advantage of previously generated growth data on a subset of the strains and its correlation to virulence we generated hypothesis on the relationship between iron scavenging and growth in the presence of various antimicrobials, which could have implications for developing new treatment strategies.
Collapse
Affiliation(s)
- Marco Galardini
- EMBL-EBI, Wellcome Genome Campus, Cambridge, United Kingdom
- * E-mail: (MG); (ED)
| | | | | | - Bede Busby
- Genome Biology Unit, EMBL, Heidelberg, Germany
| | - Sara Dion
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
| | - Sören Schubert
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany
| | - Pedro Beltrao
- EMBL-EBI, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Erick Denamur
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
- * E-mail: (MG); (ED)
| |
Collapse
|
40
|
Galindo-Méndez M. Antimicrobial Resistance in Escherichia coli. E. COLI INFECTIONS - IMPORTANCE OF EARLY DIAGNOSIS AND EFFICIENT TREATMENT 2020. [DOI: 10.5772/intechopen.93115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
Genome sequences of two clinical Escherichia coli isolates harboring the novel colistin-resistance gene variants mcr- 1.26 and mcr- 1.27. Gut Pathog 2020; 12:40. [PMID: 32908612 PMCID: PMC7472697 DOI: 10.1186/s13099-020-00375-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background Colistin is still a widely used antibiotic in veterinary medicine although it is a last-line treatment option for hospitalized patients with infections caused by multidrug-resistant Gram-negative bacteria. Colistin resistance has gained additional importance since the recent emergence of mobile colistin resistance (mcr) genes. In the scope of a study on colistin resistance in clinical Escherichia coli isolates from human patients in Germany we characterized the mcr-1 gene variants. Results Our PCR-based screening for mcr-carrying E. coli from German patients revealed the presence of mcr-1-like genes in 60 isolates. Subsequent whole-genome sequence-based analyses detected one non-synonymous mutation in the mcr-1 gene for two isolates. The mutations were verified by Sanger sequencing and resulted in amino acid changes Met1Thr (isolate 803-18) and Tyr9Cys (isolate 844-18). Genotyping revealed no relationship between the isolates. The two clinical isolates were assigned to sequence types ST155 (isolate 803-18) and ST69 (isolate 844-18). Both mcr-1 variants were found to be located on IncX4 plasmids of 33 kb size; these plasmids were successfully conjugated into sodium azide resistant E. coli J53 Azir in a broth mating experiment. Conclusions Here we present the draft sequences of E. coli isolate 803-18 carrying the novel variant mcr-1.26 and isolate 844-14 carrying the novel variant mcr-1.27. The results highlight the increasing issue of transferable colistin resistance.
Collapse
|
42
|
mcr-1 Gene Expression Modulates the Inflammatory Response of Human Macrophages to Escherichia coli. Infect Immun 2020; 88:IAI.00018-20. [PMID: 32513853 DOI: 10.1128/iai.00018-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
MCR-1 is a plasmid-encoded phosphoethanolamine transferase able to modify the lipid A structure. It confers resistance to colistin and was isolated from human, animal, and environmental strains of Enterobacteriaceae, raising serious global health concerns. In this paper, we used recombinant mcr-1-expressing Escherichia coli to study the impact of MCR-1 products on E. coli-induced activation of inflammatory pathways in activated THP-1 cells, which was used as a model of human macrophages. We found that infection with recombinant mcr-1-expressing E. coli significantly modulated p38-MAPK and Jun N-terminal protein kinase (JNK) activation and pNF-κB nuclear translocation as well as the expression of genes for the relevant proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and IL-1β compared with mcr-1-negative strains. Caspase-1 activity and IL-1β secretion were significantly less activated by mcr-1-positive E. coli strains than the mcr-1-negative parental strain. Similar results were obtained with clinical isolates of mcr-1-positive E. coli, suggesting that, in addition to colistin resistance, the expression of mcr-1 allows the escape of early host innate defenses and may promote bacterial survival.
Collapse
|
43
|
Kathayat D, Antony L, Deblais L, Helmy YA, Scaria J, Rajashekara G. Small Molecule Adjuvants Potentiate Colistin Activity and Attenuate Resistance Development in Escherichia coli by Affecting pmrAB System. Infect Drug Resist 2020; 13:2205-2222. [PMID: 32764996 PMCID: PMC7360418 DOI: 10.2147/idr.s260766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background Colistin is one of the last-resort antibiotics to treat multi-drug resistant (MDR) Gram-negative bacterial infections in humans. Further, colistin has been also used to prevent and treat Enterobacteriaceae infections in food animals. However, chromosomal mutations and mobile colistin resistance (mcr) genes, which confer resistance to colistin, have been detected in bacterial isolates from food animals and humans worldwide; thus, limiting the use of colistin. Therefore, strategies that could aid in ameliorating colistin resistance are critically needed. Objective Investigate the adjuvant potential of novel small molecules (SMs) on colistin. Materials and Methods Previously, we identified 11 membrane-affecting SMs with bactericidal activity against avian pathogenic Escherichia coli (APEC). Here, we investigated the potentiation effect of those SMs on colistin using checkerboard assays and wax moth (Galleria mellonella) larval model. The impact of the SM combination on colistin resistance evolution was also investigated by analyzing whole genome sequences of APEC isolates passaged with colistin alone or in combination with SMs followed by quantitating pmrCAB and pmrH expression in those isolates. Results The SM combination synergistically reduced the minimum bactericidal concentration of colistin by at least 10-fold. In larvae, the SM combination increased the efficacy of colistin by two-fold with enhanced (>50%) survival and reduced (>4 logs) APEC load. Further, the SM combination decreased the frequency (5/6 to 1/6) of colistin resistance evolution and downregulated the pmrCAB and pmrH expression. Previously unknown mutations in pmrB (L14Q, T92P) and pmrA (A80V), which were predicted deleterious, were identified in the colistin-resistant (ColR) APEC isolates when passaged with colistin alone but not in combination with SMs. Our study also identified mutations in hypothetical and several phage-related proteins in ColR APEC isolates in concurrent with pmrAB mutations. Conclusion Our study identified two SMs (SM2 and SM3) that potentiated the colistin activity and attenuated the development of colistin resistance in APEC. These SMs can be developed as anti-evolution drugs that can slow down colistin resistance development.
Collapse
Affiliation(s)
- Dipak Kathayat
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linto Antony
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Loic Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Joy Scaria
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
44
|
Vallenet D, Calteau A, Dubois M, Amours P, Bazin A, Beuvin M, Burlot L, Bussell X, Fouteau S, Gautreau G, Lajus A, Langlois J, Planel R, Roche D, Rollin J, Rouy Z, Sabatet V, Médigue C. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res 2020; 48:D579-D589. [PMID: 31647104 PMCID: PMC7145621 DOI: 10.1093/nar/gkz926] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022] Open
Abstract
Large-scale genome sequencing and the increasingly massive use of high-throughput approaches produce a vast amount of new information that completely transforms our understanding of thousands of microbial species. However, despite the development of powerful bioinformatics approaches, full interpretation of the content of these genomes remains a difficult task. Launched in 2005, the MicroScope platform (https://www.genoscope.cns.fr/agc/microscope) has been under continuous development and provides analysis for prokaryotic genome projects together with metabolic network reconstruction and post-genomic experiments allowing users to improve the understanding of gene functions. Here we present new improvements of the MicroScope user interface for genome selection, navigation and expert gene annotation. Automatic functional annotation procedures of the platform have also been updated and we added several new tools for the functional annotation of genes and genomic regions. We finally focus on new tools and pipeline developed to perform comparative analyses on hundreds of genomes based on pangenome graphs. To date, MicroScope contains data for >11 800 microbial genomes, part of which are manually curated and maintained by microbiologists (>4500 personal accounts in September 2019). The platform enables collaborative work in a rich comparative genomic context and improves community-based curation efforts.
Collapse
Affiliation(s)
- David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Mathieu Dubois
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Paul Amours
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Adelme Bazin
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Mylène Beuvin
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Laura Burlot
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France.,UMS 3601 IFB-core, CNRS, INRA, INSERM, CEA & INRIA, Genoscope, Evry, 91057, France
| | - Xavier Bussell
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Stéphanie Fouteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Guillaume Gautreau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Aurélie Lajus
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Jordan Langlois
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Rémi Planel
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - David Roche
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Johan Rollin
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Zoe Rouy
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Valentin Sabatet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, CNRS, Université d'Évry, Université Paris-Saclay, Evry, 91057, France
| |
Collapse
|
45
|
Choi Y, Lee JY, Lee H, Park M, Kang K, Lim SK, Shin D, Ko KS. Comparison of Fitness Cost and Virulence in Chromosome- and Plasmid-Mediated Colistin-Resistant Escherichia coli. Front Microbiol 2020; 11:798. [PMID: 32477288 PMCID: PMC7238749 DOI: 10.3389/fmicb.2020.00798] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Five types of Escherichia coli strains were obtained and sequenced: colistin-susceptible (CL-S) strains, in vitro induced colistin-resistant (CL-IR) strains, mcr-1-negative colistin-resistant strains from livestock (CL-chrR), mcr-1-positive colistin-resistant strains (CL-mcrR), and mcr-1-transferred transconjugants (TC-mcr). Amino acid alterations of PmrAB, PhoPQ, and EptA were identified, and their mRNA expression was measured. Their growth rate was evaluated, and an in vitro competition assay was performed. Virulence was compared through serum resistance and survival in macrophages and Drosophila melanogaster. CL-IR and CL-chrR strains were colistin-resistant due to amino acid alterations in PmrAB, PhoPQ, or EptA, and their overexpression. All colistin-resistant strains did not show reduced growth rates compared with CL-S strains. CL-IR and CL-chrR strains were less competitive than the susceptible strain, but CL-mcrR strains were not. In addition, TC-mcr strains were also significantly more competitive than their respective parental susceptible strain. CL-IR strains had similar or decreased survival rates in human serum, macrophages, and fruit flies, compared with their parental, susceptible strains. CL-chrR strains were also less virulent than CL-S strains. Although CL-mcrR strains showed similar survival rates in human serum and fruit fly to CL-S strains, the survival rates of TC-mcr strains decreased significantly in human serum, macrophages, and fruit flies, compared with their susceptible recipient strain (J53). Chromosome-mediated, colistin-resistant E. coli strains have a fitness cost, but plasmids bearing mcr-1 do not increase the fitness burden of E. coli. Along with high usage of polymyxins, the no fitness cost of mcr-1-positive strains may facilitate rapid spread of colistin resistance.
Collapse
Affiliation(s)
- Yujin Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ji-Young Lee
- Division of Antimicrobial Resistance, Korea Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Haejeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Dongwoo Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
46
|
Comparative Whole-Genome Phylogeny of Animal, Environmental, and Human Strains Confirms the Genogroup Organization and Diversity of the Stenotrophomonas maltophilia Complex. Appl Environ Microbiol 2020; 86:AEM.02919-19. [PMID: 32198168 DOI: 10.1128/aem.02919-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
The Stenotrophomonas maltophilia complex (Smc) comprises opportunistic environmental Gram-negative bacilli responsible for a variety of infections in both humans and animals. Beyond its large genetic diversity, its genetic organization in genogroups was recently confirmed through the whole-genome sequencing of human and environmental strains. As they are poorly represented in these analyses, we sequenced the whole genomes of 93 animal strains to determine their genetic background and characteristics. Combining these data with 81 newly sequenced human strains and the genomes available from RefSeq, we performed a genomic analysis that included 375 nonduplicated genomes with various origins (animal, 104; human, 226; environment, 30; unknown, 15). Phylogenetic analysis and clustering based on genome-wide average nucleotide identity confirmed and specified the genetic organization of Smc in at least 20 genogroups. Two new genogroups were identified, and two previously described groups were further divided into two subgroups each. Comparing the strains isolated from different host types and their genogroup affiliation, we observed a clear disequilibrium in certain groups. Surprisingly, some antimicrobial resistance genes, integrons, and/or clusters of attC sites lacking integron-integrase (CALIN) sequences targeting antimicrobial compounds extensively used in animals were mainly identified in animal strains. We also identified genes commonly found in animal strains coding for efflux systems. The result of a large whole-genome analysis performed by us supports the hypothesis of the putative contribution of animals as a reservoir of Stenotrophomonas maltophilia complex strains and/or resistance genes for strains in humans.IMPORTANCE Given its naturally large antimicrobial resistance profile, the Stenotrophomonas maltophilia complex (Smc) is a set of emerging pathogens of immunosuppressed and cystic fibrosis patients. As it is group of environmental microorganisms, this adaptation to humans is an opportunity to understand the genetic and metabolic selective mechanisms involved in this process. The previously reported genomic organization was incomplete, as data from animal strains were underrepresented. We added the missing piece of the puzzle with whole-genome sequencing of 93 strains of animal origin. Beyond describing the phylogenetic organization, we confirmed the genetic diversity of the Smc, which could not be estimated through routine phenotype- or matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF)-based laboratory tests. Animals strains seem to play a key role in the diversity of Smc and could act as a reservoir for mobile resistance genes. Some genogroups seem to be associated with particular hosts; the genetic support of this association and the role of the determinants/corresponding genes need to be explored.
Collapse
|
47
|
Janssen AB, Bartholomew TL, Marciszewska NP, Bonten MJM, Willems RJL, Bengoechea JA, van Schaik W. Nonclonal Emergence of Colistin Resistance Associated with Mutations in the BasRS Two-Component System in Escherichia coli Bloodstream Isolates. mSphere 2020; 5:e00143-20. [PMID: 32161146 PMCID: PMC7067592 DOI: 10.1128/msphere.00143-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Infections by multidrug-resistant Gram-negative bacteria are increasingly common, prompting the renewed interest in the use of colistin. Colistin specifically targets Gram-negative bacteria by interacting with the anionic lipid A moieties of lipopolysaccharides, leading to membrane destabilization and cell death. Here, we aimed to uncover the mechanisms of colistin resistance in nine colistin-resistant Escherichia coli strains and one Escherichia albertii strain. These were the only colistin-resistant strains of 1,140 bloodstream Escherichia isolates collected in a tertiary hospital over a 10-year period (2006 to 2015). Core-genome phylogenetic analysis showed that each patient was colonized by a unique strain, suggesting that colistin resistance was acquired independently in each strain. All colistin-resistant strains had lipid A that was modified with phosphoethanolamine. In addition, two E. coli strains had hepta-acylated lipid A species, containing an additional palmitate compared to the canonical hexa-acylated E. coli lipid A. One E. coli strain carried the mobile colistin resistance (mcr) gene mcr-1.1 on an IncX4-type plasmid. Through construction of chromosomal transgene integration mutants, we experimentally determined that mutations in basRS, encoding a two-component signal transduction system, contributed to colistin resistance in four strains. We confirmed these observations by reversing the mutations in basRS to the sequences found in reference strains, resulting in loss of colistin resistance. While the mcr genes have become a widely studied mechanism of colistin resistance in E. coli, sequence variation in basRS is another, potentially more prevalent but relatively underexplored, cause of colistin resistance in this important nosocomial pathogen.IMPORTANCE Multidrug resistance among Gram-negative bacteria has led to the use of colistin as a last-resort drug. The cationic colistin kills Gram-negative bacteria through electrostatic interaction with the anionic lipid A moiety of lipopolysaccharides. Due to increased use in clinical and agricultural settings, colistin resistance has recently started to emerge. In this study, we used a combination of whole-genome sequence analysis and experimental validation to characterize the mechanisms through which Escherichia coli strains from bloodstream infections can develop colistin resistance. We found no evidence of direct transfer of colistin-resistant isolates between patients. The lipid A of all isolates was modified by the addition of phosphoethanolamine. In four isolates, colistin resistance was experimentally verified to be caused by mutations in the basRS genes, encoding a two-component regulatory system. Our data show that chromosomal mutations are an important cause of colistin resistance among clinical E. coli isolates.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Toby L Bartholomew
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Natalia P Marciszewska
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
48
|
Huang J, Dai X, Ge L, Shafiq M, Shah JM, Sun J, Yi S, Wang L. Sequence Duplication Within pmrB Gene Contribute to High-Level Colistin Resistance in Avian Pathogenic Escherichia coli. Microb Drug Resist 2019; 26:1442-1451. [PMID: 31770069 DOI: 10.1089/mdr.2019.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beyond the emergence of plasmid-encoded mechanisms, mutation within the pmrAB genes remains one of the primary colistin resistance mechanisms in Escherichia coli. However, the mechanisms of high-level colistin resistance (HLCR) have not been elucidated. In this study, we evaluated the HLCR mechanisms in five colistin-susceptible Avian pathogenic Escherichia coli (APEC) isolates after colistin exposure. Three PmrB substitutions (G19R, L167P, V88E) and two PmrB sequence duplication (PmrB-sd) mutations (68-77dup and 94-156dup) were detected. Chromosomal replacement and deletion mutagenesis revealed the two PmrB-sd mutations contribute to, but are not fully responsible for, HLCR in APEC strains. Quantitative reverse transcription/polymerase chain reaction (qRT-PCR) revealed that the PmrB-sd induction mutants showed an increased pmrAB transcript level and the PmrB-sd reversion mutants exhibited a reduction of pmrAB expression. All five induction mutants exhibited decreased minimum inhibitory concentrations to florfenicol and tetracycline. In addition, four mutants (G19R, L167P, V88E, and 94-156dup) and two mutants (68-77dup and 94-156dup) also displayed increased sensitivity to ceftiofur and gentamicin, respectively. Zeta potential measurement of the induction mutants showed that there was less negative charge on the cell surface compared with its parental strains in the absence of colistin. The induction mutants also showed an increase of lag time and decrease of fitness. In summary, the identification of novel PmrB-sd mutations contributing to HLCR is helpful to broaden the knowledge of colistin resistance. Attention should be paid to the use of colistin for the treatment of infections caused by APEC strains.
Collapse
Affiliation(s)
- Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingyang Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lin Ge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Shafiq
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jan Mohammad Shah
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junjie Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sida Yi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
García-Meniño I, Díaz-Jiménez D, García V, de Toro M, Flament-Simon SC, Blanco J, Mora A. Genomic Characterization of Prevalent mcr-1, mcr-4, and mcr-5 Escherichia coli Within Swine Enteric Colibacillosis in Spain. Front Microbiol 2019; 10:2469. [PMID: 31736909 PMCID: PMC6838222 DOI: 10.3389/fmicb.2019.02469] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial agents are crucial for the treatment of many bacterial diseases in pigs, however, the massive use of critically important antibiotics such as colistin, fluoroquinolones and 3rd-4th-generation cephalosporins often selects for co-resistance. Based on a comprehensive characterization of 35 colistin-resistant Escherichia coli from swine enteric colibacillosis, belonging to prevalent Spanish lineages, the aims of the present study were to investigate the characteristics of E. coli clones successfully spread in swine and to assess the correlation of the in vitro results with in silico predictions from WGS data. The resistome analysis showed six different mcr variants: mcr-1.1; mcr-1.10; mcr-4.1; mcr-4.2; mcr-4.5; and mcr-5.1. Additionally, bla CTX-M- 14, bla CTX-M- 32 and bla SHV- 12 genes were present in seven genomes. PlasmidFinder revealed that mcr-1.1 genes located mainly on IncHI2 and IncX4 types, and mcr-4 on ColE10-like plasmids. Twenty-eight genomes showed a gyrA S83L substitution, and 12 of those 28 harbored double-serine mutations gyrA S83L and parC S80I, correlating with in vitro quinolone-resistances. Notably, 16 of the 35 mcr-bearing genomes showed mutations in the PmrA (S39I) and PmrB (V161G) proteins. The summative presence of mechanisms, associated with high-level of resistance to quinolones/fluoroquinolones and colistin, could be conferring adaptive advantages to prevalent pig E. coli lineages, such as the ST10-A (CH11-24), as presumed for ST131. SerotypeFinder allowed the H-antigen identification of in vitro non-mobile (HNM) isolates, revealing that 15 of the 21 HNM E. coli analyzed were H39. Since the H39 is associated with the most prevalent O antigens worldwide within swine colibacillosis, such as O108 and O157, it would be probably playing a role in porcine colibacillosis to be considered as a valuable subunit antigen in the formulation of a broadly protective Enterotoxigenic E. coli (ETEC) vaccine. Our data show common features with other European countries in relation to a prevalent clonal group (CC10), serotypes (O108:H39, O138:H10, O139:H1, O141:H4), high plasmid content within the isolates and mcr location, which would support global alternatives to the use of antibiotics in pigs. Here, we report for first time a rare finding so far, which is the co-occurrence of double colistin-resistance mechanisms in a significant number of E. coli isolates.
Collapse
Affiliation(s)
- Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Saskia C Flament-Simon
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
50
|
mcr-9, an Inducible Gene Encoding an Acquired Phosphoethanolamine Transferase in Escherichia coli, and Its Origin. Antimicrob Agents Chemother 2019; 63:AAC.00965-19. [PMID: 31209009 DOI: 10.1128/aac.00965-19] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/08/2019] [Indexed: 11/20/2022] Open
Abstract
The plasmid-located mcr-9 gene, encoding a putative phosphoethanolamine transferase, was identified in a colistin-resistant human fecal Escherichia coli strain belonging to a very rare phylogroup, the D-ST69-O15:H6 clone. This MCR-9 protein shares 33% to 65% identity with the other plasmid-encoded MCR-type enzymes identified (MCR-1 to -8) that have been found as sources of acquired resistance to polymyxins in Enterobacteriaceae Analysis of the lipopolysaccharide of the MCR-9-producing isolate revealed a function similar to that of MCR-1 by adding a phosphoethanolamine group to lipid A and subsequently modifying the structure of the lipopolysaccharide. However, a minor impact on susceptibility to polymyxins was noticed once the mcr-9 gene was cloned and produced in an E. coli K-12-derived strain. Nevertheless, we showed here that subinhibitory concentrations of colistin induced the expression of the mcr-9 gene, leading to increased MIC levels. This inducible expression was mediated by a two-component regulatory system encoded by the qseC and qseB genes located downstream of mcr-9 Genetic analysis showed that the mcr-9 gene was carried by an IncHI2 plasmid. In silico analysis revealed that the plasmid-encoded MCR-9 shared significant amino acid identity (ca. 80%) with the chromosomally encoded MCR-like proteins from Buttiauxella spp. In particular, Buttiauxella gaviniae was found to harbor a gene encoding MCR-BG, sharing 84% identity with MCR-9. That gene was neither expressed nor inducible in its original host, which was fully susceptible to polymyxins. This work showed that mcr genes may circulate silently and remain undetected unless induced by colistin.
Collapse
|