1
|
Herman Bernardim Andrade G, Nishiyama T, Fujimaki T, Yada S, Wakamiya S, Takagi M, Kato M, Miyashiro I, Aramaki E. Assessing domain adaptation in adverse drug event extraction on real-world breast cancer records. Int J Med Inform 2024; 191:105539. [PMID: 39084086 DOI: 10.1016/j.ijmedinf.2024.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Adverse Drug Events (ADE) are key information present in unstructured portions of Electronic Health Records. These pose a significant challenge in healthcare, ranging from mild discomfort to severe complications, and can impact patient safety and treatment outcomes. METHODS We explore the influence of domain shift between a set of dummy clinical notes and a real-world hospital corpus of Japanese clinical notes of breast cancer treatment when extracting ADEs from free text. We annotated a subset of the hospital dataset and used it to fine-tune a Named Entity Recognition (NER) model, initially trained with the set of dummy documents. We used increasing amounts of the annotated data and evaluated the impact on the model's performance. Additionally, we examined the extracted information to identify combinations of drugs that are likely to cause ADEs. RESULTS We show that domain adaptation can significantly improve model performance in the new domain, as by feeding a small subset of 100 documents for the fine-tuning process we saw a 40% improvement in model performance. However, we also noticed diminishing returns when fine-tuning the model with a larger dataset. For instance, by feeding eight times more data, we only saw further 18% improvement in extraction performance. CONCLUSION While variations in writing style and vocabulary in clinical corpora can significantly impact the quality of NER results. We show that domain adaptation can be of great aid in mitigating these discrepancies and achieving better performance. Yet, while providing in-domain data to a model helps, there are diminishing returns when fine-tuning with large amounts of data.
Collapse
Affiliation(s)
| | - Tomohiro Nishiyama
- Department of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, 630-0101, Nara, Japan
| | - Takako Fujimaki
- Department of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, 630-0101, Nara, Japan
| | - Shuntaro Yada
- Department of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, 630-0101, Nara, Japan
| | - Shoko Wakamiya
- Department of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, 630-0101, Nara, Japan
| | - Mari Takagi
- Department of Pharmacy, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, 541-8567, Osaka, Japan
| | - Mizuki Kato
- Cancer Control Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, 541-8567, Osaka, Japan
| | - Isao Miyashiro
- Cancer Control Center, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, 541-8567, Osaka, Japan
| | - Eiji Aramaki
- Department of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, 630-0101, Nara, Japan.
| |
Collapse
|
2
|
Ye DX, Yu JW, Li R, Hao YD, Wang TY, Yang H, Ding H. The Prediction of Recombination Hotspot Based on Automated Machine Learning. J Mol Biol 2024:168653. [PMID: 38871176 DOI: 10.1016/j.jmb.2024.168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Meiotic recombination plays a pivotal role in genetic evolution. Genetic variation induced by recombination is a crucial factor in generating biodiversity and a driving force for evolution. At present, the development of recombination hotspot prediction methods has encountered challenges related to insufficient feature extraction and limited generalization capabilities. This paper focused on the research of recombination hotspot prediction methods. We explored deep learning-based recombination hotspot prediction and scrutinized the shortcomings of prevalent models in addressing the challenge of recombination hotspot prediction. To addressing these deficiencies, an automated machine learning approach was utilized to construct recombination hotspot prediction model. The model combined sequence information with physicochemical properties by employing TF-IDF-Kmer and DNA composition components to acquire more effective feature data. Experimental results validate the effectiveness of the feature extraction method and automated machine learning technology used in this study. The final model was validated on three distinct datasets and yielded accuracy rates of 97.14%, 79.71%, and 98.73%, surpassing the current leading models by 2%, 2.56%, and 4%, respectively. In addition, we incorporated tools such as SHAP and AutoGluon to analyze the interpretability of black-box models, delved into the impact of individual features on the results, and investigated the reasons behind misclassification of samples. Finally, an application of recombination hotspot prediction was established to facilitate easy access to necessary information and tools for researchers. The research outcomes of this paper underscore the enormous potential of automated machine learning methods in gene sequence prediction.
Collapse
Affiliation(s)
- Dong-Xin Ye
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun-Wen Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Rui Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu-Duo Hao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tian-Yu Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Yang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| | - Hui Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
3
|
Li Y, Tao W, Li Z, Sun Z, Li F, Fenton S, Xu H, Tao C. Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets. J Biomed Inform 2024; 152:104621. [PMID: 38447600 DOI: 10.1016/j.jbi.2024.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE The primary objective of this review is to investigate the effectiveness of machine learning and deep learning methodologies in the context of extracting adverse drug events (ADEs) from clinical benchmark datasets. We conduct an in-depth analysis, aiming to compare the merits and drawbacks of both machine learning and deep learning techniques, particularly within the framework of named-entity recognition (NER) and relation classification (RC) tasks related to ADE extraction. Additionally, our focus extends to the examination of specific features and their impact on the overall performance of these methodologies. In a broader perspective, our research extends to ADE extraction from various sources, including biomedical literature, social media data, and drug labels, removing the limitation to exclusively machine learning or deep learning methods. METHODS We conducted an extensive literature review on PubMed using the query "(((machine learning [Medical Subject Headings (MeSH) Terms]) OR (deep learning [MeSH Terms])) AND (adverse drug event [MeSH Terms])) AND (extraction)", and supplemented this with a snowballing approach to review 275 references sourced from retrieved articles. RESULTS In our analysis, we included twelve articles for review. For the NER task, deep learning models outperformed machine learning models. In the RC task, gradient Boosting, multilayer perceptron and random forest models excelled. The Bidirectional Encoder Representations from Transformers (BERT) model consistently achieved the best performance in the end-to-end task. Future efforts in the end-to-end task should prioritize improving NER accuracy, especially for 'ADE' and 'Reason'. CONCLUSION These findings hold significant implications for advancing the field of ADE extraction and pharmacovigilance, ultimately contributing to improved drug safety monitoring and healthcare outcomes.
Collapse
Affiliation(s)
- Yiming Li
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wei Tao
- Department of Biostatistics & Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zehan Li
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zenan Sun
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fang Li
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Susan Fenton
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hua Xu
- Section of Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Cui Tao
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
4
|
Terranova N, Renard D, Shahin MH, Menon S, Cao Y, Hop CECA, Hayes S, Madrasi K, Stodtmann S, Tensfeldt T, Vaddady P, Ellinwood N, Lu J. Artificial Intelligence for Quantitative Modeling in Drug Discovery and Development: An Innovation and Quality Consortium Perspective on Use Cases and Best Practices. Clin Pharmacol Ther 2024; 115:658-672. [PMID: 37716910 DOI: 10.1002/cpt.3053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Recent breakthroughs in artificial intelligence (AI) and machine learning (ML) have ushered in a new era of possibilities across various scientific domains. One area where these advancements hold significant promise is model-informed drug discovery and development (MID3). To foster a wider adoption and acceptance of these advanced algorithms, the Innovation and Quality (IQ) Consortium initiated the AI/ML working group in 2021 with the aim of promoting their acceptance among the broader scientific community as well as by regulatory agencies. By drawing insights from workshops organized by the working group and attended by key stakeholders across the biopharma industry, academia, and regulatory agencies, this white paper provides a perspective from the IQ Consortium. The range of applications covered in this white paper encompass the following thematic topics: (i) AI/ML-enabled Analytics for Pharmacometrics and Quantitative Systems Pharmacology (QSP) Workflows; (ii) Explainable Artificial Intelligence and its Applications in Disease Progression Modeling; (iii) Natural Language Processing (NLP) in Quantitative Pharmacology Modeling; and (iv) AI/ML Utilization in Drug Discovery. Additionally, the paper offers a set of best practices to ensure an effective and responsible use of AI, including considering the context of use, explainability and generalizability of models, and having human-in-the-loop. We believe that embracing the transformative power of AI in quantitative modeling while adopting a set of good practices can unlock new opportunities for innovation, increase efficiency, and ultimately bring benefits to patients.
Collapse
Affiliation(s)
- Nadia Terranova
- Quantitative Pharmacology, Merck KGaA, Lausanne, Switzerland
| | - Didier Renard
- Full Development Pharmacometrics, Novartis Pharma AG, Basel, Switzerland
| | | | - Sujatha Menon
- Clinical Pharmacology, Pfizer Inc., Groton, Connecticut, USA
| | - Youfang Cao
- Clinical Pharmacology and Translational Medicine, Eisai Inc., Nutley, New Jersey, USA
| | | | - Sean Hayes
- Quantitative Pharmacology & Pharmacometrics, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Kumpal Madrasi
- Modeling & Simulation, Sanofi, Bridgewater, New Jersey, USA
| | - Sven Stodtmann
- Pharmacometrics, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - Pavan Vaddady
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | | | - James Lu
- Clinical Pharmacology, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
5
|
Modi S, Kasmiran KA, Mohd Sharef N, Sharum MY. Extracting adverse drug events from clinical Notes: A systematic review of approaches used. J Biomed Inform 2024; 151:104603. [PMID: 38331081 DOI: 10.1016/j.jbi.2024.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND An adverse drug event (ADE) is any unfavorable effect that occurs due to the use of a drug. Extracting ADEs from unstructured clinical notes is essential to biomedical text extraction research because it helps with pharmacovigilance and patient medication studies. OBJECTIVE From the considerable amount of clinical narrative text, natural language processing (NLP) researchers have developed methods for extracting ADEs and their related attributes. This work presents a systematic review of current methods. METHODOLOGY Two biomedical databases have been searched from June 2022 until December 2023 for relevant publications regarding this review, namely the databases PubMed and Medline. Similarly, we searched the multi-disciplinary databases IEEE Xplore, Scopus, ScienceDirect, and the ACL Anthology. We adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement guidelines and recommendations for reporting systematic reviews in conducting this review. Initially, we obtained 5,537 articles from the search results from the various databases between 2015 and 2023. Based on predefined inclusion and exclusion criteria for article selection, 100 publications have undergone full-text review, of which we consider 82 for our analysis. RESULTS We determined the general pattern for extracting ADEs from clinical notes, with named entity recognition (NER) and relation extraction (RE) being the dual tasks considered. Researchers that tackled both NER and RE simultaneously have approached ADE extraction as a "pipeline extraction" problem (n = 22), as a "joint task extraction" problem (n = 7), and as a "multi-task learning" problem (n = 6), while others have tackled only NER (n = 27) or RE (n = 20). We further grouped the reviews based on the approaches for data extraction, namely rule-based (n = 8), machine learning (n = 11), deep learning (n = 32), comparison of two or more approaches (n = 11), hybrid (n = 12) and large language models (n = 8). The most used datasets are MADE 1.0, TAC 2017 and n2c2 2018. CONCLUSION Extracting ADEs is crucial, especially for pharmacovigilance studies and patient medications. This survey showcases advances in ADE extraction research, approaches, datasets, and state-of-the-art performance in them. Challenges and future research directions are highlighted. We hope this review will guide researchers in gaining background knowledge and developing more innovative ways to address the challenges.
Collapse
Affiliation(s)
- Salisu Modi
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia; Department of Computer Science, Sokoto State University, Sokoto, Nigeria.
| | - Khairul Azhar Kasmiran
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia.
| | - Nurfadhlina Mohd Sharef
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia.
| | - Mohd Yunus Sharum
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
6
|
van Velzen M, de Graaf-Waar HI, Ubert T, van der Willigen RF, Muilwijk L, Schmitt MA, Scheper MC, van Meeteren NLU. 21st century (clinical) decision support in nursing and allied healthcare. Developing a learning health system: a reasoned design of a theoretical framework. BMC Med Inform Decis Mak 2023; 23:279. [PMID: 38053104 PMCID: PMC10699040 DOI: 10.1186/s12911-023-02372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
In this paper, we present a framework for developing a Learning Health System (LHS) to provide means to a computerized clinical decision support system for allied healthcare and/or nursing professionals. LHSs are well suited to transform healthcare systems in a mission-oriented approach, and is being adopted by an increasing number of countries. Our theoretical framework provides a blueprint for organizing such a transformation with help of evidence based state of the art methodologies and techniques to eventually optimize personalized health and healthcare. Learning via health information technologies using LHS enables users to learn both individually and collectively, and independent of their location. These developments demand healthcare innovations beyond a disease focused orientation since clinical decision making in allied healthcare and nursing is mainly based on aspects of individuals' functioning, wellbeing and (dis)abilities. Developing LHSs depends heavily on intertwined social and technological innovation, and research and development. Crucial factors may be the transformation of the Internet of Things into the Internet of FAIR data & services. However, Electronic Health Record (EHR) data is in up to 80% unstructured including free text narratives and stored in various inaccessible data warehouses. Enabling the use of data as a driver for learning is challenged by interoperability and reusability.To address technical needs, key enabling technologies are suitable to convert relevant health data into machine actionable data and to develop algorithms for computerized decision support. To enable data conversions, existing classification and terminology systems serve as definition providers for natural language processing through (un)supervised learning.To facilitate clinical reasoning and personalized healthcare using LHSs, the development of personomics and functionomics are useful in allied healthcare and nursing. Developing these omics will be determined via text and data mining. This will focus on the relationships between social, psychological, cultural, behavioral and economic determinants, and human functioning.Furthermore, multiparty collaboration is crucial to develop LHSs, and man-machine interaction studies are required to develop a functional design and prototype. During development, validation and maintenance of the LHS continuous attention for challenges like data-drift, ethical, technical and practical implementation difficulties is required.
Collapse
Affiliation(s)
- Mark van Velzen
- Data Supported Healthcare: Data-Science unit, Research Center Innovations in care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands.
- Department of Anesthesiology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Helen I de Graaf-Waar
- Data Supported Healthcare: Data-Science unit, Research Center Innovations in care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
- Department of Anesthesiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tanja Ubert
- Institute for Communication, media and information Technology, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Robert F van der Willigen
- Institute for Communication, media and information Technology, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Lotte Muilwijk
- Data Supported Healthcare: Data-Science unit, Research Center Innovations in care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
- Institute for Communication, media and information Technology, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Maarten A Schmitt
- Data Supported Healthcare: Data-Science unit, Research Center Innovations in care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Mark C Scheper
- Data Supported Healthcare: Data-Science unit, Research Center Innovations in care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
- Department of Anesthesiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Allied Health professions, faculty of medicine and science, Macquarrie University, Sydney, Australia
| | - Nico L U van Meeteren
- Department of Anesthesiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Top Sector Life Sciences and Health (Health~Holland), The Hague, the Netherlands
| |
Collapse
|
7
|
Deimazar G, Sheikhtaheri A. Machine learning models to detect and predict patient safety events using electronic health records: A systematic review. Int J Med Inform 2023; 180:105246. [PMID: 37837710 DOI: 10.1016/j.ijmedinf.2023.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION Identifying patient safety events using electronic health records (EHRs) and automated machine learning-based detection methods can help improve the efficiency and quality of healthcare service provision. OBJECTIVE This study aimed to systematically review machine learning-based methods and techniques, as well as their results for patient safety event management using EHRs. METHODS We reviewed the studies that focused on machine learning techniques, including automatic prediction and detection of patient safety events and medical errors through EHR analysis to manage patient safety events. The data were collected by searching Scopus, PubMed (Medline), Web of Science, EMBASE, and IEEE Xplore databases. RESULTS After screening, 41 papers were reviewed. Support vector machine (SVM), random forest, conditional random field (CRF), and bidirectional long short-term memory with conditional random field (BiLSTM-CRF) algorithms were mostly applied to predict, identify, and classify patient safety events using EHRs; however, they had different performances. BiLSTM-CRF was employed in most of the studies to extract and identify concepts, e.g., adverse drug events (ADEs) and adverse drug reactions (ADRs), as well as relationships between drug and severity, drug and ADEs, drug and ADRs. Recurrent neural networks (RNN) and BiLSTM-CRF had the best results in detecting ADEs compared to other patient safety events. Linear classifiers and Naive Bayes (NB) had the highest performance for ADR detection. Logistic regression had the best results in detecting surgical site infections. According to the findings, the quality of articles has non-significantly improved in recent years, but they had low average scores. CONCLUSIONS Machine learning can be useful in automatic detection and prediction of patient safety events. However, most of these algorithms have not yet been externally validated or prospectively tested. Therefore, further studies are required to improve the performance of these automated systems.
Collapse
Affiliation(s)
- Ghasem Deimazar
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Sheikhtaheri
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Botsis T, Kreimeyer K. Improving drug safety with adverse event detection using natural language processing. Expert Opin Drug Saf 2023; 22:659-668. [PMID: 37339273 DOI: 10.1080/14740338.2023.2228197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Pharmacovigilance (PV) involves monitoring and aggregating adverse event information from a variety of data sources, including health records, biomedical literature, spontaneous adverse event reports, product labels, and patient-generated content like social media posts, but the most pertinent details in these sources are typically available in narrative free-text formats. Natural language processing (NLP) techniques can be used to extract clinically relevant information from PV texts to inform decision-making. AREAS COVERED We conducted a non-systematic literature review by querying the PubMed database to examine the uses of NLP in drug safety and distilled the findings to present our expert opinion on the topic. EXPERT OPINION New NLP techniques and approaches continue to be applied for drug safety use cases; however, systems that are fully deployed and in use in a clinical environment remain vanishingly rare. To see high-performing NLP techniques implemented in the real setting will require long-term engagement with end users and other stakeholders and revised workflows in fully formulated business plans for the targeted use cases. Additionally, we found little to no evidence of extracted information placed into standardized data models, which should be a way to make implementations more portable and adaptable.
Collapse
Affiliation(s)
- Taxiarchis Botsis
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kory Kreimeyer
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Yew ANJ, Schraagen M, Otte WM, van Diessen E. Transforming epilepsy research: A systematic review on natural language processing applications. Epilepsia 2023; 64:292-305. [PMID: 36462150 PMCID: PMC10108221 DOI: 10.1111/epi.17474] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Despite improved ancillary investigations in epilepsy care, patients' narratives remain indispensable for diagnosing and treatment monitoring. This wealth of information is typically stored in electronic health records and accumulated in medical journals in an unstructured manner, thereby restricting complete utilization in clinical decision-making. To this end, clinical researchers increasing apply natural language processing (NLP)-a branch of artificial intelligence-as it removes ambiguity, derives context, and imbues standardized meaning from free-narrative clinical texts. This systematic review presents an overview of the current NLP applications in epilepsy and discusses the opportunities and drawbacks of NLP alongside its future implications. We searched the PubMed and Embase databases with a "natural language processing" and "epilepsy" query (March 4, 2022) and included original research articles describing the application of NLP techniques for textual analysis in epilepsy. Twenty-six studies were included. Fifty-eight percent of these studies used NLP to classify clinical records into predefined categories, improving patient identification and treatment decisions. Other applications of NLP had structured clinical information retrieval from electronic health records, scientific papers, and online posts of patients. Challenges and opportunities of NLP applications for enhancing epilepsy care and research are discussed. The field could further benefit from NLP by replicating successes in other health care domains, such as NLP-aided quality evaluation for clinical decision-making, outcome prediction, and clinical record summarization.
Collapse
Affiliation(s)
- Arister N J Yew
- University College Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marijn Schraagen
- Department of Information and Computing Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Willem M Otte
- Department of Child Neurology, Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Eric van Diessen
- Department of Child Neurology, Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Yang S, Varghese P, Stephenson E, Tu K, Gronsbell J. Machine learning approaches for electronic health records phenotyping: a methodical review. J Am Med Inform Assoc 2023; 30:367-381. [PMID: 36413056 PMCID: PMC9846699 DOI: 10.1093/jamia/ocac216] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Accurate and rapid phenotyping is a prerequisite to leveraging electronic health records for biomedical research. While early phenotyping relied on rule-based algorithms curated by experts, machine learning (ML) approaches have emerged as an alternative to improve scalability across phenotypes and healthcare settings. This study evaluates ML-based phenotyping with respect to (1) the data sources used, (2) the phenotypes considered, (3) the methods applied, and (4) the reporting and evaluation methods used. MATERIALS AND METHODS We searched PubMed and Web of Science for articles published between 2018 and 2022. After screening 850 articles, we recorded 37 variables on 100 studies. RESULTS Most studies utilized data from a single institution and included information in clinical notes. Although chronic conditions were most commonly considered, ML also enabled the characterization of nuanced phenotypes such as social determinants of health. Supervised deep learning was the most popular ML paradigm, while semi-supervised and weakly supervised learning were applied to expedite algorithm development and unsupervised learning to facilitate phenotype discovery. ML approaches did not uniformly outperform rule-based algorithms, but deep learning offered a marginal improvement over traditional ML for many conditions. DISCUSSION Despite the progress in ML-based phenotyping, most articles focused on binary phenotypes and few articles evaluated external validity or used multi-institution data. Study settings were infrequently reported and analytic code was rarely released. CONCLUSION Continued research in ML-based phenotyping is warranted, with emphasis on characterizing nuanced phenotypes, establishing reporting and evaluation standards, and developing methods to accommodate misclassified phenotypes due to algorithm errors in downstream applications.
Collapse
Affiliation(s)
- Siyue Yang
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Ellen Stephenson
- Department of Family & Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen Tu
- Department of Family & Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Gronsbell
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Family & Community Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Adverse drug event detection using natural language processing: A scoping review of supervised learning methods. PLoS One 2023; 18:e0279842. [PMID: 36595517 PMCID: PMC9810201 DOI: 10.1371/journal.pone.0279842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
To reduce adverse drug events (ADEs), hospitals need a system to support them in monitoring ADE occurrence routinely, rapidly, and at scale. Natural language processing (NLP), a computerized approach to analyze text data, has shown promising results for the purpose of ADE detection in the context of pharmacovigilance. However, a detailed qualitative assessment and critical appraisal of NLP methods for ADE detection in the context of ADE monitoring in hospitals is lacking. Therefore, we have conducted a scoping review to close this knowledge gap, and to provide directions for future research and practice. We included articles where NLP was applied to detect ADEs in clinical narratives within electronic health records of inpatients. Quantitative and qualitative data items relating to NLP methods were extracted and critically appraised. Out of 1,065 articles screened for eligibility, 29 articles met the inclusion criteria. Most frequent tasks included named entity recognition (n = 17; 58.6%) and relation extraction/classification (n = 15; 51.7%). Clinical involvement was reported in nine studies (31%). Multiple NLP modelling approaches seem suitable, with Long Short Term Memory and Conditional Random Field methods most commonly used. Although reported overall performance of the systems was high, it provides an inflated impression given a steep drop in performance when predicting the ADE entity or ADE relation class. When annotating corpora, treating an ADE as a relation between a drug and non-drug entity seems the best practice. Future research should focus on semi-automated methods to reduce the manual annotation effort, and examine implementation of the NLP methods in practice.
Collapse
|
12
|
Procesamiento de lenguaje natural para texto clínico en español: el caso de las listas de espera en Chile. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [PMCID: PMC9704358 DOI: 10.1016/j.rmclc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
He L, Liu H, Yang Y, Wang B. A Multi-attention Collaborative Deep Learning Approach for Blood Pressure Prediction. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS 2022. [DOI: 10.1145/3471571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We develop a deep learning model based on Long Short-term Memory (LSTM) to predict blood pressure based on a unique data set collected from physical examination centers capturing comprehensive multi-year physical examination and lab results. In the Multi-attention Collaborative Deep Learning model (MAC-LSTM) we developed for this type of data, we incorporate three types of attention to generate more explainable and accurate results. In addition, we leverage information from similar users to enhance the predictive power of the model due to the challenges with short examination history. Our model significantly reduces predictive errors compared to several state-of-the-art baseline models. Experimental results not only demonstrate our model’s superiority but also provide us with new insights about factors influencing blood pressure. Our data is collected in a natural setting instead of a setting designed specifically to study blood pressure, and the physical examination items used to predict blood pressure are common items included in regular physical examinations for all the users. Therefore, our blood pressure prediction results can be easily used in an alert system for patients and doctors to plan prevention or intervention. The same approach can be used to predict other health-related indexes such as BMI.
Collapse
Affiliation(s)
- Luo He
- Department of Management Science and Engineering, Schoolof Economics and Management, Tsinghua University, Beijing, China
| | - Hongyan Liu
- Department of Management Science and Engineering, Schoolof Economics and Management, Tsinghua University, Beijing, China
| | - Yinghui Yang
- Graduate School of Management, University of California, California, USA
| | - Bei Wang
- School of Information, Renmin University of China, Beijing, China
| |
Collapse
|
14
|
Wang Y, Jeon H. 3D cell cultures toward quantitative high-throughput drug screening. Trends Pharmacol Sci 2022; 43:569-581. [DOI: 10.1016/j.tips.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/16/2023]
|
15
|
A contextual multi-task neural approach to medication and adverse events identification from clinical text. J Biomed Inform 2021; 125:103960. [PMID: 34875387 DOI: 10.1016/j.jbi.2021.103960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Effective wide-scale pharmacovigilance calls for accurate named entity recognition (NER) of medication entities such as drugs, dosages, reasons, and adverse drug events (ADE) from clinical text. The scarcity of adverse event annotations and underlying semantic ambiguities make accurate scope identification challenging. The current research explores integrating contextualized language models and multi-task learning from diverse clinical NER datasets to mitigate this challenge. We propose a novel multi-task adaptation method to refine the embeddings generated by the Bidirectional Encoder Representations from Transformers (BERT) language model to improve inter-task knowledge sharing. We integrated the adapted BERT model into a unique hierarchical multi-task neural network comprised of the medication and auxiliary clinical NER tasks. We validated the model using two different versions of BERT on diverse well-studied clinical tasks: Medication and ADE (n2c2 2018/n2c2 2009), Clinical Concepts (n2c2 2010/n2c2 2012), Disorders (ShAReCLEF 2013). Overall medication extraction performance enhanced by up to +1.19 F1 (n2c2 2018) while generalization enhanced by +5.38 F1 (n2c2 2009) as compared to standalone BERT baselines. ADE recognition enhanced significantly (McNemar's test), out-performing prior baselines. Similar benefits were observed on the auxiliary clinical and disorder tasks. We demonstrate that combining multi-dataset BERT adaptation and multi-task learning out-performs prior medication extraction methods without requiring additional features, newer training data, or ensembling. Taken together, the study contributes an initial case study towards integrating diverse clinical datasets in an end-to-end NER model for clinical decision support.
Collapse
|
16
|
An attentive joint model with transformer-based weighted graph convolutional network for extracting adverse drug event relation. J Biomed Inform 2021; 125:103968. [PMID: 34871807 DOI: 10.1016/j.jbi.2021.103968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022]
Abstract
Adverse drug event (ADE) relation extraction is a crucial task for drug safety surveillance which aims to discover potential relations between ADE mentions from unstructured medical texts. To date, the graph convolutional networks (GCN) have been the state-of-the-art solutions for improving the ability of relation extraction task. However, there are many challenging issues that should be addressed. Among these, the syntactic information is not fully exploited by GCN-based methods, especially the diversified dependency edges. Still, these methods fail to effectively extract complex relations that include nested, discontinuous and overlapping mentions. Besides, the task is primarily regarded as a classification problem where each candidate relation is treated independently which neglects the interaction between other relations. To deal with these issues, in this paper, we propose an attentive joint model with transformer-based weighted GCN for extracting ADE Relations, called ADERel. Firstly, the ADERel system formulates the ADE relation extraction task as an N-level sequence labelling so as to model the complex relations in different levels and capture greater interaction between relations. Then, it exploits our neural joint model to process the N-level sequences jointly. The joint model leverages the contextual and structural information by adopting a shared representation that combines a bidirectional encoder representation from transformers (BERT) and our proposed weighted GCN (WGCN). The latter assigns a score to each dependency edge within a sentence so as to capture rich syntactic features and determine the most influential edges for extracting ADE relations. Finally, the system employs a multi-head attention to exchange boundary knowledge across levels. We evaluate ADERel on two benchmark datasets from TAC 2017 and n2c2 2018 shared tasks. The experimental results show that ADERel is superior in performance compared with several state-of-the-art methods. The results also demonstrate that incorporating a transformer model with WGCN makes the proposed system more effective for extracting various types of ADE relations. The evaluations further highlight that ADERel takes advantage of joint learning, showing its effectiveness in recognizing complex relations.
Collapse
|
17
|
Vashishth S, Newman-Griffis D, Joshi R, Dutt R, Rosé CP. Improving broad-coverage medical entity linking with semantic type prediction and large-scale datasets. J Biomed Inform 2021; 121:103880. [PMID: 34390853 PMCID: PMC8952339 DOI: 10.1016/j.jbi.2021.103880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Biomedical natural language processing tools are increasingly being applied for broad-coverage information extraction-extracting medical information of all types in a scientific document or a clinical note. In such broad-coverage settings, linking mentions of medical concepts to standardized vocabularies requires choosing the best candidate concepts from large inventories covering dozens of types. This study presents a novel semantic type prediction module for biomedical NLP pipelines and two automatically-constructed, large-scale datasets with broad coverage of semantic types. METHODS We experiment with five off-the-shelf biomedical NLP toolkits on four benchmark datasets for medical information extraction from scientific literature and clinical notes. All toolkits adopt a staged approach of mention detection followed by two stages of medical entity linking: (1) generating a list of candidate concepts, and (2) picking the best concept among them. We introduce a semantic type prediction module to alleviate the problem of overgeneration of candidate concepts by filtering out irrelevant candidate concepts based on the predicted semantic type of a mention. We present MedType, a fully modular semantic type prediction model which we integrate into the existing NLP toolkits. To address the dearth of broad-coverage training data for medical information extraction, we further present WikiMed and PubMedDS, two large-scale datasets for medical entity linking. RESULTS Semantic type filtering improves medical entity linking performance across all toolkits and datasets, often by several percentage points of F-1. Further, pretraining MedType on our novel datasets achieves state-of-the-art performance for semantic type prediction in biomedical text. CONCLUSIONS Semantic type prediction is a key part of building accurate NLP pipelines for broad-coverage information extraction from biomedical text. We make our source code and novel datasets publicly available to foster reproducible research.
Collapse
Affiliation(s)
| | | | - Rishabh Joshi
- Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Ritam Dutt
- Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | - Carolyn P Rosé
- Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Bright RA, Rankin SK, Dowdy K, Blok SV, Bright SJ, Palmer LAM. Finding Potential Adverse Events in the Unstructured Text of Electronic Health Care Records: Development of the Shakespeare Method. JMIRX MED 2021; 2:e27017. [PMID: 37725533 PMCID: PMC10414364 DOI: 10.2196/27017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/03/2021] [Accepted: 05/01/2021] [Indexed: 09/21/2023]
Abstract
BACKGROUND Big data tools provide opportunities to monitor adverse events (patient harm associated with medical care) (AEs) in the unstructured text of electronic health care records (EHRs). Writers may explicitly state an apparent association between treatment and adverse outcome ("attributed") or state the simple treatment and outcome without an association ("unattributed"). Many methods for finding AEs in text rely on predefining possible AEs before searching for prespecified words and phrases or manual labeling (standardization) by investigators. We developed a method to identify possible AEs, even if unknown or unattributed, without any prespecifications or standardization of notes. Our method was inspired by word-frequency analysis methods used to uncover the true authorship of disputed works credited to William Shakespeare. We chose two use cases, "transfusion" and "time-based." Transfusion was chosen because new transfusion AE types were becoming recognized during the study data period; therefore, we anticipated an opportunity to find unattributed potential AEs (PAEs) in the notes. With the time-based case, we wanted to simulate near real-time surveillance. We chose time periods in the hope of detecting PAEs due to contaminated heparin from mid-2007 to mid-2008 that were announced in early 2008. We hypothesized that the prevalence of contaminated heparin may have been widespread enough to manifest in EHRs through symptoms related to heparin AEs, independent of clinicians' documentation of attributed AEs. OBJECTIVE We aimed to develop a new method to identify attributed and unattributed PAEs using the unstructured text of EHRs. METHODS We used EHRs for adult critical care admissions at a major teaching hospital (2001-2012). For each case, we formed a group of interest and a comparison group. We concatenated the text notes for each admission into one document sorted by date, and deleted replicate sentences and lists. We identified statistically significant words in the group of interest versus the comparison group. Documents in the group of interest were filtered to those words, followed by topic modeling on the filtered documents to produce topics. For each topic, the three documents with the maximum topic scores were manually reviewed to identify PAEs. RESULTS Topics centered around medical conditions that were unique to or more common in the group of interest, including PAEs. In each use case, most PAEs were unattributed in the notes. Among the transfusion PAEs was unattributed evidence of transfusion-associated cardiac overload and transfusion-related acute lung injury. Some of the PAEs from mid-2007 to mid-2008 were increased unattributed events consistent with AEs related to heparin contamination. CONCLUSIONS The Shakespeare method could be a useful supplement to AE reporting and surveillance of structured EHR data. Future improvements should include automation of the manual review process.
Collapse
Affiliation(s)
- Roselie A Bright
- US Food and Drug Administration, Silver Spring, MD, United States
| | | | | | | | - Susan J Bright
- US Food and Drug Administration, Rockville, MD, United States
| | | |
Collapse
|
19
|
Almeida JR, Silva JF, Matos S, Oliveira JL. A two-stage workflow to extract and harmonize drug mentions from clinical notes into observational databases. J Biomed Inform 2021; 120:103849. [PMID: 34214696 DOI: 10.1016/j.jbi.2021.103849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/04/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The content of the clinical notes that have been continuously collected along patients' health history has the potential to provide relevant information about treatments and diseases, and to increase the value of structured data available in Electronic Health Records (EHR) databases. EHR databases are currently being used in observational studies which lead to important findings in medical and biomedical sciences. However, the information present in clinical notes is not being used in those studies, since the computational analysis of this unstructured data is much complex in comparison to structured data. METHODS We propose a two-stage workflow for solving an existing gap in Extraction, Transformation and Loading (ETL) procedures regarding observational databases. The first stage of the workflow extracts prescriptions present in patient's clinical notes, while the second stage harmonises the extracted information into their standard definition and stores the resulting information in a common database schema used in observational studies. RESULTS We validated this methodology using two distinct data sets, in which the goal was to extract and store drug related information in a new Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) database. We analysed the performance of the used annotator as well as its limitations. Finally, we described some practical examples of how users can explore these datasets once migrated to OMOP CDM databases. CONCLUSION With this methodology, we were able to show a strategy for using the information extracted from the clinical notes in business intelligence tools, or for other applications such as data exploration through the use of SQL queries. Besides, the extracted information complements the data present in OMOP CDM databases which was not directly available in the EHR database.
Collapse
Affiliation(s)
- João Rafael Almeida
- DETI/IEETA, University of Aveiro, Aveiro, Portugal; Department of Computation, University of A Coruña, A Coruña, Spain.
| | | | - Sérgio Matos
- DETI/IEETA, University of Aveiro, Aveiro, Portugal.
| | | |
Collapse
|
20
|
Lybarger K, Ostendorf M, Thompson M, Yetisgen M. Extracting COVID-19 diagnoses and symptoms from clinical text: A new annotated corpus and neural event extraction framework. J Biomed Inform 2021; 117:103761. [PMID: 33781918 PMCID: PMC7997694 DOI: 10.1016/j.jbi.2021.103761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/02/2021] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic. Although much has been learned about the novel coronavirus since its emergence, there are many open questions related to tracking its spread, describing symptomology, predicting the severity of infection, and forecasting healthcare utilization. Free-text clinical notes contain critical information for resolving these questions. Data-driven, automatic information extraction models are needed to use this text-encoded information in large-scale studies. This work presents a new clinical corpus, referred to as the COVID-19 Annotated Clinical Text (CACT) Corpus, which comprises 1,472 notes with detailed annotations characterizing COVID-19 diagnoses, testing, and clinical presentation. We introduce a span-based event extraction model that jointly extracts all annotated phenomena, achieving high performance in identifying COVID-19 and symptom events with associated assertion values (0.83-0.97 F1 for events and 0.73-0.79 F1 for assertions). Our span-based event extraction model outperforms an extractor built on MetaMapLite for the identification of symptoms with assertion values. In a secondary use application, we predicted COVID-19 test results using structured patient data (e.g. vital signs and laboratory results) and automatically extracted symptom information, to explore the clinical presentation of COVID-19. Automatically extracted symptoms improve COVID-19 prediction performance, beyond structured data alone.
Collapse
Affiliation(s)
- Kevin Lybarger
- Biomedical & Health Informatics, University of Washington, Box 358047, Seattle, WA 98109, USA.
| | - Mari Ostendorf
- Department of Electrical & Computer Engineering, University of Washington, Campus Box 352500 185, Seattle, WA 98195-2500, USA
| | - Matthew Thompson
- Department of Family Medicine, University of Washington, Box 354696, Seattle, WA 98195-2500, USA
| | - Meliha Yetisgen
- Biomedical & Health Informatics, University of Washington, Box 358047, Seattle, WA 98109, USA
| |
Collapse
|
21
|
Jouffroy J, Feldman SF, Lerner I, Rance B, Burgun A, Neuraz A. Hybrid Deep Learning for Medication-Related Information Extraction From Clinical Texts in French: MedExt Algorithm Development Study. JMIR Med Inform 2021; 9:e17934. [PMID: 33724196 PMCID: PMC8077811 DOI: 10.2196/17934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 12/29/2020] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Information related to patient medication is crucial for health care; however, up to 80% of the information resides solely in unstructured text. Manual extraction is difficult and time-consuming, and there is not a lot of research on natural language processing extracting medical information from unstructured text from French corpora. OBJECTIVE We aimed to develop a system to extract medication-related information from clinical text written in French. METHODS We developed a hybrid system combining an expert rule-based system, contextual word embedding (embedding for language model) trained on clinical notes, and a deep recurrent neural network (bidirectional long short term memory-conditional random field). The task consisted of extracting drug mentions and their related information (eg, dosage, frequency, duration, route, condition). We manually annotated 320 clinical notes from a French clinical data warehouse to train and evaluate the model. We compared the performance of our approach to those of standard approaches: rule-based or machine learning only and classic word embeddings. We evaluated the models using token-level recall, precision, and F-measure. RESULTS The overall F-measure was 89.9% (precision 90.8; recall: 89.2) when combining expert rules and contextualized embeddings, compared to 88.1% (precision 89.5; recall 87.2) without expert rules or contextualized embeddings. The F-measures for each category were 95.3% for medication name, 64.4% for drug class mentions, 95.3% for dosage, 92.2% for frequency, 78.8% for duration, and 62.2% for condition of the intake. CONCLUSIONS Associating expert rules, deep contextualized embedding, and deep neural networks improved medication information extraction. Our results revealed a synergy when associating expert knowledge and latent knowledge.
Collapse
Affiliation(s)
- Jordan Jouffroy
- Department of Biomedical Informatics, Necker-Enfants malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMRS 1138 team 22, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Sarah F Feldman
- Department of Biomedical Informatics, Necker-Enfants malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMRS 1138 team 22, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Ivan Lerner
- Department of Biomedical Informatics, Necker-Enfants malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMRS 1138 team 22, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Bastien Rance
- UMRS 1138 team 22, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
- Department of Biomedical Informatics, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anita Burgun
- Department of Biomedical Informatics, Necker-Enfants malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMRS 1138 team 22, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Antoine Neuraz
- Department of Biomedical Informatics, Necker-Enfants malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UMRS 1138 team 22, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| |
Collapse
|
22
|
Santiso S, Pérez A, Casillas A. Adverse Drug Reaction extraction: Tolerance to entity recognition errors and sub-domain variants. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 199:105891. [PMID: 33333368 DOI: 10.1016/j.cmpb.2020.105891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Sara Santiso
- IXA research group, University of the Basque Country (UPV/EHU) Manuel Lardizabal 1, 20080 Donostia, Spain.
| | - Alicia Pérez
- IXA research group, University of the Basque Country (UPV/EHU) Manuel Lardizabal 1, 20080 Donostia, Spain.
| | - Arantza Casillas
- IXA research group, University of the Basque Country (UPV/EHU) Manuel Lardizabal 1, 20080 Donostia, Spain.
| |
Collapse
|
23
|
Decker BM, Hill CE, Baldassano SN, Khankhanian P. Can antiepileptic efficacy and epilepsy variables be studied from electronic health records? A review of current approaches. Seizure 2021; 85:138-144. [PMID: 33461032 DOI: 10.1016/j.seizure.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
As automated data extraction and natural language processing (NLP) are rapidly evolving, improving healthcare delivery by harnessing large data is garnering great interest. Assessing antiepileptic drug (AED) efficacy and other epilepsy variables pertinent to healthcare delivery remain a critical barrier to improving patient care. In this systematic review, we examined automatic electronic health record (EHR) extraction methodologies pertinent to epilepsy. We also reviewed more generalizable NLP pipelines to extract other critical patient variables. Our review found varying reports of performance measures. Whereas automated data extraction pipelines are a crucial advancement, this review calls attention to standardizing NLP methodology and accuracy reporting for greater generalizability. Moreover, the use of crowdsourcing competitions to spur innovative NLP pipelines would further advance this field.
Collapse
Affiliation(s)
- Barbara M Decker
- Center for Neuroengineering and Therapeutics, Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, United States.
| | - Chloé E Hill
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, United States
| | - Steven N Baldassano
- Center for Neuroengineering and Therapeutics, Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, United States
| | - Pouya Khankhanian
- Center for Neuroengineering and Therapeutics, Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, United States
| |
Collapse
|
24
|
Chen L, Fu W, Gu Y, Sun Z, Li H, Li E, Jiang L, Gao Y, Huang Y. Clinical concept normalization with a hybrid natural language processing system combining multilevel matching and machine learning ranking. J Am Med Inform Assoc 2020; 27:1576-1584. [PMID: 33029642 PMCID: PMC7647369 DOI: 10.1093/jamia/ocaa155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Normalizing clinical mentions to concepts in standardized medical terminologies, in general, is challenging due to the complexity and variety of the terms in narrative medical records. In this article, we introduce our work on a clinical natural language processing (NLP) system to automatically normalize clinical mentions to concept unique identifier in the Unified Medical Language System. This work was part of the 2019 n2c2 (National NLP Clinical Challenges) Shared-Task and Workshop on Clinical Concept Normalization. MATERIALS AND METHODS We developed a hybrid clinical NLP system that combines a generic multilevel matching framework, customizable matching components, and machine learning ranking systems. We explored 2 machine leaning ranking systems based on either ensemble of various similarity features extracted from pretrained encoders or a Siamese attention network, targeting at efficient and fast semantic searching/ranking. Besides, we also evaluated the performance of a general-purpose clinical NLP system based on Unstructured Information Management Architecture. RESULTS The systems were evaluated as part of the 2019 n2c2 challenge, and our original best system in the challenge obtained an accuracy of 0.8101, ranked fifth in the challenge. The improved system with newly designed machine learning ranking based on Siamese attention network improved the accuracy to 0.8209. CONCLUSIONS We demonstrate the successful practice of combining multilevel matching and machine learning ranking for clinical concept normalization. Our results indicate the capability and interpretability of our proposed approach, as well as the limitation, suggesting the opportunities of achieving better performance by combining general clinical NLP systems.
Collapse
Affiliation(s)
- Long Chen
- Med Data Quest, San Diego, California, USA
| | - Wenbo Fu
- Med Data Quest, San Diego, California, USA
| | - Yu Gu
- Med Data Quest, San Diego, California, USA
| | | | - Haodan Li
- Med Data Quest, San Diego, California, USA
| | - Enyu Li
- Med Data Quest, San Diego, California, USA
| | - Li Jiang
- Med Data Quest, San Diego, California, USA
| | - Yuan Gao
- Med Data Quest, San Diego, California, USA
| | - Yang Huang
- Med Data Quest, San Diego, California, USA
| |
Collapse
|
25
|
Dandala B, Joopudi V, Tsou CH, Liang JJ, Suryanarayanan P. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models. JMIR Med Inform 2020; 8:e18417. [PMID: 32459650 PMCID: PMC7382020 DOI: 10.2196/18417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND An adverse drug event (ADE) is commonly defined as "an injury resulting from medical intervention related to a drug." Providing information related to ADEs and alerting caregivers at the point of care can reduce the risk of prescription and diagnostic errors and improve health outcomes. ADEs captured in structured data in electronic health records (EHRs) as either coded problems or allergies are often incomplete, leading to underreporting. Therefore, it is important to develop capabilities to process unstructured EHR data in the form of clinical notes, which contain a richer documentation of a patient's ADE. Several natural language processing (NLP) systems have been proposed to automatically extract information related to ADEs. However, the results from these systems showed that significant improvement is still required for the automatic extraction of ADEs from clinical notes. OBJECTIVE This study aims to improve the automatic extraction of ADEs and related information such as drugs, their attributes, and reason for administration from the clinical notes of patients. METHODS This research was conducted using discharge summaries from the Medical Information Mart for Intensive Care III (MIMIC-III) database obtained through the 2018 National NLP Clinical Challenges (n2c2) annotated with drugs, drug attributes (ie, strength, form, frequency, route, dosage, duration), ADEs, reasons, and relations between drugs and other entities. We developed a deep learning-based system for extracting these drug-centric concepts and relations simultaneously using a joint method enhanced with contextualized embeddings, a position-attention mechanism, and knowledge representations. The joint method generated different sentence representations for each drug, which were then used to extract related concepts and relations simultaneously. Contextualized representations trained on the MIMIC-III database were used to capture context-sensitive meanings of words. The position-attention mechanism amplified the benefits of the joint method by generating sentence representations that capture long-distance relations. Knowledge representations were obtained from graph embeddings created using the US Food and Drug Administration Adverse Event Reporting System database to improve relation extraction, especially when contextual clues were insufficient. RESULTS Our system achieved new state-of-the-art results on the n2c2 data set, with significant improvements in recognizing crucial drug-reason (F1=0.650 versus F1=0.579) and drug-ADE (F1=0.490 versus F1=0.476) relations. CONCLUSIONS This study presents a system for extracting drug-centric concepts and relations that outperformed current state-of-the-art results and shows that contextualized embeddings, position-attention mechanisms, and knowledge graph embeddings effectively improve deep learning-based concepts and relation extraction. This study demonstrates the potential for deep learning-based methods to help extract real-world evidence from unstructured patient data for drug safety surveillance.
Collapse
|