1
|
Kanjanaruch C, Bochantin KA, Dávila Ruiz BJ, Syring J, Entzie Y, King L, Borowicz PP, Crouse MS, Caton JS, Dahlen CR, Ward AK, Reynolds LP. One-carbon metabolite supplementation to nutrient-restricted beef heifers affects placental vascularity during early pregnancy. J Anim Sci 2024; 102:skae044. [PMID: 38407272 PMCID: PMC10907004 DOI: 10.1093/jas/skae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
We hypothesized that restricted maternal nutrition and supplementation of one-carbon metabolites (OCM; methionine, folate, choline, and vitamin B12) would affect placental vascular development during early pregnancy. A total of 43 cows were bred, and 32 heifers successfully became pregnant with female calves, leading to the formation of four treatment groups: CON - OCM (n = 8), CON + OCM (n = 7), RES - OCM (n = 9), and RES + OCM (n = 8). The experimental design was a 2 × 2 factorial, with main factors of dietary intake affecting average daily gain: control (CON; 0.6 kg/d ADG) and restricted (RES; -0.23 kg/d ADG); and OCM supplementation (+OCM) in which the heifers were supplemented with rumen-protected methionine (7.4 g/d) and choline (44.4 g/d) and received weekly injections of 320 mg of folate and 20 mg of vitamin B12, or received no supplementation (-OCM; corn carrier and saline injections). Heifers were individually fed and randomly assigned to treatment at breeding (day 0). Placentomes were collected on day 63 of gestation (0.225 of gestation). Fluorescent staining with CD31 and CD34 combined with image analysis was used to determine the vascularity of the placenta. Images were analyzed for capillary area density (CAD) and capillary number density (CND). Areas evaluated included fetal placental cotyledon (COT), maternal placental caruncle (CAR), whole placentome (CAR + COT), intercotyledonary fetal membranes (ICOT, or chorioallantois), intercaruncular endometrium (ICAR), and endometrial glands (EG). Data were analyzed with the GLM procedure of SAS, with heifer as the experimental unit and significance at P ≤ 0.05 and a tendency at P > 0.05 and P < 0.10. Though no gain × OCM interactions existed (P ≥ 0.10), OCM supplementation increased (P = 0.01) CAD of EG, whereas nutrient restriction tended (P < 0.10) to increase CAD of ICOT and CND of COT. Additionally, there was a gain × OCM interaction (P < 0.05) for CAD within the placentome and ICAR, such that RES reduced and supplementation of RES with OCM restored CAD. These results indicate that maternal rate of gain and OCM supplementation affected placental vascularization (capillary area and number density), which could affect placental function and thus the efficiency of nutrient transfer to the fetus during early gestation.
Collapse
Affiliation(s)
- Chutikun Kanjanaruch
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Kerri A Bochantin
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Bethania J Dávila Ruiz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Jessica Syring
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Yssi Entzie
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Layla King
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Alison K Ward
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lawrence P Reynolds
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
2
|
Reynolds LP, Dahlen CR, Ward AK, Crouse MS, Borowicz PP, Davila-Ruiz BJ, Kanjanaruch C, Bochantin KA, McLean KJ, McCarthy KL, Menezes ACB, Diniz WJS, Cushman RA, Caton JS. Role of the placenta in developmental programming: Observations from models using large animals. Anim Reprod Sci 2023; 257:107322. [PMID: 37696224 PMCID: PMC10591737 DOI: 10.1016/j.anireprosci.2023.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Developmental programming, which proposes that "insults" or "stressors" during intrauterine or postnatal development can have not only immediate but also long-term consequences for healthy and productivity, has emerged as a major biological principle, and based on studies in many animal species also seems to be a universal phenomenon. In eutherians, the placenta appears to be programmed during its development, which has consequences for fetal growth and development throughout pregnancy, and likewise has long-term consequences for postnatal development, leading to programming of organ function of the offspring even into adulthood. This review summarizes our current understanding of the placenta's role in developmental programming, the mechanisms involved, and the challenges remaining.
Collapse
Affiliation(s)
- L P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - C R Dahlen
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - A K Ward
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - M S Crouse
- Nutrition, Growth, and Physiology Research Unit, USDA/Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - P P Borowicz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - B J Davila-Ruiz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - C Kanjanaruch
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - K A Bochantin
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - K J McLean
- Department of Animal Science, University of Tennessee Knoxville, Knoxville, TN 37996-4500, USA
| | - K L McCarthy
- Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE 68583-0908, USA
| | - A C B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57006, USA
| | - W J S Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36832, USA
| | - R A Cushman
- Nutrition, Growth, and Physiology Research Unit, USDA/Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - J S Caton
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
3
|
Syring JG, Crouse MS, Neville TL, Ward AK, Dahlen CR, Reynolds LP, Borowicz PP, McLean KJ, Neville BW, Caton JS. Concentrations of vitamin B12 and folate in maternal serum and fetal fluids, metabolite interrelationships, and hepatic transcript abundance of key folate and methionine cycle genes: the impacts of maternal nutrition during the first 50 d of gestation. J Anim Sci 2023; 101:skad139. [PMID: 37129588 PMCID: PMC10199783 DOI: 10.1093/jas/skad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Adequate maternal nutrition is key for proper fetal development and epigenetic programming. One-carbon metabolites (OCM), including vitamin B12, folate, choline, and methionine, play a role in epigenetic mechanisms associated with developmental programming. This study investigated the presence of B12 and folate in maternal serum, allantoic fluid (ALF), and amniotic fluid (AMF), as well as how those concentrations in all three fluids correlate to the concentrations of methionine-folate cycle intermediates in heifers receiving either a control (CON) or restricted (RES) diet for the first 50 d of gestation and fetal hepatic gene expression for methionine-folate cycle enzymes. Angus cross heifers (n = 43) were estrus synchronized, bred via artificial insemination with semen from a single sire, and randomly assigned to one of two nutrition treatments (CON = 20, RES = 23). Heifers were ovariohysterectomized on either day 16 (n = 14), 34 (n = 15), or 50 of gestation (n = 14), where samples of maternal serum (n = 42), ALF (n = 29), and AMF (n = 11) were collected and analyzed for concentrations of folate and B12. Concentrations of B12 and folate in ALF were greater (P < 0.05) in RES compared to CON. For ALF, folate concentrations were also greater (P < 0.01) on day 34 compared to day 50. There was a significant (P = 0.04) nutrition × fluid interaction for B12 concentrations where concentrations were greatest in restricted ALF, intermediate in control ALF, and lowest in CON and RES serum and AMF. Folate concentrations were greatest (P < 0.01) in ALF, intermediate in serum, and lowest in AMF. Additionally, positive correlations (P < 0.05) were found between ALF and AMF folate concentrations and AMF concentrations of methionine, serine, and glycine. Negative correlations (P < 0.05) between AMF folate and serum homocysteine were also observed. Both positive and negative correlations (P < 0.05) depending on the fluid evaluated were found between B12 and methionine, serine, and glycine concentrations. There was a downregulation (P = 0.05) of dihydrofolate reductase and upregulation (P = 0.03) of arginine methyltransferase 7 gene expression in RES fetal liver samples compared with CON fetal liver on day 50. Combined, these data show restricted maternal nutrition results in increased B12 and folate concentrations present in fetal fluids, and increased expression of genes for enzymes within one-carbon metabolism.
Collapse
Affiliation(s)
- Jessica G Syring
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Tammi L Neville
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Alison K Ward
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Lawrence P Reynolds
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Pawel P Borowicz
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Bryan W Neville
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Joel S Caton
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
4
|
Swanson R, Contreras-Correa Z, Dinh T, King H, Sidelinger D, Burnett D, Lemley C. Melatonin Supplementation Alters Maternal and Fetal Amino Acid Concentrations and Placental Nutrient Transporters in a Nutrient Restriction Bovine Model. Metabolites 2022; 12:metabo12121208. [PMID: 36557248 PMCID: PMC9782144 DOI: 10.3390/metabo12121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Melatonin rescues uterine blood flow and fetal body weight in a seasonal dependent manner within a nutrient restriction bovine model. We sought to identify the effects of nutrient restriction, melatonin, and sampling time on maternal and fetal amino acids, and placental nutrient transporters. Pregnant heifers received adequate or restricted nutrition, and 20 mg of melatonin or placebo from gestational days 160-240 over two seasons. On day 240 maternal and fetal blood, amnion, and placentomes were collected. Amino acid concentrations were determined by gas chromatography-mass spectrometry. Caruncle and cotyledon tissues were assessed for nutrient transporter density by qPCR. Data were analyzed using the MIXED procedure of SAS for fixed effects. In fall, melatonin rescued effects of nutrient restriction on System N, Anion, and total maternal amino acids. Furthermore, melatonin rescued effects of nutrient restriction on Systems A, N, Br, Bo, and essential amnion amino acids. In summer, melatonin rescued effects of nutrient restriction in Systems Br and Bo maternal amino acids. Furthermore, melatonin rescued effects of nutrient restriction on caruncle SLC38A10 and SLC38A2. Melatonin rescued effects of nutrient restriction in a seasonal dependent manner. These data align with previous studies suggesting melatonin is a more effective therapeutic in summer months.
Collapse
Affiliation(s)
- Rebecca Swanson
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Zully Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Thu Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Heath King
- College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Darcie Sidelinger
- College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Derris Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Caleb Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
- Correspondence: ; Tel.: +1-662-325-2934
| |
Collapse
|
5
|
Reynolds LP, Diniz WJS, Crouse MS, Caton JS, Dahlen CR, Borowicz PP, Ward AK. Maternal nutrition and developmental programming of offspring. Reprod Fertil Dev 2022; 35:19-26. [PMID: 36592977 DOI: 10.1071/rd22234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental programming is the concept that 'stressors' during development (i.e. pregnancy, the perinatal period and infancy) can cause long-term changes in gene expression, leading to altered organ structure and function. Such long-term changes are associated with an increased risk of a host of chronic pathologies, or non-communicable diseases including abnormal growth and body composition, behavioural or cognitive dysfunction, metabolic abnormalities, and cardiovascular, gastro-intestinal, immune, musculoskeletal and reproductive dysfunction. Maternal nutrition during the periconceptual period, pregnancy and postnatally can have profound influences on the developmental program. Animal models, including domestic livestock species, have been important for defining the mechanisms and consequences of developmental programming. One of the important observations is that maternal nutritional status and other maternal stressors (e.g. environmental temperature, high altitude, maternal age and breed, multiple fetuses, etc.) early in pregnancy and even periconceptually can affect not only embryonic/fetal development but also placental development. Indeed, altered placental function may underlie the effects of many maternal stressors on fetal growth and development. We suggest that future directions should focus on the consequences of developmental programming during the offspring's life course and for subsequent generations. Other important future directions include evaluating interventions, such as strategic dietary supplementation, and also determining how we can take advantage of the positive, adaptive aspects of developmental programming.
Collapse
Affiliation(s)
- Lawrence P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | - Matthew S Crouse
- Nutrition, Growth, and Physiology Research Unit, USDA/Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Joel S Caton
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Pawel P Borowicz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Alison K Ward
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
6
|
Nutritional Regulation of Embryonic Survival, Growth, and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:63-76. [PMID: 34807437 DOI: 10.1007/978-3-030-85686-1_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maternal nutritional status affects conceptus development and, therefore, embryonic survival, growth, and development. These effects are apparent very early in pregnancy, which is when most embryonic losses occur. Maternal nutritional status has been shown to affect conceptus growth and gene expression throughout the periconceptual period of pregnancy (the period immediately before and after conception). Thus, the periconceptual period may be an important "window" during which the structure and function of the fetus and the placenta are "programmed" by stressors such as maternal malnutrition, which can have long-term consequences for the health and well-being of the offspring, a concept often referred to as Developmental Origins of Health and Disease (DOHaD) or simply developmental programming. In this review, we focus on recent studies, using primarily animal models, to examine the effects of various maternal "stressors," but especially maternal malnutrition and Assisted Reproductive Techniques (ART, including in vitro fertilization, cloning, and embryo transfer), during the periconceptual period of pregnancy on conceptus survival, growth, and development. We also examine the underlying mechanisms that have been uncovered in these recent studies, such as effects on the development of both the placenta and fetal organs. We conclude with our view of future research directions in this critical area of investigation.
Collapse
|
7
|
Dahlen CR, Borowicz PP, Ward AK, Caton JS, Czernik M, Palazzese L, Loi P, Reynolds LP. Programming of Embryonic Development. Int J Mol Sci 2021; 22:11668. [PMID: 34769097 PMCID: PMC8583791 DOI: 10.3390/ijms222111668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Assisted reproductive techniques (ART) and parental nutritional status have profound effects on embryonic/fetal and placental development, which are probably mediated via "programming" of gene expression, as reflected by changes in their epigenetic landscape. Such epigenetic changes may underlie programming of growth, development, and function of fetal organs later in pregnancy and the offspring postnatally, and potentially lead to long-term changes in organ structure and function in the offspring as adults. This latter concept has been termed developmental origins of health and disease (DOHaD), or simply developmental programming, which has emerged as a major health issue in animals and humans because it is associated with an increased risk of non-communicable diseases in the offspring, including metabolic, behavioral, and reproductive dysfunction. In this review, we will briefly introduce the concept of developmental programming and its relationship to epigenetics. We will then discuss evidence that ART and periconceptual maternal and paternal nutrition may lead to epigenetic alterations very early in pregnancy, and how each pregnancy experiences developmental programming based on signals received by and from the dam. Lastly, we will discuss current research on strategies designed to overcome or minimize the negative consequences or, conversely, to maximize the positive aspects of developmental programming.
Collapse
Affiliation(s)
- Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Pawel P. Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Alison K. Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Joel S. Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.C.); (P.L.)
| | - Luca Palazzese
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (M.C.); (P.L.)
| | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA; (C.R.D.); (P.P.B.); (A.K.W.); (J.S.C.)
| |
Collapse
|
8
|
Menezes ACB, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam S, Neville TL, Ward AK, Borowicz PP, Reynolds LP, Sedivec KK, Forcherio JC, Scott R, Caton JS, Dahlen CR. Vitamin and mineral supplementation and rate of gain during the first trimester of gestation affect concentrations of amino acids in maternal serum and allantoic fluid of beef heifers. J Anim Sci 2021; 99:6119706. [PMID: 33493276 DOI: 10.1093/jas/skab024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to evaluate the effects of feeding vitamin and mineral (VTM) supplement and (or) rate of gain (GAIN) during early gestation on amino acid (AA) concentrations in allantoic fluid (ALF) and amniotic fluid (AMF) and maternal serum. Seventy-two crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement with main effects of VTM supplement (VTM or NoVTM) and rate of gain (GAIN; low gain [LG], 0.28 kg/d, vs. moderate gain [MG], 0.79 kg/d). The VTM treatment (113 g•heifer-1•d-1, provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM in Nutrient requirements of beef cattle. Washington, DC: The National Academies Press. doi:10.17226/19014, 2016) was initiated 71 to 148 d before artificial insemination (AI). To complete the factorial arrangement of treatments, at breeding heifers were either maintained on the basal diet (LG), or received MG diet which was implemented by adding a protein/energy supplement to the LG diet. Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and maternal serum, ALF, and AMF were collected. Samples were analyzed for concentrations of neutral AA: Ala, Asn, Cys, Gln, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val; cationic AA: Arg, His, and Lys; and anionic AA: Asp and Glu. In serum, a VTM × GAIN interaction (P = 0.02) was observed for Glu, with greater concentrations for VTM-LG than VTM-MG. Concentrations of serum Cys, Met, and Trp were greater (P ≤ 0.03) for MG than LG. In ALF, concentrations of Glu were affected by a VTM × GAIN interaction, where VTM-MG was greater (P < 0.01) than all other treatments. Further, ALF from VTM had increased (P ≤ 0.05) concentrations of His, Asp, and 12 of the 14 neutral AA; whereas GAIN affected concentrations of Arg, Cys, and Asp, with greater concentrations (P ≤ 0.05) in MG heifers. In AMF, AA concentrations were not affected (P ≥ 0.10) by VTM, GAIN, or their interaction. In conclusion, increased concentrations of AA in maternal serum and ALF of beef heifers were observed at d 83 of gestation in response to VTM supplementation and rate of gain of 0.79 kg/d, which raises important questions regarding the mechanisms responsible for AA uptake and balance between the maternal circulation and fetal fluid compartments.
Collapse
Affiliation(s)
- Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Kacie L McCarthy
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Cierrah J Kassetas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Sheri Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Tammi L Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Kevin K Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, USA
| | | | - Ronald Scott
- Purina Animal Nutrition LLC, Gray Summit, MO, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
9
|
Menezes ACB, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam S, Neville TL, Ward AK, Borowicz PP, Reynolds LP, Sedivec KK, Forcherio JC, Scott R, Caton JS, Dahlen CR. Vitamin and mineral supplementation and rate of gain during the first trimester of gestation affect concentrations of amino acids in maternal serum and allantoic fluid of beef heifers. J Anim Sci 2021. [PMID: 33493276 DOI: 10.17226/19014] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate the effects of feeding vitamin and mineral (VTM) supplement and (or) rate of gain (GAIN) during early gestation on amino acid (AA) concentrations in allantoic fluid (ALF) and amniotic fluid (AMF) and maternal serum. Seventy-two crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement with main effects of VTM supplement (VTM or NoVTM) and rate of gain (GAIN; low gain [LG], 0.28 kg/d, vs. moderate gain [MG], 0.79 kg/d). The VTM treatment (113 g•heifer-1•d-1, provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM in Nutrient requirements of beef cattle. Washington, DC: The National Academies Press. doi:10.17226/19014, 2016) was initiated 71 to 148 d before artificial insemination (AI). To complete the factorial arrangement of treatments, at breeding heifers were either maintained on the basal diet (LG), or received MG diet which was implemented by adding a protein/energy supplement to the LG diet. Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and maternal serum, ALF, and AMF were collected. Samples were analyzed for concentrations of neutral AA: Ala, Asn, Cys, Gln, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val; cationic AA: Arg, His, and Lys; and anionic AA: Asp and Glu. In serum, a VTM × GAIN interaction (P = 0.02) was observed for Glu, with greater concentrations for VTM-LG than VTM-MG. Concentrations of serum Cys, Met, and Trp were greater (P ≤ 0.03) for MG than LG. In ALF, concentrations of Glu were affected by a VTM × GAIN interaction, where VTM-MG was greater (P < 0.01) than all other treatments. Further, ALF from VTM had increased (P ≤ 0.05) concentrations of His, Asp, and 12 of the 14 neutral AA; whereas GAIN affected concentrations of Arg, Cys, and Asp, with greater concentrations (P ≤ 0.05) in MG heifers. In AMF, AA concentrations were not affected (P ≥ 0.10) by VTM, GAIN, or their interaction. In conclusion, increased concentrations of AA in maternal serum and ALF of beef heifers were observed at d 83 of gestation in response to VTM supplementation and rate of gain of 0.79 kg/d, which raises important questions regarding the mechanisms responsible for AA uptake and balance between the maternal circulation and fetal fluid compartments.
Collapse
Affiliation(s)
- Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Kacie L McCarthy
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Cierrah J Kassetas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Sheri Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Tammi L Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Kevin K Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, USA
| | | | - Ronald Scott
- Purina Animal Nutrition LLC, Gray Summit, MO, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
10
|
Crouse MS, McLean KJ, Dwamena J, Neville TL, Menezes ACB, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS. The effects of maternal nutrition during the first 50 d of gestation on the location and abundance of hexose and cationic amino acid transporters in beef heifer uteroplacental tissues. J Anim Sci 2021; 99:skaa386. [PMID: 33247721 PMCID: PMC7799587 DOI: 10.1093/jas/skaa386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that maternal nutrition during the first 50 d of gestation would influence the abundance of hexose transporters, SLC2A1, SLC2A3, and SLC2A5, and cationic amino acid transporters, SLC7A1 and SLC7A2, in heifer uteroplacental tissues. Angus-cross heifers (n = 43) were estrus synchronized, bred via artificial insemination, and assigned at breeding to 1 of 2 dietary intake groups (CON = 100% of requirements to achieve 0.45 kg/d of BW gain or RES = 60% of CON intake) and ovariohysterectomized on day 16, 34, or 50 of gestation (n = 6 to 9/d) in a completely randomized design with a 2 × 3 factorial arrangement of treatments. Uterine cross-sections were collected from the horn ipsilateral to the corpus luteum, fixed in 10% neutral buffered formalin, sectioned at 5 µm, and stained via immunofluorescence for transporters. For each image, areas of fetal membrane (FM; chorioallantois), luminal epithelium (ENDO), superficial glands (SG), deep glands (DG), and myometrium (MYO) were analyzed separately for relative intensity of fluorescence as an indicator of transporter abundance. Analysis of FM was only conducted for days 34 and 50. No transporters in target areas were influenced by a day × treatment interaction (P ≥ 0.06). In ENDO, all transporters were differentially abundant from days 16 to 50 of gestation (P ≤ 0.04), and SLC7A2 was greater (P = 0.05) for RES vs. CON. In SG, SLC7A1 and SLC7A2 were greater (P ≤ 0.04) at day 34 vs. day 16. In DG, SLC2A3 and SLC7A1 were greater (P ≤ 0.05) for CON vs. RES heifers; furthermore, SLC7A1 was greater (P < 0.01) at day 50 vs. days 16 and 34 of gestation. In MYO, SLC7A1 was greater (P < 0.01) for CON vs. RES and was greater (P = 0.02) at days 34 and 50 vs. day 16. There were no differences in FM (P ≥ 0.06). Analysis of all uterine tissues at day 16 determined that SLC2A1, SLC2A3, and SLC7A2 were all differentially abundant across uterine tissue type (P < 0.01), and SLC7A1 was greater (P = 0.02) for CON vs. RES. Analysis of all uteroplacental tissues at days 34 and 50 demonstrated that all transporters differed (P < 0.01) across uteroplacental tissues, and SLC7A1 was greater (P < 0.01) for CON vs. RES. These data are interpreted to imply that transporters are differentially affected by day of gestation, and that hexose and cationic amino acid transporters are differentially abundant across utero-placental tissue types, and that SLC7A1 is responsive to maternal nutritional treatment.
Collapse
Affiliation(s)
- Matthew S Crouse
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Josephine Dwamena
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Tammi L Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND
| |
Collapse
|
11
|
Caton JS, Crouse MS, McLean KJ, Dahlen CR, Ward AK, Cushman RA, Grazul-Bilska AT, Neville BW, Borowicz PP, Reynolds LP. Maternal periconceptual nutrition, early pregnancy, and developmental outcomes in beef cattle. J Anim Sci 2020; 98:skaa358. [PMID: 33165531 PMCID: PMC7718859 DOI: 10.1093/jas/skaa358] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The focus of this review is maternal nutrition during the periconceptual period and offspring developmental outcomes in beef cattle, with an emphasis on the first 50 d of gestation, which represents the embryonic period. Animal agriculture in general, and specifically the beef cattle industry, currently faces immense challenges. The world needs to significantly increase its output of animal food products by 2050 and beyond to meet the food security and agricultural sustainability needs of the rapidly growing human population. Consequently, efficient and sustainable approaches to livestock production are essential. Maternal nutritional status is a major factor that leads to developmental programming of offspring outcomes. Developmental programming refers to the influence of pre-and postnatal factors, such as inappropriate maternal nutrition, that affect growth and development and result in long-term consequences for health and productivity of the offspring. In this review, we discuss recent studies in which we and others have addressed the questions, "Is development programmed periconceptually?" and, if so, "Does it matter practically to the offspring in production settings?" The reviewed studies have demonstrated that the periconceptual period is important not only for pregnancy establishment but also may be a critical period during which fetal, placental, and potentially postnatal development and function are programmed. The evidence for fetal and placental programming during the periconceptual period is strong and implies that research efforts to mitigate the negative and foster the positive benefits of developmental programming need to include robust investigative efforts during the periconceptual period to better understand the implications for life-long health and productivity.
Collapse
Affiliation(s)
- Joel S Caton
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Anna T Grazul-Bilska
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Pawel P Borowicz
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Lawrence P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|