1
|
Badhan A, Wang Y, Terry S, Gruninger R, Guan LL, McAllister TA. Interplay of rumen microbiome and the cattle host in modulating feed efficiency and methane emissions. J Dairy Sci 2025:S0022-0302(25)00216-4. [PMID: 40221043 DOI: 10.3168/jds.2024-26063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/04/2025] [Indexed: 04/14/2025]
Abstract
Given that the majority of energy and protein supplied to cattle arises as a result of ruminal fermentation, the rumen microbiome plays a key role in determining host feed efficiency and methane (CH4) emissions. Some reports suggests that a less diverse rumen microbiome is associated with improved feed efficiency, while other studies suggest that microbial diversity does not differ between low- and high-efficiency cattle of the same breed, fed identical diets. While reducing enteric CH4 emissions offers a dual benefit in terms of improved feed efficiency and a reduced environmental footprint; recent findings indicate that these outcomes are not always consistent in ruminants. The composition of the rumen microbiome is mainly determined by diet but is also influenced by host genetics and physiological parameters such as rumen volume, rate of passage and rumination. Reduced microbial diversity may impair the ability of cattle to adapt to frequent changes in diet and the environment. Hydrogen exchange and capture are the energetic foundation of the rumen microbiome, and considerable resources have been invested in developing additives that redirect hydrogen flow toward alternative sinks and away from the reduction of CO2 to CH4. These additives reduce enteric CH4 emissions by 30-80%, yet the anticipated gains in feed efficiency remain inconsistent. Strategies to improve the feed efficiency of cattle production must consider the multifaceted interactions among the host, rumen microbiome, and diet to ensure the sustainable intensification of cattle production while maintaining the social license for milk and meat production.
Collapse
Affiliation(s)
- Ajay Badhan
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - Yue Wang
- Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC
| | - Stephanie Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - Robert Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - Le Luo Guan
- Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada T1J 4B1.
| |
Collapse
|
2
|
Hai C, Wang L, Wu D, Pei D, Yang Y, Liu X, Zhao Y, Bai C, Su G, Bao Z, Yang L, Li G. Loss of Myostatin leads to low production of CH 4 by altering rumen microbiota and metabolome in cattle. Int J Biol Macromol 2025; 294:139533. [PMID: 39761884 DOI: 10.1016/j.ijbiomac.2025.139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Myostatin (MSTN) is a protein that plays a crucial role in regulating skeletal muscle development. Despite the known benefits of MSTN mutant cattle for increasing beef production, their potential impact on CH4 emissions has not been quantified. The study comparing wild-type (WT) cattle to MSTN-knockout (MSTN-KO) cattle revealed that CH4 production was lower. Macrogenomic analysis revealed a significant decrease in rumen archaea, with reduced Richness indices (P = 0.036). The MSTN-KO cattle also showed altered archaea distribution and composition at different taxonomic levels. LEfSe results showed changes in 21 methanogenic archaea clades, with obligately hydrogen (H2)-dependent methylotrophs Candidatus Methanoplasma termitum species belonging to Methanomassiliicoccales order demonstrating the most significant decrease. Rumen metabolites revealed a decrease in the ratio of acetate to propionate, indicating a shift in rumen fermentation pattern towards propionate fermentation. Additionally, the changing trend of methanogenic archaea is consistent with the evolution of methanogens, and this is correlated with the higher levels of linoleic acid in the rumen of MSTN-KO cattle. Linoleic acid affects the utilization of H2 by methanogenic archaea, leading to a reduction in obligately H2-dependent methylotrophs. Our study suggests that MSTN-KO cattle have potential as an economically and ecologically benign breed for reducing methane emissions.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Linfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Dongchao Pei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Yuqing Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, College of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China.
| |
Collapse
|
3
|
Gu Q, Lin B, Wan D, Kong Z, Tang Q, Yan Q, Cai X, Ding H, Qin G, Zou C. Effect of Hemp Seed Oil on Milk Performance, Blood Parameters, Milk Fatty Acid Profile, and Rumen Microbial Population in Milk-Producing Buffalo: Preliminary Study. Animals (Basel) 2025; 15:514. [PMID: 40002996 PMCID: PMC11851683 DOI: 10.3390/ani15040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Vegetable oils rich in unsaturated fatty acids have been shown to improve animal health and enrich milk with functional fatty acids in various studies. This study investigates the effects of dietary supplementation with hemp seed oil (HSO), a native vegetable oil from the "longevity village" of Bama (Guangxi, China), on the milk performance, milk fatty acid composition, blood indicators, and rumen bacterial community of milk-producing buffalo. Seventeen healthy, four-year-old, crossbred, milk-producing buffaloes with the same parity (three), as well as similar body weights (BW = 580 ± 25 kg), number of days producing milk (DIM, 153 ± 10 d), and milk yields (8.56 ± 0.89 kg/d) were divided into three groups (n = 6, 5, and 6) and assigned to the following diets: (1) no HSO supplement (H0, n = 6), (2) a supplement of 100 g/d of HSO (H1, n = 5), and (3) a supplement of 200 g/d of HSO (H2, n = 6). The total experimental period was 42 days (including a 14-day adaptation period and a 28-day treatment period). The data were statistically analyzed by repeated measures analysis of variance. The results showed that compared to that of no HSO supplement group, the dry matter intake (DMI) showed a decreasing tendency (p = 0.06), while feed efficiency and rumen fermentation remained similar across all the groups (p > 0.05) with dietary HSO supplementation. Moreover, with dietary HSO supplementation, the total antioxidant capacity (T-AOC) (p = 0.05) and catalase (CAT) (p < 0.01) and glutathione peroxidase (GSH-Px) (p = 0.02) contents in the serum were greatly increased, with the highest levels observed in the H2 group (increased by 1.16 U/mL, 1.15 U/mL, and 134.51 U/mL, respectively). In contrast, the malondialdehyde (MDA) content was significantly decreased with dietary HSO supplementation (p = 0.02) and was the lowest in the H1 group (decreased by 0.72 nmol/mL). The high-density lipoprotein cholesterol (HDL-C) content in the blood showed an increasing tendency with dietary HSO supplementation (p = 0.09). Moreover, with dietary HSO supplementation, the proportions of C18:0 (p = 0.02), C18:1n9t (p = 0.02), C18:2n6c (p = 0.02), C18:3n3 (p < 0.01), C18:2n9c (p = 0.04), omega-3 (p = 0.02), and omega-6 (p = 0.02) were significantly increased, with the highest levels observed in the H2 group (increased by 5.29 g/100 g FA, 1.81 g/100 g FA, 0.55 g/100 g FA, 0.14 g/100 g FA, 0.75 g/100 g FA, 0.17 g/100 g FA, and 0.56 g/100 g FA, respectively). Additionally, rumen Acetobacter abundance was significantly affected by HSO addition (p = 0.03), with rumen Acetobacter abundance decreasing in the H1 group (by 0.55%) and increasing in the H2 group (by 0.73%). These results suggest that adding HSO to milk-producing buffalo diets does not affect feed efficiency or rumen fermentation, although it decreases the DMI. Meanwhile, it can improve the nutritional quality of milk, enhance the antioxidant status, and regulate blood lipid metabolism in milk-producing buffaloes.
Collapse
Affiliation(s)
- Qichao Gu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Bo Lin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Dan Wan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Zhiwei Kong
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Qinfeng Tang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Qi Yan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xinghua Cai
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Hao Ding
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Guangsheng Qin
- Buffalo Research Institute Chinese Academy of Agricultural Sciences and Guangxi Zhuang Nationality Autonomous Region, Nanning 530001, China
| | - Caixia Zou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.G.); (B.L.); (D.W.); (Z.K.); (Q.T.); (Q.Y.); (X.C.); (H.D.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
4
|
Ma G, Jin W, Zhang Y, Gai Y, Tang W, Guo L, Azzaz HH, Ghaffari MH, Gu Z, Mao S, Chen Y. A Meta-Analysis of Dietary Inhibitors for Reducing Methane Emissions via Modulating Rumen Microbiota in Ruminants. J Nutr 2025; 155:402-412. [PMID: 39710134 DOI: 10.1016/j.tjnut.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Rumen methane emissions (RMEs) significantly contribute to global greenhouse gas emissions, underscoring the essentials to identify effective inhibitors for RME mitigation. Despite various inhibitors shown potential in reducing RME by modulating rumen microbes, their impacts include considerable variations and inconsistency. OBJECTIVES We aimed to quantitatively assess the impacts of various methane inhibitors on RME, rumen microbial abundance, and fermentation in ruminants. Additionally, the relationships between microbial abundance and RME were examined through meta-regressions. METHODS Meta-analysis and meta-regression were conducted to assess the impacts of methane inhibitions, including 3-nitrooxypropanol, ionophores, nitrate, triglycerides, phytochemicals, and co-inhibitors, on RME and rumen microbiota in beef, dairy cattle, and sheep. RESULTS Analyses of 922 datasets from 274 experiments revealed that inhibitors, except ionophores (P = 0.43), significantly reduced RME, with co-inhibitors displaying the highest efficacy (standardized mean difference -2.1, P < 0.01). Inhibitors' effects were more pronounced in sheep relative to beef and dairy cattle. Inhibitors decreased the abundance of ciliates and methanogens, with positive correlations observed between Dasytrichidae (P = 0.05), Entodinomorphs (P ≤ 0.001), Methanobacteriale (P = 0.001), and fungi (P < 0.01) with RME. Among inhibitors, triglycerides exhibited simultaneous reduction in methanogen, ciliate, and fungal abundances. 3-Nitrooxypropanol and triglycerides increased H2 in the rumen whereas reducing the acetate-propionate ratio, especially in beef. The H2 emission was negatively correlated (P < 0.01) and acetate-to-propionate ratio was positively correlated (P < 0.001) with RME. CONCLUSIONS Microbes, including Dasytrichidae, Entodinomorphs, Methanobacteriale, and fungi, significantly attribute to RME, and co-inhibitors have the highest efficacy in limiting RME and reducing microbial abundances. This study underscores the roles of both host and microbiota in modulating the inhibitor efficacy in RME, informing the refinement of rumen additives to mitigate RME from meat and milk production.
Collapse
Affiliation(s)
- Guiling Ma
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China; National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Jin
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Gai
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Weixuan Tang
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Lu Guo
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Hossam H Azzaz
- Dairy Department National Research Center, Giza, Cairo, Egypt
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Zhaobing Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shengyong Mao
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanting Chen
- National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Beauchemin KA, Kebreab E, Cain M, VandeHaar MJ. The Path to Net-Zero in Dairy Production: Are Pronounced Decreases in Enteric Methane Achievable? Annu Rev Anim Biosci 2025; 13:325-341. [PMID: 39546409 DOI: 10.1146/annurev-animal-010324-113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH4) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e., emissions per unit of milk) in the United States, but this trend can continue only if cows are bred for increased efficiency. Genetic selection of low-CH4-producing animals, diet reformulation, use of feed additives, and vaccination show tremendous potential for enteric CH4 mitigation; however, few mitigation strategies are currently available, and added cost without increased revenue is a major barrier to implementation. Complete elimination of CH4 emissions from dairying is likely not possible without negatively affecting milk production; thus, offsets and removals of other GHGs will be needed to achieve net-zero milk production.
Collapse
Affiliation(s)
- Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada;
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, California, USA
| | - Michelle Cain
- Cranfield Environment Centre, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, United Kingdom
| | - Michael J VandeHaar
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
McAllister TA, Thomas KD, Gruninger RJ, Elshahed M, Li Y, Cheng Y. INTERNATIONAL SYMPOSIUM ON RUMINANT PHYSIOLOGY: Rumen fungi, archaea and their interactions. J Dairy Sci 2025:S0022-0302(25)00009-8. [PMID: 39824485 DOI: 10.3168/jds.2024-25713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H2 transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO2 to CH4 by methanogens. This symbiotic relationship is bolstered by hydrogensomes, fungal organelles that generate H2 and formate. Interspecies H2 transfer prevents the accumulation of reducing equivalents that would otherwise impede fermentation. The extent to which hydrogenosomes serve as a conduit for H2 flow to methanogens is unknown, but it is likely greater with low quality forages. Strategies that alter the production of CH4 could also have implications for H2 transfer by anaerobic fungi. Understanding the factors that drive these interactions and H2 flow could provide insight into the effect of reducing CH4 production on the activity of ruminal fungi and the digestion of low-quality feeds.
Collapse
Affiliation(s)
- Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1.
| | - Krysty D Thomas
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Mostafa Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74074, USA
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| |
Collapse
|
7
|
Hristov AN, Bannink A, Battelli M, Belanche A, Cajarville Sanz MC, Fernandez-Turren G, Garcia F, Jonker A, Kenny DA, Lind V, Meale SJ, Meo Zilio D, Muñoz C, Pacheco D, Peiren N, Ramin M, Rapetti L, Schwarm A, Stergiadis S, Theodoridou K, Ungerfeld EM, van Gastelen S, Yáñez-Ruiz DR, Waters SM, Lund P. Feed additives for methane mitigation: Recommendations for testing enteric methane-mitigating feed additives in ruminant studies. J Dairy Sci 2025; 108:322-355. [PMID: 39725501 DOI: 10.3168/jds.2024-25050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 12/28/2024]
Abstract
There is a need for rigorous and scientifically-based testing standards for existing and new enteric methane mitigation technologies, including antimethanogenic feed additives (AMFA). The current review provides guidelines for conducting and analyzing data from experiments with ruminants intended to test the antimethanogenic and production effects of feed additives. Recommendations include study design and statistical analysis of the data, dietary effects, associative effect of AMFA with other mitigation strategies, appropriate methods for measuring methane emissions, production and physiological responses to AMFA, and their effects on animal health and product quality. Animal experiments should be planned based on clear hypotheses, and experimental designs must be chosen to best answer the scientific questions asked, with pre-experimental power analysis and robust post-experimental statistical analyses being important requisites. Long-term studies for evaluating AMFA are currently lacking and are highly needed. Experimental conditions should be representative of the production system of interest, so results and conclusions are applicable and practical. Methane-mitigating effects of AMFA may be combined with other mitigation strategies to explore additivity and synergism, as well as trade-offs, including relevant manure emissions, and these need to be studied in appropriately designed experiments. Methane emissions can be successfully measured, and efficacy of AMFA determined, using respiration chambers, the sulfur hexafluoride method, and the GreenFeed system. Other techniques, such as hood and face masks, can also be used in short-term studies, ensuring they do not significantly affect feed intake, feeding behavior, and animal production. For the success of an AMFA, it is critically important that representative animal production data are collected, analyzed, and reported. In addition, evaluating the effects of AMFA on nutrient digestibility, animal physiology, animal health and reproduction, product quality, and how AMFA interact with nutrient composition of the diet is necessary and should be conducted at various stages of the evaluation process. The authors emphasize that enteric methane mitigation claims should not be made until the efficacy of AMFA is confirmed in animal studies designed and conducted considering the guidelines provided herein.
Collapse
Affiliation(s)
- Alexander N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Marco Battelli
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | - Alejandro Belanche
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | | | - Gonzalo Fernandez-Turren
- IPAV, Facultad de Veterinaria, Universidad de la Republica, 80100 San José, Uruguay; Instituto Nacional de Investigación Agropecuaria (INIA), Sistema Ganadero Extensivo, Estación Experimental INIA Treinta y Tres, 33000 Treinta y Tres, Uruguay
| | - Florencia Garcia
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, 5000 Córdoba, Argentina
| | - Arjan Jonker
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - David A Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath C15PW93, Ireland
| | - Vibeke Lind
- Norwegian Institute of Bioeconomy Research, NIBIO, NO-1431 Aas, Norway
| | - Sarah J Meale
- University of Queensland, Gatton, QLD 4343, Australia
| | - David Meo Zilio
- CREA-Research Center for Animal Production and Aquaculture, 00015 Monterotondo (RM), Italy
| | - Camila Muñoz
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, 5290000 Osorno, Los Lagos, Chile
| | - David Pacheco
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Nico Peiren
- Flanders Research Institute for Agriculture, Fisheries and Food, 9090 Melle, Belgium
| | - Mohammad Ramin
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences Umeå 90183, Sweden
| | - Luca Rapetti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | | | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6EU, United Kingdom
| | - Katerina Theodoridou
- Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Emilio M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias, 4880000 Vilcún, La Araucanía, Chile
| | - Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | | - Sinead M Waters
- School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Peter Lund
- Department of Animal and Veterinary Sciences, Aarhus University, AU Viborg - Research Centre Foulum, 8830 Tjele, Denmark.
| |
Collapse
|
8
|
Dijkstra J, Bannink A, Congio GFS, Ellis JL, Eugène M, Garcia F, Niu M, Vibart RE, Yáñez-Ruiz DR, Kebreab E. Feed additives for methane mitigation: Modeling the impact of feed additives on enteric methane emission of ruminants-Approaches and recommendations. J Dairy Sci 2025; 108:356-374. [PMID: 39725502 DOI: 10.3168/jds.2024-25049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/02/2024] [Indexed: 12/28/2024]
Abstract
Over the past decade, there has been considerable attention on mitigating enteric methane (CH4) emissions from ruminants through the utilization of antimethanogenic feed additives (AMFA). Administered in small quantities, these additives demonstrate potential for substantial reductions of methanogenesis. Mathematical models play a crucial role in comprehending and predicting the quantitative impact of AMFA on enteric CH4 emissions across diverse diets and production systems. This study provides a comprehensive overview of methodologies for modeling the impact of AMFA on enteric CH4 emissions in ruminants, culminating in a set of recommendations for modeling approaches to quantify the impact of AMFA on CH4 emissions. Key considerations encompass the type of models employed (i.e., empirical models including meta-analyses, machine learning models, and mechanistic models), the modeling objectives, data availability, modeling synergies and trade-offs associated with using AMFA, and model applications for enhanced understanding, prediction, and integration into higher levels of aggregation. Based on an evaluation of these critical aspects, a set of recommendations is presented concerning modeling approaches for quantifying the impact of AMFA on CH4 emissions and in support of farm-level, national, regional, and global inventories for accounting greenhouse gas emissions in ruminant production systems.
Collapse
Affiliation(s)
- Jan Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands.
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | | - Jennifer L Ellis
- Department of Animal Biosciences, The University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Maguy Eugène
- INRAE - Université Clermont Auvergne - VetAgro Sup - UMR 1213 Unité Mixte de Recherche sur les Herbivores, Centre de Recherche Auvergne-Rhône-Alpes, Theix 63122, France
| | - Florencia Garcia
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Córdoba 5000, Argentina
| | - Mutian Niu
- Animal Nutrition, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Ronaldo E Vibart
- AgResearch Grasslands Research Centre, Palmerston North 4442, New Zealand
| | | | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, CA 95616.
| |
Collapse
|
9
|
Zhou X, Fu S, Li G, Yao Z, Du X, Zhang Y, Gao T. Enteric methane emissions, rumen fermentation, and milk composition of dairy cows fed 3-nitrooxypropanol and L-malate supplements. Front Vet Sci 2024; 11:1479535. [PMID: 39758605 PMCID: PMC11695317 DOI: 10.3389/fvets.2024.1479535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Twenty-four cows were used in a randomized complete block design. Cows were assigned to three groups: (1) Control, (2) 3-nitrooxypropanol (NOP) of 200 mg/kg feed dry matter (10% NOP), and (3) NOP × MAL (10% NOP at 200 mg/kg feed dry matter plus 99% L-malate at 10 g/kg feed dry matter). Cows were fed for 10-wk. NOP did not affect dry matter intake (DMI) or milk yield, whereas NOP × MAL decreased DMI but did not affect milk yield. Average methane production decreased by 54% in NOP and by 51% in NOP × MAL. Both NOP and NOP × MAL increased concentrations of milk fat and protein. In addition, concentrations of short-chain fatty acids and total saturated fatty acids increased in both NOP and NOP × MAL. However, total monounsaturated fatty acids and total polyunsaturated fatty acids only increased in NOP × MAL.
Collapse
Affiliation(s)
| | | | - Gaiying Li
- College of Animal Science and Technology, Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Henan Agricultural University, Zhengzhou, Henan, China
| | | | | | | | - Tengyun Gao
- College of Animal Science and Technology, Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Souza WLD, Niehues MB, Cardoso ADS, Carvalho VVD, Perdigão A, Acedo TS, Costa DFA, Tamassia LFM, Kindermann M, Reis RA. Effect of 3-Nitrooxypropanol Combined with Different Feed Additives on Growth Performance, Carcass Traits, Enteric Methane Emissions, and Physiological Responses in Feedlot Beef Cattle Fed a High-Concentrate Finishing Diet. Animals (Basel) 2024; 14:3488. [PMID: 39682453 DOI: 10.3390/ani14233488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study was to evaluate the effect of 3-nitrooxypropanol (3-NOP) in combination with different feed additives on growth performance, carcass traits, meat quality, enteric methane (CH4) emissions, nutrient intake and digestibility, and blood parameters in feedlot beef cattle. In experiment (Exp.) 1, one hundred sixty-eight Nellore bulls (initial bodyweight (BW) 410 ± 8 kg) were allocated to 24 pens in a completely randomized block design. In Exp. 2, thirty Nellore bulls (initial BW 410 ± 3 kg) were allocated to a collective pen as one group, and treatments were allocated in a completely randomized design. Three treatments were applied: Control (CTL): monensin sodium (26 mg/kg of dry matter, DM); M3NOP: CTL with 3-NOP (100 mg/kg DM); and Combo: 3-NOP (100 mg/kg DM) with essential oils (100 mg/kg DM), 25-Hydroxy-Vitamin-D3 (0.10 mg/kg DM), organic chromium (4 mg/kg DM), and zinc (60 mg/kg DM). In Exp. 1, bulls in the Combo group had greater (p < 0.01) dry matter intake (DMI) at d 28 compared to the CTL and M3NOP groups. During d 0 to 102, bulls' final BW and average daily gain (ADG) were greater (p ≤ 0.03) for the Combo group compared to the CTL. The bulls in the Combo and M3NOP groups had better (p < 0.01) feed conversion (FC) and feed efficiency (FE) compared to the CTL. Hot carcass weight (HCW), carcass ADG, and carcass yield were greater (p ≤ 0.05) for bulls in the Combo group compared to the CTL and M3NOP groups. The bulls in the Combo group had greater (p = 0.01) dressing compared to the M3NOP group. Combo bulls had better (p = 0.02) biological efficiency compared to the CTL. The bulls in the Combo group had lower (p < 0.01) carcass pH compared to the CTL and M3NOP groups. In Exp. 2, bulls in the Combo group had greater (p = 0.04) DMI at d 28 compared to the CTL and had greater (p < 0.01) DMI at d 102 compared to the CTL and M3NOP groups. The bulls in the Combo group had greater (p = 0.04) HCW compared to the CTL and M3NOP groups and carcass ADG was greater (p = 0.04) for bulls in the Combo group compared to the M3NOP group. The bulls in the Combo and M3NOP groups had lower (p < 0.01) CH4 production (38.8%, g/d), yield (41.1%, g/kg DMI), and intensity (40.8%, g/kg carcass ADG) and higher (p < 0.01) H2 emissions (291%, g/d) compared to the CTL. Combo bulls had lower (p < 0.01) blood glucose and insulin, and higher nutrient intake and digestibility (p ≤ 0.05) compared to the CTL and M3NOP groups. Combining 3-NOP with different feed additives improved FC and FE, and reduced enteric CH4 emissions. Combo treatment improved growth performance, carcass traits, nutrient intake, and digestibility, and improved glucose and insulin responses in feedlot beef cattle on a high-concentrate finishing diet.
Collapse
Affiliation(s)
- William Luiz de Souza
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Maria Betânia Niehues
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu 18618-681, SP, Brazil
| | - Abmael da Silva Cardoso
- Department of Plant and Agroecosystems Science, University of Wisconsin, Madison, WI 53706, USA
| | | | - Alexandre Perdigão
- DSM Nutritional Products, Innovation & Applied Science, São Paulo 01452-001, SP, Brazil
| | - Tiago Sabella Acedo
- DSM Nutritional Products, Innovation & Applied Science, São Paulo 01452-001, SP, Brazil
| | | | | | - Maik Kindermann
- DSM Nutritional Products, Aargau, 4303 Kaiseraugst, Switzerland
| | - Ricardo Andrade Reis
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
11
|
Pressman EM, Kebreab E. A review of key microbial and nutritional elements for mechanistic modeling of rumen fermentation in cattle under methane-inhibition. Front Microbiol 2024; 15:1488370. [PMID: 39640851 PMCID: PMC11617157 DOI: 10.3389/fmicb.2024.1488370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
The environmental impacts of livestock agriculture include the production of greenhouse gasses (GHG) such as methane (CH4) through enteric fermentation. Recent advances in our understanding of methanogenesis have led to the development of animal feed additives (AFA) that can reduce enteric CH4 emissions. However, many interacting factors impact hydrogen (H2) and CH4 production and AFA efficacy, including animal factors, basal diet, particle and fluid outflow, microbial populations, rumen fluid pH, and fermentative cofactor dynamics. Characterizing the response of rumen fermentation to AFA is essential for optimizing AFA implementation. Mechanistic models of enteric fermentation are constructed to represent physiological and microbial processes in the rumen and can be updated to characterize the dependency of AFA efficacy on basal diet and the impacts of AFA on fermentation. The objective of this article is to review the current state of rumen mechanistic modeling, contrasting the representation of key pools in extant models with a particular emphasis on representation of CH4 production. Additionally, we discuss the first rumen mechanistic models to include AFA and emphasize future model needs for improved representation of rumen dynamics under CH4-inhibition due to AFA supplementation, including the representation of microbial populations, rumen pH, fractional outflow rates, and thermodynamic control of fermentative pathways.
Collapse
Affiliation(s)
- Eleanor M. Pressman
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
12
|
Hristov AN. Invited review: Advances in nutrition and feed additives to mitigate enteric methane emissions. J Dairy Sci 2024; 107:4129-4146. [PMID: 38942560 DOI: 10.3168/jds.2023-24440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 06/30/2024]
Abstract
Methane, both enteric and from manure management, is the most important greenhouse gas from ruminant livestock, and its mitigation can deliver substantial decreases in the carbon footprint of animal products and potentially contribute to climate change mitigation. Although choices may be limited, certain feeding-related practices can substantially decrease livestock enteric CH4 emission. These practices can be generally classified into 2 categories: diet manipulation and feed additives. Within the first category, selection of forages and increasing forage digestibility are likely to decrease enteric CH4 emission, but the size of the effect, relative to current forage practices in the United States dairy industry, is likely to be minimal to moderate. An opportunity also exists to decrease enteric CH4 emissions by increasing dietary starch concentration, but interventions have to be weighed against potential decreases in milk fat yield and farm profitability. A similar conclusion can be made about dietary lipids and oilseeds, which are proven to decrease CH4 emission but can also have a negative effect on rumen fermentation, feed intake, and milk production and composition. Sufficient and robust scientific evidence indicates that some feed additives, specifically the CH4 inhibitor 3-nitrooxypropanol, can substantially reduce CH4 emissions from dairy and beef cattle. However, the long-term effects and external factors affecting the efficacy of the inhibitor need to be further studied. The practicality of mass-application of other mitigation practices with proven short-term efficacy (i.e., macroalgae) is currently unknown. One area that needs more research is how nutritional mitigation practices (both diet manipulation and feed additives) interact with each other and whether there is synergism among feed additives with different mode of action. Further, effects of diet on manure composition and greenhouse gas emissions during storage (e.g., emission trade-offs) have not been adequately studied. Overall, if currently available mitigation practices prove to deliver consistent results and novel, potent, and safe strategies are discovered and are practical, nutrition alone can deliver up to 60% reduction in enteric CH4 emissions from dairy farms in the United States.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
13
|
Muñoz C, Muñoz IA, Rodríguez R, Urrutia NL, Ungerfeld EM. Effect of combining the methanogenesis inhibitor 3-nitrooxypropanol and cottonseeds on methane emissions, feed intake, and milk production of grazing dairy cows. Animal 2024; 18:101203. [PMID: 38935983 DOI: 10.1016/j.animal.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
No single enteric CH4 mitigating strategy has been consistently effective or is readily applicable to ruminants in grassland systems. When CH4 mitigating strategies are effective under grazing conditions, mitigation is mild to moderate at best. A study was conducted to evaluate the potential of combining two CH4 mitigation strategies deemed feasible to apply in grazing dairy cows, the methanogenesis inhibitor 3-nitrooxypropanol additive (3-NOP) and cottonseed supplementation (CTS), seeking to enhance their individual CH4 mitigating potential. Forty-eight dairy cows were evaluated in a continuous grazing study and supplemented with either a starch-based concentrate (STA) or one that contained cottonseeds (1.75 kg DM/d; CTS), and with either 19 g/d of 10% 3-NOP (Bovaer®) or the additive's carrier (placebo), in a 2 × 2 factorial arrangement of treatments. Treatments were supplied mixed with a concentrate supplement (5 kg/d as fed) and offered in two equal rations at milking. Methane emissions were measured on weeks 4 and 8 using the sulphur hexafluoride tracer gas technique over a 5-d period. The 3-NOP and CTS treatments tended to interact on absolute CH4 such that 3-NOP decreased CH4 by 13.4% with STA, but there was no mitigation with 3-NOP and CTS. Treatment interactions were also obtained for CH4 yield, where 3-NOP tended to decrease CH4 when supplied with STA, and tended to increase it with CTS. The increase in CH4 yield with the CTS diet was driven by a numerical decrease in DM intake. Methane intensity was not affected by the 3-NOP or CTS treatments. Total volatile fatty acids in ruminal fluid were not affected by 3-NOP supplementation, but a reduction in acetate and an increase in propionate proportion occurred, resulting in decreased acetate: propionate. The 3-NOP additive decreased grass intake; however, energy-corrected milk yield and milk composition were largely unaffected. Milk urea increased with 3-NOP supplementation. Combining twice daily supplementation of 3-NOP and CTS did not enhance their CH4 mitigation potential when fed to grazing dairy cows. The relatively low inhibition of CH4 production by 3-NOP compared to studies with total mixed rations may result from the mode of delivery (pulse dosed twice daily) and time gap caused by experimental handling and moving of animals to pasture after 3-NOP supplementation in the milking parlour, which could have impaired the synchrony between the additive presence in the rumen and grass intake in paddocks.
Collapse
Affiliation(s)
- C Muñoz
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, Ruta 5 km 8 norte, 5290000 Osorno, Región de Los Lagos, Chile.
| | - I A Muñoz
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, Ruta 5 km 8 norte, 5290000 Osorno, Región de Los Lagos, Chile
| | - R Rodríguez
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, Ruta 5 km 8 norte, 5290000 Osorno, Región de Los Lagos, Chile
| | - N L Urrutia
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, Ruta 5 km 8 norte, 5290000 Osorno, Región de Los Lagos, Chile
| | - E M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias, Camino Cajón-Vilcún km 10, 4880000 Temuco, Región de La Araucanía, Chile
| |
Collapse
|
14
|
Vadroňová M, Šťovíček A, Výborná A, Tyrolová Y, Tichá D, Joch M. Insights into Effects of Combined Capric and Lauric Acid on Rumen Bacterial Composition. Microorganisms 2024; 12:1085. [PMID: 38930467 PMCID: PMC11206137 DOI: 10.3390/microorganisms12061085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
This study used next-generation sequencing to assess the impact of combined capric acid (C10) and lauric acid (C12) on the ruminal bacterial composition. Eight Holstein cows were randomly assigned to two groups using a cross-over design. The cows were fed two silage-based diets with the addition of either 100 g of stearic acid per cow per day (control), or 50 g of capric acid and 50 g of lauric acid per cow per day (C10 + C12). On day 18, 250 mL of rumen fluid was collected from each cow, and DNA was isolated, amplified, and sequenced. Treatment did not alter bacterial diversity indices, the relative abundance of archaea, nor the fiber-degrading microorganisms, except for a decrease in Fibrobacter (from 2.9% to 0.7%; p = 0.04). The relative abundance of Prevotellaceae decreased (from 39.9% to 29.6%; p = 0.009), which is notable because some members help to efficiently utilize ammonia by releasing it slowly into the rumen. Furthermore, the relative abundance of Clostridia increased (from 28.4% to 41.5%; p = 0.008), which may have aided the increased ammonia-nitrogen levels in the rumen, as this class contains hyperammonia-producing members. Our study reveals alterations in bacterial abundances with implications for rumen ammonia levels, offering insights into potential strategies for modulating rumen fermentation processes and methane production in ruminant livestock.
Collapse
Affiliation(s)
- Mariana Vadroňová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (M.V.); (A.Š.); (D.T.)
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| | - Adam Šťovíček
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (M.V.); (A.Š.); (D.T.)
| | - Alena Výborná
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| | - Yvona Tyrolová
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| | - Denisa Tichá
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (M.V.); (A.Š.); (D.T.)
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| | - Miroslav Joch
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (M.V.); (A.Š.); (D.T.)
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00 Prague, Czech Republic; (A.V.); (Y.T.)
| |
Collapse
|
15
|
Ungerfeld EM, Pitta D. Review: Biological consequences of the inhibition of rumen methanogenesis. Animal 2024:101170. [PMID: 38772773 DOI: 10.1016/j.animal.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Decreasing enteric CH4 emissions from ruminants is important for containing global warming to 1.5 °C and avoid the worst consequences of climate change. However, the objective of mitigating enteric CH4 emissions is difficult to reconcile with the forecasted increase in production of ruminant meat and milk, unless CH4 production per animal and per kilogram of animal product are decreased substantially. Chemical compound 3-nitrooxypropanol and bromoform-containing red algae Asparagopsis are currently the most potent inhibitors of rumen methanogenesis, but their average efficacy would have to be increased to mitigate enteric CH4 emissions to contain global warming to 1.5 °C, if the demand for ruminant products increases as predicted. We propose that it may be possible to enhance the efficacy of inhibitors of methanogenesis through understanding the mechanisms that cause variation in their efficacy across studies. We also propose that a more thorough understanding of the effects of inhibiting methanogenesis on rumen and postabsorptive metabolism may help improve feed efficiency and cost-effectiveness as co-benefits of the methanogenesis inhibition intervention. For enhancing efficacy, we examine herein how different inhibitors of methanogenesis affect the composition of the rumen microbial community and discuss some mechanisms that may explain dissimilar sensitivities among methanogens to different types of inhibitors. For improving feed efficiency and cost-effectiveness, we discuss the consequences of inhibiting methanogenesis on rumen fermentation, and how changes in rumen fermentation can in turn affect postabsorptive metabolism and animal performance. The objectives of this review are to identify knowledge gaps of the consequences of inhibiting methanogenesis on rumen microbiology and rumen and postabsorptive metabolism, propose research to address those knowledge gaps and discuss the implications that this research can have for the efficacy and adoption of inhibitors of methanogenesis. Depending on its outcomes, research on the microbiological, biochemical, and metabolic consequences of the inhibition of rumen methanogenesis could help the adoption of feed additives inhibitors of methanogenesis to mitigate enteric CH4 emissions from ruminants to ameliorate climate change.
Collapse
Affiliation(s)
- E M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Camino Cajón a Vilcún km 10, 4880000 Vilcún, La Araucanía, Chile.
| | - D Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 19348 Kenneth Square, PA, United States
| |
Collapse
|
16
|
Kjeldsen MH, Weisbjerg MR, Larsen M, Højberg O, Ohlsson C, Walker N, Hellwing ALF, Lund P. Gas exchange, rumen hydrogen sinks, and nutrient digestibility and metabolism in lactating dairy cows fed 3-nitrooxypropanol and cracked rapeseed. J Dairy Sci 2024; 107:2047-2065. [PMID: 37863291 DOI: 10.3168/jds.2023-23743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
Fat in the form of cracked rapeseed and 3-nitrooxypropanol (3-NOP, market as Bovaer) were fed alone or in combination to 4 Danish Holstein multicannulated dairy cows, with the objective to investigate effects on gas exchange, dry matter intake (DMI), nutrient digestion, and nutrient metabolism. The study design was a 4 × 4 Latin square with a 2 × 2 factorial treatment arrangement with 2 levels of fat supplementation; 33 g of crude fat per kg of dry matter (DM) or 64 g of crude fat per kg of DM for low and high fat diets, respectively, and 2 levels of 3-NOP; 0 mg/kg DM or 80 mg/kg DM. In total, 4 diets were formulated: low fat (LF), high fat (HF), 3-NOP and low fat (3LF), and 3-NOP and high fat (3HF). Cows were fed ad libitum and milked twice daily. The adaptation period lasted 11 d, followed by 5 d with 12 diurnal sampling times of digesta and ruminal fluid. Thereafter, gas exchange was measured for 5 d in respiration chambers. Chromic oxide and titanium dioxide were used as external flow markers to determine intestinal nutrient flow. No interactions between fat supplementation and 3-NOP were observed for methane yield (g/kg DM), total-tract digestibility of nutrients or total volatile fatty acid (VFA) concentration in the rumen. Methane yield (g/kg DMI) was decreased by 24% when cows were fed 3-NOP. In addition, 3-NOP increased carbon dioxide and hydrogen yield (g/kg DM) by 6% and 3,500%, respectively. However, carbon dioxide production was decreased when expressed on a daily basis. Fat supplementation did not affect methane yield but tended to reduce methane in percent of gross energy intake. A decrease (11%) in DMI was observed, when cows were fed 3-NOP. Likely, the lower DMI mediated a lower passage rate causing the tendency to higher rumen and total-tract neutral detergent fiber digestibility, when the cows were fed 3-NOP. Total VFA concentrations in the rumen were negatively affected both by 3-NOP and fat supplementation. Furthermore, 3-NOP caused a shift in the VFA fermentation profile, with decreased acetate proportion and increased butyrate proportion, whereas propionate proportion was unaffected. Increased concentrations of the alcohols methanol, ethanol, propanol, butanol, and 2-butanol were observed in the ruminal fluid when cows were fed 3-NOP. These changes in rumen metabolites indicate partial re-direction of hydrogen into other hydrogen sinks, when methanogenesis is inhibited by 3-NOP. In conclusion, fat supplementation did not reduce methane yield, whereas 3-NOP reduced methane yield, irrespective of fat level. However, the concentration of 3-NOP and diet composition and resulting desired mitigation effect must be considered before implementation. The observed reduction in DMI with 80 mg 3-NOP/kg DM was intriguing and may indicate that a lower dose should be applied in a Northern European context; however, the mechanism behind needs further investigation.
Collapse
Affiliation(s)
- Maria H Kjeldsen
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 DK-Tjele, Denmark.
| | - Martin R Weisbjerg
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 DK-Tjele, Denmark
| | - Mogens Larsen
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 DK-Tjele, Denmark
| | - Ole Højberg
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 DK-Tjele, Denmark
| | - Christer Ohlsson
- Department of Animal Nutrition, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland
| | - Nicola Walker
- Department of Animal Nutrition, DSM Nutritional Products, 4303 Kaiseraugst, Switzerland
| | - Anne Louise F Hellwing
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 DK-Tjele, Denmark
| | - Peter Lund
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 DK-Tjele, Denmark
| |
Collapse
|
17
|
Pepeta BN, Hassen A, Tesfamariam EH. Quantifying the Impact of Different Dietary Rumen Modulating Strategies on Enteric Methane Emission and Productivity in Ruminant Livestock: A Meta-Analysis. Animals (Basel) 2024; 14:763. [PMID: 38473148 DOI: 10.3390/ani14050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
A meta-analysis was conducted with an aim to quantify the beneficial effects of nine different dietary rumen modulating strategies which includes: the use of plant-based bioactive compounds (saponin, tannins, oils, and ether extract), feed additives (nitrate, biochar, seaweed, and 3-nitroxy propanol), and diet manipulation (concentrate feeding) on rumen fermentation, enteric methane (CH4) production (g/day), CH4 yield (g/kg dry matter intake) and CH4 emission intensity (g/kg meat or milk), and production performance parameters (the average daily gain, milk yield and milk quality) of ruminant livestock. The dataset was constructed by compiling global data from 110 refereed publications on in vivo studies conducted in ruminants from 2005 to 2023 and anlayzed using a meta-analytical approach.. Of these dietary rumen manipulation strategies, saponin and biochar reduced CH4 production on average by 21%. Equally, CH4 yield was reduced by 15% on average in response to nitrate, oils, and 3-nitroxy propanol (3-NOP). In dairy ruminants, nitrate, oils, and 3-NOP reduced the intensity of CH4 emission (CH4 in g/kg milk) on average by 28.7%. Tannins and 3-NOP increased on average ruminal propionate and butyrate while reducing the acetate:propionate (A:P) ratio by 12%, 13.5% and 13%, respectively. Oils increased propionate by 2% while reducing butyrate and the A:P ratio by 2.9% and 3.8%, respectively. Use of 3-NOP increased the production of milk fat (g/kg DMI) by 15% whereas oils improved the yield of milk fat and protein (kg/d) by 16% and 20%, respectively. On the other hand, concentrate feeding improved dry matter intake and milk yield (g/kg DMI) by 23.4% and 19%, respectively. However, feed efficiency was not affected by any of the dietary rumen modulating strategies. Generally, the use of nitrate, saponin, oils, biochar and 3-NOP were effective as CH4 mitigating strategies, and specifically oils and 3-NOP provided a co-benefit of improving production parameters in ruminant livestock. Equally concentrate feeding improved production parameters in ruminant livestock without any significant effect on enteric methane emission. Therefore, it is advisable to refine further these strategies through life cycle assessment or modelling approaches to accurately capture their influence on farm-scale production, profitability and net greenhouse gas emissions. The adoption of the most viable, region-specific strategies should be based on factors such as the availability and cost of the strategy in the region, the specific goals to be achieved, and the cost-benefit ratio associated with implementing these strategies in ruminant livestock production systems.
Collapse
Affiliation(s)
- Bulelani N Pepeta
- Department of Animal Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Abubeker Hassen
- Department of Animal Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Eyob H Tesfamariam
- Department of Plant and Soil Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
18
|
Kirwan SF, Tamassia LFM, Walker ND, Karagiannis A, Kindermann M, Waters SM. Effects of dietary supplementation with 3-nitrooxypropanol on enteric methane production, rumen fermentation, and performance in young growing beef cattle offered a 50:50 forage:concentrate diet. J Anim Sci 2024; 102:skad399. [PMID: 38038711 PMCID: PMC11282959 DOI: 10.1093/jas/skad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
There is an urgent requirement internationally to reduce enteric methane (CH4) emissions from ruminants to meet greenhouse gas emissions reduction targets. Dietary supplementation with feed additives is one possible strategy under investigation as an effective solution. The effects of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at reducing CH4 emissions in beef have been shown mainly in adult cattle consuming backgrounding and high-energy finishing diets. In this study, the effects of dietary supplementation of young growing (≤6 mo) beef cattle with 3-NOP were examined in a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of experiment, body weight: 147 ± 38 kg) underwent a 3-wk acclimatization period and were then assigned to one of two treatments in a completely randomized block design. Dietary treatments were (1) control, placebo (no 3-NOP), and (2) 3-NOP applied at 150 mg kg-1 DM. Calves were fed a partial mixed ration for 12 wk. Body weight was recorded weekly and feed intake daily using the Calan Broadbent feeding system. Methane and hydrogen emissions were measured using the GreenFeed system. Total weight gained, dry matter intake (DMI), and average daily gain were not affected by 3-NOP (P > 0.05) supplementation. On average, the inclusion of 3-NOP decreased (P < 0.001) CH4 emissions: g d-1; g kg-1 DMI; by 30.6% and 27.2%, respectively, during the study with a greater reduction occurring over time. Incorporating 3-NOP into beef cattle diets is an efficient solution to decrease CH4 emissions during indoor feeding and when offered 50:50 forage:concentrate diet.
Collapse
Affiliation(s)
- Stuart F Kirwan
- Animal Bioscience Research Department, Teagasc Grange, Dunsany, County Meath, Ireland C15 PW93
| | - Luis F M Tamassia
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Nicola D Walker
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Alexios Karagiannis
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Maik Kindermann
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Sinéad M Waters
- Animal Bioscience Research Department, Teagasc Grange, Dunsany, County Meath, Ireland C15 PW93
| |
Collapse
|
19
|
Maigaard M, Weisbjerg MR, Johansen M, Walker N, Ohlsson C, Lund P. Effects of dietary fat, nitrate, and 3-nitrooxypropanol and their combinations on methane emission, feed intake, and milk production in dairy cows. J Dairy Sci 2024; 107:220-241. [PMID: 37690719 DOI: 10.3168/jds.2023-23420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023]
Abstract
The objective of the present study was to investigate the effect of individual and combined use of dietary fat, nitrate, and 3-nitrooxypropanol (3-NOP) on dairy cows' enteric methane (CH4) emission and production performance. Twenty-four primiparous and 24 multiparous Danish Holstein cows (111 ± 44.6 d in milk; mean ± standard deviation) were included in an incomplete 8 × 8 Latin square design with six 21-d periods. Dietary treatments were organized in a 2 × 2 × 2 factorial arrangement aiming for 2 levels of FAT (30 or 63 g of crude fat/kg of dry matter [DM]; LF or HF, respectively), 2 levels of NITRATE (0 or 10 g of nitrate/kg of DM; UREA or NIT, respectively), and 2 levels of 3-NOP (0 or 80 mg/kg DM; BLANK or NOP, respectively). Treatments were included in ad libitum-fed partial mixed rations in bins that automatically measured feed intake and eating behavior. Additional concentrate was offered as bait in GreenFeed units used for measurement of gas emission. For total DM intake (DMI), a FAT × NITRATE interaction showed that DMI, across parities and levels of 3-NOP, was unaffected by separate fat supplementation, but reduced by nitrate with 4.6% and synergistically decreased (significant 2-way interaction) with 13.0% when fat and nitrate were combined. Additionally, 3-NOP decreased DMI by 13.4% and the combination of 3-NOP with fat and nitrate decreased DMI in an additive way (no significant 3-way interaction). The decreasing effects on DMI were more pronounced in multiparous cows than in primiparous cows. For treatments with largest reductions in DMI, eating behavior was altered toward more frequent, but smaller meals, a slower eating rate and increased attempts to visit unassigned feed bins. Energy-corrected milk (ECM) yield increased by 6.3% with fat supplementation, whereas ECM yield did not differ among diets including nitrate (FAT × NITRATE interaction). Cows supplemented with 3-NOP had 9.0% lower ECM yield than cows fed no 3-NOP. Based on three 2-way interactions including FAT, NITRATE, and 3-NOP, the combined use of the additives resulted in antagonistic effects on CH4 reduction. A 6% to 7% reduction in CH4 yield (CH4/kg of DMI) could be ascribed to the effect of fat, a 12% to 13% reduction could be ascribed to the effect of nitrate and an 18% to 23% reduction could be ascribed to the effect of 3-NOP. Hence, no combinations of additives resulted in CH4 yield-reductions that were greater than what was obtained by separate supplementation of the most potent additive within the combination. The CH4 yield reduction potential of additives was similar between parities. Increased apparent total-tract digestibility of organic matter (OM) in cows fed combinations including nitrate or 3-NOP was a result of a NITRATE × 3-NOP interaction. Apparent total-tract digestibility of OM was also increased by fat supplementation. These increases reflected observed decreases in DMI. In conclusion, combined use of fat, nitrate, and 3-NOP in all combinations did not result in CH4 reductions that were greater than separate supplementation of the most potent additive within the combination (3-NOP > nitrate > fat). Additionally, separate supplementation of some additives and combined use of all additives reduced DMI.
Collapse
Affiliation(s)
- Morten Maigaard
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark.
| | - Martin R Weisbjerg
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| | - Marianne Johansen
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| | - Nicola Walker
- DSM Nutritional Products, Animal Nutrition & Health, 4002 Basel, Switzerland
| | - Christer Ohlsson
- DSM Nutritional Products, Animal Nutrition & Health, 4002 Basel, Switzerland
| | - Peter Lund
- Department of Animal and Veterinary Sciences, AU Viborg-Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
20
|
Vadroňová M, Šťovíček A, Jochová K, Výborná A, Tyrolová Y, Tichá D, Homolka P, Joch M. Combined effects of nitrate and medium-chain fatty acids on methane production, rumen fermentation, and rumen bacterial populations in vitro. Sci Rep 2023; 13:21961. [PMID: 38081855 PMCID: PMC10713576 DOI: 10.1038/s41598-023-49138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
This study investigated the combined effects of nitrate (NT) and medium-chain fatty acids (MCFA), including C8, C10, C12, and C14, on methane (CH4) production, rumen fermentation characteristics, and rumen bacteria using a 24 h batch incubation technique. Four types of treatments were used: control (no nitrate, no MCFA), NT (nitrate at 3.65 mM), NT + MCFA (nitrate at 3.65 mM + one of the four MCFA at 500 mg/L), and NT + MCFA/MCFA (nitrate at 3.65 mM + a binary combination of MCFA at 250 and 250 mg/L). All treatments decreased (P < 0.001) methanogenesis (mL/g dry matter incubated) compared with the control, but their efficiency was dependent on the MCFA type. The most efficient CH4 inhibitor was the NT + C10 treatment (- 40%). The combinations containing C10 and C12 had the greatest effect on bacterial alpha and beta diversity and relative microbial abundance (P < 0.001). Next-generation sequencing showed that the family Succinivibrionaceae was favored in treatments with the greatest CH4 inhibition at the expense of Prevotella and Ruminococcaceae. Furthermore, the relative abundance of Archaea decreased (P < 0.05) in the NT + C10 and NT + C10/C12 treatments. These results confirm that the combination of NT with MCFA (C10 and C12 in particular) may effectively reduce CH4 production.
Collapse
Affiliation(s)
- Mariana Vadroňová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Adam Šťovíček
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Kateřina Jochová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Alena Výborná
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Yvona Tyrolová
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Denisa Tichá
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Petr Homolka
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic
| | - Miroslav Joch
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague, Czech Republic.
- Department of Nutrition and Feeding of Farm Animals, Institute of Animal Science, Přátelství 815, 104 00, Prague, Czech Republic.
| |
Collapse
|
21
|
Hristov AN. Perspective: Could dairy cow nutrition meaningfully reduce the carbon footprint of milk production? J Dairy Sci 2023; 106:7336-7340. [PMID: 37641304 DOI: 10.3168/jds.2023-23461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/01/2023] [Indexed: 08/31/2023]
Affiliation(s)
- Alexander N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
22
|
Gao Q, Liu H, Wang Z, Lan X, An J, Shen W, Wan F. Recent advances in feed and nutrition of beef cattle in China - A review. Anim Biosci 2023; 36:529-539. [PMID: 36108687 PMCID: PMC9996267 DOI: 10.5713/ab.22.0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The beef cattle industry in China has advanced remarkably since its reform and opening up; consequently, China has become the world's third-largest beef cattle producer. China is also one of the countries with the most substantial research input and output in the field of beef cattle feed and nutrition. The progress and innovation by China in the research field of beef cattle feed and nutrition have undoubtedly promoted the development of the domestic beef cattle industry. This review summarizes recent advances in feed resource development, nutrient requirements, and nutritional regulation of beef cattle in China. Limitations in current research and perspectives on future work are also discussed.
Collapse
Affiliation(s)
- Qian Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-Ecosystems; College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jishan An
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
23
|
Alemu AW, Gruninger RJ, Zhang XM, O’Hara E, Kindermann M, Beauchemin KA. 3-Nitrooxypropanol supplementation of a forage diet decreased enteric methane emissions from beef cattle without affecting feed intake and apparent total-tract digestibility. J Anim Sci 2023; 101:skad001. [PMID: 36617172 PMCID: PMC9904186 DOI: 10.1093/jas/skad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Supplementation of ruminant diets with the methane (CH4) inhibitor 3-nitrooxypropanol (3-NOP; DSM Nutritional Products, Switzerland) is a promising greenhouse gas mitigation strategy. However, most studies have used high grain or mixed forage-concentrate diets. The objective of this study was to evaluate the effects of supplementing a high-forage diet (90% forage DM basis) with 3-NOP on dry matter (DM) intake, rumen fermentation and microbial community, salivary secretion, enteric gas emissions, and apparent total-tract nutrient digestibility. Eight ruminally cannulated beef heifers (average initial body weight (BW) ± SD, 515 ± 40.5 kg) were randomly allocated to two treatments in a crossover design with 49-d periods. Dietary treatments were: 1) control (no 3-NOP supplementation); and 2) 3-NOP (control + 150 mg 3-NOP/kg DM). After a 16-d diet adaption, DM intake was recorded daily. Rumen contents were collected on days 17 and 28 for volatile fatty acid (VFA) analysis, whereas ruminal pH was continuously monitored from days 20 to 28. Eating and resting saliva production were measured on days 20 and 31, respectively. Diet digestibility was measured on days 38-42 by the total collection of feces, while enteric gas emissions were measured in chambers on days 46-49. Data were analyzed using the mixed procedure of SAS. Dry matter intake and apparent total-tract digestibility of nutrients (DM, neutral and acid detergent fiber, starch, and crude protein) were similar between treatments (P ≥ 0.15). No effect was observed on eating and resting saliva production. Relative abundance of the predominant bacterial taxa and rumen methanogen community was not affected by 3-NOP supplementation but rather by rumen digesta phase and sampling hour (P ≤ 0.01). Total VFA concentration was lower (P = 0.004) following 3-NOP supplementation. Furthermore, the reduction in acetate and increase in propionate molar proportions for 3-NOP lowered (P < 0.001) the acetate to propionate ratio by 18.9% as compared with control (4.1). Mean pH was 0.21 units lower (P < 0.001) for control than 3-NOP (6.43). Furthermore, CH4 emission (g/d) and yield (g/kg DMI) were 22.4 and 22.0% smaller (P < 0.001), respectively, for 3-NOP relative to control. Overall, the results indicate that enteric CH4 emissions were decreased by more than 20% with 3-NOP supplementation of a forage diet without affecting DM intake, predominant rumen microbial community, and apparent total-tract nutrients digestibility.
Collapse
Affiliation(s)
- Aklilu W Alemu
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, Saskatchewan S9H 3X2, Canada
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Xiu Min Zhang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Eóin O’Hara
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | | | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
24
|
Almeida AK, Cowley F, McMeniman JP, Karagiannis A, Walker N, Tamassia LFM, McGrath JJ, Hegarty RS. Effect of 3-nitrooxypropanol on enteric methane emissions of feedlot cattle fed with a tempered barley-based diet with canola oil. J Anim Sci 2023; 101:skad237. [PMID: 37429613 PMCID: PMC10370881 DOI: 10.1093/jas/skad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/09/2023] [Indexed: 07/12/2023] Open
Abstract
A dose-response experiment was designed to examine the effect of 3-nitrooxypropanol (3-NOP) on methane (CH4) emissions, rumen function and performance of feedlot cattle fed a tempered barley-based diet with canola oil. Twenty Angus steers of initial body weight (BW) of 356 ± 14.4 kg were allocated in a randomized complete block design. Initial BW was used as the blocking criterion. Cattle were housed in individual indoor pens for 112 d, including the first 21 d of adaptation followed by a 90-d finishing period when five different 3-NOP inclusion rates were compared: 0 mg/kg dry matter (DM; control), 50 mg/kg DM, 75 mg/kg DM, 100 mg/kg DM, and 125 mg/kg DM. Daily CH4 production was measured on day 7 (last day of starter diet), day 14 (last day of the first intermediate diet), and day 21 (last day of the second intermediate diet) of the adaptation period and on days 28, 49, 70, 91, and 112 of the finisher period using open circuit respiration chambers. Rumen digesta samples were collected from each steer on the day prior to chamber measurement postfeeding, and prefeeding on the day after the chamber measurement, for determination of rumen volatile fatty acids (VFA), ammonium-N, protozoa enumeration, pH, and reduction potential. Dry matter intake (DMI) was recorded daily and BW weekly. Data were analyzed in a mixed model including period, 3-NOP dose and their interaction as fixed effects, and block as a random effect. Our results demonstrated both a linear and quadratic (decreasing rate of change) effect on CH4 production (g/d) and CH4 yield (g/kg DMI) as 3-NOP dose increased (P < 0.01). The achieved mitigation for CH4 yield in our study ranged from approximately 65.5% up to 87.6% relative to control steers fed a finishing feedlot diet. Our results revealed that 3-NOP dose did not alter rumen fermentation parameters such as ammonium-N, VFA concentration nor VFA molar proportions. Although this experimental design was not focused on the effect of 3-NOP dose on feedlot performance, no negative effects of any 3-NOP dose were detected on animal production parameters. Ultimately, the knowledge on the CH4 suppression pattern of 3-NOP may facilitate sustainable pathways for the feedlot industry to lower its carbon footprint.
Collapse
Affiliation(s)
- Amelia K Almeida
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Frances Cowley
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Joe P McMeniman
- Feedlot Program, Meat and Livestock Australia Limited (MLA), North Sydney, NSW 2060, Australia
| | - Alex Karagiannis
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Nicola Walker
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Luis F M Tamassia
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Joseph J McGrath
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Roger S Hegarty
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
25
|
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Invited review: Current enteric methane mitigation options. J Dairy Sci 2022; 105:9297-9326. [DOI: 10.3168/jds.2022-22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
|
26
|
Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, Cueva SF, Oh J, Dijkstra J, Bannink A, Bayat AR, Crompton LA, Eugène MA, Enahoro D, Kebreab E, Kreuzer M, McGee M, Martin C, Newbold CJ, Reynolds CK, Schwarm A, Shingfield KJ, Veneman JB, Yáñez-Ruiz DR, Yu Z. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc Natl Acad Sci U S A 2022; 119:e2111294119. [PMID: 35537050 PMCID: PMC9171756 DOI: 10.1073/pnas.2111294119] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
To meet the 1.5 °C target, methane (CH4) from ruminants must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels. A meta-analysis identified strategies to decrease product-based (PB; CH4 per unit meat or milk) and absolute (ABS) enteric CH4 emissions while maintaining or increasing animal productivity (AP; weight gain or milk yield). Next, the potential of different adoption rates of one PB or one ABS strategy to contribute to the 1.5 °C target was estimated. The database included findings from 430 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies—namely, increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio—decreased CH4 per unit meat or milk by on average 12% and increased AP by a median of 17%. Five ABS strategies—namely CH4 inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds—decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5 °C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH4 due to increasing milk and meat demand. Notably, by 2030 and 2050, low- and middle-income countries may not meet their contribution to the 1.5 °C target for this same reason, whereas high-income countries could meet their contributions due to only a minor projected increase in enteric CH4 emissions.
Collapse
Affiliation(s)
- Claudia Arndt
- Integrated Sciences Division, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya
| | - Alexander N. Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - William J. Price
- College of Agricultural and Life Sciences, University of Idaho, Moscow, ID 83844
| | - Shelby C. McClelland
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
| | - Amalia M. Pelaez
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
- Animal Sciences Group, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Sergio F. Cueva
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Joonpyo Oh
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Jan Dijkstra
- Animal Sciences Group, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - André Bannink
- Animal Sciences Group, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Ali R. Bayat
- Natural Resources Institute Finland, 00790 Helsinki, Finland
| | - Les A. Crompton
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, United Kingdom
| | - Maguy A. Eugène
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France
| | - Dolapo Enahoro
- Integrated Sciences Division, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya
| | - Ermias Kebreab
- College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616
| | - Michael Kreuzer
- Department of Environmental Systems Science, ETH Zurich, 8092 Zürich, Switzerland
| | - Mark McGee
- Animal & Grassland Research and Innovation Centre (AGRIC), Teagasc, Grange C15 PW93, Ireland
| | - Cécile Martin
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France
| | | | - Christopher K. Reynolds
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, United Kingdom
| | - Angela Schwarm
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway
| | | | | | - David R. Yáñez-Ruiz
- Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
27
|
Fouts JQ, Honan MC, Roque BM, Tricarico JM, Kebreab E. Board Invited Review: Enteric methane mitigation interventions. Transl Anim Sci 2022; 6:txac041. [PMID: 35529040 PMCID: PMC9071062 DOI: 10.1093/tas/txac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mitigation of enteric methane (CH4) presents a feasible approach to curbing agriculture’s contribution to climate change. One intervention for reduction is dietary reformulation, which manipulates the composition of feedstuffs in ruminant diets to redirect fermentation processes toward low CH4 emissions. Examples include reducing the relative proportion of forages to concentrates, determining the rate of digestibility and passage rate from the rumen, and dietary lipid inclusion. Feed additives present another intervention for CH4 abatement and are classified based on their mode of action. Through inhibition of key enzymes, 3-nitrooxypropanol (3-NOP) and halogenated compounds directly target the methanogenesis pathway. Rumen environment modifiers, including nitrates, essential oils, and tannins, act on the conditions that affect methanogens and remove the accessibility of fermentation products needed for CH4 formation. Low CH4-emitting animals can also be directly or indirectly selected through breeding interventions, and genome-wide association studies are expected to provide efficient selection decisions. Overall, dietary reformulation and feed additive inclusion provide immediate and reversible effects, while selective breeding produces lasting, cumulative CH4 emission reductions.
Collapse
Affiliation(s)
- Julia Q Fouts
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| | - Mallory C Honan
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| | - Breanna M Roque
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
- FutureFeed Pty Ltd Townsville, QLD, Australia
| | | | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
28
|
Ungerfeld EM, Beauchemin KA, Muñoz C. Current Perspectives on Achieving Pronounced Enteric Methane Mitigation From Ruminant Production. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.795200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Limiting global warming to 1.5°C above pre-industrial levels by 2050 requires achieving net zero emissions of greenhouse gases by 2050 and a strong decrease in methane (CH4) emissions. Our aim was to connect the global need for mitigation of the emissions of greenhouse gases and enteric CH4 from ruminant production to basic research on the biological consequences of inhibiting rumen methanogenesis in order to better design strategies for pronounced mitigation of enteric CH4 production without negative impacts on animal productivity or economic returns. Ruminant production worldwide has the challenge of decreasing its emissions of greenhouse gases while increasing the production of meat and milk to meet consumers demand. Production intensification decreases the emissions of greenhouse gases per unit of product, and in some instances has decreased total emissions, but in other instances has resulted in increased total emissions of greenhouse gases. We propose that decreasing total emission of greenhouse gases from ruminants in the next decades while simultaneously increasing meat and milk production will require strong inhibition of rumen methanogenesis. An aggressive approach to pronounced inhibition of enteric CH4 emissions is technically possible through the use of chemical compounds and/or bromoform-containing algae, but aspects such as safety, availability, government approval, consumer acceptance, and impacts on productivity and economic returns must be satisfactorily addressed. Feeding these additives will increase the cost of ruminant diets, which can discourage their adoption. On the other hand, inhibiting rumen methanogenesis potentially saves energy for the host animal and causes profound changes in rumen fermentation and post-absorptive metabolism. Understanding the biological consequences of methanogenesis inhibition could allow designing strategies to optimize the intervention. We conducted meta-regressions using published studies with at least one treatment with >50% inhibition of CH4 production to elucidate the responses of key rumen metabolites and animal variables to methanogenesis inhibition, and understand possible consequences on post-absorptive metabolism. We propose possible avenues, attainable through the understanding of biological consequences of the methanogenesis inhibition intervention, to increase animal productivity or decrease feed costs when inhibiting methanogenesis.
Collapse
|
29
|
Yu G, Beauchemin KA, Dong R. A Review of 3-Nitrooxypropanol for Enteric Methane Mitigation from Ruminant Livestock. Animals (Basel) 2021; 11:3540. [PMID: 34944313 PMCID: PMC8697901 DOI: 10.3390/ani11123540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Methane (CH4) from enteric fermentation accounts for 3 to 5% of global anthropogenic greenhouse gas emissions, which contribute to climate change. Cost-effective strategies are needed to reduce feed energy losses as enteric CH4 while improving ruminant production efficiency. Mitigation strategies need to be environmentally friendly, easily adopted by producers and accepted by consumers. However, few sustainable CH4 mitigation approaches are available. Recent studies show that the chemically synthesized CH4 inhibitor 3-nitrooxypropanol is one of the most effective approaches for enteric CH4 abatement. 3-nitrooxypropanol specifically targets the methyl-coenzyme M reductase and inhibits the final catalytic step in methanogenesis in rumen archaea. Providing 3-nitrooxypropanol to dairy and beef cattle in research studies has consistently decreased enteric CH4 production by 30% on average, with reductions as high as 82% in some cases. Efficacy is positively related to 3-NOP dose and negatively affected by neutral detergent fiber concentration of the diet, with greater responses in dairy compared with beef cattle when compared at the same dose. This review collates the current literature on 3-nitrooxypropanol and examines the overall findings of meta-analyses and individual studies to provide a synthesis of science-based information on the use of 3-nitrooxypropanol for CH4 abatement. The intent is to help guide commercial adoption at the farm level in the future. There is a significant body of peer-reviewed scientific literature to indicate that 3-nitrooxypropanol is effective and safe when incorporated into total mixed rations, but further research is required to fully understand the long-term effects and the interactions with other CH4 mitigating compounds.
Collapse
Affiliation(s)
- Guanghui Yu
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China;
| | - Karen A. Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada;
| | - Ruilan Dong
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China;
| |
Collapse
|
30
|
Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, Chang SX, Zhang L, Rinklebe J, Yuan Z, Zhu Q, Xiang L, Tsang DC, Xu L, Jiang X, Liu J, Wei N, Kästner M, Zou Y, Ok YS, Shen J, Peng D, Zhang W, Barceló D, Zhou Y, Bai Z, Li B, Zhang B, Wei K, Cao H, Tan Z, Zhao LB, He X, Zheng J, Bolan N, Liu X, Huang C, Dietmann S, Luo M, Sun N, Gong J, Gong Y, Brahushi F, Zhang T, Xiao C, Li X, Chen W, Jiao N, Lehmann J, Zhu YG, Jin H, Schäffer A, Tiedje JM, Chen JM. Technologies and perspectives for achieving carbon neutrality. Innovation (N Y) 2021; 2:100180. [PMID: 34877561 PMCID: PMC8633420 DOI: 10.1016/j.xinn.2021.100180] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.
Collapse
Affiliation(s)
- Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhizhang Yuan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Faming Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Li
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Yin
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Huang
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yuhao Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jörg Rinklebe
- Department of Soil and Groundwater Management, Bergische Universität Wuppertal, Wuppertal 42285, Germany
| | - Zuoqiang Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinggong Zhu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266273, China
| | - Ning Wei
- Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig 04318, Germany
| | - Yang Zou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jianlin Shen
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dailiang Peng
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Damià Barceló
- Catalan Institute for Water Research ICRA-CERCA, Girona 17003, Spain
| | - Yongjin Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Wei
- The Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hujun Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu-bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiao He
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxing Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Anhui 230031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, University of Western Australia, Crawley 6009, Australia
| | - Xiaohong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changping Huang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sabine Dietmann
- Institute for Informatics (I), Washington University, St. Louis, MO 63110-1010, USA
| | - Ming Luo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yulie Gong
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ferdi Brahushi
- Department of Agro-environment and Ecology, Agricultural University of Tirana, Tirana 1029, Albania
| | - Tangtang Zhang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cunde Xiao
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xianfeng Li
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfu Chen
- Shenyang Agricultural University, Shenyang 110866, China
| | - Nianzhi Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and, Xiamen 361005, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Johannes Lehmann
- School of Integrative Plant Science, Section of Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA
- Institute for Advanced Studies, Technical University Munich, Garching 85748, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongguang Jin
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jing M. Chen
- Department of Geography and Planning, University of Toronto, Ontario, Canada, M5S 3G3
| |
Collapse
|