1
|
Kintz P, Gheddar L. Interest of hair tests to discriminate a tail end of a doping regimen from a meat contamination in case of challenging an antidoping rule violation. III. Case report involving boldenone. Drug Test Anal 2024; 16:1366-1369. [PMID: 38356252 DOI: 10.1002/dta.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Affiliation(s)
- Pascal Kintz
- X-Pertise Consulting, Mittelhausbergen, France
- Institut de medecine légale, Strasbourg, France
| | | |
Collapse
|
2
|
Van Wichelen N, Estévez-Danta A, Belova L, den Ouden F, Verougstraete N, Roggeman M, Boogaerts T, Quireyns M, Robeyns R, De Brabanter N, Quintana JB, Rodil R, van Nuijs ALN, Covaci A, Gys C. In vitro biotransformation of 3-methylmethcathinone (3-MMC) through incubation with human liver microsomes and cytosol and application to in vivo samples. J Pharm Biomed Anal 2024; 248:116335. [PMID: 38972226 DOI: 10.1016/j.jpba.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Synthetic cathinones are the second largest group of new psychoactive substances (NPS) monitored by the European Monitoring Centre for Drugs and Drug Addiction. Although 3-methylmethcathinone (3-MMC, C11H15NO) is legally banned in many countries, it is readily available for purchase online and on the street. Due to the scarcity of information regarding the pharmacokinetic and toxicological profile of 3-MMC, understanding its biotransformation pathways is crucial in determining its potential toxicity in humans and in the development of analytical methods for screening of human matrices. To gain more insight, Phase I and Phase II in vitro biotransformation of 3-MMC was investigated using human liver microsomes and human liver cytosol. Suspect and non-target screening approaches were employed to identify metabolites. To confirm in vitro results in an in vivo setting, human matrices (i.e., plasma, urine, saliva and hair) positive for 3-MMC (n=31) were screened. In total three biotransformation products were identified in vitro: C11H15NO2 (a hydroxylated derivate), C11H17NO (a keto-reduced derivate) and C10H13NO (an N-desmethyl derivate). All three were confirmed as human metabolites in respectively 16 %, 52 % and 42 % of the analysed human samples. In total, 61 % of the analysed samples were positive for at least one of the three metabolites. Interestingly, three urine samples were positive for all three metabolites. The presence of 3-MMC in saliva and hair indicates its potential applicability in specific settings, e.g., roadside testing or chronic consumption analysis. To our knowledge, C11H17NO was not detected before in vivo. Although some of these metabolites have been previously suggested in vitro or in a single post mortem case report, a wide in vivo confirmation including the screening of four different human matrices was performed for the first time. These metabolites could serve as potential human biomarkers to monitor human 3-MMC consumption effectively.
Collapse
Affiliation(s)
- Natan Van Wichelen
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium.
| | - Andrea Estévez-Danta
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Fatima den Ouden
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Maarten Roggeman
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Tim Boogaerts
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Maarten Quireyns
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Rani Robeyns
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Nik De Brabanter
- Laboratory Medicine, AZ Delta General Hospital, Roeselare 8800, Belgium
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, IIAA building, Santiago de Compostela 15782, Spain
| | - Alexander L N van Nuijs
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Celine Gys
- Toxicological Centre, University of Antwerp, Antwerp 2610, Belgium; Exposome Center of Excellence, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium.
| |
Collapse
|
3
|
Berardinelli D, Taoussi O, Daziani G, Tavoletta F, Ricci G, Tronconi LP, Adamowicz P, Busardò FP, Carlier J. 3-CMC, 4-CMC, and 4-BMC Human Metabolic Profiling: New Major Pathways to Document Consumption of Methcathinone Analogues? AAPS J 2024; 26:70. [PMID: 38862871 DOI: 10.1208/s12248-024-00940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
Synthetic cathinones represent one of the largest and most abused new psychoactive substance classes, and have been involved in numerous intoxications and fatalities worldwide. Methcathinone analogues like 3-methylmethcathinone (3-MMC), 3-chloromethcathinone (3-CMC), and 4-CMC currently constitute most of synthetic cathinone seizures in Europe. Documenting their consumption in clinical/forensic casework is therefore essential to tackle this trend. Targeting metabolite markers is a go-to to document consumption in analytical toxicology, and metabolite profiling is crucial to support investigations. We sought to identify 3-CMC, 4-CMC, and 4-bromomethcathinone (4-BMC) human metabolites. The substances were incubated with human hepatocytes; incubates were screened by liquid chromatography-high-resolution tandem mass spectrometry and data were mined with Compound Discoverer (Themo Scientific). 3-CMC-positive blood, urine, and oral fluid and 4-CMC-positive urine and saliva from clinical/forensic casework were analyzed. Analyses were supported by metabolite predictions with GLORYx freeware. Twelve, ten, and ten metabolites were identified for 3-CMC, 4-CMC, and 4-BMC, respectively, with similar transformations occurring for the three cathinones. Major reactions included ketoreduction and N-demethylation. Surprisingly, predominant metabolites were produced by combination of N-demethylation and ω-carboxylation (main metabolite in 3-CMC-positive urine), and combination of β-ketoreduction, oxidative deamination, and O-glucuronidation (main metabolite in 4-CMC-positive urine). These latter metabolites were detected in negative-ionization mode only and their non-conjugated form was not detected after glucuronide hydrolysis; this metabolic pathway was never reported for any methcathinone analogue susceptible to undergo the same transformations. These results support the need for comprehensive screening strategies in metabolite identification studies, to avoid overlooking significant metabolites and major markers of consumption.
Collapse
Affiliation(s)
- Diletta Berardinelli
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| | - Omayema Taoussi
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| | - Gloria Daziani
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| | - Francesco Tavoletta
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| | - Giovanna Ricci
- School of Law, Section of Legal Medicine, University of Camerino, Camerino, Italy
| | - Livio P Tronconi
- Department of Public Health, Experimental and Forensic Medicine, Unit of Forensic Medicine, University of Pavia, Pavia, Italy
- Maria Cecilia Hospital, Cotignola, Italy
| | | | - Francesco P Busardò
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy.
| | - Jeremy Carlier
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
4
|
Marques Oliveira P, Sousa Reis C, Vieira-Coelho MA. Getting Inside the Mind of Gay and Bisexual Men Who Have Sex with Men with Sexualized Drug Use - A Systematic Review. INTERNATIONAL JOURNAL OF SEXUAL HEALTH : OFFICIAL JOURNAL OF THE WORLD ASSOCIATION FOR SEXUAL HEALTH 2023; 35:573-595. [PMID: 38601804 PMCID: PMC10903597 DOI: 10.1080/19317611.2023.2260372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/13/2023] [Indexed: 04/12/2024]
Abstract
Objectives Sexualized Drug Use (SDU) consists of using any drug purposely before or during sex with the intent of modifying sex experiences. SDU is especially practiced among Gay and Bisexual Men who have Sex with Men (GBMSM). This study aims to review the relevant literature to identify and summarize the reasons reported by GBMSM to engage in SDU. Methods A systematic review of the literature using PubMed/Medline, Scopus, Google Scholar, and PsycINFO, comprising qualitative and quantitative papers published between 2010 and 2022, was conducted with a narrative synthesis of the findings. PRISMA guidelines were followed. Results Our search identified 1400 publications, of which 23 were included. Reasons to engage in SDU were aggregated as follows: (1) Enhancing sexual sensations and performance, (2) Achieving hedonic mental and emotional states, (3) Tackling negative thoughts and feelings, and (4) Social motivations. Different sample methods and ways of asking for motivations may limit the internal validity of these conclusions. Conclusion Both individual and social factors are involved in the decision to engage in SDU. SDU practices should not be medicalized, however therapeutic support if needed should provide multidisciplinary, pleasure-centered, harm-reducing care interventions, specifically designed for these minorities of GBMSM.
Collapse
Affiliation(s)
- Pedro Marques Oliveira
- Department of Biomedicine, Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Sousa Reis
- Department of Psychiatry and Mental Health, University Hospital Centre of São João, Porto, Portugal
| | - Maria Augusta Vieira-Coelho
- Department of Biomedicine, Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Psychiatry and Mental Health, University Hospital Centre of São João, Porto, Portugal
| |
Collapse
|
5
|
Che P, Davidson JT, Still K, Kool J, Kohler I. In vitro metabolism of cathinone positional isomers: does sex matter? Anal Bioanal Chem 2023; 415:5403-5420. [PMID: 37452840 PMCID: PMC10444680 DOI: 10.1007/s00216-023-04815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Synthetic cathinones, one of the most prevalent categories of new psychoactive substances, have been posing a serious threat to public health. Methylmethcathinones (MMCs), notably 3-MMC, have seen an alarming increase in their use in the last decade. The metabolism and toxicology of a large majority of synthetic cathinones, including 3-MMC and 2-MMC, remain unknown. Traditionally, male-derived liver materials have been used as in vitro metabolic incubations to investigate the metabolism of xenobiotics, including MMCs. Therefore, little is known about the metabolism in female-derived in vitro models and the potential sex-specific differences in biotransformation. In this study, the metabolism of 2-MMC, 3-MMC, and 4-MMC was investigated using female rat and human liver microsomal incubations, as well as male rat and human liver microsomal incubations. A total of 25 phase I metabolites of MMCs were detected and tentatively identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven sex-specific metabolites were detected exclusively using pooled male rat liver microsomal incubations. In addition, the metabolites generated from the sex-dependent in vitro metabolic incubations that were present in both male and female rat liver microsomal incubations showed differences in relative abundance. Yet, neither sex-specific metabolites nor significant differences in relative abundance were observed from pooled human liver microsomal incubations. This is the first study to report the phase I metabolic pathways of MMCs using in vitro metabolic incubations for both male and female liver microsomes, and the relative abundance of the metabolites observed from each sex.
Collapse
Affiliation(s)
- Peng Che
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - J Tyler Davidson
- Department of Forensic Science, Sam Houston State University, Huntsville, TX, USA
| | - Kristina Still
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Isabelle Kohler
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands.
- Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, Amsterdam, The Netherlands.
| |
Collapse
|