1
|
Murakami Y, Osawa H, Kurohara T, Yanase Y, Ito T, Yokoo H, Shibata N, Naito M, Aritake K, Demizu Y. Structure-activity relationship study of PROTACs against hematopoietic prostaglandin D 2 synthase. RSC Med Chem 2022; 13:1495-1503. [PMID: 36561070 PMCID: PMC9749925 DOI: 10.1039/d2md00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 12/25/2022] Open
Abstract
Degradation of hematopoietic prostaglandin D2 synthase (H-PGDS) by proteolysis-targeting chimeras (PROTACs) is expected to be important in the treatment of allergic diseases and Duchenne's muscular dystrophy. We recently reported that PROTAC(H-PGDS)-7 (PROTAC1), which is composed of H-PGDS inhibitor (TFC-007) and cereblon (CRBN) E3 ligase ligand (pomalidomide), showed potent H-PGDS degradation activity. Here, we investigated the structure-activity relationships of PROTAC1, focusing on the C4- or C5-conjugation of pomalidomide, in addition, the H-PGDS ligand exchanging from TFC-007 with the biaryl ether to TAS-205 with the pyrrole. Three new PROTACs were evaluated for H-PGDS affinity, H-PGDS degrading activity, and inhibition of prostaglandin D2 production. All compounds showed high H-PGDS degrading activities, but PROTAC(H-PGDS)-4-TAS-205 (PROTAC3) was slightly less active than the other compounds. Molecular dynamics simulations suggested that the decrease in activity of PROTAC3 may be due to the lower stability of the CRBN-PROTAC-H-PGDS ternary complex.
Collapse
Affiliation(s)
- Yuki Murakami
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Hinata Osawa
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita 700-8530 Japan
| | - Takashi Kurohara
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
| | - Yuta Yanase
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Hidetomo Yokoo
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto 606-0823 Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
| | - Mikihiko Naito
- Laboratory of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo Tokyo 113-0033 Japan
| | - Kosuke Aritake
- Laboratory of Chemical Pharmacology, Daiichi University of Pharmacy Fukuoka 815-8511 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita 700-8530 Japan
| |
Collapse
|
2
|
Yokoo H, Shibata N, Naganuma M, Murakami Y, Fujii K, Ito T, Aritake K, Naito M, Demizu Y. Development of a Hematopoietic Prostaglandin D Synthase-Degradation Inducer. ACS Med Chem Lett 2021; 12:236-241. [PMID: 33603969 PMCID: PMC7883460 DOI: 10.1021/acsmedchemlett.0c00605] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022] Open
Abstract
Although hematopoietic prostaglandin D synthase (H-PGDS) is an attractive target for treatment of a variety of diseases, including allergic diseases and Duchenne muscular dystrophy, no H-PGDS inhibitors have yet been approved for treatment of these diseases. Therefore, the development of novel agents having other modes of action to modulate the activity of H-PGDS is required. In this study, a chimeric small molecule that degrades H-PGDS via the ubiquitin-proteasome system, PROTAC(H-PGDS)-1, was developed. PROTAC(H-PGDS)-1 is composed of two ligands, TFC-007 (that binds to H-PGDS) and pomalidomide (that binds to cereblon). PROTAC(H-PGDS)-1 showed potent activity in the degradation of H-PGDS protein via the ubiquitin-proteasome system and in the suppression of prostaglandin D2 (PGD2) production. Notably, PROTAC(H-PGDS)-1 showed sustained suppression of PGD2 production after the drug removal, whereas PGD2 production recovered following removal of TFC-007. Thus, the H-PGDS degrader-PROTAC(H-PGDS)-1-is expected to be useful in biological research and clinical therapies.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| | - Norihito Shibata
- Division
of Biochemistry, National Institute of Health
Sciences, Kanagawa, Japan
| | - Miyako Naganuma
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
| | - Yuki Murakami
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| | - Kiyonaga Fujii
- Laboratory
of Analytical Chemistry, Daiichi University
of Pharmacy, Fukuoka, Japan
| | - Takahito Ito
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
| | - Kosuke Aritake
- Laboratory
of Chemical Pharmacology, Daiichi University
of Pharmacy, Fukuoka, Japan
| | - Mikihiko Naito
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Laboratory
of Targeted Protein Degradation, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Tokyo, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, Kanagawa, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Kanagawa, Japan
| |
Collapse
|
3
|
Guo XY, Zhang JD, Li YY, Li XJ, Meng XR. Synthesis, structure, and BSA binding studies of a new Co(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Takaya D, Inaka K, Omura A, Takenuki K, Kawanishi M, Yabuki Y, Nakagawa Y, Tsuganezawa K, Ogawa N, Watanabe C, Honma T, Aritake K, Urade Y, Shirouzu M, Tanaka A. Characterization of crystal water molecules in a high-affinity inhibitor and hematopoietic prostaglandin D synthase complex by interaction energy studies. Bioorg Med Chem 2018; 26:4726-4734. [DOI: 10.1016/j.bmc.2018.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
|
6
|
Yamamoto K, Higashiura A, Suzuki M, Aritake K, Urade Y, Nakagawa A. Molecular structure of a prostaglandin D synthase requiring glutathione from the brown planthopper, Nilaparvata lugens. Biochem Biophys Res Commun 2017; 492:166-171. [DOI: 10.1016/j.bbrc.2017.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022]
|
7
|
Ammar O. In silico pharmacodynamics, toxicity profile and biological activities of the Saharan medicinal plant Limoniastrum feei. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000300061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
8
|
Meleza C, Thomasson B, Ramachandran C, O'Neill JW, Michelsen K, Lo MC. Development of a scintillation proximity binding assay for high-throughput screening of hematopoietic prostaglandin D2 synthase. Anal Biochem 2016; 511:17-23. [PMID: 27485270 DOI: 10.1016/j.ab.2016.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023]
Abstract
Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 μM in the LAD2 cell assay.
Collapse
Affiliation(s)
- Cesar Meleza
- Discovery Technologies, Amgen Inc., South San Francisco, CA 94080, USA
| | | | | | | | - Klaus Michelsen
- Discovery Attribute Sciences, Amgen Inc., Cambridge, MA 02141, USA
| | - Mei-Chu Lo
- Discovery Technologies, Amgen Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
9
|
New insights into the catalytic mechanism of Bombyx mori prostaglandin E synthase gained from structure–function analysis. Biochem Biophys Res Commun 2013; 440:762-7. [DOI: 10.1016/j.bbrc.2013.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
|
10
|
Vila-Viçosa D, Teixeira VH, Santos HAF, Machuqueiro M. Conformational Study of GSH and GSSG Using Constant-pH Molecular Dynamics Simulations. J Phys Chem B 2013; 117:7507-17. [DOI: 10.1021/jp401066v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Diogo Vila-Viçosa
- Centro de Química
e Bioquímica and Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vitor H. Teixeira
- Centro de Química
e Bioquímica and Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Hugo A. F. Santos
- Centro de Química
e Bioquímica and Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- Centro de Química
e Bioquímica and Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
11
|
Hematopoietic prostaglandin D synthase inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2012; 51:97-133. [PMID: 22520473 DOI: 10.1016/b978-0-12-396493-9.00004-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2. PLoS One 2012; 7:e33329. [PMID: 22442685 PMCID: PMC3307725 DOI: 10.1371/journal.pone.0033329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/07/2012] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase.
Collapse
|
13
|
Kado Y, Aritake K, Uodome N, Okano Y, Okazaki N, Matsumura H, Urade Y, Inoue T. Human hematopoietic prostaglandin D synthase inhibitor complex structures. J Biochem 2012; 151:447-55. [DOI: 10.1093/jb/mvs024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
14
|
Theoretical studies on model reaction pathways of prostaglandin H2 isomerization to prostaglandin D2/E2. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0814-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Abstract
BACKGROUND Prostaglandin H2 (PGH2) is a common precursor for the synthesis of five different Prostanoids via specific Prostanoid Synthases. The binding of this substrate with these Synthases is not properly understood. Moreover, currently no crystal structure of complexes bound with PGH2 has been reported. Hence, understanding the interactions of PGH2 and characterizing its binding sites in these synthases is crucial for developing novel therapeutics based on these proteins as targets. RESULTS Shape and physico-chemical properties of the PGH2 binding sites of the four prostanoid synthases were analyzed and compared in order to understand the molecular basis of the specificity. This study provides models with predicted pockets for the binding of PGH2 with PGD, PGE, PGF and PGI Synthases. The results closely match with available experimental data. The comparison showed seven physico-chemical features that are common to the four PGH2 binding sites. However this common pattern is not statistically unique and is not specific enough to distinguish between proteins that can or cannot bind PGH2. A large scale search in ASTRAL data bank, a non redundant Protein Data Bank, for a similar pattern showed the uniqueness of each of the PGH2 binding site in these Synthases. CONCLUSION The binding pockets in PGDS, PGES, PGFS and PGIS are unique and do not share significant commonality which can be characterized as a PGH2 binding site. Local comparison of these protein structures highlights a case of convergent evolution in analogous functional sites.
Collapse
|
16
|
On the mechanism of microsomal prostaglandin E synthase type-2--a theoretical study of endoperoxide reaction with MeS(-). Bioorg Med Chem Lett 2009; 20:338-40. [PMID: 19914067 DOI: 10.1016/j.bmcl.2009.10.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/25/2023]
Abstract
The reaction pathways of deprotonation versus nucleophilic substitution involving mPGES-2 enzyme catalysis were investigated by ab initio molecular orbital theory calculations for the reaction of methylthiolate with the endoperoxide core of PGH(2) and by the combined quantum mechanical molecular mechanical methods. The calculations showed that deprotonation mechanism is energetically more favorable than the nucleophilic substitution pathway.
Collapse
|
17
|
Linkage of atopic dermatitis to chromosomes 4q22, 3p24 and 3q21. Hum Genet 2009; 126:549-57. [PMID: 19517137 DOI: 10.1007/s00439-009-0692-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Atopic dermatitis (AD) is a common, itchy skin disease of complex inheritance characterized by dermal and epidermal inflammation. The heritability is considerable and well documented. To date, four genome scans have examined the AD phenotype, showing replicated linkage at 3p26-22, 3q13-21 and 18q11-21. Our previous AD scan showed evidence of linkage to loci at 3p and 18q, and furthermore at 4p15-14. In order to further investigate the genetic basis of AD, we collected and analysed a new Danish family sample consisting of 130 AD sib pair families (555 individuals including 295 children with AD). AD was diagnosed after clinical examination, AD severity was scored and specific IgE was determined. A linkage scan of chromosome 3, 4 and 18 was performed using 91 microsatellite markers. Linkage analyses were performed of dichotomous phenotypes and semi-quantitative traits including the AD severity score. We analysed the novel AD sample alone and together with the previously examined sample. AD severity showed a maximum Z-score of 3.7 at 4q22.1 suggesting the localization of a novel gene for AD severity. A maximum MOD score of 4.6 was obtained at 3p24 for the AD phenotype, providing the first significant linkage of AD at this locus. A maximum MLS score of 3.3 was obtained at 3q21 for IgE-associated AD, and evidence of linkage was also obtained at 3p22.2-21.31, 3q13, 4q35, and 18q12. The results presented should provide a firm basis for gene-targeting studies of AD and related disorders.
Collapse
|
18
|
Yamada T, Takusagawa F. PGH2 Degradation Pathway Catalyzed by GSH−Heme Complex Bound Microsomal Prostaglandin E2 Synthase Type 2: The First Example of a Dual-Function Enzyme,. Biochemistry 2007; 46:8414-24. [PMID: 17585783 DOI: 10.1021/bi700605m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostaglandin E2 synthase (PGES) catalyzes the isomerization of PGH2 to PGE2. PGES type 2 (mPGES-2) is a membrane-associated enzyme, whose N-terminal section is apparently inserted into the lipid bilayer. Both intact and N-terminal truncated enzymes have been isolated and have similar catalytic activity. The recombinant N-terminal truncated enzyme purified from Escherichia coli HB101 grown in LB medium containing delta-aminolevulinate and Fe(NO3)3 has a red color, while the same enzyme purified from the same E. coli grown in minimal medium has no color. The red-colored enzyme has been characterized by mass, fluorescence, and EPR spectroscopies and X-ray crystallography. The enzyme is found to contain bound glutathione (GSH) and heme. GSH binds to the active site with six H-bonds, while a heme is complexed with bound GSH forming a S-Fe coordination bond with no polar interaction with mPGES-2. There is a large open space between the heme and the protein, where a PGH2 might be able to bind. The heme dissociation constant is 0.53 microM, indicating that mPGES-2 has relatively strong heme affinity. Indeed, expression of mPGES-2 in E. coli stimulates heme biosynthesis. Although mPGES-2 has been reported to be a GSH-independent PGES, the crystal structure and sequence analysis indicate that mPGES-2 is a GSH-binding protein. The GSH-heme complex-bound enzyme (mPGES-2h) catalyzes formation of 12(S)-hydroxy-5(Z),8(E),10(E)-heptadecatrienoic acid and malondialdehyde from PGH2, but not formation of PGE2. The following kinetic parameters at 37 degrees C were determined: KM = 56 microM, kcat = 63 s-1, and kcat/KM = 1.1 x 10(6) M-1 s-1. They suggest that mPGES-2h has significant catalytic activity for PGH2 degradation. It is possible that both GSH-heme complex-free and -bound enzymes are present in the same tissues. mPGES-2 in heme-rich liver is most likely to become the form of mPGES-2h and might be involved in degradation reactions similar to that of cytochrome P450. Since mPGES-2 is an isomerase and mPGES-2h is a lyase, mPGES-2 cannot simply be classified into one of six classes set by the International Union of Biochemistry and Molecular Biology.
Collapse
Affiliation(s)
- Taro Yamada
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045-7534, USA
| | | |
Collapse
|
19
|
Aritake K, Kado Y, Inoue T, Miyano M, Urade Y. Structural and Functional Characterization of HQL-79, an Orally Selective Inhibitor of Human Hematopoietic Prostaglandin D Synthase. J Biol Chem 2006; 281:15277-86. [PMID: 16547010 DOI: 10.1074/jbc.m506431200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We determined the crystal structure of human hematopoietic prostaglandin (PG) D synthase (H-PGDS) as the quaternary complex with glutathione (GSH), Mg2+, and an inhibitor, HQL-79, having anti-inflammatory activities in vivo, at a 1.45-A resolution. In the quaternary complex, HQL-79 was found to reside within the catalytic cleft between Trp104 and GSH. HQL-79 was stabilized by interaction of a phenyl ring of its diphenyl group with Trp104 and by its piperidine group with GSH and Arg14 through water molecules, which form a network with hydrogen bonding and salt bridges linked to Mg2+. HQL-79 inhibited human H-PGDS competitively against the substrate PGH2 and non-competitively against GSH with Ki of 5 and 3 microm, respectively. Surface plasmon resonance analysis revealed that HQL-79 bound to H-PGDS with an affinity that was 12-fold higher in the presence of GSH and Mg2+ (Kd, 0.8 microm) than in their absence. Mutational studies revealed that Arg14 was important for the Mg2+-mediated increase in the binding affinity of H-PGDS for HQL-79, and that Trp104, Lys112, and Lys198 were important for maintaining the HQL-binding pocket. HQL-79 selectively inhibited PGD2 production by H-PGDS-expressing human megakaryocytes and rat mastocytoma cells with an IC50 value of about 100 microm but only marginally affected the production of other prostanoids, suggesting the tight functional engagement between H-PGDS and cyclooxygenase. Orally administered HQL-79 (30 mg/kg body weight) inhibited antigen-induced production of PGD2, without affecting the production of PGE2 and PGF2alpha, and ameliorated airway inflammation in wild-type and human H-PGDS-overexpressing mice. Knowledge about this structure of quaternary complex is useful for understanding the inhibitory mechanism of HQL-79 and should accelerate the structure-based development of novel anti-inflammatory drugs that inhibit PGD2 production specifically.
Collapse
Affiliation(s)
- Kosuke Aritake
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4, Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
20
|
Oakley AJ. Glutathione transferases: new functions. Curr Opin Struct Biol 2005; 15:716-23. [PMID: 16263269 DOI: 10.1016/j.sbi.2005.10.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/15/2005] [Accepted: 10/19/2005] [Indexed: 11/18/2022]
Abstract
Well known as detoxification enzymes, the glutathione transferases also function in prostaglandin and steroid hormone synthesis. New uses for the canonical glutathione transferase fold are becoming apparent; the bacterial stringent starvation protein SspA and the yeast prion protein Ure2p (both transcription factors) were found to adopt this fold, but their roles remain unclear. The intracellular chloride ion channel CLIC1 adopts the canonical glutathione transferase fold in its soluble form and appears to undergo radical structural modification as part of its membrane insertion process. The structures of rat and human mitochondrial glutathione transferases have been solved: they adopt a topology similar to that of bacterial disulfide bond isomerases, leading to the suggestion that they have evolved independently of the canonical enzymes. Recent structural studies of integral membrane glutathione S-transferases from microsomes have revealed common patterns of tertiary and quaternary structure.
Collapse
Affiliation(s)
- Aaron J Oakley
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
21
|
Ruan KH, Wu J, Wang LH. Solution structure of a common substrate mimetic of cyclooxygenase-downstream synthases bound to an engineered thromboxane A2 synthase using a high-resolution NMR technique. Arch Biochem Biophys 2005; 444:165-73. [PMID: 16297851 DOI: 10.1016/j.abb.2005.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/15/2022]
Abstract
Understanding the docking mechanism of the common substrate, prostaglandin H(2) (PGH(2)), into the active sites of different cyclooxygenase(COX)-downstream synthases is a key step toward uncovering the molecular basis of the isomerization of PGH(2) to different prostanoids. A high-resolution NMR spectroscopy was used to determine the conformational changes and solution 3D structure of U44069, a PGH(2) analogue, bound to one of the COX-downstream synthases-an engineered thromboxane A(2) synthase (TXAS). The dynamic binding was clearly observed by (1)D NMR titration. The detailed conformational change and 3D structure of U44069 bound to the TXAS were demonstrated by 2D (1)H NMR experiments using transferred NOEs. Through the assignments for the 2D (1)H NMR spectra, TOCSY, DQF-COSY, NOESY, and the structural calculations based on the NOE constraints, they demonstrated that the widely open conformation with a triangle shape of the free U44069 changed to a compact structure with an oval shape when bound to the TXAS. The putative substrate-binding pocket of the TXAS model fits the conformation of the TXAS-bound U44069 appropriately, but could not fit the free form of U44069. It was the first to provide structural information for the dynamic docking of the PGH(2) mimic of the TXAS in solution, and to imply that PGH(2) undergoes conformational changes when bound to different COX-downstream synthases, which may play important roles in the isomerization of PGH(2) to different prostanoids. The NMR technique can be used as a powerful tool to determine the conformations of PGH(2) bound to other COX-downstream synthases.
Collapse
Affiliation(s)
- Ke-He Ruan
- Vascular Biology Research Center, Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, Houston, 77030, USA.
| | | | | |
Collapse
|
22
|
Yamada T, Komoto J, Watanabe K, Ohmiya Y, Takusagawa F. Crystal Structure and Possible Catalytic Mechanism of Microsomal Prostaglandin E Synthase Type 2 (mPGES-2). J Mol Biol 2005; 348:1163-76. [PMID: 15854652 DOI: 10.1016/j.jmb.2005.03.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/09/2005] [Accepted: 03/14/2005] [Indexed: 02/02/2023]
Abstract
Prostaglandin (PG) H(2) (PGH(2)), formed from arachidonic acid, is an unstable intermediate and is converted efficiently into more stable arachidonate metabolites (PGD(2), PGE(2), and PGF(2)) by the action of three groups of enzymes. Prostaglandin E synthase catalyzes an isomerization reaction, PGH(2) to PGE(2). Microsomal prostaglandin E synthase type-2 (mPGES-2) has been crystallized with an anti-inflammatory drug indomethacin (IMN), and the complex structure has been determined at 2.6A resolution. mPGES-2 forms a dimer and is attached to lipid membrane by anchoring the N-terminal section. Two hydrophobic pockets connected to form a V shape are located in the bottom of a large cavity. IMN binds deeply in the cavity by placing the OMe-indole and chlorophenyl moieties into the V-shaped pockets, respectively, and the carboxyl group interacts with S(gamma) of C110 by forming a H-bond. A characteristic H-bond chain formation (N-H...S(gamma)-H...S(gamma)...H-N) is seen through Y107-C113-C110-F112, which apparently decreases the pK(a) of S(gamma) of C110. The geometry suggests that the S(gamma) of C110 is most likely the catalytic site of mPGES-2. A search of the RCSB Protein Data Bank suggests that IMN can fit into the PGH(2) binding site in various proteins. On the basis of the crystal structure and mutation data, a PGH(2)-bound model structure was built. PGH(2) fits well into the IMN binding site by placing the alpha and omega-chains in the V-shaped pockets, and the endoperoxide moiety interacts with S(gamma) of C110. A possible catalytic mechanism is proposed on the basis of the crystal and model structures, and an alternative catalytic mechanism is described. The fold of mPGES-2 is quite similar to those of GSH-dependent hematopoietic prostaglandin D synthase, except for the two large loop sections.
Collapse
Affiliation(s)
- Taro Yamada
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045-7534, USA
| | | | | | | | | |
Collapse
|