1
|
Kumari S, Adhikary A, Singh KK. BioID proximity mapping reveals novel SAP18 interactions in the prespliceosomal complex. Biochem Biophys Res Commun 2024; 738:150944. [PMID: 39522233 DOI: 10.1016/j.bbrc.2024.150944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
SAP18 protein was originally discovered in association with the SIN3 transcriptional repressor complex. Subsequent biochemical fractionation studies identified SAP18 as a component of another distinct trimeric complex termed as the apoptosis- and splicing-associated protein (ASAP) complex. The existence of SAP18 in distinct complexes highlights its dual role in transcriptional and splicing regulation. In our study, we aim to define the in vivo interactome of SAP18 using proximity-dependent biotin identification (BioID). Mass spectrometry analysis of streptavidin-purified biotinylated proteins revealed new SIN3-associated interactors, including RBBP4 and SAP30BP. Notably, we identified 72 spliceosomal proteins as highly enriched interactors. Additionally, a complementary immunoprecipitation assay validated novel interactions of SAP18 with the prespliceosomal components SNRNP70, SNRPA, SF3B1, U2AF1, and the SR protein SRSF1. Mutational analysis using a C-terminal SAP18 double point mutant, which is known to be deficient in ASAP-interaction, demonstrated a debilitated interaction with the prespliceosomal proteins. Altogether, our results present a refined understanding of the SAP18 interactome, uncovering its association with the prespliceosome in conjugation with ASAP components.
Collapse
Affiliation(s)
- Sweta Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ankita Adhikary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Fukumura K, Sperotto L, Seuß S, Kang HS, Yoshimoto R, Sattler M, Mayeda A. SAP30BP interacts with RBM17/SPF45 to promote splicing in a subset of human short introns. Cell Rep 2023; 42:113534. [PMID: 38065098 DOI: 10.1016/j.celrep.2023.113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
Human pre-mRNA splicing requires the removal of introns with highly variable lengths, from tens to over a million nucleotides. Therefore, mechanisms of intron recognition and splicing are likely not universal. Recently, we reported that splicing in a subset of human short introns with truncated polypyrimidine tracts depends on RBM17 (SPF45), instead of the canonical splicing factor U2 auxiliary factor (U2AF) heterodimer. Here, we demonstrate that SAP30BP, a factor previously implicated in transcriptional control, is an essential splicing cofactor for RBM17. In vitro binding and nuclear magnetic resonance analyses demonstrate that a U2AF-homology motif (UHM) in RBM17 binds directly to a newly identified UHM-ligand motif in SAP30BP. We show that this RBM17-SAP30BP interaction is required to specifically recruit RBM17 to phosphorylated SF3B1 (SF3b155), a U2 small nuclear ribonucleoprotein (U2 snRNP) component in active spliceosomes. We propose a mechanism for splicing in a subset of short introns, in which SAP30BP guides RBM17 in the assembly of active spliceosomes.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Luca Sperotto
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Stefanie Seuß
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 673-0101, Japan
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Bavarian NMR Center, TUM School of Natural Sciences, 85748 Garching, Germany
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
3
|
Roth JF, Braunschweig U, Wu M, Li JD, Lin ZY, Larsen B, Weatheritt RJ, Gingras AC, Blencowe BJ. Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors. Mol Cell 2023; 83:4222-4238.e10. [PMID: 38065061 DOI: 10.1016/j.molcel.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.
Collapse
Affiliation(s)
- Jonathan F Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
de Barros RSM, Sant’ Anna CDC, Alcantara DDFÁ, Pantoja KBCC, Fernandes MR, Bentes LGDB, Pimentel ALJC, Lemos RS, de Almeida NRC, Fernandes MRN, da Cruz TS, Candido ADA, Burbano RMR. Association between the rs820218 Variant within the SAP30BP Gene and Rotator Cuff Rupture in an Amazonian Population. Genes (Basel) 2023; 14:genes14020367. [PMID: 36833294 PMCID: PMC9957240 DOI: 10.3390/genes14020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Rotator cuff disease is one of the leading causes of musculoskeletal pain and disability, and its etiology is most likely multifactorial but remains incompletely understood. Therefore, the objective of this research was to investigate the relationship of the single-nucleotide rs820218 polymorphism of the SAP30-binding protein (SAP30BP) gene with rotator cuff tears in the Amazonian population. METHODS The case group consisted of patients who were operated on due to rotator cuff tears in a hospital in the Amazon region between 2010 and 2021, and the control group was composed of individuals who were selected after negative physical examinations for rotator cuff tears. Genomic DNA was obtained from saliva samples. For the genotyping and allelic discrimination of the selected single nucleotide polymorphism (rs820218) in the SAP30BP gene, real-time PCR was performed. RESULTS The frequency of the A allele in the control group was four times as high as that in the case group (AA homozygotes); an association of the genetic variant rs820218 of the SAP30BP gene with rotator cuff tears was not established (p = 0.28 and 0.20), as the A allelic frequency is ordinarily low in the general population. CONCLUSIONS The presence of the A allele indicates protection against rotator cuff tears.
Collapse
Affiliation(s)
- Rui Sergio Monteiro de Barros
- Hospital Ophir Loyola, Belém 66063-240, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66087-662, Brazil
- Rede Mater Dei—Hospital Porto Dias, Belém 66093-020, Brazil
| | | | | | | | | | | | | | - Rafael Silva Lemos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66087-662, Brazil
| | | | | | - Thiago Sequeira da Cruz
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66087-662, Brazil
| | | | - Rommel Mario Rodriguez Burbano
- Hospital Ophir Loyola, Belém 66063-240, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| |
Collapse
|
5
|
Identification of Target Proteins Involved in Cochlear Hair Cell Progenitor Cytotoxicity following Gentamicin Exposure. J Clin Med 2022; 11:jcm11144072. [PMID: 35887836 PMCID: PMC9319054 DOI: 10.3390/jcm11144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Given the non-labile, terminal differentiation of inner-ear sensory cells, preserving their function is critical since sensory cell damage results in irreversible hearing loss. Gentamicin-induced cytotoxicity is one of the major causes of sensory cell damage and consequent sensorineural hearing loss. However, the precise molecular mechanisms and target proteins involved in ototoxicity are still unknown. The objective of the present study was to identify target proteins involved in gentamicin-induced cytotoxicity to better characterize the molecular pathways involved in sensory cell damage following ototoxic drug administration using House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). We identified several unique proteins involved in gentamicin-induced cytotoxicity, expression of which were further confirmed using confocal microscopy. Further investigation of these pathways can inform the design and discovery of novel treatment modalities to prevent sensory cell damage and preserve their function.
Collapse
|
6
|
Yanik EL, Keener JD, Lin SJ, Colditz GA, Wright RW, Evanoff BA, Jain NB, Saccone NL. Identification of a Novel Genetic Marker for Risk of Degenerative Rotator Cuff Disease Surgery in the UK Biobank. J Bone Joint Surg Am 2021; 103:1259-1267. [PMID: 33979311 PMCID: PMC8282705 DOI: 10.2106/jbjs.20.01474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND While evidence indicates that familial predisposition influences the risk of developing degenerative rotator cuff disease (RCD), knowledge of specific genetic markers is limited. We conducted a genome-wide association study of RCD surgery using the UK Biobank, a prospective cohort of 500,000 people (40 to 69 years of age at enrollment) with genotype data. METHODS Cases with surgery for degenerative RCD were identified using linked hospital records. The cases were defined as an International Classification of Diseases, Tenth Revision (ICD-10) code of M75.1 determined by a trauma/orthopaedic specialist and surgery consistent with RCD treatment. Cases were excluded if a diagnosis of traumatic injury had been made during the same hospital visit. For each case, up to 5 controls matched by age, sex, and follow-up time were chosen from the UK Biobank. Analyses were limited to European-ancestry individuals who were not third-degree or closer relations. We used logistic regression to test for genetic association of 674,405 typed and >10 million imputed markers, after adjusting for age, sex, population principal components, and follow-up. RESULTS We identified 2,917 RCD surgery cases and 14,158 matched controls. We observed 1 genome-wide significant signal (p < 5 × 10-8) for a novel locus tagged by rs2237352 in the CREB5 gene on chromosome 7 (odds ratio [OR] = 1.17, 95% confidence interval [CI] = 1.11 to 1.24). The single-nucleotide polymorphism (SNP) rs2237352 was imputed with a high degree of confidence (info score = 0.9847) and is common, with a minor allele frequency of 47%. After expanding the control sample to include additional unmatched non-cases, rs2237352 and another SNP in the CREB5 gene, rs12700903, were genome-wide significant. We did not detect genome-wide significant signals at loci associated with RCD in previous studies. CONCLUSIONS We identified a novel association between a variant in the CREB5 gene and RCD surgery. Validation of this finding in studies with imaging data to confirm diagnoses will be an important next step. CLINICAL RELEVANCE Identification of genetic RCD susceptibility markers can guide understanding of biological processes in rotator cuff degeneration and help inform disease risk in the clinical setting. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Elizabeth L. Yanik
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Jay D. Keener
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Shiow J. Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Graham A. Colditz
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Rick W. Wright
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Bradley A. Evanoff
- Division of General Medical Sciences, Washington University School of Medicine, St. Louis, MO
| | - Nitin B. Jain
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern, Dallas, TX
| | - Nancy L. Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Dopie J, Sweredoski MJ, Moradian A, Belmont AS. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J Cell Biol 2021; 219:151914. [PMID: 32609799 PMCID: PMC7480118 DOI: 10.1083/jcb.201910207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/03/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
We present a simple ratio method to infer protein composition within cellular structures using proximity labeling approaches but compensating for the diffusion of free radicals. We used tyramide signal amplification (TSA) and label-free mass spectrometry (MS) to compare proteins in nuclear speckles versus centromeres. Our “TSA-MS ratio” approach successfully identified known nuclear speckle proteins. For example, 96% and 67% of proteins in the top 30 and 100 sorted proteins, respectively, are known nuclear speckle proteins, including proteins that we validated here as enriched in nuclear speckles. We show that MFAP1, among the top 20 in our list, forms droplets under certain circumstances and that MFAP1 expression levels modulate the size, stability, and dynamics of nuclear speckles. Localization of MFAP1 and its binding partner, PRPF38A, in droplet-like nuclear bodies precedes formation of nuclear speckles during telophase. Our results update older proteomic studies of nuclear speckles and should provide a useful reference dataset to guide future experimental dissection of nuclear speckle structure and function.
Collapse
Affiliation(s)
- Joseph Dopie
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Department of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA
| | - Annie Moradian
- Proteome Exploration Laboratory, Department of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
8
|
Fan H, Lu J, Guo Y, Li D, Zhang ZM, Tsai YH, Pi WC, Ahn JH, Gong W, Xiang Y, Allison DF, Geng H, He S, Diao Y, Chen WY, Strahl BD, Cai L, Song J, Wang GG. BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. Nat Genet 2020; 52:1384-1396. [PMID: 33139953 PMCID: PMC8330957 DOI: 10.1038/s41588-020-00729-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
Trimethylated histone H3 lysine 27 (H3K27me3) regulates gene repression, cell-fate determination and differentiation. We report that a conserved bromo-adjacent homology (BAH) module of BAHCC1 (BAHCC1BAH) 'recognizes' H3K27me3 specifically and enforces silencing of H3K27me3-demarcated genes in mammalian cells. Biochemical, structural and integrated chromatin immunoprecipitation-sequencing-based analyses demonstrate that direct readout of H3K27me3 by BAHCC1 is achieved through a hydrophobic trimethyl-L-lysine-binding 'cage' formed by BAHCC1BAH, mediating colocalization of BAHCC1 and H3K27me3-marked genes. BAHCC1 is highly expressed in human acute leukemia and interacts with transcriptional corepressors. In leukemia, depletion of BAHCC1, or disruption of the BAHCC1BAH-H3K27me3 interaction, causes derepression of H3K27me3-targeted genes that are involved in tumor suppression and cell differentiation, leading to suppression of oncogenesis. In mice, introduction of a germline mutation at Bahcc1 to disrupt its H3K27me3 engagement causes partial postnatal lethality, supporting a role in development. This study identifies an H3K27me3-directed transduction pathway in mammals that relies on a conserved BAH 'reader'.
Collapse
Affiliation(s)
- Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yu Xiang
- Department of Cell Biology and Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David F Allison
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shenghui He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yarui Diao
- Department of Cell Biology and Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Tian B, Kang X, Zhang L, Zheng J, Zhao Z. SAP30BP gene is associated with the susceptibility of rotator cuff tear: a case-control study based on Han Chinese population. J Orthop Surg Res 2020; 15:356. [PMID: 32843068 PMCID: PMC7449091 DOI: 10.1186/s13018-020-01888-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Background Multiple studies have indicated that genetic components contribute significantly to the risk of rotator cuff tears. Previous studies have suggested that the SAP30BP gene may play an essential role in the development of rotator cuff tears. The aim of this study was to evaluate the potential association of the SAP30BP gene with the susceptibility to rotator cuff tears in a Han Chinese population. Methods A total of 394 patients with rotator cuff tears and 998 healthy controls were included in the study. Twelve tag single nucleotide polymorphisms (SNPs) located in the region of the SAP30BP gene were selected for genotyping. Genetic association analyses were performed using χ2 tests for each SNP. Significant associations were searched in the GTEx database for their functional consequences. Results SNP rs820218 was significantly associated with rotator cuff tears (χ2 = 9.49, P = 0.0021, OR [95% CI] = 0.67 [0.52–0.87]). In addition, SNP rs820218 was found to be significantly associated with the gene expression level of SAP30BP in whole blood (NES = 0.12, P = 1.00 × 10−6). Conclusion Our study has shown that the genetic polymorphism of SAP30BP contributes to the risk of rotator cuff tears in Chinese Han people. Individuals with the A allele for SNP rs820218 were less susceptible to developing rotator cuff tears.
Collapse
Affiliation(s)
- Bin Tian
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China
| | - Jiang Zheng
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China
| | - Zandong Zhao
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center, No.555, Youyi East Road, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Liu Z, Lei X, Wang P, Wang Y, Lv J, Li X, Gao C. Overexpression of ThSAP30BP from Tamarix hispida improves salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:124-132. [PMID: 31743857 DOI: 10.1016/j.plaphy.2019.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Histone deacetylases (HDACs) play an important regulatory role in plant response to biotic and abiotic stresses. They improve plant stress resistance by increasing the degree of histone acetylation associated with stress-responsive genes. SAP30BP, a human transcriptional regulatory protein, can increase histone deacetylase activity by regulating the deacetylation levels of lysines 9 and 14 in histone H3. In this study, a ThSAP30BP gene was cloned and characterized from Tamarix hispida (a kind of woody halophyte). The expression patterns of ThSAP30BP under different abiotic stresses and hormone treatments were detected by qRT-PCR. The results showed that ThSAP30BP was significantly upregulated at most time points under various stress treatments, suggesting that ThSAP30BP may be related to the abiotic stress response of T. hispida. To further analyze the salt stress resistance function of the ThSAP30BP gene, the plant overexpression vector pROKII-ThSAP30BP was instantaneously constructed and transformed into T. hispida. Meanwhile, the empty vector pROKII was also transformed as a control. The activities of SOD and POD, the contents of H2O2 and MDA, the relative conductance and the staining of NBT, DAB and Evans blue were analyzed and compared under salt stress. The results showed that the overexpression of ThSAP30BP in T. hispida reduced the accumulation of ROS in plants and the cell death rate under salt stress. These results suggested that ThSAP30BP may play an important physiological role in salt tolerance of T. hispida.
Collapse
Affiliation(s)
- Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Peilong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiaxin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xinpin Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
11
|
Wang H, Guo J, Jiang J, Wu W, Chang X, Zhou H, Li Z, Zhao J. New genes associated with rheumatoid arthritis identified by gene expression profiling. Int J Immunogenet 2017; 44:107-113. [PMID: 28371410 DOI: 10.1111/iji.12313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- H. Wang
- The Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics, Chinese Academy of Sciences; Beijing China
| | - J. Guo
- Department of Rheumatology and Immunology; Peking University People's Hospital; Beijing China
| | - J. Jiang
- The Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics, Chinese Academy of Sciences; Beijing China
| | - W. Wu
- The Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics, Chinese Academy of Sciences; Beijing China
| | - X. Chang
- Department of Rheumatology and Immunology; Qianfoshan Hospital; Jinan China
| | - H. Zhou
- Department of Rheumatology and Immunology; Shenzhen Second People's Hospital; Shenzhen China
| | - Z. Li
- Department of Rheumatology and Immunology; Peking University People's Hospital; Beijing China
| | - J. Zhao
- The Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
12
|
Tashjian RZ, Granger EK, Farnham JM, Cannon-Albright LA, Teerlink CC. Genome-wide association study for rotator cuff tears identifies two significant single-nucleotide polymorphisms. J Shoulder Elbow Surg 2016; 25:174-9. [PMID: 26350878 DOI: 10.1016/j.jse.2015.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/17/2015] [Accepted: 07/08/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND The precise etiology of rotator cuff disease is unknown, but prior evidence suggests a role for genetic factors. Limited data exist identifying specific genes associated with rotator cuff tearing. The purpose of this study was to identify specific genes or genetic variants associated with rotator cuff tearing by a genome-wide association study with an independent set of rotator cuff tear cases. MATERIALS AND METHODS A set of 311 full-thickness rotator cuff tear cases genotyped on the Illumina 5M single-nucleotide polymorphism (SNP) platform were used in a genome-wide association study with 2641 genetically matched white population controls available from the Illumina iControls database. Tests of association were performed with GEMMA software at 257,558 SNPs that compose the intersection of Illumina SNP platforms and that passed general quality control metrics. SNPs were considered significant if P < 1.94 × 10(-7) (Bonferroni correction: 0.05/257,558). RESULTS Tests of association revealed 2 significantly associated SNPs, one occurring in SAP30BP (rs820218; P = 3.8E-9) on chromosome 17q25 and another occurring in SASH1 (rs12527089; P = 1.9E-7) on chromosome 6q24. CONCLUSIONS This study represents the first attempt to identify genetic factors influencing rotator cuff tearing by a genome-wide association study using a dense/complete set of SNPs. Two SNPs were significantly associated with rotator cuff tearing, residing in SAP30BP on chromosome 17 and SASH1 on chromosome 6. Both genes are associated with the cellular process of apoptosis. Identification of potential genes or genetic variants associated with rotator cuff tearing may help in identifying individuals at risk for the development of rotator cuff tearing.
Collapse
Affiliation(s)
- Robert Z Tashjian
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Erin K Granger
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James M Farnham
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Cannon-Albright
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Craig C Teerlink
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Blumert C, Kalkhof S, Brocke-Heidrich K, Kohajda T, von Bergen M, Horn F. Analysis of the STAT3 interactome using in-situ biotinylation and SILAC. J Proteomics 2013; 94:370-86. [PMID: 24013128 DOI: 10.1016/j.jprot.2013.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/01/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED Signal transducer and activator of transcription 3 (STAT3) is activated by a variety of cytokines and growth factors. To generate a comprehensive data set of proteins interacting specifically with STAT3, we applied stable isotope labeling with amino acids in cell culture (SILAC). For high-affinity pull-down using streptavidin, we fused STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag), which did not affect STAT3 functions. By this approach, 3642 coprecipitated proteins were detected in human embryonic kidney-293 cells. Filtering using statistical and functional criteria finally extracted 136 proteins as putative interaction partners of STAT3. Both, a physical interaction network analysis and the enrichment of known and predicted interaction partners suggested that our filtering criteria successfully enriched true STAT3 interactors. Our approach identified numerous novel interactors, including ones previously predicted to associate with STAT3. By reciprocal coprecipitation, we were able to verify the physical association between STAT3 and selected interactors, including the novel interaction with TOX4, a member of the TOX high mobility group box family. Applying the same method, we next investigated the activation-dependency of the STAT3 interactome. Again, we identified both known and novel interactions. Thus, our approach allows to study protein-protein interaction effectively and comprehensively. BIOLOGICAL SIGNIFICANCE The location, activity, function, degradation, and synthesis of proteins are significantly regulated by interactions of proteins with other proteins, biopolymers and small molecules. Thus, the comprehensive characterization of interactions of proteins in a given proteome is the next milestone on the path to understanding the biochemistry of the cell. In order to generate a comprehensive interactome dataset of proteins specifically interacting with a selected bait protein, we fused our bait protein STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag). This bio-tag allows an affinity pull-down using streptavidin but affected neither the activation of STAT3 by tyrosine phosphorylation nor its transactivating potential. We combined SILAC for accurate relative protein quantification, subcellular fractionation to increase the coverage of interacting proteins, high-affinity pull-down and a stringent filtering method to successfully analyze the interactome of STAT3. With our approach we confirmed several already known and identified numerous novel STAT3 interactors. The approach applied provides a rapid and effective method, which is broadly applicable for studying protein-protein interactions and their dependency on post-translational modifications.
Collapse
Affiliation(s)
- Conny Blumert
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Host cell protein C9orf69 promotes viral proliferation via interaction with HSV-1 UL25 protein. Virol Sin 2011; 26:171-80. [PMID: 21667337 DOI: 10.1007/s12250-011-3179-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/06/2011] [Indexed: 01/12/2023] Open
Abstract
In light of the scarcity of reports on the interaction between HSV-1 nucleocapsid protein UL25 and its host cell proteins, the purpose of this study is to use yeast two-hybrid screening to search for cellular proteins that can interact with the UL25 protein. C9orf69, a protein of unknown function was identified. The interaction between the two proteins under physiological conditions was also confirmed by biological experiments including co-localization by fluorescence and immunoprecipitation. A preliminary study of the function of C9orf69 showed that it promotes viral proliferation. Further studies showed that C9orf69 did not influence viral multiplication efficiency by transcriptional regulation of viral genes, but indirectly promoted proliferation via interaction with UL25.
Collapse
|
15
|
HSV-1 stimulation-related protein HSRG1 inhibits viral gene transcriptional elongation by interacting with Cyclin T2. SCIENCE CHINA-LIFE SCIENCES 2011; 54:359-65. [PMID: 21509660 DOI: 10.1007/s11427-011-4160-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 02/11/2010] [Indexed: 10/18/2022]
Abstract
The protein encoded by HSRG1 (HSV-1 stimulation-related gene 1) is a virally induced protein expressed in HSV-1-infected cells. We have already reported that HSRG1 is capable of interacting with transcriptional regulator proteins. To further analyze the effects of HSRG1 on the regulation of viral gene transcription, we expressed the HSRG1 protein in transfected cells and found that it postpones the proliferation of HSV-1. CAT (chloramphenicol acetyltransferase) assays also revealed that HSRG1 reduces transcription from HSV-1 promoters. Yeast two-hybrid and immunoprecipitation assays indicated that HSRG1 interacts with Cyclin T2, the regulatory subunit of P-TEFb, which is required for transcription elongation by RNA Pol II (RNAP II), and that amino acid residues 1-420 in Cyclin T2 are important for binding with HSRG1. Fluorescence assays suggested that the cellular localizations of those two proteins are influenced by their interaction. Further analyses with CAT assays revealed that HSRG1 inhibits the transcriptional activation by Cyclin T2 of viral promoters. Our results suggested that the inhibitory effects of HSRG1 on viral replication and proliferation are probably induced by its binding to Cyclin T2. Therefore, it is likely that HSRG1 inhibits viral gene transcriptional elongation by interacting with Cyclin T2.
Collapse
|
16
|
Chen J, Li YM, Li JF, Liu LD, Liao Y, Na RX, Wang JJ, Wang LC, Li QH. Transcriptional regulation by HSV-1 induced HTRP via acetylation system. Virol Sin 2010; 25:417-24. [PMID: 21221920 DOI: 10.1007/s12250-010-3147-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/28/2010] [Indexed: 11/26/2022] Open
Abstract
The protein HTRP (human transcription regulator protein) is encoded by the differential gene htrp and induced by Herpes simplex virus type 1 (HSV-1) infection in KMB-17 cells. HTRP was found to interact with SAP30 (mSin3A Association Protein), one of the components of co-repressor complex mSin3A, which is part of the deacetylation transfer enzyme HDAC. To reveal the biological significance of the interaction between HTRP and SAP30, real- time PCR and a dual-luciferase detecting system was used. The results indicate that HTRP could inhibit the transcription of a viral promoter, whose interaction with SAP30 synergistically affects transcriptional inhibition of the viral genes, and is related to HDAC enzyme activity. ChIP experiments demonstrate that HTRP could promote HDAC activity by increasing the deacetylation level of lysine 14 and lysine 9 in histone H3.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guo HX, Cun W, Liu LD, Dong SZ, Wang LC, Dong CH, Li QH. Protein encoded by HSV-1 stimulation-related gene 1 (HSRG1) interacts with and inhibits SV40 large T antigen. Cell Prolif 2007; 39:507-18. [PMID: 17109635 PMCID: PMC6496204 DOI: 10.1111/j.1365-2184.2006.00408.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Herpes simplex virus (HSV)-1 stimulation-related gene 1 (HSRG1) protein expression is induced in HSV-1 infected cells. We found that HSRG1 interacts with SV40 large T antigen (LT) in yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) assay. This interaction alters LT's regulation of the SV40 promoter and its ability to influence the cell cycle. Choramphenicol acetyl-transferase (CAT) assays revealed that initiation of gene transcription by LT is changed by HSRG1 expression. HSRG1 inhibits the ability of LT to activate SV40 late gene transcription. Further data indicate that the ability of LT protein to stimulate S-phase entry is also inhibited by the expression of HSRG1. The results of a colony-forming assay suggested that expression of HSRG1 in cells transfected by LT gene decreased the rate of colony formation. Yeast two-hybrid beta-galactosidase assay revealed that amino acid residues 132-450 in LT bind HSRG1.
Collapse
Affiliation(s)
- H. X. Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - W. Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - L. D. Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - S. Z. Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - L. C. Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - C. H. Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Q. H. Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| |
Collapse
|
18
|
April CS, Barsh GS. Skin layer-specific transcriptional profiles in normal and recessive yellow (Mc1re/Mc1re) mice. ACTA ACUST UNITED AC 2006; 19:194-205. [PMID: 16704453 DOI: 10.1111/j.1600-0749.2006.00305.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The melanocortin 1 receptor (Mc1r) plays a central role in cutaneous biology, but is expressed at very low levels by a small fraction of cells in the skin. In humans, loss-of-function MC1R mutations cause fair skin, freckling, red hair, and increased predisposition to melanoma; in mice, Mc1r loss-of-function is responsible for the recessive yellow mutation, associated with pheomelanic hair and a decreased number of epidermal melanocytes. To better understand how Mc1r signaling affects different cutaneous phenotypes, we examined large-scale patterns of gene expression in different skin components (whole epidermal sheets, basal epidermal cells and whole skins) of neonatal (P2.5) normal and recessive yellow mice, starting with a 26K mouse cDNA microarray. From c. 17 000 genes whose levels could be accurately measured in neonatal skin, we identified 883, 2097 and 552 genes that were uniquely expressed in the suprabasal epidermis, basal epidermis and dermis, respectively; specific biologic roles could be assigned for each class. Comparison of normal and recessive yellow mice revealed 69 differentially expressed genes, of which the majority had not been previously implicated in Mc1r signaling. Surprisingly, many of the Mc1r-dependent genes are expressed in cells other than melanocytes, even though Mc1r expression in the skin is confined almost exclusively to epidermal melanocytes. These results reveal new targets for Mc1r signaling, and point to a previously unappreciated role for a Mc1r-dependent paracrine effect of melanocytes on other components of the skin.
Collapse
Affiliation(s)
- Craig S April
- Department of Genetics and Pediatrics, Stanford University School of Medicine, CA 94305-5323, USA
| | | |
Collapse
|