1
|
Fandilolu P, Kumar C, Palia D, Idicula-Thomas S. Investigating role of positively selected genes and mutation sites of ERG11 in drug resistance of Candida albicans. Arch Microbiol 2024; 206:437. [PMID: 39422772 DOI: 10.1007/s00203-024-04159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The steep increase in acquired drug resistance in Candida isolates has posed a great challenge in the clinical management of candidiasis globally. Information of genes and codon sites that are positively selected during evolution can provide insights into the mechanisms driving antifungal resistance in Candida. This study aimed to create a manually curated list of genes of Candida spp. reported to be associated with antifungal resistance in literature, and further investigate the structure-function implications of positively selected genes and mutation sites. Sequence analysis of antifungal drug resistance associated gene sequences from various species and strains of Candida revealed that ERG11 and MRR1 of C. albicans were positively selected during evolution. Four sites in ERG11 and two sites in MRR1 of C. albicans were positively selected and associated with drug resistance. These four sites (132, 405, 450, and 464) of ERG11 are predictive markers for azole resistance and have evolved over time. A well-characterized crystal structure of sterol-14-α-demethylase (CYP51) encoded by ERG11 is available in PDB. Therefore, the stability of CYP51 in complex with fluconazole was evaluated using MD simulations and molecular docking studies for two mutations (Y132F and Y132H) reported to be associated with azole resistance in literature. These mutations induced high flexibility in functional motifs of CYP51. It was also observed that residues such as I304, G308, and I379 of CYP51 play a critical role in fluconazole binding affinity. The insights gained from this study can further guide drug design strategies addressing antimicrobial resistance.
Collapse
Affiliation(s)
- Prayagraj Fandilolu
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Dushyant Palia
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
2
|
Feliciano A, Gómez-García O, Escalante CH, Rodríguez-Hernández MA, Vargas-Fuentes M, Andrade-Pavón D, Villa-Tanaca L, Álvarez-Toledano C, Ramírez-Apan MT, Vázquez MA, Tamariz J, Delgado F. Three-Component Synthesis of 2-Amino-3-cyano-4 H-chromenes, In Silico Analysis of Their Pharmacological Profile, and In Vitro Anticancer and Antifungal Testing. Pharmaceuticals (Basel) 2021; 14:ph14111110. [PMID: 34832892 PMCID: PMC8623194 DOI: 10.3390/ph14111110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Chromenes are compounds that may be useful for inhibiting topoisomerase and cytochrome, enzymes involved in the growth of cancer and fungal cells, respectively. The aim of this study was to synthesize a series of some novel 2-amino-3-cyano-4-aryl-6,7-methylendioxy-4H-chromenes 4a-o and 2-amino-3-cyano-5,7-dimethoxy-4-aryl-4H-chromenes 6a-h by a three-component reaction, and test these derivatives for anticancer and antifungal activity. Compounds 4a and 4b were more active than cisplatin (9) and topotecan (7) in SK-LU-1 cells, and more active than 9 in PC-3 cells. An evaluation was also made of the series of compounds 4 and 6 as potential antifungal agents against six Candida strains, finding their MIC50 to be less than or equal to that of fluconazole (8). Molecular docking studies are herein reported, for the interaction of 4 and 6 with topoisomerase IB and the active site of CYP51 of Candida spp. Compounds 4a-o and 6a-h interacted in a similar way as 7 with key amino acids of the active site of topoisomerase IB and showed better binding energy than 8 at the active site of CYP51. Hence, 4a-o and 6a-h are good candidates for further research, having demonstrated their dual inhibition of enzymes that participate in the growth of cancer and fungal cells.
Collapse
Affiliation(s)
- Alberto Feliciano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
- Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico;
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
- Correspondence: or (O.G.-G.); (F.D.)
| | - Carlos H. Escalante
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
| | - Mario A. Rodríguez-Hernández
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
| | - Mariana Vargas-Fuentes
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
| | - Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (D.A.-P.); (L.V.-T.)
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Mexico City 07738, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (D.A.-P.); (L.V.-T.)
| | - Cecilio Álvarez-Toledano
- Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P., Mexico City 04510, Mexico; (C.Á.-T.); (M.T.R.-A.)
| | - María Teresa Ramírez-Apan
- Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P., Mexico City 04510, Mexico; (C.Á.-T.); (M.T.R.-A.)
| | - Miguel A. Vázquez
- Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico;
| | - Joaquín Tamariz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
| | - Francisco Delgado
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico; (A.F.); (C.H.E.); (M.A.R.-H.); (M.V.-F.); (J.T.)
- Correspondence: or (O.G.-G.); (F.D.)
| |
Collapse
|
3
|
Du Y, Shi N, Ruan H, Miao J, Yan H, Shi C, Chen F, Liu X. Analysis of the prochloraz-Mn resistance risk and its molecular basis in Mycogone rosea from Agaricus bisporus. PEST MANAGEMENT SCIENCE 2021; 77:4680-4690. [PMID: 34132039 DOI: 10.1002/ps.6509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wet bubble disease (WBD), caused by Mycogone rosea, is one of the most serious diseases of white button mushroom (Agaricus bisporus) in China. Prochloraz-Mn is the main fungicide used in the management of WBD. To provide essential references for early warning of prochloraz-Mn resistance and management of WBD, this study was performed to assess the resistance risk to prochloraz-Mn in M. rosea, as well as its underlying resistance mechanism. RESULTS Eight stable prochloraz-Mn-resistant mutants with a mutation frequency of 1.3 × 10-4 were generated and resistance factors ranged from 2.57 to 7.80 after 10 successive culture transfers. All eight resistant mutants exhibited fitness penalties in decreased sporulation and pathogenicity. Positive cross-resistance was observed between prochloraz-Mn and prochloraz or imazalil, but not between prochloraz-Mn and diniconazole, fenbuconazole, thiabendazole or picoxystrobin. The point mutation F511I in MrCYP51 protein was found in six mutants and the point mutation G464S occurred only in the SDW2-2-1M mutant. The up-regulated expression of MrCYP51 in all mutants was less than that in their parental isolates when exposed to prochloraz-Mn. Without prochloraz-Mn treatment, MrCYP51 expression was up-regulated in GX203-3-1M and FJ58-2-1M mutants, whereas it was down-regulated in other mutants compared to their respective parental isolates. CONCLUSION Genotypes with two separate point mutations, F511I and G464S in MrCYP51, may be associated with resistance to prochloraz-Mn in M. rosea. The resistance risk of M. rosea to prochloraz-Mn is likely to be low to moderate, indicating that prochloraz-Mn can still be used reasonably to control WBD. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixin Du
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Niuniu Shi
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Hongchun Ruan
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Jianqiang Miao
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
| | - He Yan
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| | - Chunxi Shi
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| | - Furu Chen
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Xili Liu
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| |
Collapse
|
4
|
Xu H, Su X, Guo MB, An R, Mou YH, Hou Z, Guo C. Design, synthesis, and biological evaluation of novel miconazole analogues containing selenium as potent antifungal agents. Eur J Med Chem 2020; 198:112360. [DOI: 10.1016/j.ejmech.2020.112360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
|
5
|
The Evolution of Azole Resistance in Candida albicans Sterol 14α-Demethylase (CYP51) through Incremental Amino Acid Substitutions. Antimicrob Agents Chemother 2019; 63:AAC.02586-18. [PMID: 30783005 PMCID: PMC6496074 DOI: 10.1128/aac.02586-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Recombinant Candida albicans CYP51 (CaCYP51) proteins containing 23 single and 5 double amino acid substitutions found in clinical strains and the wild-type enzyme were expressed in Escherichia coli and purified by Ni2+-nitrilotriacetic acid agarose chromatography. Catalytic tolerance to azole antifungals was assessed by determination of the concentration causing 50% enzyme inhibition (IC50) using CYP51 reconstitution assays. The greatest increase in the IC50 compared to that of the wild-type enzyme was observed with the five double substitutions Y132F+K143R (15.3-fold), Y132H+K143R (22.1-fold), Y132F+F145L (10.1-fold), G307S+G450E (13-fold), and D278N+G464S (3.3-fold). The single substitutions K143R, D278N, S279F, S405F, G448E, and G450E conferred at least 2-fold increases in the fluconazole IC50, and the Y132F, F145L, Y257H, Y447H, V456I, G464S, R467K, and I471T substitutions conferred increased residual CYP51 activity at high fluconazole concentrations. In vitro testing of select CaCYP51 mutations in C. albicans showed that the Y132F, Y132H, K143R, F145L, S405F, G448E, G450E, G464S, Y132F+K143R, Y132F+F145L, and D278N+G464S substitutions conferred at least a 2-fold increase in the fluconazole MIC. The catalytic tolerance of the purified proteins to voriconazole, itraconazole, and posaconazole was far lower and limited to increased residual activities at high triazole concentrations for certain mutations rather than large increases in IC50 values. Itraconazole was the most effective at inhibiting CaCYP51. However, when tested against CaCYP51 mutant strains, posaconazole seemed to be the most resistant to changes in MIC as a result of CYP51 mutation compared to itraconazole, voriconazole, or fluconazole.
Collapse
|
6
|
Molecular Confirmation of the Linkage between the Rhizopus oryzae CYP51A Gene Coding Region and Its Intrinsic Voriconazole and Fluconazole Resistance. Antimicrob Agents Chemother 2018; 62:AAC.00224-18. [PMID: 29891608 DOI: 10.1128/aac.00224-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Rhizopus oryzae is the most prevalent causative agent of mucormycosis, an increasingly reported opportunistic fungal infection. These Mucorales are intrinsically resistant to Candida- and Aspergillus-active antifungal azole drugs, such as fluconazole (FLC) and voriconazole, respectively. Despite its importance, the molecular mechanisms of its intrinsic azole resistance have not been elucidated yet. The aim of this work was to establish if the Rhizopus oryzaeCYP51 genes are uniquely responsible for intrinsic voriconazole and fluconazole resistance in these fungal pathogens. Two CYP51 genes were identified in the R. oryzae genome. We classified them as CYP51A and CYP51B based on their sequence similarity with other known fungal CYP51 genes. Later, we obtained a chimeric Aspergillus fumigatus strain harboring a functional R. oryzae CYP51A gene expressed under the regulation of the wild-type A. fumigatusCYP51A promoter and terminator. The mutant was selected after transformation by using a novel procedure taking advantage of the FLC hypersusceptibility of the A. fumigatusCYP51A deletion mutant used as the recipient strain. The azole susceptibility patterns of the A. fumigatus transformants harboring R. oryzae CYP51A mimicked exactly the azole susceptibility patterns of this mucormycete. The data presented in this work demonstrate that the R. oryzae CYP51A coding sequence is uniquely responsible for the R. oryzae azole susceptibility patterns.
Collapse
|
7
|
Alvarez-Rueda N, Fleury A, Logé C, Pagniez F, Robert E, Morio F, Le Pape P. The amino acid substitution N136Y in Candida albicans sterol 14alpha-demethylase is involved in fluconazole resistance. Med Mycol 2016; 54:764-775. [PMID: 27143634 DOI: 10.1093/mmy/myw023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 03/24/2016] [Indexed: 12/22/2022] Open
Abstract
Resistance to fluconazole antifungal is an ongoing impediment to a successful treatment of Candida albicans infections. One of the most prevalent mechanisms leading to azole resistance is genetic alterations of the 14α-demethylase, the target of azole antifungals, through point mutations. Site-directed mutagenesis and molecular modeling of 14α-demethylase rationalize biological data about the role of protein substitutions in the azole treatment failure. In this work, we investigated the role of N136Y substitution by site-directed mutagenesis into Pichia pastoris guided by structural analysis. Single amino acid substitutions were created by site-directed mutagenesis into P. pastoris with C. albicans ERG11 gene as template. In vitro susceptibility of P. pastoris transformants expressing wild-type and mutants to azole compounds was determined by CLSI M27-A2 and spot agar methods. The fluconazole effect on ergosterol biosynthesis was analyzed by gas chromatography-mass spectrometry. By microdilution and spot tests, N136Y transformants showed a reduced in vitro susceptibility to fluconazole compared to wild-type controls. As expected, ergosterol/lanosterol ratios were higher in N136Y transformants compared to the wild-type controls after treatment with fluconazole. Molecular modeling suggests that residue Asn136 located within the first mutation hot spot, could play a role during heme and azole binding. These results provide new insights into the structural basis for 14α-demethylase-azole interaction and could guide the design of novel azole antifungals.
Collapse
Affiliation(s)
| | - Audrey Fleury
- Département de Parasitologie et de Mycologie Médicale
| | - Cédric Logé
- Laboratoire de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, UFR des Sciences Pharmaceutiques et Biologiques, France
| | | | | | - Florent Morio
- Département de Parasitologie et de Mycologie Médicale.,Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
| | - Patrice Le Pape
- Département de Parasitologie et de Mycologie Médicale.,Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
| |
Collapse
|
8
|
Parker JE, Warrilow AGS, Price CL, Mullins JGL, Kelly DE, Kelly SL. Resistance to antifungals that target CYP51. J Chem Biol 2014; 7:143-61. [PMID: 25320648 DOI: 10.1007/s12154-014-0121-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022] Open
Abstract
Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue.
Collapse
Affiliation(s)
- Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Jonathan G L Mullins
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| |
Collapse
|
9
|
Becher R, Wirsel SGR. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol 2012; 95:825-40. [PMID: 22684327 DOI: 10.1007/s00253-012-4195-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/18/2012] [Accepted: 05/19/2012] [Indexed: 01/18/2023]
Abstract
Azoles have been applied widely to combat pathogenic fungi in medicine and agriculture and, consequently, loss of efficacy has occurred in populations of some species. Often, but not always, resistance was found to result from amino acid substitutions in the molecular target of azoles, 14α-sterol demethylase (CYP51 syn. ERG11). This review summarizes CYP51 function, evolution, and structure. Furthermore, we compare the occurrence and contribution of CYP51 substitutions to azole resistance in clinical and field isolates of important fungal pathogens. Although no crystal structure is available yet for any fungal CYP51, homology modeling using structures from other origins as template allowed deducing models for fungal orthologs. These models served to map amino acid changes known from clinical and field isolates. We conclude with describing the potential consequences of these changes on the topology of the protein to explain CYP51-based azole resistance. Knowledge gained from molecular modeling and resistance research will help to develop novel azole structures.
Collapse
Affiliation(s)
- Rayko Becher
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Strasse 3, Halle (Saale), Germany
| | | |
Collapse
|
10
|
Chen FP, Fan JR, Zhou T, Liu XL, Liu JL, Schnabel G. Baseline Sensitivity of Monilinia fructicola from China to the DMI Fungicide SYP-Z048 and Analysis of DMI-Resistant Mutants. PLANT DISEASE 2012; 96:416-422. [PMID: 30727143 DOI: 10.1094/pdis-06-11-0495] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sterol 14α-demethylase inhibitors (DMIs) continue to be important in the management of brown rot of Monilinia spp. worldwide. In this study, the sensitivity of 100 Monilinia fructicola isolates from four unsprayed orchards and two packinghouses in Beijing, China, to the new DMI fungicide SYP-Z048 was evaluated and ranged from 0.003 to 0.039 and 0.016 to 0.047 μg/ml, respectively. Laboratory mutants resistant to SYP-Z048 were generated using UV irradiation but no mutants occurred spontaneously. Resistance was stable after 10 weekly consecutive transfers on fungicide-free medium. Three parameters, including growth rate, sporulation in vitro, and lesion area, were significantly different when sensitive isolates and resistant mutants were analyzed as groups. Mutants grew more slowly and developed significantly smaller lesions on detached fruit, and their sporulation ability in vitro was reduced. Cross resistance was found between SYP-Z048 and propiconazole (ρ = 0.82, P < 0.0001) but not between SYPZ048 and tridemorph, carbendazim, procymidone, azoxystrobin, or pyrimethanil. SYP-Z048 resistance in mutants exhibiting 50% mycelial growth inhibition values greater than 0.3 μg/ml was correlated with the presence of a mutation in the CYP51 gene that encodes the target protein for DMI fungicides. The mutation caused an amino acid change from tyrosine to phenylalanine at position 136 (Y136F). To our knowledge, this is the first baseline sensitivity of M. fructicola collected from China to a DMI fungicide. The inability of M. fructicola to generate spontaneous DMI-resistant mutants coupled with reduced fitness of Y136F mutants can explain why this target site mutation has not yet emerged as a DMI fungicide resistance determinant in M. fructicola field populations worldwide.
Collapse
Affiliation(s)
- F P Chen
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193
| | - J R Fan
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193
| | - T Zhou
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193
| | - X L Liu
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193
| | - J L Liu
- ShenYang Research Institute of Chemical Industry, Shenyang 110021, China
| | - G Schnabel
- Department of Entomology, Soils and Plant Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
11
|
Diagnosis of Antifungal Drug Resistance Mechanisms in Fungal Pathogens: Transcriptional Gene Regulation. CURRENT FUNGAL INFECTION REPORTS 2011. [DOI: 10.1007/s12281-011-0055-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Park HG, Lee IS, Chun YJ, Yun CH, Johnston JB, Montellano PROD, Kim D. Heterologous expression and characterization of the sterol 14α-demethylase CYP51F1 from Candida albicans. Arch Biochem Biophys 2011; 509:9-15. [PMID: 21315684 DOI: 10.1016/j.abb.2011.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 11/18/2022]
Abstract
Lanosterol 14α-demethylase (CYP51F1) from Candida albicans is known to be an essential enzyme in fungal sterol biosynthesis. Wild-type CYP51F1 and several of its mutants were heterologously expressed in Escherichia coli, purified, and characterized. It exhibited a typical reduced CO-difference spectrum with a maximum at 446 nm. Reconstitution of CYP51F1 with NADPH-P450 reductase gave a system that successfully converted lanosterol to its demethylated product. Titration of the purified enzyme with lanosterol produced a typical type I spectral change with K(d)=6.7 μM. The azole antifungal agents econazole, fluconazole, ketoconazole, and itraconazole bound tightly to CYP51F1 with K(d) values between 0.06 and 0.42 μM. The CYP51F1 mutations F105L, D116E, Y132H, and R467K frequently identified in clinical isolates were examined to determine their effect on azole drug binding affinity. The azole K(d) values of the purified F105L, D116E, and R467K mutants were little altered. A homology model of C. albicans CYP51F1 suggested that Tyr132 in the BC loop is located close to the heme in the active site, providing a rationale for the modified heme environment caused by the Y132H substitution. Taken together, functional expression and characterization of CYP51F1 provide a starting basis for the design of agents effective against C. albicans infections.
Collapse
Affiliation(s)
- Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51). Antimicrob Agents Chemother 2010; 54:4235-45. [PMID: 20625155 DOI: 10.1128/aac.00587-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purified Candida albicans sterol 14-α demethylase (CaCYP51) bound the CYP51 substrates lanosterol and eburicol, producing type I binding spectra with K(s) values of 11 and 25 μM, respectively, and a K(m) value of 6 μM for lanosterol. Azole binding to CaCYP51 was "tight" with both the type II spectral intensity (ΔA(max)) and the azole concentration required to obtain a half-ΔA(max) being proportional to the CaCYP51 concentration. Tight binding of fluconazole and itraconazole was confirmed by 50% inhibitory concentration determinations from CYP51 reconstitution assays. CaCYP51 had similar affinities for clotrimazole, econazole, itraconazole, ketoconazole, miconazole, and voriconazole, with K(d) values of 10 to 26 μM under oxidative conditions, compared with 47 μM for fluconazole. The affinities of CaCYP51 for fluconazole and itraconazole appeared to be 4- and 2-fold lower based on CO displacement studies than those when using direct ligand binding under oxidative conditions. Econazole and miconazole were most readily displaced by carbon monoxide, followed by clotrimazole, ketoconazole, and fluconazole, and then voriconazole (7.8 pmol min(-1)), but itraconzole could not be displaced by carbon monoxide. This work reports in depth the characterization of the azole binding properties of wild-type C. albicans CYP51, including that of voriconazole, and will contribute to effective screening of new therapeutic azole antifungal agents. Preliminary comparative studies with the I471T CaCYP51 protein suggested that fluconazole resistance conferred by this mutation was through a combination of increased turnover, increased affinity for substrate, and a reduced affinity for fluconazole in the presence of substrate, allowing the enzyme to remain functionally active, albeit at reduced velocity, at higher fluconazole concentrations.
Collapse
|
14
|
Chen CK, Leung SSF, Guilbert C, Jacobson MP, McKerrow JH, Podust LM. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl Trop Dis 2010; 4:e651. [PMID: 20386598 PMCID: PMC2850312 DOI: 10.1371/journal.pntd.0000651] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/16/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Chagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14alpha-demethylase (CYP51), which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding. METHODOLOGY/PRINCIPAL FINDINGS We have determined the crystal structures for CYP51 from T. cruzi (resolutions of 2.35 A and 2.27 A), and from the related pathogen T. brucei (resolutions of 2.7 A and 2.6 A), co-crystallized with the antifungal drugs fluconazole and posaconazole. Remarkably, both drugs adopt multiple conformations when binding the target. The fluconazole 2,4-difluorophenyl ring flips 180 degrees depending on the H-bonding interactions with the BC-loop. The terminus of the long functional tail group of posaconazole is bound loosely in the mouth of the hydrophobic substrate binding tunnel, suggesting that the major contribution of the tail to drug efficacy is for pharmacokinetics rather than in interactions with the target. CONCLUSIONS/SIGNIFICANCE The structures provide new insights into binding of azoles to CYP51 and mechanisms of potential drug resistance. Our studies define in structural detail the CYP51 therapeutic target in T. cruzi, and offer a starting point for rationally designed anti-Chagasic drugs with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Chiung-Kuang Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Siegfried S. F. Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Christophe Guilbert
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| | - James H. McKerrow
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California, United States of America
| | - Larissa M. Podust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
| |
Collapse
|
15
|
Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 2009; 9:1029-50. [PMID: 19799636 DOI: 10.1111/j.1567-1364.2009.00578.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fungi are primitive eukaryotes and have adapted to a variety of niches during evolution. Some fungal species may interact with other life forms (plants, insects, mammals), but are considered as pathogens when they cause mild to severe diseases. Chemical control strategies have emerged with the development of several drugs with antifungal activity against pathogenic fungi. Antifungal agents have demonstrated their efficacy by improving patient health in medicine. However, fungi have counteracted antifungal agents in several cases by developing resistance mechanisms. These mechanisms rely on drug resistance genes including multidrug transporters and drug targets. Their regulation is crucial for the development of antifungal drug resistance and therefore transcriptional factors critical for their regulation are being characterized. Recent genome-wide studies have revealed complex regulatory circuits involving these genetic and transcriptional regulators. Here, we review the current understanding of the transcriptional regulation of drug resistance genes from several fungal pathogens including Candida and Aspergillus species.
Collapse
Affiliation(s)
- Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
16
|
Eddine AN, von Kries JP, Podust MV, Warrier T, Kaufmann SHE, Podust LM. X-ray structure of 4,4'-dihydroxybenzophenone mimicking sterol substrate in the active site of sterol 14alpha-demethylase (CYP51). J Biol Chem 2008; 283:15152-9. [PMID: 18367444 PMCID: PMC2397474 DOI: 10.1074/jbc.m801145200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/13/2008] [Indexed: 11/06/2022] Open
Abstract
A universal step in the biosynthesis of membrane sterols and steroid hormones is the oxidative removal of the 14alpha-methyl group from sterol precursors by sterol 14alpha-demethylase (CYP51). This enzyme is a primary target in treatment of fungal infections in organisms ranging from humans to plants, and development of more potent and selective CYP51 inhibitors is an important biological objective. Our continuing interest in structural aspects of substrate and inhibitor recognition in CYP51 led us to determine (to a resolution of 1.95A) the structure of CYP51 from Mycobacterium tuberculosis (CYP51(Mt)) co-crystallized with 4,4'-dihydroxybenzophenone (DHBP), a small organic molecule previously identified among top type I binding hits in a library screened against CYP51(Mt). The newly determined CYP51(Mt)-DHBP structure is the most complete to date and is an improved template for three-dimensional modeling of CYP51 enzymes from fungal and prokaryotic pathogens. The structure demonstrates the induction of conformational fit of the flexible protein regions and the interactions of conserved Phe-89 essential for both fungal drug resistance and catalytic function, which were obscure in the previously characterized CYP51(Mt)-estriol complex. DHBP represents a benzophenone scaffold binding in the CYP51 active site via a type I mechanism, suggesting (i) a possible new class of CYP51 inhibitors targeting flexible regions, (ii) an alternative catalytic function for bacterial CYP51 enzymes, and (iii) a potential for hydroxybenzophenones, widely distributed in the environment, to interfere with sterol biosynthesis. Finally, we show the inhibition of M. tuberculosis growth by DHBP in a mouse macrophage model.
Collapse
Affiliation(s)
- Ali Nasser Eddine
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Jens P. von Kries
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Mikhail V. Podust
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Thulasi Warrier
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Stefan H. E. Kaufmann
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Larissa M. Podust
- Max-Planck-Institute for Infection Biology, Berlin, 10117, Germany, the Screening Unit, Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, 13125, Germany, and the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
17
|
Abstract
By participating in pathways of cholesterol biosynthesis and elimination, different cytochrome P450 (P450 or CYP) enzymes play an important role in maintenance of cholesterol homeostasis. CYP51 is involved in cholesterol biosynthesis, whereas CYP 7A1, 27A1, 46A1, 7B1, 39A1, and 8B1 are the key enzymes in cholesterol catabolism to bile acids, the major route of cholesterol elimination in mammals. Cholesterol transformations to steroid hormones are also initiated by the P450 enzyme CYP11A1. Finally, one of the major drug-metabolizing P450s CYP3A4 seems to contribute to bile acid biosynthesis as well. The 9 P450s will be the focus of this review and assessed as drug targets for cholesterol lowering.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA.
| |
Collapse
|
18
|
Chau AS, Chen G, McNicholas PM, Mann PA. Molecular basis for enhanced activity of posaconazole against Absidia corymbifera and Rhizopus oryzae. Antimicrob Agents Chemother 2006; 50:3917-9. [PMID: 16966400 PMCID: PMC1635193 DOI: 10.1128/aac.00747-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posaconazole and itraconazole were more potent inhibitors of ergosterol synthesis, in both intact cells and cell extracts from Absidia corymbifera and Rhizopus oryzae, than voriconazole and fluconazole. Similarly, expression of CYP51 from R. oryzae in Saccharomyces cerevisiae significantly increased resistance to fluconazole and voriconazole but not to posaconazole and itraconazole.
Collapse
Affiliation(s)
- Andrew S Chau
- Schering-Plough Research Institute, 2015 Galloping Hill Road, 4700, Kenilworth, NJ 07033, USA
| | | | | | | |
Collapse
|
19
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|