1
|
Qie X, Yan X, Wang H, Li F, Hu L, Hao C, Ma L. Identification, expression profiles, and binding properties of chemosensory protein 18 in Plutella xylostella (Lepidoptera: Plutellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:3. [PMID: 38297809 PMCID: PMC10829696 DOI: 10.1093/jisesa/ieae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Chemosensory proteins (CSPs) are highly efficient carry tools to bind and deliver hydrophobic compounds, which play an important role in the chemosensory process in insects. The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a cosmopolitan pest that attacks cruciferous crops. However, the detailed physiological functions of CSPs in P. xylostella remain limited to date. Here, we identified a typical CSP, named PxylCSP18, in P. xylostella and investigated its expression patterns and binding properties of volatiles. PxylCSP18 was highly expressed in antennae and head (without antennae), and the expression level in the male antennae of P. xylostella was obviously higher than that in the female antennae. Moreover, PxylCSP18 has a relatively broad binding spectrum. Fluorescence competitive binding assays showed that PxylCSP18 had strong binding abilities with 14 plant volatiles (Ki < 10 μM) that were repellent or attractive to P. xylostella. Notably, PxylCSP18 had no significant binding affinity to (Z)-11-hexadecenal, (Z)-11-hexadecenyl acetate, and (Z)-11-hexadecenyl alcolol, which are the pheromone components of P. xylostella. The attractive effects of trans-2-hexen-1-ol and isopropyl isothiocyanate to male adults and the attractive effects of isopropyl isothiocyanate and the repellent effects of linalool to female adults were significantly decreased after knocked down the expression of PxylCSP18. Our results revealed that PxylCSP18 might play an important role in host plant detection, avoidance of unsuitable hosts, and selection of oviposition sites; however, it does not participate in mating behavior. Overall, these results extended our knowledge on the CSP-related functions, which provided insightful information about CSP-targeted insecticides.
Collapse
Affiliation(s)
- Xingtao Qie
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xizhong Yan
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Han Wang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fangyuan Li
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Liming Hu
- Department of Plant Protection, Institute of Plant Health, ZhongKai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Chi Hao
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Li Ma
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
2
|
Yao Q, Liang Z, Quan L, Chen B. Functional characterization of chemosensory proteins in response to artificial light treatment in Thalassodes immissaria. PEST MANAGEMENT SCIENCE 2023; 79:1760-1767. [PMID: 36622077 DOI: 10.1002/ps.7351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chemosensory proteins (CSPs) play a vital role in the response to environmental stimuli in insects. However, the involvement of insect CSPs in the stress response to night-time environmental changes has not been examined. RESULTS In the current study, four TiCSP genes were first cloned from Thalassodes immissaria by transcriptome and RACE-PCR techniques. TiCSPs had typical characteristics of insect CSPs, including a highly conserved four-cysteine motif and olfactory-specific protein D (OS-D) or OS-D superfamily domains. TiCSP1-4 were clustered classified within different clades in a phylogenetic analysis and were differentially expressed at all developmental stages. Under night-time artificial light stress, the expression levels of TiCSP1 in males were significantly decreased at 24 h, and those of TiCSP2 were decreased in both adult sexes at 48 h. In a molecular docking analysis, TiCSPs showed relatively higher binding affinities with sex pheromone components than with host plant volatile molecules. CONCLUSION Taking the reduced expression levels of TiCSPs and binding affinities into account, TiCSP1 and TiCSP2 are involved in the stress response processes of T. immissaria under light treatment. Our study supplies basic data for the evaluation of the effects of light interference control technology - an emerging physical control measure on nontarget pests of lychee orchards. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiong Yao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhantu Liang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Linfa Quan
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bingxu Chen
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Gao P, Zhang S, Tan J, Li X, Chen M. Chemosensory proteins are associated with thiamethoxam tolerance in bird cherry-oat aphid Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105393. [PMID: 37105631 DOI: 10.1016/j.pestbp.2023.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Rhopalosiphum padi (L.) is an important cosmopolitan pest of cereal crops. Thiamethoxam is widely used for control R. padi in some regions. Chemosensory proteins (CSPs) are a class of transporter proteins in arthropods which play a key role in various physiological processes including response to insecticide exposure. However, the role of R. padi CSPs (RpCSPs) in insecticide binding and susceptibility has not been well clarified. In this study, we found that the expression levels of RpCSP1, RpCSP4, RpCSP5, RpCSP7, RpCSP10 were dramatically upregulated after exposure to thiamethoxam. Suppression of RpCSP4 and RpCSP5 transcription by RNA interference significantly enhanced the susceptibility of R. padi to thiamethoxam. Molecular docking and fluorescence competitive binding showed that RpCSP4 and RpCSP5 had high binding affinity with thiamethoxam. The present results prove that RpCSP4 and RpCSP5 are related to insecticide resistance through high binding affinity to reduce the toxicity of insecticide.
Collapse
Affiliation(s)
- Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siqian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junjie Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinghao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Chen C, Zhu H, Li SY, Han YY, Chen L, Fan BQ, Zhang YF, Wang Y, Hao DJ. Insights into chemosensory genes of Pagiophloeus tsushimanus adults using transcriptome and qRT-PCR analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100785. [PMID: 33548831 DOI: 10.1016/j.cbd.2020.100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Pagiophloeus tsushimanus is a new, destructive, and monophagous weevil pest that thrives on Cinnamomum camphora, found in Shanghai. The functions of chemosensory genes involved in the host location and intraspecific communication of P. tsushimanus remain unknown. The male-female transcriptomes of P. tsushimanus adults were assembled using Illumina sequencing, and we focused on all chemosensory genes in transcriptomes. In general, 58,088 unigenes with a mean length of 1018.19 bp were obtained. In total, 39 odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 22 olfactory receptors (ORs), 16 gustatory receptors (GRs), eight ionotropic receptors (IRs), and five sensory neuron membrane proteins (SNMPs) were identified. PtsuOBPs comprised four subfamilies (20 Minus-C, one Plus-C, two Dimer, and 15 Classic). Both PtsuOBPs and PtsuCSPs contained a highly conserved sequence motif of cysteine residues. PtsuORs including one olfactory receptor co-receptors (Ptsu/Orco) comprised seven predicted transmembrane domains. Phylogenetic analysis revealed that PtsuOBPs, PtsuCSPs, and PtsuORs in P. tsushimanus exhibited low homology compared to other insect species. The results of tissue- and sex-specific expression patterns indicated that PtsuOBPs and PtsuORs were highly abundant in the antennae; whereas, PtsuCSPs were not only highly abundant in antennae, but also abdominal apexes, wings, and legs. In conclusion, these results enrich the gene database of P. tsushimanus, which may serve as a basis for identifying novel targets to disrupt olfactory key genes and may provide a reverse validation method to identify attractants for formulating potential eco-friendly control strategies for this pest.
Collapse
Affiliation(s)
- Cong Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Han Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shou-Yin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Liang Chen
- Shanghai Kaisheng Landscape Engineering Co., Ltd, Shanghai, China
| | - Bin-Qi Fan
- Forest Station of Shanghai, Shanghai, China
| | | | - Yan Wang
- Forest Station of Shanghai, Shanghai, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Fu S, Li F, Yan X, Hao C. Expression Profiles and Binding Properties of the Chemosensory Protein PxylCSP11 from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5924359. [PMID: 33057681 PMCID: PMC7583271 DOI: 10.1093/jisesa/ieaa107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 05/08/2023]
Abstract
The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) is one of the most destructive pests to cruciferous plants worldwide. The oligophagous moth primarily utilizes its host volatiles for foraging and oviposition. Chemosensory proteins (CSPs) are soluble carrier proteins with low molecular weight, which recognize and transport various semiochemicals in insect chemoreception. At present, there is limited information on the recognition of host volatiles by CSPs of P. xylostella. Here, we investigated expression patterns and binding characteristics of PxylCSP11 in P. xylostella. The open reading frame of PxylCSP11 was 369-bp encoding 122 amino acids. PxylCSP11 possessed four conserved cysteines, which was consistent with the typical characteristic of CSPs. PxylCSP11 was highly expressed in antennae, and the expression level of PxylCSP11 in male antennae was higher than that in female antennae. Fluorescence competitive binding assays showed that PxylCSP11 had strong binding abilities to several ligands, including volatiles of cruciferous plants, and (Z)-11-hexadecenyl acetate (Z11-16:Ac), a major sex pheromone of P. xylostella. Our results suggest that PxylCSP11 may play an important role in host recognition and spouse location in P. xylostella.
Collapse
Affiliation(s)
- Shuhui Fu
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Fangyuan Li
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xizhong Yan
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Chi Hao
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- Corresponding author, e-mail:
| |
Collapse
|
6
|
Gao S, Zhang K, Wei L, Wei G, Xiong W, Lu Y, Zhang Y, Gao A, Li B. Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure. Front Genet 2020; 11:589. [PMID: 32670352 PMCID: PMC7330086 DOI: 10.3389/fgene.2020.00589] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Red flour beetle (Tribolium castaneum) is one of the most destructive pests of stored cereals worldwide. The essential oil (EO) of Artemisia vulgaris (mugwort) is known to be a strong toxicant that inhibits the growth, development, and reproduction of T. castaneum. However, the molecular mechanisms underlying the toxic effects of A. vulgaris EO on T. castaneum remain unclear. Here, two detoxifying enzymes, carboxylesterase (CarEs) and cytochrome oxidase P450 (CYPs), were dramatically increased in red flour beetle larvae when they were exposed to A. vulgaris EO. Further, 758 genes were differentially expressed between EO treated and control samples. Based on Gene Ontology (GO) analysis, numerous differentially expressed genes (DEGs) were enriched for terms related to the regulation of biological processes, response to stimulus, and antigen processing and presentation. Our results indicated that A. vulgaris EO disturbed the antioxidant activity in larvae and partially inhibited serine protease (SP), cathepsin (CAT), and lipase signaling pathways, thus disrupting larval development and reproduction as well as down-regulating the stress response. Moreover, these DEGs showed that A. vulgaris indirectly affected the development and reproduction of beetles by inducing the expression of genes encoding copper-zinc-superoxide dismutase (CuZnSOD), heme peroxidase (HPX), antioxidant enzymes, and transcription factors. Moreover, the majority of DEGs were mapped to the drug metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Notably, the following genes were detected: 6 odorant binding proteins (OBPs), 5 chemosensory proteins (CSPs), 14 CYPs, 3 esterases (ESTs), 5 glutathione S-transferases (GSTs), 6 UDP-glucuronosyltransferases (UGTs), and 2 multidrug resistance proteins (MRPs), of which 8 CYPs, 2 ESTs, 2 GSTs, and 3 UGTs were up-regulated dramatically after exposure to A. vulgaris EO. The residual DEGs were significantly down-regulated in EO exposed larvae, implying that partial compensation of metabolism detoxification existed in treated beetles. Furthermore, A. vulgaris EO induced overexpression of OBP/CYP, and RNAi against these genes significantly increased mortality of larvae exposed to EO, providing further evidence for the involvement of OBP/CYP in EO metabolic detoxification in T. castaneum. Our results provide an overview of the transcriptomic changes in T. castaneum in response to A. vulgaris EO.
Collapse
Affiliation(s)
- Shanshan Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Kunpeng Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guanyun Wei
- College of Life Sciences, Nantong University, Nantong, China
| | - Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yonglei Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Aoxiang Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Xiong W, Gao S, Lu Y, Wei L, Mao J, Xie J, Cao Q, Liu J, Bi J, Song X, Li B. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:107-117. [PMID: 31400772 DOI: 10.1016/j.pestbp.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Latrophilin (LPH) is an adhesion G protein-coupled receptor (aGPCR) that participates in multiple essential physiological processes. Our previous studies have shown that lph is not only indispensable for the development and reproduction of red flour beetles (Tribolium castaneum), but also for their resistance against dichlorvos or carbofuran insecticides. However, the regulatory mechanism of lph-mediated insecticide susceptibility remains unclear. Here, we revealed that knockdown of lph in beetles resulted in opposing changes in two chemoreception genes, chemosensory protein 10 (CSP10) and odorant-binding protein C01 (OBPC01), in which the expression of TcCSP10 was downregulated, whereas the expression of TcOBPC01 was upregulated. TcCSP10 and TcOBPC01 were expressed at the highest levels in early pupal and late larval stages, respectively. High levels of expression of both these genes were observed in the heads (without antennae) of adults. TcCSP10 and TcOBPC01 were significantly induced by dichlorvos or carbofuran between 12 and 72 h (hrs) after exposure, suggesting that they are likely associated with increasing the binding affinity of insecticides, leading to a decrease in sensitivity to the insecticides. Moreover, once these two genes were knocked down, the susceptibility of the beetles to dichlorvos or carbofuran was enhanced. Additionally, RNA interference (RNAi) targeting of lph followed by exposure to dichlorvos or carbofuran also caused the opposing expression levels of TcCSP10 and TcOBPC01 compared to the expression levels of wild-type larvae treated with insecticides alone. All these results indicate that lph is involved in insecticide susceptibility through positively regulating TcCSP10; and the susceptibility could also further partially compensated for through the negative regulation of TcOBPC01 when lph was knockdown in the red flour beetle. Our studies shed new light on the molecular regulatory mechanisms of lph related to insecticide susceptibility.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Rui-Jin Hospital, Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Quanquan Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Marine Biodiversity, Exploitation and Conservation, University of Montpellier, France.
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Zeng Y, Yang Y, Wu Q, Wang S, Xie W, Zhang Y. Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, Bemisia tabaci. INSECT SCIENCE 2019; 26:620-634. [PMID: 29441682 PMCID: PMC7380034 DOI: 10.1111/1744-7917.12576] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 05/16/2023]
Abstract
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of insects are thought to play roles in olfactory recognition affecting host choice, copulation, reproduction and other behaviors. Previous descriptions of OBPs and CSPs in the whitefly Bemisia tabaci often provided no or incomplete genetic information. In this study, we present a genome-wide and transcriptome-wide investigation of the OBPs and CSPs in B. tabaci MEAM1 (Middle East-Asia Minor1 species). Eight OBP and 19 CSP genes were identified that covered all previous sequences. Phylogenetic analyses showed that the CSP genes had a lineage-specific expansion (BtabBCSP1, BtabBCSP3, BtabBCSP13, BtabBCSP17, BtabBCSP18 and BtabBCSP19). Expression profiling of OBPs and CSPs by transcriptome sequencing and quantitative real-time polymerase chain reaction (qPCR) revealed that expression patterns differed among developmental stages of B. tabaci MEAM1. Five OBP genes and 11 CSP genes significantly differed between males and females; four of the 19 CSP genes were highly expressed in adults, while two were highly expressed in nymphs. The expression profiles of the OBP and CSP genes in different tissues of B. tabaci MEAM1 adults were analyzed by qPCR. Four OBP genes found in B. tabaci MEAM1 were highly expressed in the head. Conversely, only two CSPs were enriched in the head, while the other six CSPs were specifically expressed in other tissues. Our results provide a foundation for future research on OBPs and CSPs in B. tabaci.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Plant Protection, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Yu‐Ting Yang
- Department of Plant Protection, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
- Department of Agriculture of Yangtze UniversityJingzhouHubei ProvinceChina
| | - Qing‐Jun Wu
- Department of Plant Protection, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Shao‐Li Wang
- Department of Plant Protection, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - You‐Jun Zhang
- Department of Plant Protection, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
9
|
Li GW, Chen XL, Chen LH, Wang WQ, Wu JX. Functional Analysis of the Chemosensory Protein GmolCSP8 From the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 2019; 10:552. [PMID: 31133881 PMCID: PMC6516043 DOI: 10.3389/fphys.2019.00552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Chemosensory proteins (CSPs) belong to a family of small water-soluble proteins that can selectively bind and transport odorant molecules for olfactory communication in insects. To date, their definite physiological functions in olfaction remain controversial when compared with odorant binding proteins (OBPs). To investigate the functions of CSPs in the oriental fruit moth Grapholita molesta, we determined the tissue expression patterns and binding properties of the CSP, GmolCSP8. The key binding sites of GmolCSP8 with a representative ligand were evaluated using molecular flexible docking, site-directed mutagenesis and ligand-binding experiments. Multiple sequence alignment and phylogenetic analysis showed that GmolCSP8 possesses a typical conserved four cysteines motif and shares high sequence identity with some CSP members of other Lepidopteran insects. GmolCSP8 was predominantly expressed in the wings and antennae of both male and female adults and may be involve in contact chemoreception. Recombinant GmolCSP8 (rGmolCSP8) exhibited specific-binding affinities to small aliphatic alcohols (C4–12) and had the strongest binding affinity to 1-hexanol. The three-dimensional structure of GmolCSP8 was constructed using the structure of sgCSP4 as a template. Site-directed mutagenesis and ligand-binding experiments confirmed that Thr27 is the key binding site in GmolCSP8 for 1-hexanol binding, because this residue can form hydrogen bond with the oxygen atom of the hydroxyl group in 1-hexanol, and Leu30 may play an important role in binding to 1-hexanol. We found that pH significantly affected the binding affinities of rGmolCSP8 to ligand, revealing that ligand-binding and -release by this protein is related to a pH-dependent conformational transition. Based on these results, we infer that GmolCSP8 may participate in the recognition and transportation of 1-hexanol and other small aliphatic alcohols.
Collapse
Affiliation(s)
- Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Li-Hui Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Wen-Qiang Wang
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| |
Collapse
|
10
|
Younas A, Waris MI, Chang XQ, Shaaban M, Abdelnabby H, Ul Qamar MT, Wang MQ. A chemosensory protein MsepCSP5 involved in chemoreception of oriental armyworm Mythimna separata. Int J Biol Sci 2018; 14:1935-1949. [PMID: 30585258 PMCID: PMC6299372 DOI: 10.7150/ijbs.27315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023] Open
Abstract
Chemosensory proteins (CSPs) have been suggested to perform several functions in insects, including chemoreception. To find out whether MsepCSP5 identified from Mythimna separata shows potential physiological functions in olfaction, gene expression profiles, ligand-binding experiments, molecular docking, RNA interference, and behavioral test were performed. Results showed that MsepCSP5 was highly expressed in female antennae. MsepCSP5 showed high binding affinities to a wide range of host-related semiochemicals, and displayed that 26 out of 35 candidate volatiles were highly bound (Ki < 10 µM) at pH 5.0 rather than pH 7.4. The binding sites of MsepCSP5 to candidate volatiles were well predicted by three-dimensional structure modeling and molecular docking experiments. Pursuing further, biological activities of M. separata to highly bound compounds elicited strong behavioral responses, such as alcoholic compounds displayed strong attractiveness whereas terpenes showed repellency to M. separata. The transcript expression level of MsepCSP5 gene significantly decreased after injecting target dsRNAs, and resulted in non-significant preference responses of M. separata to semiochemicals, such as 3-pentanol and 1-octene-3-ol. In conclusion, MsepCSP5 may involve in semiochemical reception of M. separata.
Collapse
Affiliation(s)
- Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Irfan Waris
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Qian Chang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hazem Abdelnabby
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia 13736, Egypt
| | | | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Khuhro SA, Yan Q, Liao H, Zhu GH, Sun JB, Dong SL. Expression Profile and Functional Characterization Suggesting the Involvement of Three Chemosensory Proteins in Perception of Host Plant Volatiles in Chilo suppressalis (Lepidoptera: Pyralidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5107845. [PMID: 30260453 PMCID: PMC6159316 DOI: 10.1093/jisesa/iey088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 05/16/2023]
Abstract
The high sensitivity of the olfactory system is essential for feeding and oviposition in moth insects, and some chemosensory proteins (CSPs) are thought to play roles in this system by binding and carrying hydrophobic odorants across the aqueous sensillar lymph. In this study, to identify the olfactory CSPs from a repertoire of 21 CSP members in the notorious rice pest Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), tissue expression patterns were firstly examined by quantitative real-time polymerase chain reaction (qPCR). It showed that CSP2 was antennae specific and seven more CSPs (CSP1, 3, 4, 6, 15, 16, and 17) were antennae biased in expression, suggesting their olfactory roles; while other CSPs were multiple-tissue expressed and non-antennae biased, suggesting other functions for these genes. To further determine the ligand binding specificity, three putative olfactory genes (CSP1-3) were expressed in Escherichia coli cells, and binding affinity of these three recombinant CSP proteins were measured for 35 plant volatiles by the ligand binding assays. CSP1 and CSP2 exhibited high binding affinities (Ki ≤ 10.00 µM) for four (2-tridecanone, benzaldehyde, laurinaldehyde and 2-pentadecanone) and two (2-heptanol and (+)-cedrol) host plant volatiles, respectively; the three CSPs also showed moderate binding affinity (Ki = 10.01-20.00 µM) for 16 plant volatiles. Our study suggests that the three CSPs play essential roles in the perception of host plant volatiles, providing bases for the elucidation of olfactory mechanisms in this important pyralid pest.
Collapse
Affiliation(s)
- Sajjad Ali Khuhro
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Qi Yan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Hui Liao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Guan-Heng Zhu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Jia-Bin Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Shuang-Lin Dong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
- Corresponding author, e-mail:
| |
Collapse
|
12
|
Gao S, Xiong W, Wei L, Liu J, Liu X, Xie J, Song X, Bi J, Li B. Transcriptome profiling analysis reveals the role of latrophilin in controlling development, reproduction and insecticide susceptibility in Tribolium castaneum. Genetica 2018; 146:287-302. [DOI: 10.1007/s10709-018-0020-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
|
13
|
Zhang YN, Zhu XY, Ma JF, Dong ZP, Xu JW, Kang K, Zhang LW. Molecular identification and expression patterns of odorant binding protein and chemosensory protein genes in Athetis lepigone (Lepidoptera: Noctuidae). PeerJ 2017; 5:e3157. [PMID: 28382236 PMCID: PMC5376112 DOI: 10.7717/peerj.3157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/07/2017] [Indexed: 11/20/2022] Open
Abstract
The olfaction system of insects plays an important role in mediating various physiological behaviors, including locating hosts, avoiding predators, and recognizing mates and oviposition sites. Therefore, some key genes in the system present valuable opportunities as targets for developing novel green pesticides. Athetis lepigone, a noctuid moth can feed on more than 30 different host plants making it a serious polyphagous pest worldwide, and it has become one of the major maize pests in northern China since 2011. However, there are no reports on effective and environmentally friendly pesticides for the control of this pest. In this study, we identified 28 genes encoding putative odorant binding proteins (OBPs) and 20 chemosensory protein (CSPs) genes based on our previous A. lepigone transcriptomic data. A tissue expression investigation and phylogenetic analysis were conducted in an effort to postulate the functions of these genes. Our results show that nearly half (46.4%) of the AlOBPs exhibited antennae-biased expression while many of the AlCSPs were highly abundant in non-antennal tissues. These results will aid in exploring the chemosensory mechanisms of A. lepigone and developing environmentally friendly pesticides against this pest in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University , Huaibei , China
| | - Ji-Fang Ma
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences , Shijiazhuang , China
| | - Zhi-Ping Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences , Shijiazhuang , China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University , Huaibei , China
| | - Ke Kang
- Anhui Vocational & Technical College of Forestry , Hefei , China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University , Hefei , China
| |
Collapse
|
14
|
Chen X, Xiong W, Li C, Gao S, Song X, Wu W, Li B. Comparative RNA-sequencing profiling reveals novel Delta-class glutathione S-transferases relative genes expression patterns in Tribolium castaneum. Gene 2016; 593:13-20. [DOI: 10.1016/j.gene.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
15
|
Zhu X, Xie S, Armengaud J, Xie W, Guo Z, Kang S, Wu Q, Wang S, Xia J, He R, Zhang Y. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline. Mol Cell Proteomics 2016; 15:1791-807. [PMID: 26902207 PMCID: PMC5083088 DOI: 10.1074/mcp.m115.050989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest.
Collapse
Affiliation(s)
- Xun Zhu
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Jean Armengaud
- ¶CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory, BP 17171, F-30200, Bagnols-sur-Cèze, F-30207, France
| | - Wen Xie
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaojiang Guo
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Kang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jixing Xia
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongjun He
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youjun Zhang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China;
| |
Collapse
|
16
|
Liu G, Ma H, Xie H, Xuan N, Guo X, Fan Z, Rajashekar B, Arnaud P, Offmann B, Picimbon JF. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense. PLoS One 2016; 11:e0154706. [PMID: 27167733 PMCID: PMC4864240 DOI: 10.1371/journal.pone.0154706] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/18/2016] [Indexed: 02/03/2023] Open
Abstract
Chemosensory proteins (CSPs) are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1) was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde). This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity.
Collapse
Affiliation(s)
- Guoxia Liu
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Hongmei Ma
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Hongyan Xie
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Ning Xuan
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Xia Guo
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Zhongxue Fan
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Balaji Rajashekar
- University of Tartu, Institute of Computer Science, 2 Liivi, Tartu, Estonia
| | - Philippe Arnaud
- University of Nantes, Protein Engineering and Functionality Unit, UMR CNRS 6286, 2 La Houssinière, Nantes, France
| | - Bernard Offmann
- University of Nantes, Protein Engineering and Functionality Unit, UMR CNRS 6286, 2 La Houssinière, Nantes, France
| | | |
Collapse
|
17
|
Cui HH, Gu SH, Zhu XQ, Wei Y, Liu HW, Khalid HD, Guo YY, Zhang YJ. Odorant-binding and chemosensory proteins identified in the antennal transcriptome of Adelphocoris suturalis Jakovlev. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 24:139-145. [PMID: 27085212 DOI: 10.1016/j.cbd.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) is an insect pest that causes severe agricultural damage to cotton and many other important crops. In insects, olfaction is very important throughout their lifetime. There are two groups of small soluble proteins, named odorant binding proteins (OBPs) and chemosensory proteins (CSPs), which are suggested to participate in the initial biochemical recognition steps of insect olfactory signal transduction. In this study, a total of 16 OBPs (12 classical OBPs and 4 plus-C OBPs) and 8 CSPs, were identified in the antennal transcriptome of A. suturalis. The sex- and tissue-specific profiles of these binding protein genes showed that 13 of the 16 OBP transcripts were highly expressed in the antennae of both sexes, and 4 OBPs (AsutOBP1, 4, 5 and 9) were expressed higher in the male antennae compared to the female antennae. Three CSPs (AsutCSP1, 4 and 5) were expressed specifically in the antennae of both sexes, and AsutCSP1 was expressed higher in the male antennae than in the female antennae. Our findings identify several novel OBP and CSP genes for further investigation of the olfactory system of A. suturalis at the molecular level.
Collapse
Affiliation(s)
- Huan-Huan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiao-Qiang Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hang-Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hussain Dhiloo Khalid
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tandojam, Pakistan
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
18
|
Glaser N, Gallot A, Legeai F, Harry M, Kaiser L, Le Ru B, Calatayud PA, Jacquin-Joly E. Differential expression of the chemosensory transcriptome in two populations of the stemborer Sesamia nonagrioides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:28-34. [PMID: 26316282 DOI: 10.1016/j.ibmb.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
Among the proposed mechanisms of local adaptation to different ecological environments, transcriptional changes may play an important role. In this study, we investigated whether such variability occurred within the chemosensory organs of a herbivorous insect, for which chemosensation guides most of its host preferences. A European and an African population of the noctuid Sesamia nonagrioides that display significant differences in their ecological preferences were collected on Zea mays and Typha domingensis, respectively. RNAseq were used between the two populations for digital expression profiling of chemosensory organs from larval antennae and palps. Preliminary data on adult female antennae and ovipositors were also collected. We found 6,550 differentially expressed transcripts in larval antennae and palps. Gene ontology enrichment analyses suggested that transcriptional activity was overrepresented in the French population and that virus and defense activities were overrepresented in the Kenyan population. In addition, we found differential expression of a variety of cytochrome P450s, which may be linked to the different host-plant diets. Looking at olfactory genes, we observed differential expression of numerous candidate odorant-binding proteins, chemosensory proteins, and one olfactory receptor, suggesting that differences in olfactory sensitivity participate in insect adaptation.
Collapse
Affiliation(s)
- Nicolas Glaser
- INRA, UMR 1392, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France; UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France
| | - Aurore Gallot
- INRA, UMR 1392, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France; IRISA, équipe GenScale, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
| | - Fabrice Legeai
- IRISA, équipe GenScale, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
| | - Myriam Harry
- UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France; Université Paris-Sud 11, 91405 Orsay Cedex, France
| | - Laure Kaiser
- UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France
| | - Bruno Le Ru
- UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France; UMR Evolution, Génomes, Comportement et Ecologie IRD, CNRS, Université Paris Sud, c/o icipe, NSBB Project, PO Box 30772-00100, Nairobi, Kenya
| | - Paul-André Calatayud
- UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France; UMR Evolution, Génomes, Comportement et Ecologie IRD, CNRS, Université Paris Sud, c/o icipe, NSBB Project, PO Box 30772-00100, Nairobi, Kenya
| | - Emmanuelle Jacquin-Joly
- INRA, UMR 1392, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France.
| |
Collapse
|
19
|
Celorio-Mancera MDLP, Ytterberg AJ, Rutishauser D, Janz N, Zubarev RA. Effect of host plant and immune challenge on the levels of chemosensory and odorant-binding proteins in caterpillar salivary glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 61:34-45. [PMID: 25934166 DOI: 10.1016/j.ibmb.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
More than half of the proteome from mandibular glands in caterpillars is represented by chemosensory proteins. Based on sequence similarity, these proteins are putative transporters of ligands to gustatory receptors in sensory organs of insects. We sought to determine whether these proteins are inducible by comparing, both qualitatively and quantitatively, the salivary (mandibular and labial) proteomes from caterpillars (Vanessa cardui) reared on different plants and artificial diet containing either bacteria or bacterial cell-walls. We included a treatment where the caterpillars were switched from feeding on artificial diet to plant material at some point in their development. Additionally, we evaluated the degree of overlap between the proteomes in the hemolymph-filled coelom and salivary glands of caterpillars reared on plant material. We found that the quality and quantity of the identified proteins differed clearly between hemolymph-filled coelome, labial and mandibular glands. Our results indicated that even after molting and two-day feeding on a new diet, protein production is affected by the previous food source used by the caterpillar. Candidate proteins involved in chemosensory perception by insects were detected: three chemosensory (CSPs) and two odorant-binding proteins (OBPs). Using the relative amounts of these proteins across tissues and treatments as criteria for their classification, we detected hemolymph- and mandibular gland-specific CSPs and observed that their levels were affected by caterpillar diet. Moreover, we could compare the protein and transcript levels across tissues and treatment for at least one CSP and one OBP. Therefore, we have identified specific isoforms for testing the role of CSPs and OBPs in plant and pathogen recognition. We detected catalase, immune-related protein and serine proteases and their inhibitors in high relative levels in the mandibular glands in comparison to the labial glands. These findings suggest that the mandibular glands of caterpillars may play an important role protecting the caterpillar from oxidative stress, pathogens and aiding in digestion. Contamination with hemolymph proteins during dissection of salivary glands from caterpillars may occur but it is not substantial since the proteomes from hemolymph, mandibular and labial glands were easily discriminated from each other by principal component analysis of proteomic data.
Collapse
Affiliation(s)
| | - A Jimmy Ytterberg
- Karolinska Institute, Department of Medicine, Solna, Stockholm, Sweden.
| | - Dorothea Rutishauser
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden; Science for Life Laboratory, Stockholm, Sweden.
| | - Niklas Janz
- Stockholm University, Department of Zoology Ecology, Svante Arrheniusväg 18 B, 106 91, Stockholm, Sweden.
| | - Roman A Zubarev
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden; Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
20
|
Li ZQ, Zhang S, Luo JY, Zhu J, Cui JJ, Dong SL. Expression Analysis and Binding Assays in the Chemosensory Protein Gene Family Indicate Multiple Roles in Helicoverpa armigera. J Chem Ecol 2015; 41:473-85. [PMID: 25893790 DOI: 10.1007/s10886-015-0574-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/29/2022]
Abstract
Chemosensory proteins (CSPs) have been proposed to capture and transport hydrophobic chemicals to receptors on sensory neurons. We identified and cloned 24 CSP genes to better understand the physiological function of CSPs in Helicoverpa armigera. Quantitative real-time polymerase chain reaction assays indicate that CSP genes are ubiquitously expressed in adult H. armigera tissues. Broad expression patterns in adult tissues suggest that CSPs are involved in a diverse range of cellular processes, including chemosensation as well as other functions not related to chemosensation. The H. armigera CSPs that were highly transcribed in sensory organs or pheromone glands (HarmCSPs 6, 9, 18, 19), were recombinantly expressed in bacteria to explore their function. Fluorescent competitive binding assays were used to measure the binding affinities of these CSPs against 85 plant volatiles and 4 pheromone components. HarmCSP6 displays high binding affinity for pheromone components, whereas the other three proteins do not show affinities for any of the compounds tested. HarmCSP6 is expressed in numerous cells located in or close to long sensilla trichodea on the antennae of both males and females. These results suggest that HarmCSP6 may be involved in transporting female sex pheromones in H. armigera.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | | | | | | | | |
Collapse
|
21
|
Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. INSECT SCIENCE 2015; 22:203-219. [PMID: 24677614 DOI: 10.1111/1744-7917.12116] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
We analyzed 20 chemosensory protein (CSP) genes of the silkworm Bombyx mori. We found a high number of retrotransposons inserted in introns. We then analyzed expression of the 20 BmorCSP genes across tissues using quantitative real-time polymerase chain reaction (PCR). Relatively low expression levels of BmorCSPs were found in the gut and fat body tissues. We thus tested the effects of endectocyte insecticide abamectin (B1a and B1b avermectins) on BmorCSP gene expression. Quantitative real-time PCR experiments showed that a single brief exposure to insecticide abamectin increased dramatically CSP expression not only in the antennae but in most tissues, including gut and fat body. Furthermore, our study showed coordinate expression of CSPs and metabolic cytochrome P450 enzymes in a tissue-dependent manner in response to the insecticide. The function of CSPs remains unknown. Based on our results, we suggest a role in detecting xenobiotics that are then detoxified by cytochrome P450 anti-xenobiotic enzymes.
Collapse
Affiliation(s)
- Ning Xuan
- Biotechnology Research Center, Shandong Provincial Key Laboratory for Genetic Improvement Cultivation, Ecology and Physiology of Crops, Shandong Academy of Agricultural Sciences, Jinan
| | | | | | | | | | | | | |
Collapse
|
22
|
Bautista MAM, Bhandary B, Wijeratne AJ, Michel AP, Hoy CW, Mittapalli O. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. PEST MANAGEMENT SCIENCE 2015; 71:423-432. [PMID: 24796243 DOI: 10.1002/ps.3822] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Detoxification genes have been associated with insecticide adaptation in the diamondback moth, Plutella xylostella. The link between chemosensation genes and adaptation, however, remains unexplored. To gain a better understanding of the involvement of these genes in insecticide adaptation, the authors exposed lines of P. xylostella to either high uniform (HU) or low heterogeneous (LH) concentrations of permethrin, expecting primarily physiological or behavioral selection respectively. Initially, 454 pyrosequencing was applied, followed by an examination of expression profiles of candidate genes that responded to selection [cytochrome P450 (CYP), glutathione S-transferase (GST), carboxylesterase (CarE), chemosensory protein (CSP) and odorant-binding protein (OBP)] by quantitative PCR in the larvae. Toxicity and behavioral assays were also conducted to document the effects of the two forms of exposure. RESULTS Pyrosequencing of the P. xylostella transcriptome from adult heads and third instars produced 198,753 reads with 52,752,486 bases. Quantitative PCR revealed overexpression of CYP4M14, CYP305B1 and CSP8 in HU larvae. OBP13, however, was highest in LH. Larvae from LH and HU lines had up to five- and 752-fold resistance levels respectively, which could be due to overexpression of P450s. However, the behavioral responses of all lines to a series of permethrin concentrations did not vary significantly in any of the generations examined, in spite of the observed upregulation of CSP8 and OBP13. CONCLUSION Expression patterns from the target genes provide insights into behavioral and physiological responses to permethrin and suggest a new avenue of research on the role of chemosensation genes in insect adaptation to toxins.
Collapse
Affiliation(s)
- Ma Anita M Bautista
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Present address: National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | | | | | | | | | | |
Collapse
|
23
|
Zhang ZK, Lei ZR. Identification, expression profiling and fluorescence-based binding assays of a chemosensory protein gene from the Western flower thrips, Frankliniella occidentalis. PLoS One 2015; 10:e0117726. [PMID: 25635391 PMCID: PMC4311994 DOI: 10.1371/journal.pone.0117726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Using RT-PCR and RACE-PCR strategies, we cloned and identified a new chemosensory protein (FoccCSP) from the Western flower thrips, Frankliniella occidentalis, a species for which no chemosensory protein (CSP) has yet been identified. The FoccCSP gene contains a 387 bp open-reading frame encoding a putative protein of 128 amino acids with a molecular weight of 14.51 kDa and an isoelectric point of 5.41. The deduced amino acid sequence contains a putative signal peptide of 19 amino acid residues at the N-terminus, as well as the typical four-cysteine signature found in other insect CSPs. As FoccCSP is from a different order of insect than other known CSPs, the GenBank FoccCSP homolog showed only 31-50% sequence identity with them. A neighbor-joining tree was constructed and revealed that FoccCSP is in a group with CSPs from Homopteran insects (e.g., AgosCSP4, AgosCSP10, ApisCSP, and NlugCSP9), suggesting that these genes likely developed from a common ancestral gene. The FoccCSP gene expression profile of different tissues and development stages was measured by quantitative real-time PCR. The results of this analysis revealed this gene is predominantly expressed in the antennae and also highly expressed in the first instar nymph, suggesting a function for FoccCSP in olfactory reception and in particular life activities during the first instar nymph stage. We expressed recombinant FoccCSP protein in a prokaryotic expression system and purified FoccCSP protein by affinity chromatography using a Ni-NTA-Sepharose column. Using N-phenyl-1-naphthylamine (1-NPN) as a fluorescent probe in fluorescence-based competitive binding assay, we determined the binding affinities of 19 volatile substances for FoccCSP protein. This analysis revealed that anisic aldehyde, geraniol and methyl salicylate have high binding affinities for FoccCSP, with KD values of 10.50, 15.35 and 35.24 μM, respectively. Thus, our study indicates that FoccCSP may play an important role in regulating the development of the first instar nymph and mediate F. occidentalis host recognition.
Collapse
Affiliation(s)
- Zhi-Ke Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Zhong-Ren Lei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer EA, Angeli S. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 2014; 15:1141. [PMID: 25523483 PMCID: PMC4377858 DOI: 10.1186/1471-2164-15-1141] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Chemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs). Results To better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed. Only six of the 20 CSP are significantly transcriptionally enriched in the main chemosensory tissues (antenna and/or mouthparts), whereas of the OBPs all eight members of the antenna binding proteins II (ABPII) subgroup, 18 of the 20 classic OBP subgroup, the C + OBP, and only five of the 21 C-OBPs show increased chemosensory tissue expression. By MALDI-TOF-TOF MS protein fingerprinting, we confirmed three CSPs, four ABPIIs, three classic OBPs, and four C-OBPs in the antennae. Conclusions Most of the classic OBPs and all ABPIIs are likely involved in chemoreception. A few are also present in other tissues such as odoriferous glands and testes and may be involved in release or transfer of chemical signals. The majority of the CSPs as well as the C-OBPs are not enriched in antennae or mouthparts, suggesting a more general role in the transport of hydrophobic molecules. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1141) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ernst A Wimmer
- Department of Developmental Biology, Georg-August-University Goettingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany.
| | | |
Collapse
|
25
|
RETRACTED ARTICLE: Involvement of a Specific Chemosensory Protein from Bactrocera dorsalis in Perceiving Host Plant Volatiles. J Chem Ecol 2014; 40:267-75. [DOI: 10.1007/s10886-014-0406-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 02/18/2014] [Indexed: 11/26/2022]
|
26
|
Zhang YN, Ye ZF, Yang K, Dong SL. Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene 2014; 536:279-86. [DOI: 10.1016/j.gene.2013.12.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 11/25/2022]
|
27
|
Identification of a novel interacting partner of the chemosensory protein 1 from Plutella xylostella L. Int J Biol Macromol 2014; 63:233-9. [DOI: 10.1016/j.ijbiomac.2013.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/27/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022]
|
28
|
Yang K, He P, Dong SL. Different expression profiles suggest functional differentiation among chemosensory proteins in Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu132. [PMID: 25527582 PMCID: PMC5657923 DOI: 10.1093/jisesa/ieu132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chemosensory proteins (CSPs) play various roles in insect physiology including olfaction and development. The brown planthopper, Nilaparvata lugens Stål, is one of the most notorious rice pests worldwide. The wing-from variation and annually long distance migration imply that olfaction would play a key role in N. lugens behavior. In this study, full-length cDNAs of nine CSPs were cloned by the rapid amplification of cDNA ends procedure, and their expression profiles were determined by the quantitative real-time Polymerase Chain Reaction (qPCR), with regard to developmental stage, wing-form, gender, and tissues of short-wing adult. These NlugCSP genes showed distinct expression patterns, indicating different roles they play. In particular, NlugCSP5 was long wing form biased and highly expressed in female wings among tissues; NlugCSP1 was mainly expressed in male adults and abdomen; NlugCSP7 was widely expressed in chemosensory tissues but little in the nonchemosensory abdomen. The function of NlugCSP7 in olfaction was further explored by the competitive fluorescence binding assay using the recombinant protein. However, the recombinant NlugCSP7 showed no obvious binding with all tested volatile compounds, suggesting that it may participate in physiological processes other than olfaction. Our results provide bases and some important clues for the function of NlugCSPs.
Collapse
Affiliation(s)
- Ke Yang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng He
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Yi X, Zhao H, Dong X, Wang P, Hu M, Zhong G. BdorCSP2 is important for antifeed and oviposition-deterring activities induced by Rhodojaponin-III against Bactrocera dorsalis. PLoS One 2013; 8:e77295. [PMID: 24155937 PMCID: PMC3796470 DOI: 10.1371/journal.pone.0077295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/31/2013] [Indexed: 01/27/2023] Open
Abstract
Rhodojaponin-III is a nonvolatile botanical grayanoid diterpene compound, which has antifeedant and oviposition deterrence effects against many kinds of insects. However, the molecular mechanism of the chemoreception process remains unknown. In this study, the important role of BdorCSP2 in the recognition of Rhodojaponin-III was identified. The full length cDNA encoding BdorCSP2 was cloned from legs of Bactrocera dorsalis. The results of expression pattern revealed that BdorCSP2 was abundantly expressed in the legs of adult B. dorsalis. Moreover, the expression of BdorCSP2 could be up-regulated by Rhodojaponin-III. In order to gain comprehensive understanding of the recognition process, the binding affinity between BdorCSP2 and Rhodojaponin-III was measured by fluorescence binding assay. Silencing the expression of BdorCSP2 through the ingestion of dsRNA could weaken the effect of oviposition deterrence and antifeedant of Rhodojaponin-III. These results suggested that BdorCSP2 of B. dorsalis could be involved in chemoreception of Rhodojaponin-III and played a critical role in antifeedant and oviposition behaviors induced by Rhodojaponin-III.
Collapse
Affiliation(s)
- Xin Yi
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Haiming Zhao
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xiaolin Dong
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Peidan Wang
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Meiying Hu
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
- * E-mail: (MH); (GZ)
| | - Guohua Zhong
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
- * E-mail: (MH); (GZ)
| |
Collapse
|
30
|
Li ZQ, Zhang S, Ma Y, Luo JY, Wang CY, Lv LM, Dong SL, Cui JJ. First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur). PLoS One 2013; 8:e67151. [PMID: 23826220 PMCID: PMC3694914 DOI: 10.1371/journal.pone.0067151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/14/2013] [Indexed: 11/29/2022] Open
Abstract
Background Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority for researchers on this species. Results To facilitate identifying sets of genes involved in olfaction, a normalized transcriptome of C. pallens was sequenced. A total of 104,603 contigs were obtained and assembled into 10,662 clusters and 39,734 singletons; 20,524 were annotated based on BLASTX analyses. A large number of candidate chemosensory genes were identified, including 14 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), 16 ionotropic receptors, 14 odorant receptors, and genes potentially involved in olfactory modulation. To better understand the OBPs, CSPs and cytochrome P450s, phylogenetic trees were constructed. In addition, 10 digital gene expression libraries of different tissues were constructed and gene expression profiles were compared among different tissues in males and females. Conclusions Our results provide a basis for exploring the mechanisms of chemoreception in C. pallens, as well as other insects. The evolutionary analyses in our study provide new insights into the differentiation and evolution of insect OBPs and CSPs. Our study provided large-scale sequence information for further studies in C. pallens.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Chun-Yi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Li-Min Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (JJC); (SLD)
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- * E-mail: (JJC); (SLD)
| |
Collapse
|
31
|
Analysis of a cDNA library from the antenna of Cnaphalocrocis medinalis and the expression pattern of olfactory genes. Biochem Biophys Res Commun 2013; 433:463-9. [DOI: 10.1016/j.bbrc.2013.03.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/02/2013] [Indexed: 11/23/2022]
|
32
|
Zhao H, Yi X, Hu Z, Hu M, Chen S, Muhammad RUH, Dong X, Gong L. RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). PLoS One 2013; 8:e59527. [PMID: 23555693 PMCID: PMC3608696 DOI: 10.1371/journal.pone.0059527] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/15/2013] [Indexed: 01/13/2023] Open
Abstract
Deregulated reactive oxygen species (ROS) production can lead to the disruption of structural and functional integrity of cells as a consequence of reactive interaction between ROS and various biological components. Catalase (CAT) is a common enzyme existing in nearly all organisms exposed to oxygen, which decomposes harmful hydrogen peroxide, into water and oxygen. In this study, the full length sequence that encodes CAT-like protein from Spodoptera litura named siltCAT (GenBank accession number: JQ_663444) was cloned and characterized. Amino acid sequence alignment showed siltCAT shared relatively high conservation with other insect, especially the conserved residues which defined heme and NADPH orientation. Expression pattern analysis showed that siltCAT mRNA was mainly expressed in the fat body, midgut, cuticle and malpighian tube, and as well as over last instar larvae, pupa and adult stages. RNA interference was used to silence CAT gene in SL-1 cells and the fourth-instar stage of S. litura larvae respectively. Our results provided evidence that CAT knockdown induced ROS generation, cell cycle arrest and apoptosis in SL-1 cells. It also confirmed the decrease in survival rate because of increased ROS production in experimental groups injected with double-stranded RNA of CAT (dsCAT). This study implied that ROS scavenging by CAT is important for S. litura survival.
Collapse
Affiliation(s)
- Haiming Zhao
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xin Yi
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zhen Hu
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Meiying Hu
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Shaohua Chen
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Rizwan-ul-Haq Muhammad
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xiaolin Dong
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Liang Gong
- Laboratory of Insect Toxicology, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
33
|
Xie W, Lei Y, Fu W, Yang Z, Zhu X, Guo Z, Wu Q, Wang S, Xu B, Zhou X, Zhang Y. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut. Int J Biol Sci 2012; 8:1142-55. [PMID: 23091412 PMCID: PMC3477684 DOI: 10.7150/ijbs.4588] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/11/2012] [Indexed: 11/06/2022] Open
Abstract
The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current sequencing effort greatly enriched the existing P. xylostella EST database, and makes RNAseq a viable option in the future genomic analysis.
Collapse
Affiliation(s)
- Wen Xie
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yanyuan Lei
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Wei Fu
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Zhongxia Yang
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xun Zhu
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Zhaojiang Guo
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Qingjun Wu
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Shaoli Wang
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Baoyun Xu
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Xuguo Zhou
- 2. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Youjun Zhang
- 1. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| |
Collapse
|
34
|
Gu SH, Wang SY, Zhang XY, Ji P, Liu JT, Wang GR, Wu KM, Guo YY, Zhou JJ, Zhang YJ. Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS One 2012; 7:e42871. [PMID: 22900060 PMCID: PMC3416781 DOI: 10.1371/journal.pone.0042871] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022] Open
Abstract
Insect chemosensory proteins (CSPs) have been proposed to capture and transport hydrophobic chemicals from air to olfactory receptors in the lymph of antennal chemosensilla. They may represent a new class of soluble carrier protein involved in insect chemoreception. However, their specific functional roles in insect chemoreception have not been fully elucidated. In this study, we report for the first time three novel CSP genes (AlinCSP1-3) of the alfalfa plant bug Adelphocoris lineolatus (Goeze) by screening the antennal cDNA library. The qRT-PCR examinations of the transcript levels revealed that all three genes (AlinCSP1-3) are mainly expressed in the antennae. Interestingly, these CSP genes AlinCSP1-3 are also highly expressed in the 5th instar nymphs, suggesting a proposed function of these CSP proteins (AlinCSP1-3) in the olfactory reception and in maintaining particular life activities into the adult stage. Using bacterial expression system, the three CSP proteins were expressed and purified. For the first time we characterized the types of sensilla in the antennae of the plant bug using scanning electron microscopy (SEM). Immunocytochemistry analysis indicated that the CSP proteins were expressed in the pheromone-sensitive sensilla trichodea and general odorant-sensitive sensilla basiconica, providing further evidence of their involvement in chemoreception. The antennal activity of 55 host-related semiochemicals and sex pheromone compounds in the host location and mate selection behavior of A. lineolatus was investigated using electroantennogram (EAG), and the binding affinities of these chemicals to the three CSPs (AlinCSP1-3) were measured using fluorescent binding assays. The results showed several host-related semiochemicals, (Z)-3-hexen-1-ol, (E)-2-hexen-1-al and valeraldehyde, have a high binding affinity with AlinCSP1-3 and can elicit significant high EAG responses of A. lineolatus antennae. Our studies indicate the three antennae-biased CSPs may mediate host recognition in the alfalfa plant bug A. lineolatus.
Collapse
Affiliation(s)
- Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song-Ying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Ying Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing-Tao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kong-Ming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry, Rothamsted Research, Harpenden, United Kingdom
- * E-mail: (Y-JZ); (J-JZ)
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (Y-JZ); (J-JZ)
| |
Collapse
|
35
|
Jacquin-Joly E, Legeai F, Montagné N, Monsempes C, François MC, Poulain J, Gavory F, Walker WB, Hansson BS, Larsson MC. Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis. Int J Biol Sci 2012; 8:1036-50. [PMID: 22904672 PMCID: PMC3421235 DOI: 10.7150/ijbs.4469] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/31/2012] [Indexed: 01/25/2023] Open
Abstract
Chemical senses are crucial for all organisms to detect various environmental information. Different protein families, expressed in chemosensory organs, are involved in the detection of this information, such as odorant-binding proteins, olfactory and gustatory receptors, and ionotropic receptors. We recently reported an Expressed Sequence Tag (EST) approach on male antennae of the noctuid moth, Spodoptera littoralis, with which we could identify a large array of chemosensory genes in a species for which no genomic data are available. Here we describe a complementary EST project on female antennae in the same species. 18,342 ESTs were sequenced and their assembly with our previous male ESTs led to a total of 13,685 unigenes, greatly improving our description of the S. littoralis antennal transcriptome. Gene ontology comparison between male and female data suggested a similar complexity of antennae of both sexes. Focusing on chemosensation, we identified 26 odorant-binding proteins, 36 olfactory and 5 gustatory receptors, expressed in the antennae of S. littoralis. One of the newly identified gustatory receptors appeared as female-enriched. Together with its atypical tissue-distribution, this suggests a role in oviposition. The compilation of male and female antennal ESTs represents a valuable resource for exploring the mechanisms of olfaction in S. littoralis.
Collapse
Affiliation(s)
- Emmanuelle Jacquin-Joly
- INRA, UMR-A 1272 Physiologie de l'Insecte : Signalisation et Communication, route de Saint-Cyr, F-78026 Versailles Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu R, He X, Lehane S, Lehane M, Hertz-Fowler C, Berriman M, Field LM, Zhou JJ. Expression of chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to female host-seeking behaviour. INSECT MOLECULAR BIOLOGY 2012; 21:41-48. [PMID: 22074189 PMCID: PMC3664020 DOI: 10.1111/j.1365-2583.2011.01114.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chemosensory proteins (CSPs) are a class of soluble proteins present in high concentrations in the sensilla of insect antennae. It has been proposed that they play an important role in insect olfaction by mediating interactions between odorants and odorant receptors. Here we report, for the first time, the presence of five CSP genes in the tsetse fly Glossina morsitans morsitans, a major vector transmitting nagana in livestock. Real-time quantitative reverse transcription PCR showed that three of the CSPs are expressed in antennae. One of them, GmmCSP2, is transcribed at a very high level and could be involved in olfaction. We also determined expression in the antennae of both males and females at different life stages and with different blood feeding regimes. The transcription of GmmCSP2 was lower in male antennae than in females, with a sharp increase in 10-week-old flies, 48 h after a bloodmeal. Thus there is a clear relationship between CSP gene transcription and host searching behaviour. Genome annotation and phylogenetic analyses comparing G. morsitans morsitans CSPs with those of other Diptera showed rapid evolution after speciation of mosquitoes.
Collapse
Affiliation(s)
- R Liu
- Department of Biological Chemistry, Rothamsted Research, Harpenden, UK
| | | | | | | | | | | | | | | |
Collapse
|