1
|
Pernis M, Salaj T, Bellová J, Danchenko M, Baráth P, Klubicová K. Secretome analysis revealed that cell wall remodeling and starch catabolism underlie the early stages of somatic embryogenesis in Pinus nigra. FRONTIERS IN PLANT SCIENCE 2023; 14:1225424. [PMID: 37600183 PMCID: PMC10436561 DOI: 10.3389/fpls.2023.1225424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Somatic embryogenesis is an efficient mean for rapid micropropagation and preservation of the germplasm of valuable coniferous trees. Little is known about how the composition of secretome tracks down the level of embryogenic capacity. Unlike embryogenic tissue on solid medium, suspension cell cultures enable the study of extracellular proteins secreted into a liquid cultivation medium, avoiding contamination from destructured cells. Here, we present proteomic data of the secretome of Pinus nigra cell lines with contrasting embryogenic capacity, accounting for variability between genotypes. Our results showed that cell wall-related and carbohydrate-acting proteins were the most differentially accumulated. Peroxidases, extensin, α-amylase, plant basic secretory family protein (BSP), and basic secretory protease (S) were more abundant in the medium from the lines with high embryogenic capacity. In contrast, the medium from the low embryogenic capacity cell lines contained a higher amount of polygalacturonases, hothead protein, and expansin, which are generally associated with cell wall loosening or softening. These results corroborated the microscopic findings in cell lines with low embryogenic capacity-long suspensor cells without proper assembly. Furthermore, proteomic data were subsequently validated by peroxidase and α-amylase activity assays, and hence, we conclude that both tested enzyme activities can be considered potential markers of high embryogenic capacity.
Collapse
Affiliation(s)
- Miroslav Pernis
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Terézia Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Jana Bellová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Klubicová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
2
|
Fischerová L, Gemperlová L, Cvikrová M, Matušíková I, Moravčíková J, Gerši Z, Malbeck J, Kuderna J, Pavlíčková J, Motyka V, Eliášová K, Vondráková Z. The humidity level matters during the desiccation of Norway spruce somatic embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:968982. [PMID: 35968100 PMCID: PMC9372446 DOI: 10.3389/fpls.2022.968982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes β-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some β-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.
Collapse
Affiliation(s)
- Lucie Fischerová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Lenka Gemperlová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Milena Cvikrová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Ildiko Matušíková
- Department of Ecochemistry and Radioecology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jana Moravčíková
- Department of Biotechnologies, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Zuzana Gerši
- Department of Biology, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Jiří Malbeck
- Laboratory of Mass Spectroscopy, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kuderna
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Pavlíčková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Eliášová
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Vondráková
- Laboratory of Biologically Active Compounds, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Mujib A, Bansal Y, Malik MQ, Syeed R, Mamgain J, Ejaz B. Internal and External Regulatory Elements Controlling Somatic Embryogenesis in Catharanthus: A Model Medicinal Plant. Methods Mol Biol 2022; 2527:11-27. [PMID: 35951180 DOI: 10.1007/978-1-0716-2485-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Somatic or in vitro embryogenesis is a unique embryo producing process from vegetative cells observed in plants since 1958. Even over 60 years of research, the transition of somatic cells into embryonic fate is still not elucidated fully. Various networks and signaling elements have been noted to play important role in this "vegetative to reproductive" transition process. The networks include genotypes, explant types, the sugar/carbohydrate sources, cultural/environmental conditions like light quality and intensity, dissolved oxygen (DO) level, cell density, plant growth regulator (PGR) (auxin and cytokinin) signaling, PGR-gene interplay, stresses are important and cause new cellular reprogramming during embryonic acquisition. A wide array of genes, specific to zygotic embryogenesis, also express during somatic embryogenesis. A few embryogenesis-specific genes such as SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINASE, LEAFY COTYLEDON, AGAMOUS-LIKE 15, and BABY BOOM are crucial and have been discussed. The chapter focuses the importance of these gene products, e.g., proteins, enzymes, and transcription factors in regulating embryogenesis. Many of these encoded proteins act as potential somatic embryogenesis markers. Besides, important elements such as genotype, herbaceous/woody plants' response in culture in inducing embryos have been discussed. All these elements are connected and form network in complex fashion thus difficult to unfold fully; some of the current progress and developments have been presented in this chapter.
Collapse
Affiliation(s)
- A Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India.
| | - Yashika Bansal
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moien Qadir Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
5
|
Gulzar B, Mujib A, Rajam MV, Zafar N, Mamgain J, Malik M, Syeed R, Ejaz B. Shotgun label-free proteomic and biochemical study of somatic embryos (cotyledonary and maturation stage) in Catharanthus roseus (L.) G. Don. 3 Biotech 2021; 11:86. [PMID: 33505840 PMCID: PMC7817727 DOI: 10.1007/s13205-021-02649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
Somatic embryogenesis is an important and wonderful biotechnological tool used to develop whole plant from a single or a group of somatic cells. The differentiated somatic cells become totipotent stem cells by drastic reprogramming of a wide range of cellular activities, leading to the acquisition of embryogenic competence. After acquiring competence, the cells pass through globular, heart, torpedo and cotyledonary stages of embryo; however, all advanced embryos do not convert into full plant, produce adventive embryos or callus instead, thus reverses the programming. This is a big limitation in propagation of many plants. Understanding and unraveling the proteins at this 'embryo to plantlet' transition stage will help to get more numbers of plants. Thus, our study was aimed at an identification of differentially abundant proteins between two important advanced stages, i.e. cotyledonary-(T1) and maturation stage (T2) of somatic embryos in Catharanthus roseus. A total of 2949 and 3030 proteins were identified in cotyledonary and maturation stage, respectively. Of these, 1129 proteins were common to both. Several proteins were found to be differentially accumulated in two different embryo stages in which over 60 proteins were most accumulated during somatic embryo maturation time. More chlorophyll accumulation was noted at this time under the influence of gibberellic acid (GA3). Proteins like Mg-protoporphyrin IX chelatase, chlorophyll a-b-binding protein, photosystem I iron-sulfur center, photosystem II Psb, photosystem II subunit P-1, P-II domain-containing protein, RuBisCO large chain, RuBisCO small chain, RuBisCO activase, RuBisCO large subunit-binding proteins were synthesized. Some of the identified proteins are linked to chlorophyll synthesis, carbohydrate metabolism and stress. The identified proteins are categorized into different groups on the basis of their cellular location, role and other metabolic processes. Biochemical attributes like protein, sugar, proline, antioxidant enzyme (APX, SOD and CAT) activities were high in T2 as compared to T1. The proteins like peroxidases, pathogenesis-related proteins, the late-embryogenesis abundant proteins, argonaute, germin and others have been discussed in C. roseus somatic embryo maturation process.
Collapse
Affiliation(s)
- Basit Gulzar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Nadia Zafar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moien Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Genes, proteins and other networks regulating somatic embryogenesis in plants. J Genet Eng Biotechnol 2020; 18:31. [PMID: 32661633 PMCID: PMC7359197 DOI: 10.1186/s43141-020-00047-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022]
Abstract
Background Somatic embryogenesis (SE) is an intricate molecular and biochemical process principally based on cellular totipotency and a model in studying plant development. In this unique embryo-forming process, the vegetative cells acquire embryogenic competence under cellular stress conditions. The stress caused by plant growth regulators (PGRs), nutrient, oxygenic, or other signaling elements makes cellular reprogramming and transforms vegetative cells into embryos through activation/deactivation of a myriad of genes and transcriptional networks. Hundreds of genes have been directly linked to zygotic and somatic embryogeneses; some of them like SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINASE (SERK), LEAFY COTYLEDON (LEC), BABYBOOM (BBM), and AGAMOUS-LIKE 15 (AGL15) are very important and are part of molecular network. Main text (observation) This article reviews various genes/orthologs isolated from different plants; encoded proteins and their possible role in regulating somatic embryogenesis of plants have been discussed. The role of SERK in regulating embryogenesis is also summarized. Different SE-related proteins identified through LC–MS at various stages of embryogenesis are also described; a few proteins like 14-3-3, chitinase, and LEA are used as potential SE markers. These networks are interconnected in a complicated manner, posing challenges for their complete elucidation. Conclusions The various gene networks and factors controlling somatic embryogenesis have been discussed and presented. The roles of stress, PGRs, and other signaling elements have been discussed. In the last two-to-three decades’ progress, the challenges ahead and its future applications in various fields of research have been highlighted. The review also presents the need of high throughput, innovative techniques, and sensitive instruments in unraveling the mystery of SE.
Collapse
|
7
|
Kumaravel M, Uma S, Backiyarani S, Saraswathi MS. Proteomic analysis of somatic embryo development in Musa spp. cv. Grand Naine (AAA). Sci Rep 2020; 10:4501. [PMID: 32161309 PMCID: PMC7066174 DOI: 10.1038/s41598-020-61005-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Somatic embryos are comparable to their zygotic counterparts for morphological traits but are derived from somatic cells through various metabolic regulations, collectively referred as somatic embryogenesis (SE). It has been well exploited for germplasm conservation, genetic engineering, mutation breeding, for artificial seed technology and as a tool for mass multiplication. Though somatic embryo development is an important area of interest in growth, and developmental studies, the underlying molecular mechanism remains unclear. Therefore, understanding the molecular basis behind somatic embryo development can provide insight into the signaling pathways integrating this process. Proteomic analysis of somatic embryo development in cv. Grand Naine (AAA) was carried out to identify the differentially expressed protein during somatic embryo development stages, using two dimensional gel electrophoresis together with mass spectrometry. In total, 25 protein spots were differentially expressed during sequential developmental stages of somatic embryos. Among these, three proteins were uniquely present in 30 days globular stage and six proteins in 60 days old mature somatic embryo. Functional annotation of identified spots showed that major proteins are involved in growth and developmental process (17%) followed by defense response (12%) and signal transportation events (12%). In the early stage, cell division and growth related proteins are involved in the induction of somatic embryos whereas in the late developmental stage, cell wall associated proteins along with stress related proteins played a defensive role against dehydration and osmotic stress and resulted in the maturation of somatic embryo. The identified stage specific proteins are valuable indicators and genetic markers for screening and for media manipulation to improve SE efficiency in recalcitrant crops and varieties.
Collapse
Affiliation(s)
- Marimuthu Kumaravel
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Subbaraya Uma
- Director, ICAR-National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India.
| | - Suthanthiram Backiyarani
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Marimuthu Somasundaram Saraswathi
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| |
Collapse
|
8
|
Gautier F, Label P, Eliášová K, Leplé JC, Motyka V, Boizot N, Vondráková Z, Malbeck J, Trávníčková A, Le Metté C, Lesage-Descauses MC, Lomenech AM, Trontin JF, Costa G, Lelu-Walter MA, Teyssier C. Cytological, Biochemical and Molecular Events of the Embryogenic State in Douglas-fir ( Pseudotsuga menziesii [Mirb.]). FRONTIERS IN PLANT SCIENCE 2019; 10:118. [PMID: 30873184 PMCID: PMC6403139 DOI: 10.3389/fpls.2019.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/23/2019] [Indexed: 05/08/2023]
Abstract
Somatic embryogenesis techniques have been developed for most coniferous species, but only using very juvenile material. To extend the techniques' scope, better integrated understanding of the key biological, physiological and molecular characteristics of embryogenic state is required. Therefore, embryonal masses (EMs) and non-embryogenic calli (NECs) have been compared during proliferation at multiple levels. EMs and NECs originating from a single somatic embryo (isogenic lines) of each of three unrelated genotypes were used in the analyses, which included comparison of the lines' anatomy by transmission light microscopy, transcriptomes by RNAseq Illumina sequencing, proteomes by free-gel analysis, contents of endogenous phytohormones (indole-3-acetic acid, cytokinins and ABA) by LC-MS analysis, and soluble sugar contents by HPLC. EMs were characterized by upregulation (relative to levels in NECs) of transcripts, proteins, transcription factors and active cytokinins associated with cell differentiation accompanied by histological, carbohydrate content and genetic markers of cell division. In contrast, NECs were characterized by upregulation (relative to levels in EMs) of transcripts, proteins and products associated with responses to stimuli (ABA, degradation forms of cytokinins, phenols), oxidative stress (reactive oxygen species) and carbohydrate storage (starch). Sub-Network Enrichment Analyses that highlighted functions and interactions of transcripts and proteins that significantly differed between EMs and NECs corroborated these findings. The study shows the utility of a novel approach involving integrated multi-scale transcriptomic, proteomic, biochemical, histological and anatomical analyses to obtain insights into molecular events associated with embryogenesis and more specifically to the embryogenic state of cell in Douglas-fir.
Collapse
Affiliation(s)
- Florian Gautier
- BioForA, INRA, ONF, Orléans, France
- PEIRENE, Sylva LIM, Université de Limoges, Limoges, France
| | | | - Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Malbeck
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Alena Trávníčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | | | - Anne-Marie Lomenech
- Centre de Génomique Fonctionnelle, Plateforme Protéome, University of Bordeaux, Bordeaux, France
| | | | - Guy Costa
- PEIRENE, Sylva LIM, Université de Limoges, Limoges, France
| | | | | |
Collapse
|
9
|
Chin CF, Tan HS. The Use of Proteomic Tools to Address Challenges Faced in Clonal Propagation of Tropical Crops through Somatic Embryogenesis. Proteomes 2018; 6:proteomes6020021. [PMID: 29734680 PMCID: PMC6027288 DOI: 10.3390/proteomes6020021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022] Open
Abstract
In many tropical countries with agriculture as the mainstay of the economy, tropical crops are commonly cultivated at the plantation scale. The successful establishment of crop plantations depends on the availability of a large quantity of elite seedling plants. Many plantation companies establish plant tissue culture laboratories to supply planting materials for their plantations and one of the most common applications of plant tissue culture is the mass propagation of true-to-type elite seedlings. However, problems encountered in tissue culture technology prevent its applications being widely adopted. Proteomics can be a powerful tool for use in the analysis of cultures, and to understand the biological processes that takes place at the cellular and molecular levels in order to address these problems. This mini review presents the tissue culture technologies commonly used in the propagation of tropical crops. It provides an outline of some the genes and proteins isolated that are associated with somatic embryogenesis and the use of proteomic technology in analysing tissue culture samples and processes in tropical crops.
Collapse
Affiliation(s)
- Chiew Foan Chin
- School of Biosciences, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Hooi Sin Tan
- School of Biosciences, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
dos Santos ALW, Elbl P, Navarro BV, de Oliveira LF, Salvato F, Balbuena TS, Floh EIS. Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential. J Proteomics 2016; 130:180-9. [DOI: 10.1016/j.jprot.2015.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/26/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022]
|
11
|
Abstract
Somatic embryogenesis involves a broad repertoire of genes, and complex expression patterns controlled by a concerted gene regulatory network. The present work describes this regulatory network focusing on the main aspects involved, with the aim of providing a deeper insight into understanding the total reprogramming of cells into a new organism through a somatic way. To the aim, the chromatin remodeling necessary to totipotent stem cell establishment is described, as the activity of numerous transcription factors necessary to cellular totipotency reprogramming. The eliciting effects of various plant growth regulators on the induction of somatic embryogenesis is also described and put in relation with the activity of specific transcription factors. The role of programmed cell death in the process, and the related function of specific hemoglobins as anti-stress and anti-death compounds is also described. The tools for biotechnology coming from this information is highlighted in the concluding remarks.
Collapse
|
12
|
Proteomic Analysis of Immature Fraxinus mandshurica Cotyledon Tissues during Somatic Embryogenesis: Effects of Explant Browning on Somatic Embryogenesis. Int J Mol Sci 2015; 16:13692-713. [PMID: 26084048 PMCID: PMC4490518 DOI: 10.3390/ijms160613692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022] Open
Abstract
Manchurian ash (Fraxinus mandshurica Rupr.) is a valuable hardwood species in Northeast China. In cultures of F. mandshurica, somatic embryos were produced mainly on browned explants. Therefore, we studied the mechanism of explant browning and its relationship with somatic embryogenesis (SE). We used explants derived from F. mandshurica immature zygotic embryo cotyledons as materials. Proteins were extracted from browned embryogenic explants, browned non-embryogenic explants, and non-brown explants, and then separated by 2-dimensional electrophoresis. Differentially and specifically expressed proteins were analyzed by mass spectrometry to identify proteins involved in the browning of explants and SE. Some stress response and defense proteins such as chitinases, peroxidases, aspartic proteinases, and an osmotin-like protein played important roles during SE of F. mandshurica. Our results indicated that explant browning might not be caused by the accumulation and oxidation of polyphenols only, but also by some stress-related processes, which were involved in programmed cell death (PCD), and then induced SE.
Collapse
|
13
|
Niemenak N, Kaiser E, Maximova SN, Laremore T, Guiltinan MJ. Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:49-60. [PMID: 25889873 DOI: 10.1016/j.jplph.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/30/2015] [Accepted: 02/24/2015] [Indexed: 05/22/2023]
Abstract
Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses.
Collapse
Affiliation(s)
- Nicolas Niemenak
- Laboratory of Plant Physiology, Department of Biological Science, Higher Teachers Training College, University of Yaounde I, P.O. Box 47, Yaounde, Cameroon.
| | - Edward Kaiser
- Proteomics and Mass Spectrometry Core Facility, the Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Siela N Maximova
- The Pennsylvania State University, Department of Plant Science and the Huck Institutes of the Life Sciences, University Park, Pennsylvania, PA 16802, USA
| | - Tatiana Laremore
- Proteomics and Mass Spectrometry Core Facility, the Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Mark J Guiltinan
- The Pennsylvania State University, Department of Plant Science and the Huck Institutes of the Life Sciences, University Park, Pennsylvania, PA 16802, USA
| |
Collapse
|
14
|
Anil Kumar S, Hima Kumari P, Shravan Kumar G, Mohanalatha C, Kavi Kishor PB. Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. FRONTIERS IN PLANT SCIENCE 2015; 6:163. [PMID: 25852715 PMCID: PMC4360817 DOI: 10.3389/fpls.2015.00163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 03/01/2015] [Indexed: 05/18/2023]
Abstract
Osmotin is a stress responsive antifungal protein belonging to the pathogenesis-related (PR)-5 family that confers tolerance to both biotic and abiotic stresses in plants. Protective efforts of osmotin in plants range from high temperature to cold and salt to drought. It lyses the plasma membrane of the pathogens. It is widely distributed in fruits and vegetables. It is a differentially expressed and developmentally regulated protein that protects the cells from osmotic stress and invading pathogens as well, by structural or metabolic alterations. During stress conditions, osmotin helps in the accumulation of the osmolyte proline, which quenches reactive oxygen species and free radicals. Osmotin expression results in the accumulation of storage reserves and increases the shelf-life of fruits. It binds to a seven-transmembrane-domain receptor-like protein and induces programmed cell death in Saccharomyces cerevisiae through RAS2/cAMP signaling pathway. Adiponectin, produced in adipose tissues of mammals, is an insulin-sensitizing hormone. Strangely, osmotin acts like the mammalian hormone adiponectin in various in vitro and in vivo models. Adiponectin and osmotin, the two receptor binding proteins do not share sequence similarity at the amino acid level, but interestingly they have a similar structural and functional properties. In experimental mice, adiponectin inhibits endothelial cell proliferation and migration, primary tumor growth, and reduces atherosclerosis. This retrospective work examines the vital role of osmotin in plant defense and as a potential targeted therapeutic drug for humans.
Collapse
Affiliation(s)
- S. Anil Kumar
- Department of Genetics, Osmania University, HyderabadIndia
| | - P. Hima Kumari
- Department of Genetics, Osmania University, HyderabadIndia
| | | | | | | |
Collapse
|
15
|
Tchorbadjieva M, Pantchev I, Harizanova N. Two-Dimensional Protein Pattern Analysis of Extracellular Proteins Secreted by Embryogenic and Non-Embryogenic Suspension Cultures ofDactylis GlomerataL. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2004.10817082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Silva RDC, Carmo LST, Luis ZG, Silva LP, Scherwinski-Pereira JE, Mehta A. Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteomics 2014; 104:112-27. [PMID: 24675181 DOI: 10.1016/j.jprot.2014.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/24/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
UNLABELLED In the present study we have identified and characterized the proteins expressed during different developmental stages of Elaeis guineensis calli obtained from zygotic embryos. We were interested in the possible proteomic changes that would occur during the acquisition of somatic embryogenesis and therefore samples were collected from zygotic embryos (E1), swollen explants 14days (E2) in induction medium, primary callus (E3), and pro-embryogenic callus (E4). The samples were grinded in liquid nitrogen, followed by total protein extraction using phenol and extraction buffer. Proteins were analyzed by two-dimensional electrophoresis (2-DE) and the differentially expressed protein spots were analyzed by MALDI-TOF mass spectrometry (MS and MS/MS). Interestingly, we have identified proteins, which can be used as potential candidates for future studies aiming at the development of biomarkers for embryogenesis acquisition and for the different stages leading to pro-embryogenic callus formation such as type IIIa membrane protein cp-wap13, fructokinase and PR proteins. The results obtained shed some light on the biochemical events involved in the process of somatic embryogenesis of E. guineensis obtained from zygotic embryos. The use of stage-specific protein markers can help monitor cell differentiation and contribute to improve the protocols for successfully cloning the species. BIOLOGICAL SIGNIFICANCE Understanding the fate and dynamics of cells and tissues during callus formation is essential to understand totipotency and the mechanisms involved during acquisition of somatic embryogenesis (SE). In this study we have investigated the early stages of somatic embryogenesis induction in oil palm and have identified potential markers as well as proteins potentially involved in embryogenic competence acquisition. The use of these proteins can help improve tissue culture protocols in order to increase regeneration rates. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Rafael de Carvalho Silva
- PPGBIOTEC, Departamento de Biologia, Universidade Federal do Amazonas, CEP 69077-000, Manaus, AM, Brazil
| | | | - Zanderluce Gomes Luis
- PPGBOT, Departamento de Botanica, Instituto de Biologia, Universidade de Brasilia, CEP 70910-900, Brasília, DF, Brazil
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil
| | - Jonny Everson Scherwinski-Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil; PPGBOT, Departamento de Botanica, Instituto de Biologia, Universidade de Brasilia, CEP 70910-900, Brasília, DF, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil.
| |
Collapse
|
17
|
The role of chitinases and glucanases in somatic embryogenesis of black pine and hybrid firs. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0234-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractGlucanase and chitinase enzymes play an important role in different plant processes including defense against pathogens and morphogenesis. Moreover, their role in the processes of somatic embryogenesis has been demonstrated. It has been suggested, that the presence of this type of proteins might be a marker for embryogenic potential of callus cultures. In this work we screened for the presence of glucanases and chitinases in liquid growth media of a set of conifer embryogenic cell lines in order to find correlation with their embryogenic potential. We have found that none of the 12 chitinase isoforms detected in culture media of Pinus nigra Arn. or the nine chitinases detected in media with Abies alba × A. cephalonica and Abies alba × A. numidica embryogenic tissues could be linked to their embryogenic capacity. Similarly, none of the six glucanase isoforms detected in the extracellular fluid of Pinus nigra Arn. cultures can be assigned as a marker of embryogenic potential. Thus, our data indicate the large variability and doubtless importance of glucanases and chitinases for cell growth and development of somatic embryos, however, do not support the premise that they are markers of embryogenesis.
Collapse
|
18
|
Ge XX, Chai LJ, Liu Z, Wu XM, Deng XX, Guo WW. Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray. PLANTA 2012; 236:1107-1124. [PMID: 22622359 DOI: 10.1007/s00425-012-1661-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/26/2012] [Indexed: 05/28/2023]
Abstract
Somatic embryogenesis (SE) is a most promising technology that is used for in vitro germplasm conservation and genetic improvement via biotechnological approaches in citrus. Herein, three suppression subtractive hybridization (SSH) libraries were constructed using calluses of Citrus sinensis cv. 'Valencia' to explore the molecular mechanisms that underlie the SE in citrus. A total of 880 unisequences were identified by microarray screening based on these three SSH libraries. Gene ontology analysis of the differentially expressed genes indicated that nucleolus associated regulation and biogenesis processes, hormone signal transduction, and stress factors might be involved in SE. Transcription factors might also play an important role. LEC1/B3 domain regulatory network genes (LEC1, L1L, FUS3, ABI3, and ABI5) were isolated in citrus SE. Some new transcription factors associated with citrus SE, like a B3 domain containing gene and HB4, were identified. To understand the influence of these isolated genes on SE competence, their expression profiles were compared among callus lines of seven citrus cultivars with different SE competence. The expression dynamics suggested that these genes could be necessary for the SE initiation and might play a role in embryogenic competence maintenance in different cultivars. On the basis of gene expression profiles, an overview of major physiological and biosynthesis processes at different developmental stages during citrus SE is presented. For the first time, these data provide a global resource for transcriptional events important for SE in citrus, and the specific genes offer new information for further investigation on citrus SE maintenance and development.
Collapse
Affiliation(s)
- Xiao-Xia Ge
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
19
|
Mondego JMC, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GGL, Pereira LFP, Andrade AC, Colombo CA, Vieira LGE, Pereira GAG. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC PLANT BIOLOGY 2011; 11:30. [PMID: 21303543 PMCID: PMC3045888 DOI: 10.1186/1471-2229-11-30] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 02/08/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. RESULTS Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. CONCLUSION We present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance.
Collapse
Affiliation(s)
- Jorge MC Mondego
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas, CP 28, 13001-970, Campinas-SP, Brazil
| | - Ramon O Vidal
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas-SP, Brazil
- Laboratório Nacional de Biociências (LNBio), CP 6192, 13083-970, Campinas-SP, Brazil
| | - Marcelo F Carazzolle
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas-SP, Brazil
- Centro Nacional de Processamento de Alto Desempenho em São Paulo, Universidade Estadual de Campinas, CP 6141, 13083-970, Campinas, SP, Brazil
| | - Eric K Tokuda
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas-SP, Brazil
| | - Lucas P Parizzi
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas-SP, Brazil
| | - Gustavo GL Costa
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas-SP, Brazil
| | - Luiz FP Pereira
- Embrapa Café - Instituto Agronômico do Paraná, Laboratório de Biotecnologia Vegetal, CP 481, 86001-970, Londrina-PR, Brazil
| | - Alan C Andrade
- Núcleo de Biotecnologia-NTBio, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, 70770-900, Brasília-DF, Brazil
| | - Carlos A Colombo
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas, CP 28, 13001-970, Campinas-SP, Brazil
| | - Luiz GE Vieira
- Instituto Agronômico do Paraná, Laboratório de Biotecnologia Vegetal, CP 481, CEP 86001-970, Londrina-PR, Brazil
| | - Gonçalo AG Pereira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970, Campinas-SP, Brazil
| |
Collapse
|
20
|
|
21
|
Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 2009; 37:2493-507. [PMID: 19705297 DOI: 10.1007/s11033-009-9764-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system for understanding of molecular events in the physiology, biochemistry, and biology areas occurring during plant embryo development. Stresses are also the factors that have been increasingly recognized as having important role in the induction of SE. Plant growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D), ABA, ethylene, and high concentrations of 2,4-D are known as stress-related substances for acquisition of embryogenic competence by plant cells. Gene expression analysis in both the proteome and transcriptome levels have led to the identification and characterization of some stress-related genes and proteins associated with SE. This review focuses on the molecular basis for stress-induced acquisition of SE.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamadan, Iran.
| | | |
Collapse
|
22
|
Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B. Differential regulation of SERK, LEC1-like and pathogenesis-related genes during indirect secondary somatic embryogenesis in grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:743-752. [PMID: 19406655 DOI: 10.1016/j.plaphy.2009.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 05/27/2023]
Abstract
A culture model was developed in Vitis vinifera L., cultivar 'Chardonnay' for studying SE (Somatic Embryogenesis). The auxin 2,4-D (2,4-Dichlorophenoxyacetic acid) was used to induce indirect secondary embryogenesis at a high rate, starting from embryos derived from embryogenic cultures previously obtained. Cotyledonary embryos were shown to be more responsive to SE induction than embryos at the torpedo-stage and were used for molecular analyses. The expression of SERK (Somatic Embryogenesis Receptor Kinase), L1L (Leafy Cotyledon1 Like) and a set of PR (Pathogenesis-Related) genes was monitored during the whole SE process. VvSERK1, VvSERK2 and VvL1L were down-regulated by the 2,4-D treatment but expressed in embryonic tissues. On the contrary, VvPR1, VvPR8, VvPR10.1 and VvPR10.3 were strongly up-regulated by the 2,4-D treatment, and their transcripts were not or only weakly detected in clusters of secondary embryos. VvSERK3, VvPR3 and VvPR10.2 were more stably expressed in all tissues examined. The discussion deals with the putative role of the different genes in grapevine SE.
Collapse
Affiliation(s)
- Pascale Maillot
- Université de Haute Alsace, Laboratoire Vigne Biotechnologies & Environnement, 33 rue de Herrlisheim, BP 50568, 68 008 Colmar Cedex, France.
| | | | | | | | | |
Collapse
|
23
|
Patel AK, Singh VK, Yadav RP, Moir AJG, Jagannadham MV. ICChI, a glycosylated chitinase from the latex of Ipomoea carnea. PHYTOCHEMISTRY 2009; 70:1210-1216. [PMID: 19683318 DOI: 10.1016/j.phytochem.2009.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 05/28/2023]
Abstract
A multi-functional enzyme ICChI with chitinase/lysozyme/exochitinase activity from the latex of Ipomoea carnea subsp. fistulosa was purified to homogeneity using ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. The enzyme is glycosylated (14-15%), has a molecular mass of 34.94 kDa (MALDI-TOF) and an isoelectric point of pH 5.3. The enzyme is stable in pH range 5.0-9.0, 80 degrees C and the optimal activity is observed at pH 6.0 and 60 degrees C. Using p-nitrophenyl-N-acetyl-beta-D-glucosaminide, the kinetic parameters K(m), V(max), K(cat) and specificity constant of the enzyme were calculated as 0.5mM, 2.5 x 10(-8)mol min(-1)microg enzyme(-1), 29.0 s(-1) and 58.0mM(-1)s(-1) respectively. The extinction coefficient was estimated as 20.56 M(-1)cm(-1). The protein contains eight tryptophan, 20 tyrosine and six cysteine residues forming three disulfide bridges. The polyclonal antibodies raised and immunodiffusion suggests that the antigenic determinants of ICChI are unique. The first fifteen N-terminal residues G-E-I-A-I-Y-W-G-Q-N-G-G-E-G-S exhibited considerable similarity to other known chitinases. Owing to these unique properties the reported enzyme would find applications in agricultural, pharmaceutical, biomedical and biotechnological fields.
Collapse
Affiliation(s)
- Ashok Kumar Patel
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
24
|
Lin HC, Morcillo F, Dussert S, Tranchant-Dubreuil C, Tregear JW, Tranbarger TJ. Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. PLANT MOLECULAR BIOLOGY 2009; 70:173-92. [PMID: 19199047 DOI: 10.1007/s11103-009-9464-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 01/21/2009] [Indexed: 05/08/2023]
Abstract
With the aim of understanding the molecular mechanisms underlying somatic embryogenesis (SE) in oil palm, we examined transcriptome changes that occur when embryogenic suspension cells are initiated to develop somatic embryos. Two reciprocal suppression subtractive hybridization (SSH) libraries were constructed from oil palm embryogenic cell suspensions: one in which embryo development was blocked by the presence of the synthetic auxin analogue 2,4-dichlorophenoxyacetic acid (2,4-D: ) in the medium (proliferation library); and another in which cells were stimulated to form embryos by the removal of 2,4-D: from the medium (initiation library). A total of 1867 Expressed Sequence Tags (ESTs) consisting of 1567 potential unigenes were assembled from the two libraries. Functional annotation indicated that 928 of the ESTs correspond to proteins that have either no similarity to sequences in public databases or are of unknown function. Gene Ontology (GO) terms assigned to the two EST populations give clues to the underlying molecular functions, biological processes and cellular components involved in the initiation of embryo development. Macroarrays were used for transcript profiling the ESTs during SE. Hierarchical cluster analysis of differential transcript accumulation revealed 4 distinct profiles containing a total of 192 statistically significant developmentally regulated transcripts. Similarities and differences between the global results obtained with in vitro systems from dicots, monocots and gymnosperms will be discussed.
Collapse
Affiliation(s)
- Hsiang-Chun Lin
- IRD, UMR DIAPC, IRD/CIRAD Palm Development Group, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
25
|
Somatic embryogenesis and two embryo specific proteins (38 and 33 kD) in Catharanthus roseus. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0031-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR. The role of plant defence proteins in fungal pathogenesis. MOLECULAR PLANT PATHOLOGY 2007; 8:677-700. [PMID: 20507530 DOI: 10.1111/j.1364-3703.2007.00419.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
SUMMARY It is becoming increasingly evident that a plant-pathogen interaction may be compared to an open warfare, whose major weapons are proteins synthesized by both organisms. These weapons were gradually developed in what must have been a multimillion-year evolutionary game of ping-pong. The outcome of each battle results in the establishment of resistance or pathogenesis. The plethora of resistance mechanisms exhibited by plants may be grouped into constitutive and inducible, and range from morphological to structural and chemical defences. Most of these mechanisms are defensive, exhibiting a passive role, but some are highly active against pathogens, using as major targets the fungal cell wall, the plasma membrane or intracellular targets. A considerable overlap exists between pathogenesis-related (PR) proteins and antifungal proteins. However, many of the now considered 17 families of PR proteins do not present any known role as antipathogen activity, whereas among the 13 classes of antifungal proteins, most are not PR proteins. Discovery of novel antifungal proteins and peptides continues at a rapid pace. In their long coevolution with plants, phytopathogens have evolved ways to avoid or circumvent the plant defence weaponry. These include protection of fungal structures from plant defence reactions, inhibition of elicitor-induced plant defence responses and suppression of plant defences. A detailed understanding of the molecular events that take place during a plant-pathogen interaction is an essential goal for disease control in the future.
Collapse
Affiliation(s)
- Ricardo B Ferreira
- Departamento de Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nogueira FCS, Gonçalves EF, Jereissati ES, Santos M, Costa JH, Oliveira-Neto OB, Soares AA, Domont GB, Campos FAP. Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). PLANT CELL REPORTS 2007; 26:1333-43. [PMID: 17333015 DOI: 10.1007/s00299-007-0327-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/05/2007] [Accepted: 02/10/2007] [Indexed: 05/14/2023]
Abstract
Using a combination of two-dimensional gel electrophoresis protein mapping and mass spectrometry analysis, we have established proteome reference maps of embryogenic cell suspensions of cowpea (Vigna unguiculata). The cell suspensions were generated from young primary leaves and contained basically pro-embryogenic masses, which enabled us to dissect their proteome composition while eliminating the complexity of too many cell types. Over 550 proteins could reproducibly be resolved over a pI range of 3-10. A total of 128 of the most abundant protein spots were excised, digested in-gel with trypsin and analyzed by tandem mass spectrometry. This enabled the identification of 67 protein spots. Two of the most abundant proteins were identified as a chitinase and as a ribonuclease belonging to the family of PR-4 and PR-10 proteins, respectively. The expression of the respective genes was confirmed by RT-PCR and the pattern of deposition of the PR-10 protein in cell suspensions as well as in developing cowpea seeds, roots, shoots and flowers were determined by Western blot experiments, using synthetic antibodies raised against a 14-amino acid synthetic peptide located close to the C-terminal region of the PR-10 protein.
Collapse
Affiliation(s)
- F C S Nogueira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Domoki M, Györgyey J, Bíró J, Pasternak TP, Zvara A, Bottka S, Puskás LG, Dudits D, Fehér A. Identification and characterization of genes associated with the induction of embryogenic competence in leaf-protoplast-derived alfalfa cells. ACTA ACUST UNITED AC 2006; 1759:543-51. [PMID: 17182124 DOI: 10.1016/j.bbaexp.2006.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 11/15/2022]
Abstract
Alfalfa leaf protoplast-derived cells can develop into somatic embryos depending on the concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) in the initial culture medium. In order to reveal gene expression changes during the establishment of embryogenic competence, we compared the cell types developed in the presence of 1 and 10 microM 2,4-D, respectively, at the time of their first cell divisions (fourth day of culture) using a PCR-based cDNA subtraction approach. Although the subtraction efficiency was relatively low, applying an additional differential screening step allowed the identification of 38 10 microM 2,4-D up-regulated transcripts. The corresponding genes/proteins were annotated and representatives of various functional groups were selected for more detailed gene expression analysis. Real-time quantitative PCR (RT-QPCR) analysis was used to determine relative expression of the selected genes in 2,4-D-treated leaves as well as during the whole process of somatic embryogenesis. Gene expression patterns confirmed 2,4-D inducibility for all but one of the 11 investigated genes as well as for the positive control leafy cotyledon1 (MsLEC1) gene. The characterized genes exhibited differential expression patterns during the early induction phase and the late embryo differentiation phase of somatic embryogenesis. Genes coding for a GST-transferase, a PR10 pathogenesis-related protein, a cell division-related ribosomal (S3a) protein, an ARF-type small GTPase and the nucleosome assembly factor family SET protein exhibited higher relative expression not only during the induction of somatic embryogenesis but at the time of somatic embryo differentiation as well. This may indicate that the expression of these genes is associated with developmental transitions (differentiation as well as de-differentiation) during the process of somatic embryogenesis.
Collapse
Affiliation(s)
- M Domoki
- Laboratory of Functional Cell Biology, Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6701, P. O. Box 521, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
SUMMARY Disease resistance takes place within the context of the host developmental programme. The cellular and molecular basis of the developmental control of resistance is virtually unknown. It is clear from mutant studies that developmental processes are impacted when defence factors are altered and it is equally clear that alteration of developmental factors impacts defence functions. A review of current knowledge regarding the interplay of resistance and development is presented. Stage-specific limitations on defence represent an important target for crop improvement.
Collapse
Affiliation(s)
- Maureen C Whalen
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
30
|
Vargas TE, De García E, Oropeza M. Somatic embryogenesis in Solanum tuberosum from cell suspension cultures: histological analysis and extracellular protein patterns. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:449-56. [PMID: 15900887 DOI: 10.1016/j.jplph.2004.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An embryogenic cell suspension, continuously grown in Murashige and Skoog (MS) medium with 0.5 mg/L of 2,4-dichlorophenoxyacetic acid, was established from friable callus of Solanum tuberosum internode sections. The cell suspension was predominantly composed of cell masses and free embryogenic cells. When transferred to an auxin-free medium with zeatin, somatic embryos (SEs) developed and converted to complete plants when cultured on solid MS medium without growth regulators. The system produced approximately 600 SEs per 50 mL of medium. In this investigation, accumulation of extracellular proteins (EPs) of different molecular weights were found associated to different phases of the embryogenic process. At the initiation of the cell suspension, cell clusters and free cells present in the culture (phase "A") secreted a 78kDa EP, unique to this phase. In phase "B", which is related to embryonic cell determination process, proteins (7-14kDa) were secreted mainly by embryogenic cells. In phase "C", SEs in different developmental stages secreted protein of 32 kDa, which appeared as a particular feature of the phase. EPs of phase "D", secreted by torpedo and mature embryos, had molecular weights between 20 and 50 kDa. Further studies will be necessary to identify these proteins and link them to previously identified somatic embryogenesis-related proteins. Histological analysis of the potato embryogenesis in liquid media showed unicellular origin of the SE.
Collapse
Affiliation(s)
- Teresa E Vargas
- Laboratorio de Biotecnología Vegetal, Centro de Botànica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114 Los Chaguaramos, Caracas, Venezuela
| | | | | |
Collapse
|
31
|
Borderies G, le Béchec M, Rossignol M, Lafitte C, Le Deunff E, Beckert M, Dumas C, Elisabeth MR. Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 2005; 83:205-12. [PMID: 15346810 DOI: 10.1078/0171-9335-00378] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study molecules secreted from cultured plant cells that promote development, maize microspores were transferred into culture and the conditioned media were collected over time and analysed. Electrophoresis indicated that both non-glycosylated and glycosylated proteins including arabinogalactan proteins (AGPs) appeared in the medium and their concentration increased during the time of culture. The development of embryos was correlated with the presence of specific extracellular proteins, using an experimental system based on a tunicamycin inhibition test. In addition, a precise protein analysis was conducted using MALDI-TOF and ESI-MS-MS techniques. These approaches have allowed the identification of 5 other types of proteins: a cell wall invertase, two thaumatin isoforms, one 1-3 beta-glucanase and two chitinase isoforms. Altogether these experiments and results open ways for research aimed at understanding which molecules stimulate embryo formation. Moreover, AGPs may be used to stimulate the development of microspores (pollen embryogenesis) prepared from non-responsive genotypes.
Collapse
Affiliation(s)
- Gisèle Borderies
- Centre de Biologie et de Physiologie végétales, UMR CNRS UPS 5546, Pôle de Biotechnologies Végétales, Université P. Sabatier, 24, Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
New developments have forced a re-evaluation of our understanding of the structure and function of hemoglobins. Leghemoglobins regulate oxygen affinity through a mechanism different from that of myoglobin using a novel combination of heme pocket amino acids that lower the oxygen affinity. The hexacoordinate hemoglobins are characterized by intramolecular coordination of the ligand binding site at the heme iron, and were first identified in plants as the 'non-symbiotic plant hemoglobins'. They are now known to be present in animals and bacteria. Many of these proteins are upregulated in both plants and animals during hypoxia or similar stresses. Therefore, there might be a common physiological function for hexacoordinate hemoglobins in plants and animals.
Collapse
Affiliation(s)
- Suman Kundu
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
33
|
Abstract
We have identified a new human hemoglobin that we call histoglobin because it is expressed in a wide array of tissues. Histoglobin shares less than 30% identity with the other human hemoglobins, and the gene contains an intron in an unprecedented location. Spectroscopic and kinetic experiments with recombinant human histoglobin indicate that it is a hexacoordinate hemoglobin with significantly different ligand binding characteristics than the other human hexacoordinate hemoglobin, neuroglobin. In contrast to the very high oxygen affinities displayed by most hexacoordinate hemoglobins, the biophysical characteristics of histoglobin indicate that it could facilitate oxygen transport. The discovery of histoglobin demonstrates that humans, like plants, differentially express multiple hexacoordinate hemoglobins.
Collapse
Affiliation(s)
- James T Trent
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
34
|
Passarinho PA, de Vries SC. ArabidopsisChitinases: a Genomic Survey. THE ARABIDOPSIS BOOK 2002; 1:e0023. [PMID: 22303199 PMCID: PMC3243303 DOI: 10.1199/tab.0023] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant chitinases (EC 3.2.1.14) belong to relatively large gene families subdivided in classes that suggest class-specific functions. They are commonly induced upon the attack of pathogens and by various sources of stress, which led to associating them with plant defense in general. However, it is becoming apparent that most of them display several functions during the plant life cycle, including taking part in developmental processes such as pollination and embryo development. The number of chitinases combined with their multiple functions has been an obstacle to a better understanding of their role in plants. It is therefore important to identify and inventory all chitinase genes of a plant species to be able to dissect their function and understand the relations between the different classes. Complete sequencing of the Arabidopsis genome has made this task feasible and we present here a survey of all putative chitinase-encoding genes accompanied by a detailed analysis of their sequence. Based on their characteristics and on studies on other plant chitinases, we propose an overview of their possible functions as well as modified annotations for some of them.
Collapse
Affiliation(s)
- Paul A. Passarinho
- Wageningen University, Departement of Plant Sciences, Laboratory of Molecular Biology, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
- Present address: Plant Research International, Business Unit “Plant Development and Reproduction”, Cluster “Seed and Reproduction Strategies”, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Sacco C. de Vries
- Wageningen University, Departement of Plant Sciences, Laboratory of Molecular Biology, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
- Author for correspondence.
| |
Collapse
|
35
|
Healy JM, Menges M, Doonan JH, Murray JA. The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled. J Biol Chem 2001; 276:7041-7. [PMID: 11096103 DOI: 10.1074/jbc.m009074200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-type cyclins (CycD) play key roles in linking the Arabidopsis cell cycle to extracellular and developmental signals, but little is known of their regulation at the post-transcriptional level or of their cyclin-dependent kinase (CDK) partners. Using new antisera to CycD2 and CycD3, we demonstrate that the CDK partner of these Arabidopsis cyclins is the PSTAIRE-containing CDK Cdc2a. Previous analysis has shown that transcript levels of CycD2 and CycD3 are regulated in response to sucrose levels and that both their mRNA levels and kinase activity are induced with different kinetics during the G(1) phase of cells reentering the division cycle from quiescence. Here we analyze the protein levels and kinase activity of CycD2 and CycD3. We show that CycD3 protein and kinase activity parallel the abundance of its mRNA and that CycD3 protein is rapidly lost from cells in stationary phase or following sucrose removal. In contrast to both CycD3 and the regulation of its own mRNA levels, CycD2 protein is present at constant levels. CycD2 kinase activity is regulated by sequestration of CycD2 protein in a form inaccessible to immunoprecipitation and probably not complexed to Cdc2a.
Collapse
Affiliation(s)
- J M Healy
- Institute of Biotechnology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|