1
|
Wang Y, Zeng J, Su P, Zhao H, Li L, Xie X, Zhang Q, Wu Y, Wang R, Zhang Y, Yu B, Chen M, Wang Y, Yang G, He G, Chang J, Li Y. An established protocol for generating transgenic wheat for wheat functional genomics via particle bombardment. FRONTIERS IN PLANT SCIENCE 2022; 13:979540. [PMID: 36570946 PMCID: PMC9772560 DOI: 10.3389/fpls.2022.979540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Wheat is one of the most important food crops in the world and is considered one of the top targets in crop biotechnology. With the high-quality reference genomes of wheat and its relative species and the recent burst of genomic resources in Triticeae, demands to perform gene functional studies in wheat and genetic improvement have been rapidly increasing, requiring that production of transgenic wheat should become a routine technique. While established for more than 20 years, the particle bombardment-mediated wheat transformation has not become routine yet, with only a handful of labs being proficient in this technique. This could be due to, at least partly, the low transformation efficiency and the technical difficulties. Here, we describe the current version of this method through adaptation and optimization. We report the detailed protocol of producing transgenic wheat by the particle gun, including several critical steps, from the selection of appropriate explants (i.e., immature scutella), the preparation of DNA-coated gold particles, and several established strategies of tissue culture. More importantly, with over 20 years of experience in wheat transformation in our lab, we share the many technical details and recommendations and emphasize that the particle bombardment-mediated approach has fewer limitations in genotype dependency and vector construction when compared with the Agrobacterium-mediated methods. The particle bombardment-mediated method has been successful for over 30 wheat genotypes, from the tetraploid durum wheat to the hexaploid common wheat, from modern elite varieties to landraces. In conclusion, the particle bombardment-mediated wheat transformation has demonstrated its potential and wide applications, and the full set of protocol, experience, and successful reports in many wheat genotypes described here will further its impacts, making it a routine and robust technique in crop research labs worldwide.
Collapse
Affiliation(s)
- Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Peipei Su
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoxue Xie
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Ya’nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Boju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
2
|
Abe F, Nakamura S, Mori M, Ashikawa I. Low-temperature pretreatment of explants and high maltose concentration during callus culture improves particle-bombardment-mediated stable transgene expression in common wheat. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:177-184. [PMID: 32821225 PMCID: PMC7434674 DOI: 10.5511/plantbiotechnology.19.1216d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/16/2019] [Indexed: 06/11/2023]
Abstract
Biolistic transformation systems are widely used to introduce foreign genes into common wheat (Triticum aestivum L.); however, these techniques often generate high transgene copy numbers and complex transgene integration patterns that hinder the stable expression of the transgenes. To improve the efficiency of stable transgene expression, we examined the effect of low-temperature pretreatment of wheat flower spikes and of high maltose concentration (HMC) in the medium during the subsequent callus culture. Tillers of the spring wheat cultivar Bobwhite were stored at 5°C without water for one week before the isolation of their immature scutellar tissues, and the resulting particle-bombarded explants were cultured on 15% maltose for a month. Together, these treatments significantly increased the number of recovered transgenic lines expressing the reporter gene. The low-temperature pretreatment eliminated the negative effects of HMC, and HMC improved the efficiency of stable transgene expression. Southern blot analysis revealed that transgenic lines recovered after HMC treatment integrated a lower copy number of transgenes than those cultured at normal (4%) maltose concentration. These findings suggest that the HMC-mediated reduction of the transgene copy number results from the suppression of plasmid DNA rearrangement before or during transgene integration into the wheat genome.
Collapse
Affiliation(s)
- Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai,Tsukuba, Ibaraki 305-8518, Japan
| | - Shingo Nakamura
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai,Tsukuba, Ibaraki 305-8518, Japan
| | - Masahiko Mori
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai,Tsukuba, Ibaraki 305-8518, Japan
| | - Ikuo Ashikawa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai,Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
3
|
Abstract
Particle bombardment or biolistic transformation is an efficient, versatile method. This method does not need any vector for the gene transfer and is not dependent on the cell type, species, and genotype. The success of any transformation technique depends on the starting experimental materials or the explants. Here, we describe the factors that have influenced the choice of explants in biolistic transformation. Many general factors in the selection of explants in the development of transgenic plants are presented here. Therefore, this chapter provides extensive guidelines regarding the choice of explants for researchers working on various plant genetic transformation techniques.
Collapse
|
4
|
González FG, Capella M, Ribichich KF, Curín F, Giacomelli JI, Ayala F, Watson G, Otegui ME, Chan RL. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1669-1681. [PMID: 30726944 PMCID: PMC6411379 DOI: 10.1093/jxb/erz037] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/18/2019] [Indexed: 05/07/2023]
Abstract
HaHB4 is a sunflower transcription factor belonging to the homeodomain-leucine zipper I family whose ectopic expression in Arabidopsis triggers drought tolerance. The use of PCR to clone the HaHB4 coding sequence for wheat transformation caused unprogrammed mutations producing subtle differences in its activation ability in yeast. Transgenic wheat plants carrying a mutated version of HaHB4 were tested in 37 field experiments. A selected transgenic line yielded 6% more (P<0.001) and had 9.4% larger water use efficiency (P<0.02) than its control across the evaluated environments. Differences in grain yield between cultivars were explained by the 8% improvement in grain number per square meter (P<0.0001), and were more pronounced in stress (16% benefit) than in non-stress conditions (3% benefit), reaching a maximum of 97% in one of the driest environments. Increased grain number per square meter of transgenic plants was accompanied by positive trends in spikelet numbers per spike, tillers per plant, and fertile florets per plant. The gene transcripts associated with abiotic stress showed that HaHB4's action was not dependent on the response triggered either by RD19 or by DREB1a, traditional candidates related to water deficit responses. HaHB4 enabled wheat to show some of the benefits of a species highly adapted to water scarcity, especially in marginal regions characterized by frequent droughts.
Collapse
Affiliation(s)
- Fernanda Gabriela González
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), Pergamino, Buenos Aires, Argentina
- CITNOBA, CONICET-UNNOBA, Pergamino, Buenos Aires, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Facundo Curín
- CITNOBA, CONICET-UNNOBA, Pergamino, Buenos Aires, Argentina
| | - Jorge Ignacio Giacomelli
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | | | | | - María Elena Otegui
- CONICET-INTA-FAUBA, Estación Experimental Pergamino, Facultad de Agronomía Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral – CONICET, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| |
Collapse
|
5
|
|
6
|
Efficient regeneration potential is closely related to auxin exposure time and catalase metabolism during the somatic embryogenesis of immature embryos in Triticum aestivum L. Mol Biotechnol 2013; 54:451-60. [PMID: 22815184 DOI: 10.1007/s12033-012-9583-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Regeneration of cultured tissue is a prerequisite of Agrobacterium- and biolistic-mediated plant transformation. In this study, an efficient protocol for improving wheat (Triticum aestivum L.) immature embryo regeneration was developed. Based on the statistical analysis of embryogenic callus induction efficiency, green spot differentiation efficiency, and plant regeneration efficiency from five wheat accessions, improved culture conditions were found to be more effective for embryogenic callus production than the traditional conditions. Using semi-quantitative reverse transcription polymerase chain reaction, a candidate gene, designated as TaCAT1, which encodes a catalase was identified to have a significant correlation with high-regeneration trait of wheat immature embryos. Three amino acid substitutions were found in TaCAT1 protein between high- and low-regeneration wheat accessions. Hydrogen peroxide content in the cultured calli increased from day 5 to 15, and then decreased sharply on day 20, followed by a second peak on day 25 during regeneration stage. Furthermore, a 3,500-bp 5' flanking region upstream of the first codon ATG of TaCAT1 was isolated using inverse polymerase chain reaction. In silico, analysis revealed that the TaCAT1 promoter contained two regulatory motifs associated with responses to auxin.
Collapse
|
7
|
Liu Y. Fetal genes in mother's blood: a novel mechanism for telegony? Gene 2013; 524:414-6. [PMID: 23618818 DOI: 10.1016/j.gene.2013.03.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 11/17/2022]
Abstract
Telegony is a discredited genetic phenomenon that a previous male may influence the characteristics of offspring subsequently borne by the same female to another male. Although its reality was acknowledged by such authorities as Charles Darwin and Herbert Spencer, it has been met with skepticism because of a lack of understanding of the theoretical basis for telegony. With the discovery of fetal genes in mother's blood, the penetration of somatic cells by sperm, and the ability of RNA to program genome rearrangement, mechanisms might exist for telegony.
Collapse
|
8
|
Miroshnichenko DN, Poroshin GN, Dolgov SV. Genetic transformation of wheat using mature seed tissues. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811080096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
TAO LL, YIN GX, DU LP, SHI ZY, SHE MY, XU HJ, YE XG. Improvement of Plant Regeneration from Immature Embryos of Wheat Infected by Agrobacterium tumefaciens. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60010-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Shrawat AK, Good AG. Agrobacterium tumefaciens-mediated genetic transformation of cereals using immature embryos. Methods Mol Biol 2011; 710:355-72. [PMID: 21207280 DOI: 10.1007/978-1-61737-988-8_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A critical step in the development of a robust Agrobacterium tumefaciens-mediated transformation -system for cereal crop plants is the establishment of optimal conditions for efficient T-DNA delivery into target tissue, from which plants can be regenerated. Although, Agrobacterium-mediated transformation of cereals is an important method that has been widely used by many laboratories around the world, routine protocols have been established only in specific cultivars within a species and with specific tissues of high regeneration potential. Cocultivation of highly embryogenic callus tissue or healthy immature embryos with A. tumefaciens is considered one of the critical factors in successful genetic transformation of crop plants. Immature embryos collected only from vigorously growing healthy and green plants grown in the field or in the well-conditioned greenhouse are the ideal target for genetic transformation of recalcitrant crop species. Here, we describe an Agrobacterium-mediated transformation method that uses immature embryos as the starting material for inoculation with Agrobacterium. The aim of this chapter is to provide the key steps/components involved in Agrobacterium-mediated transformation of cereal crops. However, these steps or components often vary between protocols and from laboratory to laboratory, and can be optimized or modified based on the requirement of a specific cultivar or species.
Collapse
Affiliation(s)
- Ashok K Shrawat
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
11
|
Abstract
Food production and security will be a major issue for supplying an increasing world population. The problem will almost certainly be exacerbated by climate change. There is a projected need to double food production by 2050. In recent times, the trend has been for incremental modest yield increases for most crops. There is an urgent need to develop integrated and sustainable approaches that will significantly increase both production per unit land area and the resource use efficiency of crops. This review considers some key processes involved in plant growth and development with some examples of ways in which molecular technology, plant breeding and genetics may increase the yield and resource use efficiency of wheat. The successful application of biotechnology to breeding is essential to provide the major increases in production required. However, each crop and each specific agricultural situation presents specific requirements and targets for optimisation. Some increases in production will come about as new varieties are developed which are able to produce satisfactory crops on marginal land presently not considered appropriate for arable crops. Other new varieties will be developed to increase both yield and resource use efficiency on the best land.
Collapse
|
12
|
He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ. Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1567-81. [PMID: 20202997 PMCID: PMC2852660 DOI: 10.1093/jxb/erq035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 05/03/2023]
Abstract
An efficient Agrobacterium-mediated durum wheat transformation system has been developed for the production of 121 independent transgenic lines. This improved system used Agrobacterium strain AGL1 containing the superbinary pGreen/pSoup vector system and durum wheat cv Stewart as the recipient plant. Acetosyringone at 400 microM was added to both the inoculation and cultivation medium, and picloram at 10 mg l(-1) and 2 mg l(-1) was used in the cultivation and induction medium, respectively. Compared with 200 microM in the inoculation and cultivation media, the increased acetosyringone concentration led to significantly higher GUS (beta-glucuronidase) transient expression and T-DNA delivery efficiency. However, no evident effects of acetosyringone concentration on regeneration frequency were observed. The higher acetosyringone concentration led to an improvement in average final transformation efficiency from 4.7% to 6.3%. Furthermore, the concentration of picloram in the co-cultivation medium had significant effects on callus induction and regeneration. Compared with 2 mg l(-1) picloram in the co-cultivation medium, increasing the concentration to 10 mg l(-1) picloram resulted in improved final transformation frequency from 2.8% to 6.3%, with the highest frequency of 12.3% reached in one particular experiment, although statistical analysis showed that this difference in final transformation efficiency had a low level of significance. Stable integration of foreign genes, their expression, and inheritance were confirmed by Southern blot analyses, GUS assay, and genetic analysis. Analysis of T(1) progeny showed that, of the 31 transgenic lines randomly selected, nearly one-third had a segregation ratio of 3:1, while the remainder had ratios typical of two or three independently segregating loci.
Collapse
Affiliation(s)
- Y. He
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - H. D. Jones
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - S. Chen
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - X. M. Chen
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - D. W. Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - K. X. Li
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - D. S. Wang
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - L. Q. Xia
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
13
|
Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ. Raising yield potential in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1899-918. [PMID: 19363203 DOI: 10.1093/jxb/erp016] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advances in crop research have the potential to accelerate genetic gains in wheat, especially if co-ordinated with a breeding perspective. For example, improving photosynthesis by exploiting natural variation in Rubisco's catalytic rate or adopting C(4) metabolism could raise the baseline for yield potential by 50% or more. However, spike fertility must also be improved to permit full utilization of photosynthetic capacity throughout the crop life cycle and this has several components. While larger radiation use efficiency will increase the total assimilates available for spike growth, thereby increasing the potential for grain number, an optimized phenological pattern will permit the maximum partitioning of the available assimilates to the spikes. Evidence for underutilized photosynthetic capacity during grain filling in elite material suggests unnecessary floret abortion. Therefore, a better understanding of its physiological and genetic basis, including possible signalling in response to photoperiod or growth-limiting resources, may permit floret abortion to be minimized for a more optimal source:sink balance. However, trade-offs in terms of the partitioning of assimilates to competing sinks during spike growth, to improve root anchorage and stem strength, may be necessary to prevent yield losses as a result of lodging. Breeding technologies that can be used to complement conventional approaches include wide crossing with members of the Triticeae tribe to broaden the wheat genepool, and physiological and molecular breeding strategically to combine complementary traits and to identify elite progeny more efficiently.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Centre (CIMMYT) Int. Apdo. Postal 6-641, 06600 México, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).
Collapse
Affiliation(s)
- Caroline A Sparks
- Centre for Crop Genetic Improvement, Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
15
|
Abstract
The low frequency and randomness of transgene integration into host cells, combined with the significant challenges of recovering whole plants from those rare events, makes the use of selectable marker genes routine in plant transformation experiments. For research applications that are unlikely to be grown in the field, strong herbicide- or antibiotic resistance is commonly used. Here we use genes conferring resistance to glufosinate herbicides as an example of a selectable marker in wheat transformation by either Agrobacterium or biolistics.
Collapse
Affiliation(s)
- Huw D Jones
- Department of Plant Sciences, Rothamsted Research, Centre for Crop Genetic Improvement, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
16
|
Abstract
This chapter provides an overview of the main steps in the process to produce stably transformed plants. Most transformation methods use tissue culture to recover adult plants from regenerable explants and can be divided into three stages: (1) choice and preparation of explant tissue, (2) deoxyribonucleic acid (DNA) delivery, (3) callus induction/regeneration and selection. Each of these stages is introduced from a general perspective and a detailed protocol for our exemplar species, wheat, is given. We focus here on DNA delivery by particle bombardment as Agrobacterium-mediated transformation methods for wheat are reported elsewhere.
Collapse
Affiliation(s)
- Huw D Jones
- CPI Division, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
17
|
Rakszegi M, Pastori G, Jones H, Békés F, Butow B, Láng L, Bedo˝ Z, Shewry P. Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Pastori GM, Huttly A, West J, Sparks C, Pieters A, Luna CM, Jones HD, Foyer CH. The maize Activator/Dissociation system is functional in hexaploid wheat through successive generations. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:835-843. [PMID: 32689411 DOI: 10.1071/fp07112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 07/03/2007] [Indexed: 06/11/2023]
Abstract
The aim of the present study was to provide useful background information and evidence of the functionality of the maize Activator/Dissociation (Ac/Ds) system in hexaploid wheat. Two transgenic parental wheat lines, one harbouring the immobilised Ac element (iAc) and the other the Ds element (pUbi[Ds-uidA]bar), were crossed. Transient GUS assays confirmed that the iAc transposase is active in hexaploid wheat. Selected F1 and F2 lines were analysed by PCR using primers specific to Ac, uidA and bar genes. The primer pair Ubi/bar-tag was used to detect excision of the Ds-uidA sequence, which occurred at a frequency of 39% in the F1 generation. Lines free of Ac and showing evidence of Ds excision were subject to Southern analysis, which indicated that at least one transposition event might have occurred in these lines. Although more evidence is required to unequivocally support the reintegration of the Ds element in the wheat genome, the evidence presented here nevertheless demonstrates the effectiveness and potential value of using this system to tag genes in wheat.
Collapse
Affiliation(s)
- Gabriela M Pastori
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Alison Huttly
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Jevon West
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Caroline Sparks
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Alejandro Pieters
- IVI, Centro de Ecología, Altos de Pipe, Carretera Panamericana Km 11, Apartado 21827, Caracas 1020-A, Venezuela
| | - Celina M Luna
- Instituto de Fitopatología y FisiologíaVegetal (IFFIVE)-INTA, Camino 60 cuadras Km 5, 5009 Cordoba, Argentina
| | - Huw D Jones
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
19
|
Primavesi LF, Wu H, Mudd EA, Day A, Jones HD. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins. Transgenic Res 2007; 17:529-43. [PMID: 17710559 DOI: 10.1007/s11248-007-9126-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications.
Collapse
|
20
|
TANG ZX, REN ZL, WU F, FU SL, WANG XX, ZHANG HQ. The Selection of Transgenic Recipients from New Elite Wheat Cultivars and Study on Its Plant Regeneration System. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1671-2927(06)60070-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Expression of an extended HMW subunit in transgenic wheat and the effect on dough mixing properties. J Cereal Sci 2005. [DOI: 10.1016/j.jcs.2005.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Badr S, . AB, . BA, . AB. Construction of a Dehydrin Gene Cassette for Drought Tolerance from Wild Origin for Wheat Transformation. ACTA ACUST UNITED AC 2005. [DOI: 10.3923/ijb.2005.175.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Chrimes D, Rogers HJ, Francis D, Jones HD, Ainsworth C. Expression of fission yeast cdc25 driven by the wheat ADP-glucose pyrophosphorylase large subunit promoter reduces pollen viability and prevents transmission of the transgene in wheat. THE NEW PHYTOLOGIST 2005; 166:185-192. [PMID: 15760362 DOI: 10.1111/j.1469-8137.2004.01299.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell number was to be measured in wheat (Triticum aestivum) endosperm expressing Spcdc25 (a fission yeast cell-cycle regulator) controlled by a supposedly endosperm-specific promoter, AGP2 (from the large subunit of ADP glucose pyrophosphorylase). Wheat was transformed by biolistics either with AGP2::GUS or AGP2::Spcdc25. PCR and RT-PCR checked integration and expression of the transgene, respectively. In cv. Chinese Spring, AGP2::GUS was unexpectedly expressed in carpels and pollen, as well as endosperm. In cv. Cadenza, three AGP2::Spcdc25 plants, AGP2::Spcdc25.1, .2 and .3, were generated. Spcdc25 expression was detected in mature leaves of AGP2::Spcdc25.1/.3 which exhibited abnormal spikes, 50% pollen viability and low seed set per plant; both were small compared with the nonexpressing and normal AGP2::Spcdc25.2. Spcdc25 was not transmitted to the T(1) in AGP2::Spcdc25.1 or .3, which developed normally. Spcdc25 was PCR-positive in AGP2::Spcdc25.2, using primers for a central portion, but not with primers for the 5' end, of the ORF, indicating a rearrangement; Spcdc25 was not expressed in either T(0) or T(1). The AGP2 promoter is not tissue-specific and Spcdc25 expression disrupted reproduction.
Collapse
Affiliation(s)
- D Chrimes
- School of Biosciences, Cardiff University, PO Box 915, Cardiff CF10 3TL, UK
| | | | | | | | | |
Collapse
|
24
|
Jones HD. Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 2005. [DOI: 10.1016/j.jcs.2004.08.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Terzi V, Pastori G, Shewry PR, Di Fonzo N, Michele Stanca A, Faccioli P. Real-time PCR-assisted selection of wheat plants transformed with HMW glutenin subunit genes. J Cereal Sci 2005. [DOI: 10.1016/j.jcs.2004.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Affiliation(s)
- Peter R Shewry
- Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, United Kingdom
| | | | | |
Collapse
|
27
|
Wu H, Sparks C, Amoah B, Jones HD. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. PLANT CELL REPORTS 2003; 21:659-68. [PMID: 12789416 DOI: 10.1007/s00299-002-0564-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2002] [Revised: 11/14/2002] [Accepted: 11/15/2002] [Indexed: 05/18/2023]
Abstract
The development of a robust Agrobacterium-mediated transformation protocol for a recalcitrant species like bread wheat requires the identification and optimisation of the factors affecting T-DNA delivery and plant regeneration. We have used immature embryos from range of wheat varieties and the Agrobacterium strain AGL1 harbouring the pGreen-based plasmid pAL156, which contains a T-DNA incorporating the bar gene and a modified uidA (beta-glucuronidase) gene, to investigate and optimise major T-DNA delivery and tissue culture variables. Factors that produced significant differences in T-DNA delivery and regeneration included embryo size, duration of pre-culture, inoculation and co-cultivation, and the presence of acetosyringone and Silwet-L77 in the media. We fully describe a protocol that allowed efficient T-DNA delivery and gave rise to 44 morphologically normal, and fully fertile, stable transgenic plants in two wheat varieties. The transformation frequency ranged from 0.3% to 3.3%. Marker-gene expression and molecular analysis demonstrated that transgenes were integrated into the wheat genome and subsequently transmitted into progeny at Mendelian ratios.
Collapse
Affiliation(s)
- H Wu
- CPI Division, AL5 2JQ, Rothamsted, Harpenden, UK
| | | | | | | |
Collapse
|
28
|
Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri PA. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:865-874. [PMID: 11413224 DOI: 10.1093/jexbot/52.357.865] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ten current European wheat varieties were transformed at efficiencies ranging from 1-17% (mean 4% across varieties) following modifications in particle bombardment and tissue culture procedures. All plants surviving phosphinothricin selection were screened for uidA and bar gene activity, and for the presence of marker gene sequences by PCR analysis. A minimum of 35% plant 'escape' frequency was achieved with selection on 4 mg l(-1) gluphosinate ammonium after shoot initiation. Mean co-transformation frequency with various genes-of-interest was 66%. The estimated number of insertions of the uidA gene in 25 lines were; 1-2 in 32%, 3-5 in 52%, and 6-8 in 16% of lines. In T(1) progenies, marker genes segregated in a Mendelian fashion in 50% of 39 lines analysed, as determined by transgene activity assays. Based on PCR analysis, it appeared that in some lines the occurrence of distorted segregation was due to poor transmission of the transgenes.
Collapse
Affiliation(s)
- S Rasco-Gaunt
- Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | | | | | |
Collapse
|