1
|
Romanova DY, Moroz LL. Brief History of Placozoa. Methods Mol Biol 2024; 2757:103-122. [PMID: 38668963 DOI: 10.1007/978-1-0716-3642-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Placozoans are morphologically the simplest free-living animals. They represent a unique window of opportunities to understand both the origin of the animal organization and the rules of life for the system and synthetic biology of the future. However, despite more than 100 years of their investigations, we know little about their organization, natural habitats, and life strategies. Here, we introduce this unique animal phylum and highlight some directions vital to broadening the frontiers of the biomedical sciences. In particular, understanding the genomic bases of placozoan biodiversity, cell identity, connectivity, reproduction, and cellular bases of behavior are critical hot spots for future studies.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russian Federation.
| | - Leonid L Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Biosciences University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
2
|
Dziedzic E, Sidlauskas B, Cronn R, Anthony J, Cornwell T, Friesen TA, Konstantinidis P, Penaluna BE, Stein S, Levi T. Creating, curating and evaluating a mitogenomic reference database to improve regional species identification using environmental DNA. Mol Ecol Resour 2023; 23:1880-1904. [PMID: 37602732 DOI: 10.1111/1755-0998.13855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Species detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information-especially sequence information that includes intraspecific variation-creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa. We created the Oregon Biodiversity Genome Project to create a database of complete, nearly error-free mitogenomic sequences for all of Oregon's fishes. We have successfully assembled the complete mitogenomes of 313 specimens of freshwater, anadromous and estuarine fishes representing 24 families, 55 genera and 129 species and lineages. Comparative analyses of these sequences illustrate that many regions of the mitogenome are taxonomically informative, that the short (~150 bp) mitochondrial 'barcode' regions typically used for eDNA assays do not consistently diagnose for species and that complete single or multiple genes of the mitogenome are preferable for identifying Oregon's fishes. This project provides a blueprint for other researchers to follow as they build regional databases, illustrates the taxonomic value and limits of complete mitogenomic sequences and offers clues as to how current eDNA assays and environmental genomics methods of the future can best leverage this information.
Collapse
Affiliation(s)
- Emily Dziedzic
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Brian Sidlauskas
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Richard Cronn
- Pacific Northwest Research Station, US Department of Agriculture Forest Service, Corvallis, Oregon, USA
| | - James Anthony
- Oregon Department of Fish and Wildlife, Corvallis Research Laboratory, Corvallis, Oregon, USA
| | - Trevan Cornwell
- Oregon Department of Fish and Wildlife, Corvallis Research Laboratory, Corvallis, Oregon, USA
| | - Thomas A Friesen
- Oregon Department of Fish and Wildlife, Corvallis Research Laboratory, Corvallis, Oregon, USA
| | - Peter Konstantinidis
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Brooke E Penaluna
- Pacific Northwest Research Station, US Department of Agriculture Forest Service, Corvallis, Oregon, USA
| | - Staci Stein
- Oregon Department of Fish and Wildlife, Corvallis Research Laboratory, Corvallis, Oregon, USA
| | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Fyon F, Berbel-Filho WM, Schlupp I, Wild G, Úbeda F. Why do hybrids turn down sex? Evolution 2023; 77:2186-2199. [PMID: 37459230 DOI: 10.1093/evolut/qpad129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 10/05/2023]
Abstract
Asexual reproduction is ancestral in prokaryotes; the switch to sexuality in eukaryotes is one of the major transitions in the history of life. The study of the maintenance of sex in eukaryotes has raised considerable interest for decades and is still one of evolutionary biology's most prominent question. The observation that many asexual species are of hybrid origin has led some to propose that asexuality in hybrids results from sexual processes being disturbed because of incompatibilities between the two parental species' genomes. However, in some cases, failure to produce asexual F1s in the lab may indicate that this mechanism is not the only road to asexuality in hybrid species. Here, we present a mathematical model and propose an alternative, adaptive route for the evolution of asexuality from previously sexual hybrids. Under some reproductive alterations, we show that asexuality can evolve to rescue hybrids' reproduction. Importantly, we highlight that when incompatibilities only affect the fusion of sperm and egg's genomes, the two traits that characterize asexuality, namely unreduced meiosis and the initiation of embryogenesis without the incorporation of the sperm's pronucleus, can evolve separately, greatly facilitating the overall evolutionary route. Taken together, our results provide an alternative, potentially complementary explanation for the link between asexuality and hybridization.
Collapse
Affiliation(s)
- Frédéric Fyon
- Department of Biology, Royal Holloway University of London, Egham, United Kingdom
| | | | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Geoff Wild
- Department of Applied Mathematics, University of Western Ontario, London, ON, Canada
| | - Francisco Úbeda
- Department of Biology, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
4
|
Patnaik HH, Sang MK, Park JE, Song DK, Jeong JY, Hong CE, Kim YT, Shin HJ, Ziwei L, Hwang HJ, Park SY, Kang SW, Ko JH, Lee JS, Park HS, Jo YH, Han YS, Patnaik BB, Lee YS. A review of the endangered mollusks transcriptome under the threatened species initiative of Korea. Genes Genomics 2023; 45:969-987. [PMID: 37405596 DOI: 10.1007/s13258-023-01389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/09/2023] [Indexed: 07/06/2023]
Abstract
Transcriptome studies for conservation of endangered mollusks is a proactive approach towards managing threats and uncertainties facing these species in natural environments. The population of these species is declining due to habitat destruction, illicit wildlife trade, and global climate change. These activities risk the free movement of species across the wild landscape, loss of breeding grounds, and restrictions in displaying the physiological attributes so crucial for faunal welfare. Gastropods face the most negative ecological effects and have been enlisted under Korea's protective species consortium based on their population dynamics in the last few years. Moreover, with the genetic resources restricted for such species, conservation by informed planning is not possible. This review provides insights into the activities under the threatened species initiative of Korea with special reference to the transcriptome assemblies of endangered mollusks. The gastropods such as Ellobium chinense, Aegista chejuensis, Aegista quelpartensis, Incilaria fruhstorferi, Koreanohadra kurodana, Satsuma myomphala, and Clithon retropictus have been represented. Moreover, the transcriptome summary of bivalve Cristaria plicata and Caenogastropoda Charonia lampas sauliae is also discussed. Sequencing, de novo assembly, and annotation identified transcripts or homologs for the species and, based on an understanding of the biochemical and molecular pathways, were ascribed to predictive gene function. Mining for simple sequence repeats from the transcriptome have successfully assisted genetic polymorphism studies. A comparison of the transcriptome scheme of Korean endangered mollusks with the genomic resources of other endangered mollusks have been discussed with homologies and analogies for dictating future research.
Collapse
Affiliation(s)
- Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Min Kyu Sang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Hyeon Jun Shin
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Liu Ziwei
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Hee Ju Hwang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, South Korea
| | - Jung Ho Ko
- Police Science Institute, Korean National Police University, Asan, Chungnam, 31539, South Korea
| | - Jun Sang Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, South Korea
| | - Yong Hun Jo
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- P.G Department of Biosciences and Biotechnology, Fakir Mohan University, Odisha, 756089, Nuapadhi, Balasore, India
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan,, Chungnam, 31538, South Korea.
| |
Collapse
|
5
|
Çilingir FG, A'Bear L, Hansen D, Davis LR, Bunbury N, Ozgul A, Croll D, Grossen C. Chromosome-level genome assembly for the Aldabra giant tortoise enables insights into the genetic health of a threatened population. Gigascience 2022; 11:giac090. [PMID: 36251273 PMCID: PMC9553416 DOI: 10.1093/gigascience/giac090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The Aldabra giant tortoise (Aldabrachelys gigantea) is one of only two giant tortoise species left in the world. The species is endemic to Aldabra Atoll in Seychelles and is listed as Vulnerable on the International Union for Conservation of Nature Red List (v2.3) due to its limited distribution and threats posed by climate change. Genomic resources for A. gigantea are lacking, hampering conservation efforts for both wild and ex situpopulations. A high-quality genome would also open avenues to investigate the genetic basis of the species' exceptionally long life span. FINDINGS We produced the first chromosome-level de novo genome assembly of A. gigantea using PacBio High-Fidelity sequencing and high-throughput chromosome conformation capture. We produced a 2.37-Gbp assembly with a scaffold N50 of 148.6 Mbp and a resolution into 26 chromosomes. RNA sequencing-assisted gene model prediction identified 23,953 protein-coding genes and 1.1 Gbp of repetitive sequences. Synteny analyses among turtle genomes revealed high levels of chromosomal collinearity even among distantly related taxa. To assess the utility of the high-quality assembly for species conservation, we performed a low-coverage resequencing of 30 individuals from wild populations and two zoo individuals. Our genome-wide population structure analyses detected genetic population structure in the wild and identified the most likely origin of the zoo-housed individuals. We further identified putatively deleterious mutations to be monitored. CONCLUSIONS We establish a high-quality chromosome-level reference genome for A. gigantea and one of the most complete turtle genomes available. We show that low-coverage whole-genome resequencing, for which alignment to the reference genome is a necessity, is a powerful tool to assess the population structure of the wild population and reveal the geographic origins of ex situ individuals relevant for genetic diversity management and rewilding efforts.
Collapse
Affiliation(s)
- F Gözde Çilingir
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Luke A'Bear
- Seychelles Islands Foundation, Victoria, Republic of Seychelles
| | - Dennis Hansen
- Zoological Museum, University of Zurich, Zurich 8006, Switzerland
- Indian Ocean Tortoise Alliance, Ile Cerf, Victoria, Republic of Seychelles
| | | | - Nancy Bunbury
- Seychelles Islands Foundation, Victoria, Republic of Seychelles
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Daniel Croll
- Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
6
|
Molik DC. An Outsider's Perspective on Why We Climb Mountains and Why Projects Like the i5k Matter. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:2. [PMID: 35780386 PMCID: PMC9250708 DOI: 10.1093/jisesa/ieac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Initiatives like the i5k are creating evermore genome assemblies. These initiatives are resource heavy, and their justifications and economics deserve attention. Scientifically, these initiatives are important, paving the way for cross-species analysis, requiring the building of new computational analysis and tools, and creating other new resources. However, an open question remains of how we quantitively measure the impact of genomes, and by extension these initiatives. This forum article discusses one such method which is to look at the publications about a species over time, however, this method does not show any signal from a published genome, leaving an open question of how to measure impact.
Collapse
|
7
|
Santander MD, Maronna MM, Ryan JF, Andrade SCS. The state of Medusozoa genomics: current evidence and future challenges. Gigascience 2022; 11:6586816. [PMID: 35579552 PMCID: PMC9112765 DOI: 10.1093/gigascience/giac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Medusozoa is a widely distributed ancient lineage that harbors one-third of Cnidaria diversity divided into 4 classes. This clade is characterized by the succession of stages and modes of reproduction during metagenic lifecycles, and includes some of the most plastic body plans and life cycles among animals. The characterization of traditional genomic features, such as chromosome numbers and genome sizes, was rather overlooked in Medusozoa and many evolutionary questions still remain unanswered. Modern genomic DNA sequencing in this group started in 2010 with the publication of the Hydra vulgaris genome and has experienced an exponential increase in the past 3 years. Therefore, an update of the state of Medusozoa genomics is warranted. We reviewed different sources of evidence, including cytogenetic records and high-throughput sequencing projects. We focused on 4 main topics that would be relevant for the broad Cnidaria research community: (i) taxonomic coverage of genomic information; (ii) continuity, quality, and completeness of high-throughput sequencing datasets; (iii) overview of the Medusozoa specific research questions approached with genomics; and (iv) the accessibility of data and metadata. We highlight a lack of standardization in genomic projects and their reports, and reinforce a series of recommendations to enhance future collaborative research.
Collapse
Affiliation(s)
- Mylena D Santander
- Correspondence address. Mylena D. Santander, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade São Paulo, 277 Rua do Matão, Cidade Universitária, São Paulo 05508-090, Brazil. E-mail:
| | - Maximiliano M Maronna
- Correspondence address. Maximiliano M. Maronna, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 101 Rua do Matão Cidade Universitária, São Paulo 05508-090, Brazil. E-mail:
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, FL 32080, USA,Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade São Paulo, 277 Rua do Matão, Cidade Universitária, São Paulo 05508-090, Brazil
| |
Collapse
|
8
|
Bernot JP, Avdeyev P, Zamyatin A, Dreyer N, Alexeev N, Pérez-Losada M, Crandall KA. Chromosome-level genome assembly, annotation, and phylogenomics of the gooseneck barnacle Pollicipes pollicipes. Gigascience 2022; 11:giac021. [PMID: 35277961 PMCID: PMC8917513 DOI: 10.1093/gigascience/giac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/09/2022] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The barnacles are a group of >2,000 species that have fascinated biologists, including Darwin, for centuries. Their lifestyles are extremely diverse, from free-swimming larvae to sessile adults, and even root-like endoparasites. Barnacles also cause hundreds of millions of dollars of losses annually due to biofouling. However, genomic resources for crustaceans, and barnacles in particular, are lacking. RESULTS Using 62× Pacific Biosciences coverage, 189× Illumina whole-genome sequencing coverage, 203× HiC coverage, and 69× CHi-C coverage, we produced a chromosome-level genome assembly of the gooseneck barnacle Pollicipes pollicipes. The P. pollicipes genome is 770 Mb long and its assembly is one of the most contiguous and complete crustacean genomes available, with a scaffold N50 of 47 Mb and 90.5% of the BUSCO Arthropoda gene set. Using the genome annotation produced here along with transcriptomes of 13 other barnacle species, we completed phylogenomic analyses on a nearly 2 million amino acid alignment. Contrary to previous studies, our phylogenies suggest that the Pollicipedomorpha is monophyletic and sister to the Balanomorpha, which alters our understanding of barnacle larval evolution and suggests homoplasy in a number of naupliar characters. We also compared transcriptomes of P. pollicipes nauplius larvae and adults and found that nearly one-half of the genes in the genome are differentially expressed, highlighting the vastly different transcriptomes of larvae and adult gooseneck barnacles. Annotation of the genes with KEGG and GO terms reveals that these stages exhibit many differences including cuticle binding, chitin binding, microtubule motor activity, and membrane adhesion. CONCLUSION This study provides high-quality genomic resources for a key group of crustaceans. This is especially valuable given the roles P. pollicipes plays in European fisheries, as a sentinel species for coastal ecosystems, and as a model for studying barnacle adhesion as well as its key position in the barnacle tree of life. A combination of genomic, phylogenetic, and transcriptomic analyses here provides valuable insights into the evolution and development of barnacles.
Collapse
Affiliation(s)
- James P Bernot
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20012, USA
| | - Pavel Avdeyev
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Anton Zamyatin
- Computer Technologies Laboratory, ITMO University, Saint-Petersburg 197101, Russia
| | - Niklas Dreyer
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
- Biodiversity Program, International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Nikita Alexeev
- Computer Technologies Laboratory, ITMO University, Saint-Petersburg 197101, Russia
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20012, USA
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
9
|
Hogg CJ, Ottewell K, Latch P, Rossetto M, Biggs J, Gilbert A, Richmond S, Belov K. Threatened Species Initiative: Empowering conservation action using genomic resources. Proc Natl Acad Sci U S A 2022; 119:e2115643118. [PMID: 35042806 PMCID: PMC8795520 DOI: 10.1073/pnas.2115643118] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, 15,521 animal species are listed as threatened by the International Union for the Conservation of Nature, and of these less than 3% have genomic resources that can inform conservation management. To combat this, global genome initiatives are developing genomic resources, yet production of a reference genome alone does not conserve a species. The reference genome allows us to develop a suite of tools to understand both genome-wide and functional diversity within and between species. Conservation practitioners can use these tools to inform their decision-making. But, at present there is an implementation gap between the release of genome information and the use of genomic data in applied conservation by conservation practitioners. In May 2020, we launched the Threatened Species Initiative and brought a consortium of genome biologists, population biologists, bioinformaticians, population geneticists, and ecologists together with conservation agencies across Australia, including government, zoos, and nongovernment organizations. Our objective is to create a foundation of genomic data to advance our understanding of key Australian threatened species, and ultimately empower conservation practitioners to access and apply genomic data to their decision-making processes through a web-based portal. Currently, we are developing genomic resources for 61 threatened species from a range of taxa, across Australia, with more than 130 collaborators from government, academia, and conservation organizations. Developed in direct consultation with government threatened-species managers and other conservation practitioners, herein we present our framework for meeting their needs and our systematic approach to integrating genomics into threatened species recovery.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Kym Ottewell
- Conservation Science Centre, Department of Biodiversity, Conservation, & Attractions, Kensington, WA 6151, Australia
| | - Peter Latch
- Australian Government Department of Agriculture, Water & Environment, Canberra, ACT 2600, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - James Biggs
- Zoo and Aquarium Association Australasia, Mosman, NSW 2088, Australia
| | | | | | - Katherine Belov
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Langdon QK, Powell DL, Kim B, Banerjee SM, Payne C, Dodge TO, Moran B, Fascinetto-Zago P, Schumer M. Predictability and parallelism in the contemporary evolution of hybrid genomes. PLoS Genet 2022; 18:e1009914. [PMID: 35085234 PMCID: PMC8794199 DOI: 10.1371/journal.pgen.1009914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Shreya M. Banerjee
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Ben Moran
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Paola Fascinetto-Zago
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institutes, Chevy Chase, Maryland, United States of America
| |
Collapse
|
11
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
12
|
Micheel J, Safrastyan A, Wollny D. Advances in Non-Coding RNA Sequencing. Noncoding RNA 2021; 7:70. [PMID: 34842804 PMCID: PMC8628893 DOI: 10.3390/ncrna7040070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a set of abundant and functionally diverse RNA molecules. Since the discovery of the first ncRNA in the 1960s, ncRNAs have been shown to be involved in nearly all steps of the central dogma of molecular biology. In recent years, the pace of discovery of novel ncRNAs and their cellular roles has been greatly accelerated by high-throughput sequencing. Advances in sequencing technology, library preparation protocols as well as computational biology helped to greatly expand our knowledge of which ncRNAs exist throughout the kingdoms of life. Moreover, RNA sequencing revealed crucial roles of many ncRNAs in human health and disease. In this review, we discuss the most recent methodological advancements in the rapidly evolving field of high-throughput sequencing and how it has greatly expanded our understanding of ncRNA biology across a large number of different organisms.
Collapse
Affiliation(s)
| | | | - Damian Wollny
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany; (J.M.); (A.S.)
| |
Collapse
|
13
|
Caplins SA. Signals of Positive Selection in Sea Slug Transcriptomes. THE BIOLOGICAL BULLETIN 2021; 241:55-64. [PMID: 34436962 DOI: 10.1086/715841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractUnderstanding how species may respond to climate change is of paramount importance. Species that occupy highly heterogenous environments, such as intertidal zone estuarine habitats, provide an ideal test case for examining phenotypic and genomic adaptations to different environmental conditions, which may influence their response to rapidly shifting climatic conditions. The California coast is projected to experience changes in both temperature and salinity, which currently vary seasonally and latitudinally. Using comparative transcriptomics, I documented patterns of positive selection between the northern-dwelling planktotrophic sacoglossan sea slug Alderia modesta, which is remarkably tolerant of low temperatures and low salinities, and its southern congener Alderia willowi, which exhibits a striking flexibility for larval type in response to seasonally shifting changes in temperature and salinity. Out of over 4000 1-to-1 orthologous genes, I found a signal of positive selection between A. willowi and A. modesta for genes involved in cell membrane and cell transport, particularly ion homeostasis (aquaporin), cell-cell signal transduction, and phosphorylation (reduced nicotinamide adenine dinucleotide [NADH] dehydrogenase). Positive selection for ion homeostasis in A. modesta has implications for its ability to tolerate the lower salinity of its northern range, and in A. willowi substitutions in NADH may assist in the high temperature tolerance of its southern California habitats. Identifying these candidate genes enables future studies of their functionalization as we seek to understand the relationship between phenotype and genotype in species whose phenotypes are influenced by environmental conditions.
Collapse
|
14
|
Kono N, Nakamura H, Tateishi A, Numata K, Arakawa K. The balance of crystalline and amorphous regions in the fibroin structure underpins the tensile strength of bagworm silk. ZOOLOGICAL LETTERS 2021; 7:11. [PMID: 34311769 PMCID: PMC8314566 DOI: 10.1186/s40851-021-00179-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Protein-based materials are considered versatile biomaterials, and their biodegradability is an advantage for sustainable development. Bagworm produces strong silk for use in unique situations throughout its life stages. Rigorous molecular analyses of Eumeta variegata suggested that the particular mechanical properties of its silk are due to the coexistence of poly-A and GA motifs. However, little molecular information on closely related species is available, and it is not understood how these properties were acquired evolutionarily or whether the motif combination is a conserved trait in other bagworms. Here, we performed a transcriptome analysis of two other bagworm species (Canephora pungelerii and Bambalina sp.) belonging to the family Psychidae to elucidate the relationship between the fibroin gene and silk properties. The obtained transcriptome assemblies and tensile tests indicated that the motif combination and silk properties were conserved among the bagworms. Furthermore, our analysis showed that C. pungelerii produces extraordinarily strong silk (breaking strength of 1.4 GPa) and indicated that the cause may be the C. pungelerii -specific balance of crystalline/amorphous regions in the H-fibroin repetitive domain. This particular H-fibroin architecture may have been evolutionarily acquired to produce strong thread to maintain bag stability during the relatively long development period of Canephora species relative to other bagworms.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata Japan
| | | | - Ayaka Tateishi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan
| | - Keiji Numata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
- Department of Material Chemistry, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihouji, Tsuruoka, Yamagata Japan
| |
Collapse
|
15
|
Barreira SN, Nguyen AD, Fredriksen MT, Wolfsberg TG, Moreland RT, Baxevanis AD. AniProtDB: A Collection of Consistently Generated Metazoan Proteomes for Comparative Genomics Studies. Mol Biol Evol 2021; 38:4628-4633. [PMID: 34048573 DOI: 10.1093/molbev/msab165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To address the void in the availability of high-quality proteomic data traversing the animal tree, we have implemented a pipeline for generating de novo assemblies based on publicly available data from the NCBI Sequence Read Archive, yielding a comprehensive collection of proteomes from 100 species spanning 21 animal phyla. We have also created the Animal Proteome Database (AniProtDB), a resource providing open access to this collection of high-quality metazoan proteomes, along with information on predicted proteins and protein domains for each taxonomic classification and the ability to perform sequence similarity searches against all proteomes generated using this pipeline. This solution vastly increases the utility of these data by removing the barrier to access for research groups who do not have the expertise or resources to generate these data themselves and enables the use of data from non-traditional research organisms that have the potential to address key questions in biomedicine.
Collapse
Affiliation(s)
- Sofia N Barreira
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Anh-Dao Nguyen
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mark T Fredriksen
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tyra G Wolfsberg
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - R Travis Moreland
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
16
|
Brandies PA, Hogg CJ. Ten simple rules for getting started with command-line bioinformatics. PLoS Comput Biol 2021; 17:e1008645. [PMID: 33600404 PMCID: PMC7891784 DOI: 10.1371/journal.pcbi.1008645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Parice A. Brandies
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
17
|
Abstract
We carried out an overview of the studies on the traits of the meiofauna of the littoral zone of lakes to investigate the question relating to the Raunkiaeran shortfall (lack of knowledge on biological traits). For this purpose, we selected a series of keywords associated with response and effect traits (feeding habits, locomotion and substrate relation, body size, shape and mass, life history, reproductive strategy, respiration and thermal tolerance) and we counted the relative frequency of occurrence in a set of scientific papers retrieved from Web of Science. The results showed that, except for the traits related to diet and feeding habits, the Raunkiaeran shortfall is very pronounced for all meiofaunal taxa of the littoral zone of lakes, especially for those related to soft-bodied organisms. The reason behind this deficiency concerns many aspects ranging from the high taxonomic expertise required to the intrinsic difficulties of observing organisms of such a small size. The relationship with temperature has not been sufficiently explored and formalized in any of the examined traits; this research aspect needs to be rapidly addressed since the prospects of climate change impacts on lake littorals are expected to be particularly severe.
Collapse
|
18
|
Qiu M, Yang C, Du H, Li Q, Zhang Z, Xiong X, Yu C, Song X, Hu C, Xia B, Yang L, Peng H, Liu L, Jiang X. Whole-genome resequencing reveals aberrant autosomal SNPs affect chicken feathering rate. Anim Biotechnol 2020; 33:884-896. [PMID: 33342337 DOI: 10.1080/10495398.2020.1846545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that the feather growth rate of chicks is determined by two alleles located on the sex chromosome Z; however, in chicken production, feathering is usually not consistently controlled by the sex chromosome. To identify whether the feathering rate is related to autosomal inheritance, whole-genome resequencing was performed in eight chickens with slow- and fast-feathering rate. A total of 54,984 autosomal single nucleotide polymorphisms (SNPs) were identified, including 393 and 376 exonic SNPs in slow-feathering and fast-feathering chickens, respectively. Mutated genes were mainly involved in response to stimuli and growth and reproduction processes. Mutated genes related to slow-feathering rate were mainly involved in wingless-type MMTV integration site signaling pathway and mitogen-activated protein kinase signaling pathway, whereas mutated genes associated with fast-feathering rate were primarily enriched in autophagy, calcium signaling pathway, extracellular matrix-receptor interaction, and Focal adhesion processes. Importantly, two SNPs, involved in feather development, were found in the exonic regions of Wnt signaling genes. These results shed new light on the relationship between genetic mutation and feather growth rate from the perspective of autosomal inheritance and may have economic significance in chicken breeding.
Collapse
Affiliation(s)
- Mohan Qiu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Huarui Du
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Qingyun Li
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Zengrong Zhang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xia Xiong
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xiaoyan Song
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Bo Xia
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Li Yang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Han Peng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lan Liu
- Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xiaosong Jiang
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Draft genome of Bugula neritina, a colonial animal packing powerful symbionts and potential medicines. Sci Data 2020; 7:356. [PMID: 33082320 PMCID: PMC7576161 DOI: 10.1038/s41597-020-00684-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/09/2020] [Indexed: 11/11/2022] Open
Abstract
Many animal phyla have no representatives within the catalog of whole metazoan genome sequences. This dataset fills in one gap in the genome knowledge of animal phyla with a draft genome of Bugula neritina (phylum Bryozoa). Interest in this species spans ecology and biomedical sciences because B. neritina is the natural source of bioactive compounds called bryostatins. Here we present a draft assembly of the B. neritina genome obtained from PacBio and Illumina HiSeq data, as well as genes and proteins predicted de novo and verified using transcriptome data, along with the functional annotation. These sequences will permit a better understanding of host-symbiont interactions at the genomic level, and also contribute additional phylogenomic markers to evaluate Lophophorate or Lophotrochozoa phylogenetic relationships. The effort also fits well with plans to ultimately sequence all orders of the Metazoa. Measurement(s) | DNA • genome • sequence_assembly • sequence feature annotation | Technology Type(s) | DNA sequencing • sequence assembly process • sequence annotation | Sample Characteristic - Organism | Bugula neritina |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12988355
Collapse
|
20
|
Pereira-Santana A, Gamboa-Tuz SD, Zhao T, Schranz ME, Vinuesa P, Bayona A, Rodríguez-Zapata LC, Castano E. Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin. PLoS Comput Biol 2020; 16:e1008318. [PMID: 33075080 PMCID: PMC7608942 DOI: 10.1371/journal.pcbi.1008318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/03/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.
Collapse
Affiliation(s)
- Alejandro Pereira-Santana
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Tao Zhao
- Bioinformatics and Evolutionary Genomics, VIB-UGent Center for Plant Systems Biology, Gent, Belgium
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Andrea Bayona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | | | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
21
|
Nielsen ES, Henriques R, Beger M, Toonen RJ, von der Heyden S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol Biol 2020; 20:121. [PMID: 32938400 PMCID: PMC7493327 DOI: 10.1186/s12862-020-01679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As global change and anthropogenic pressures continue to increase, conservation and management increasingly needs to consider species' potential to adapt to novel environmental conditions. Therefore, it is imperative to characterise the main selective forces acting on ecosystems, and how these may influence the evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare putative environmental drivers of selection in three sympatric southern African marine invertebrates with contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus punctatus), and Granular limpet (Scutellastra granularis). RESULTS Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for S. granularis and P. angulosus, but not for C. punctatus. CONCLUSION The findings illustrate distinct evolutionary potential across species, suggesting that species-specific habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns than the strong environmental gradients within the region. We also found large discrepancies between outlier detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems to global change.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.,Technical University of Denmark, National Institute of Aquatic Resources, Section for Marine Living Resources, Velsøvej 39, 8600, Silkeborg, Denmark
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
22
|
Edge TA, Baird DJ, Bilodeau G, Gagné N, Greer C, Konkin D, Newton G, Séguin A, Beaudette L, Bilkhu S, Bush A, Chen W, Comte J, Condie J, Crevecoeur S, El-Kayssi N, Emilson EJS, Fancy DL, Kandalaft I, Khan IUH, King I, Kreutzweiser D, Lapen D, Lawrence J, Lowe C, Lung O, Martineau C, Meier M, Ogden N, Paré D, Phillips L, Porter TM, Sachs J, Staley Z, Steeves R, Venier L, Veres T, Watson C, Watson S, Macklin J. The Ecobiomics project: Advancing metagenomics assessment of soil health and freshwater quality in Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135906. [PMID: 31926407 DOI: 10.1016/j.scitotenv.2019.135906] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Transformative advances in metagenomics are providing an unprecedented ability to characterize the enormous diversity of microorganisms and invertebrates sustaining soil health and water quality. These advances are enabling a better recognition of the ecological linkages between soil and water, and the biodiversity exchanges between these two reservoirs. They are also providing new perspectives for understanding microorganisms and invertebrates as part of interacting communities (i.e. microbiomes and zoobiomes), and considering plants, animals, and humans as holobionts comprised of their own cells as well as diverse microorganisms and invertebrates often acquired from soil and water. The Government of Canada's Genomics Research and Development Initiative (GRDI) launched the Ecobiomics Project to coordinate metagenomics capacity building across federal departments, and to apply metagenomics to better characterize microbial and invertebrate biodiversity for advancing environmental assessment, monitoring, and remediation activities. The Project has adopted standard methods for soil, water, and invertebrate sampling, collection and provenance of metadata, and nucleic acid extraction. High-throughput sequencing is located at a centralized sequencing facility. A centralized Bioinformatics Platform was established to enable a novel government-wide approach to harmonize metagenomics data collection, storage and bioinformatics analyses. Sixteen research projects were initiated under Soil Microbiome, Aquatic Microbiome, and Invertebrate Zoobiome Themes. Genomic observatories were established at long-term environmental monitoring sites for providing more comprehensive biodiversity reference points to assess environmental change.
Collapse
Affiliation(s)
- Thomas A Edge
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Donald J Baird
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | | | - Nellie Gagné
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Charles Greer
- National Research Council Canada, Montreal, Quebec, Canada
| | - David Konkin
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Glen Newton
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | | | - Lee Beaudette
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Satpal Bilkhu
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Alexander Bush
- Environment and Climate Change Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Wen Chen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Jérôme Comte
- Environment and Climate Change Canada, Burlington, Ontario, Canada; Institut National de la Recherche Scientifique, Québec, Québec, Canada
| | - Janet Condie
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | | | | | - Erik J S Emilson
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Donna-Lee Fancy
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Iyad Kandalaft
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Izhar U H Khan
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Ian King
- Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - David Kreutzweiser
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - David Lapen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - John Lawrence
- Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Christine Lowe
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Oliver Lung
- Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | | | - Matthew Meier
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Nicholas Ogden
- Public Health Agency of Canada, St. Hyacinthe, Quebec, Canada
| | - David Paré
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Lori Phillips
- Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Teresita M Porter
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada; Biodiversity Institute of Ontario, University of Guelph, Ontario, Canada
| | - Joel Sachs
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Zachery Staley
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Royce Steeves
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Lisa Venier
- Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Teodor Veres
- National Research Council Canada, Ottawa, Ontario, Canada
| | - Cynthia Watson
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Susan Watson
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - James Macklin
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Garrido-Sanz L, Senar MÀ, Piñol J. Estimation of the relative abundance of species in artificial mixtures of insects using low-coverage shotgun metagenomics. METABARCODING AND METAGENOMICS 2020. [DOI: 10.3897/mbmg.4.48281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amplicon metabarcoding is an established technique to analyse the taxonomic composition of communities of organisms using high-throughput DNA sequencing, but there are doubts about its ability to quantify the relative proportions of the species, as opposed to the species list. Here, we bypass the enrichment step and avoid the PCR-bias, by directly sequencing the extracted DNA using shotgun metagenomics. This approach is common practice in prokaryotes, but not in eukaryotes, because of the low number of sequenced genomes of eukaryotic species. We tested the metagenomics approach using insect species whose genome is already sequenced and assembled to an advanced degree. We shotgun-sequenced, at low-coverage, 18 species of insects in 22 single-species and 6 mixed-species libraries and mapped the reads against 110 reference genomes of insects. We used the single-species libraries to calibrate the process of assignation of reads to species and the libraries created from species mixtures to evaluate the ability of the method to quantify the relative species abundance. Our results showed that the shotgun metagenomic method is easily able to set apart closely-related insect species, like four species of Drosophila included in the artificial libraries. However, to avoid the counting of rare misclassified reads in samples, it was necessary to use a rather stringent detection limit of 0.001, so species with a lower relative abundance are ignored. We also identified that approximately half the raw reads were informative for taxonomic purposes. Finally, using the mixed-species libraries, we showed that it was feasible to quantify with confidence the relative abundance of individual species in the mixtures.
Collapse
|
24
|
Somarelli JA, Boddy AM, Gardner HL, DeWitt SB, Tuohy J, Megquier K, Sheth MU, Hsu SD, Thorne JL, London CA, Eward WC. Improving Cancer Drug Discovery by Studying Cancer across the Tree of Life. Mol Biol Evol 2020; 37:11-17. [PMID: 31688937 DOI: 10.1093/molbev/msz254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite a considerable expenditure of time and resources and significant advances in experimental models of disease, cancer research continues to suffer from extremely low success rates in translating preclinical discoveries into clinical practice. The continued failure of cancer drug development, particularly late in the course of human testing, not only impacts patient outcomes, but also drives up the cost for those therapies that do succeed. It is clear that a paradigm shift is necessary if improvements in this process are to occur. One promising direction for increasing translational success is comparative oncology-the study of cancer across species, often involving veterinary patients that develop naturally-occurring cancers. Comparative oncology leverages the power of cross-species analyses to understand the fundamental drivers of cancer protective mechanisms, as well as factors contributing to cancer initiation and progression. Clinical trials in veterinary patients with cancer provide an opportunity to evaluate novel therapeutics in a setting that recapitulates many of the key features of human cancers, including genomic aberrations that underly tumor development, response and resistance to treatment, and the presence of comorbidities that can affect outcomes. With a concerted effort from basic scientists, human physicians and veterinarians, comparative oncology has the potential to enhance the cost-effectiveness and efficiency of pipelines for cancer drug discovery and other cancer treatments.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Amy M Boddy
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA
| | - Heather L Gardner
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA
| | | | - Joanne Tuohy
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA
| | - Kate Megquier
- Broad Institute, Massachussettes Institute of Technology and Harvard University, Boston, MA
| | - Maya U Sheth
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Shiaowen David Hsu
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Jeffrey L Thorne
- Department of Biological Sciences, North Carolina State University, Raleigh, NC.,Department of Statistics, North Carolina State University, Raleigh, NC
| | - Cheryl A London
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA
| | - William C Eward
- Duke Cancer Institute, Durham, NC.,Department of Orthopaedics, Duke University Medical Center, Durham, NC
| |
Collapse
|
25
|
Brandies P, Peel E, Hogg CJ, Belov K. The Value of Reference Genomes in the Conservation of Threatened Species. Genes (Basel) 2019; 10:E846. [PMID: 31717707 PMCID: PMC6895880 DOI: 10.3390/genes10110846] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Conservation initiatives are now more crucial than ever-over a million plant and animal species are at risk of extinction over the coming decades. The genetic management of threatened species held in insurance programs is recommended; however, few are taking advantage of the full range of genomic technologies available today. Less than 1% of the 13505 species currently listed as threated by the International Union for Conservation of Nature (IUCN) have a published genome. While there has been much discussion in the literature about the importance of genomics for conservation, there are limited examples of how having a reference genome has changed conservation management practice. The Tasmanian devil (Sarcophilus harrisii), is an endangered Australian marsupial, threatened by an infectious clonal cancer devil facial tumor disease (DFTD). Populations have declined by 80% since the disease was first recorded in 1996. A reference genome for this species was published in 2012 and has been crucial for understanding DFTD and the management of the species in the wild. Here we use the Tasmanian devil as an example of how a reference genome has influenced management actions in the conservation of a species.
Collapse
Affiliation(s)
| | | | | | - Katherine Belov
- School of Life & Environmental Sciences, The University of Sydney, Sydney 2006, Australia; (P.B.); (E.P.); (C.J.H.)
| |
Collapse
|
26
|
Bechsgaard J, Schou MF, Vanthournout B, Hendrickx F, Knudsen B, Settepani V, Schierup MH, Bilde T. Evidence for Faster X Chromosome Evolution in Spiders. Mol Biol Evol 2019; 36:1281-1293. [PMID: 30912801 PMCID: PMC6526907 DOI: 10.1093/molbev/msz074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In species with chromosomal sex determination, X chromosomes are predicted to evolve faster than autosomes because of positive selection on recessive alleles or weak purifying selection. We investigated X chromosome evolution in Stegodyphus spiders that differ in mating system, sex ratio, and population dynamics. We assigned scaffolds to X chromosomes and autosomes using a novel method based on flow cytometry of sperm cells and reduced representation sequencing. We estimated coding substitution patterns (dN/dS) in a subsocial outcrossing species (S. africanus) and its social inbreeding and female-biased sister species (S. mimosarum), and found evidence for faster-X evolution in both species. X chromosome-to-autosome diversity (piX/piA) ratios were estimated in multiple populations. The average piX/piA estimates of S. africanus (0.57 [95% CI: 0.55-0.60]) was lower than the neutral expectation of 0.75, consistent with more hitchhiking events on X-linked loci and/or a lower X chromosome mutation rate, and we provide evidence in support of both. The social species S. mimosarum has a significantly higher piX/piA ratio (0.72 [95% CI: 0.65-0.79]) in agreement with its female-biased sex ratio. Stegodyphus mimosarum also have different piX/piA estimates among populations, which we interpret as evidence for recurrent founder events. Simulations show that recurrent founder events are expected to decrease the piX/piA estimates in S. mimosarum, thus underestimating the true effect of female-biased sex ratios. Finally, we found lower synonymous divergence on X chromosomes in both species, and the male-to-female substitution ratio to be higher than 1, indicating a higher mutation rate in males.
Collapse
Affiliation(s)
| | - Mads Fristrup Schou
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Bram Vanthournout
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Evolution and Optics of Nanostructure Group (EON), Biology Department, Ghent University, Ghent, Belgium
| | - Frederik Hendrickx
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Terrestrial Ecology Unit (TEREC), Biology Department, Ghent University, Ghent, Belgium
| | | | | | - Mikkel Heide Schierup
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus C, Denmark
| | - Trine Bilde
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
27
|
Polymorphic microsatellite loci and partial mitogenome for the Chestnut-bellied Seed-finch Sporophila angolensis (Aves, Passeriformes) using next generation sequencing. Mol Biol Rep 2019; 46:4617-4623. [PMID: 31069613 DOI: 10.1007/s11033-019-04848-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Brazil is one of the major contributors to international trade in wildlife and species of the bird genus Sporophila are currently under threat due to illegal trade. Microsatellite loci and mitochondrial DNA constitute important molecular markers for population genetics studies and parentage analyses, and hold great potential to help authorities manage illegal trafficking and control commercial breeders. We describe and characterize 19 polymorphic microsatellite loci and recover part of the mitochondrial genome for Sporophila angolensis using massive parallel sequencing with the Illumina platform. DNA sequencing resulted in a dataset with 2,379,295 paired reads, of which 392 were mapped to the mitogenome of S. maximiliani, resulting in a partial mitogenome of 16,785 bp for S. angolensis. The microsatellite search identified a total of 4737 loci, from which 27 primer pairs were tested on 24 individuals of unknown geographic origin. Nineteen of the 27 loci were successfully amplified and exhibited high levels of genetic variation, with a mean of 11.2 alleles per locus, a mean observed heterozygosity of 0.588 and a mean expected heterozygosity of 0.852. About half of the loci showed significant evidence for the presence of a null allele and significant deviation from Hardy-Weinberg equilibrium; the remaining eight loci had high paternity exclusion probabilities and low identity probabilities. The high levels of polymorphism for these loci, as well as their high paternity exclusion probability and low identity probability, indicate that they hold potential for parentage analyses and population genetics studies of S. angolensis.
Collapse
|
28
|
Yang LA, Chang YJ, Chen SH, Lin CY, Ho JM. SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies. BMC Genomics 2019; 19:238. [PMID: 30999844 PMCID: PMC7402383 DOI: 10.1186/s12864-019-5445-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/10/2019] [Indexed: 01/03/2023] Open
Abstract
Background With the rapid increase in genome sequencing projects for non-model organisms, numerous genome assemblies are currently in progress or available as drafts, but not made available as satisfactory, usable genomes. Data quality assessment of genome assemblies is gaining importance not only for people who perform the assembly/re-assembly processes, but also for those who attempt to use assemblies as maps in downstream analyses. Recent studies of the quality control, quality evaluation/ assessment of genome assemblies have focused on either quality control of reads before assemblies or evaluation of the assemblies with respect to their contiguity and correctness. However, correctness assessment depends on a reference and is not applicable for de novo assembly projects. Hence, development of methods providing both post-assembly and pre-assembly quality assessment reports for examining the quality/correctness of de novo assemblies and the input reads is worth studying. Results We present SQUAT, an efficient tool for both pre-assembly and post-assembly quality assessment of de novo genome assemblies. The pre-assembly module of SQUAT computes quality statistics of reads and presents the analysis in a well-designed interface to visualize the distribution of high- and poor-quality reads in a portable HTML report. The post-assembly module of SQUAT provides read mapping analytics in an HTML format. We categorized reads into several groups including uniquely mapped reads, multiply mapped, unmapped reads; for uniquely mapped reads, we further categorized them into perfectly matched, with substitutions, containing clips, and the others. We carefully defined the poorly mapped (PM) reads into several groups to prevent the underestimation of unmapped reads; indeed, a high PM% would be a sign of a poor assembly that requires researchers’ attention for further examination or improvements before using the assembly. Finally, we evaluate SQUAT with six datasets, including the genome assemblies for eel, worm, mushroom, and three bacteria. The results show that SQUAT reports provide useful information with details for assessing the quality of assemblies and reads. Availability The SQUAT software with links to both its docker image and the on-line manual is freely available at https://github.com/luke831215/SQUAT. Electronic supplementary material The online version of this article (10.1186/s12864-019-5445-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-An Yang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Jung Chang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Jan-Ming Ho
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.,Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
29
|
Lopez JV, Kamel B, Medina M, Collins T, Baums IB. Multiple Facets of Marine Invertebrate Conservation Genomics. Annu Rev Anim Biosci 2018; 7:473-497. [PMID: 30485758 DOI: 10.1146/annurev-animal-020518-115034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conservation genomics aims to preserve the viability of populations and the biodiversity of living organisms. Invertebrate organisms represent 95% of animal biodiversity; however, few genomic resources currently exist for the group. The subset of marine invertebrates includes the most ancient metazoan lineages and possesses codes for unique gene products and possible keys to adaptation. The benefits of supporting invertebrate conservation genomics research (e.g., likely discovery of novel genes, protein regulatory mechanisms, genomic innovations, and transposable elements) outweigh the various hurdles (rare, small, or polymorphic starting materials). Here we review best conservation genomics practices in the laboratory and in silico when applied to marine invertebrates and also showcase unique features in several case studies of acroporid corals, crown-of-thorns starfish, apple snails, and abalone. Marine conservation genomics should also address how diversity can lead to unique marine innovations, the impact of deleterious variation, and how genomic monitoring and profiling could positively affect broader conservation goals (e.g., value of baseline data for in situ/ex situ genomic stocks).
Collapse
Affiliation(s)
- Jose V Lopez
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida 33004, USA;
| | - Bishoy Kamel
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico 87131, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Timothy Collins
- Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA;
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| |
Collapse
|
30
|
|
31
|
Leasi F, Sevigny JL, Laflamme EM, Artois T, Curini-Galletti M, de Jesus Navarrete A, Di Domenico M, Goetz F, Hall JA, Hochberg R, Jörger KM, Jondelius U, Todaro MA, Wirshing HH, Norenburg JL, Thomas WK. Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Commun Biol 2018; 1:112. [PMID: 30271992 PMCID: PMC6123632 DOI: 10.1038/s42003-018-0119-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/24/2018] [Indexed: 01/05/2023] Open
Abstract
Accurate assessments of biodiversity are crucial to advising ecosystem-monitoring programs and understanding ecosystem function. Nevertheless, a standard operating procedure to assess biodiversity accurately and consistently has not been established. This is especially true for meiofauna, a diverse community (>20 phyla) of small benthic invertebrates that have fundamental ecological roles. Recent studies show that metabarcoding is a cost-effective and time-effective method to estimate meiofauna biodiversity, in contrast to morphological-based taxonomy. Here, we compare biodiversity assessments of a diverse meiofaunal community derived by applying multiple taxonomic methods based on comparative morphology, molecular phylogenetic analysis, DNA barcoding of individual specimens, and metabarcoding of environmental DNA. We show that biodiversity estimates are strongly biased across taxonomic methods and phyla. Such biases affect understanding of community structures and ecological interpretations. This study supports the urgency of improving aspects of environmental high-throughput sequencing and the value of taxonomists in correctly understanding biodiversity estimates.
Collapse
Affiliation(s)
- Francesca Leasi
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN, 37403, USA.
- Hubbard Center for Genome Studies, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA.
| | - Joseph L Sevigny
- Hubbard Center for Genome Studies, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Eric M Laflamme
- Department of Mathematics, Plymouth State University, MSC29, 17 High Street, Plymouth, NH, 03264, USA
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Marco Curini-Galletti
- Dipartimento di Medicina Veterinaria, University of Sassari, via Muroni 25, 07100, Sassari, Italy
| | - Alberto de Jesus Navarrete
- Departmento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Unidad Chetumal, Av. Centenario Km. 5.5 Chetumal Quintana Roo, 77014, Chetumal, Mexico
| | - Maikon Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-Mar, s/n, Pontal do Sul, PO Box 61, 83255-976, Pontal do Paraná, PR, Brazil
| | - Freya Goetz
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave NW, Washington, DC, 20560, USA
| | - Jeffrey A Hall
- Hubbard Center for Genome Studies, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| | - Rick Hochberg
- Department of Biological Science, University of Massachusetts Lowell, Olsen Hall 414, 198 Riverside St., Lowell, MA, 01854, USA
| | - Katharina M Jörger
- Department of Biology, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Munich, Germany
| | - Ulf Jondelius
- Swedish Museum of Natural History, POB 5007, SE-104 05, Stockholm, Sweden
| | - M Antonio Todaro
- Department of Life Sciences, University of Modena & Reggio Emilia, Via G. Campi 213/d, 41125, Modena, Italy
| | - Herman H Wirshing
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave NW, Washington, DC, 20560, USA
| | - Jon L Norenburg
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, 10th St. & Constitution Ave NW, Washington, DC, 20560, USA
| | - W Kelley Thomas
- Hubbard Center for Genome Studies, Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| |
Collapse
|
32
|
Abstract
Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.
Collapse
|
33
|
Renard E, Leys SP, Wörheide G, Borchiellini C. Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics: The disconnect between gene content and body plan evolution. Bioessays 2018; 40:e1700237. [PMID: 30070368 DOI: 10.1002/bies.201700237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Sponges are important but often-neglected organisms. The absence of classical animal traits (nerves, digestive tract, and muscles) makes sponges challenging for non-specialists to work with and has delayed getting high quality genomic data compared to other invertebrates. Yet analyses of sponge genomes and transcriptomes currently available have radically changed our understanding of animal evolution. Sponges are of prime evolutionary importance as one of the best candidates to form the sister group of all other animals, and genomic data are essential to understand the mechanisms that control animal evolution and diversity. Here we review the most significant outcomes of current genomic and transcriptomic analyses of sponges, and discuss limitations and future directions of sponge transcriptomic and genomic studies.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.,Aix Marseille Univ., CNRS, UMR 7288, IBDM, Marseille, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| | - Carole Borchiellini
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
34
|
Staal J, Driege Y, Haegman M, Borghi A, Hulpiau P, Lievens L, Gul IS, Sundararaman S, Gonçalves A, Dhondt I, Pinzón JH, Braeckman BP, Technau U, Saeys Y, van Roy F, Beyaert R. Ancient Origin of the CARD-Coiled Coil/Bcl10/MALT1-Like Paracaspase Signaling Complex Indicates Unknown Critical Functions. Front Immunol 2018; 9:1136. [PMID: 29881386 PMCID: PMC5978004 DOI: 10.3389/fimmu.2018.01136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
The CARD–coiled coil (CC)/Bcl10/MALT1-like paracaspase (CBM) signaling complexes composed of a CARD–CC family member (CARD-9, -10, -11, or -14), Bcl10, and the type 1 paracaspase MALT1 (PCASP1) play a pivotal role in immunity, inflammation, and cancer. Targeting MALT1 proteolytic activity is of potential therapeutic interest. However, little is known about the evolutionary origin and the original functions of the CBM complex. Type 1 paracaspases originated before the last common ancestor of planulozoa (bilaterians and cnidarians). Notably in bilaterians, Ecdysozoa (e.g., nematodes and insects) lacks Bcl10, whereas other lineages have a Bcl10 homolog. A survey of invertebrate CARD–CC homologs revealed such homologs only in species with Bcl10, indicating an ancient common origin of the entire CBM complex. Furthermore, vertebrate-like Syk/Zap70 tyrosine kinase homologs with the ITAM-binding SH2 domain were only found in invertebrate organisms with CARD–CC/Bcl10, indicating that this pathway might be related to the original function of the CBM complex. Moreover, the type 1 paracaspase sequences from invertebrate organisms that have CARD–CC/Bcl10 are more similar to vertebrate paracaspases. Functional analysis of protein–protein interactions, NF-κB signaling, and CYLD cleavage for selected invertebrate type 1 paracaspase and Bcl10 homologs supports this scenario and indicates an ancient origin of the CARD–CC/Bcl10/paracaspase signaling complex. By contrast, many of the known MALT1-associated activities evolved fairly recently, indicating that unknown functions are at the basis of the protein conservation. As a proof-of-concept, we provide initial evidence for a CBM- and NF-κB-independent neuronal function of the Caenorhabditis elegans type 1 paracaspase malt-1. In conclusion, this study shows how evolutionary insights may point at alternative functions of MALT1.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alice Borghi
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Laurens Lievens
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ismail Sahin Gul
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Srividhya Sundararaman
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB Bio Imaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Ineke Dhondt
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Jorge H Pinzón
- Department of Biology, University of Texas Arlington, Arlington, TX, United States
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Yvan Saeys
- Unit of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Cell Biology, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Marlétaz F, Le Parco Y, Liu S, Peijnenburg KTCA. Extreme Mitogenomic Variation in Natural Populations of Chaetognaths. Genome Biol Evol 2018; 9:1374-1384. [PMID: 28854623 PMCID: PMC5470650 DOI: 10.1093/gbe/evx090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 12/15/2022] Open
Abstract
The extent of within-species genetic variation across the diversity of animal life is an underexplored problem in ecology and evolution. Although neutral genetic variation should scale positively with population size, mitochondrial diversity levels are believed to show little variation across animal species. Here, we report an unprecedented case of extreme mitochondrial diversity within natural populations of two morphospecies of chaetognaths (arrow worms). We determine that this diversity is composed of deep sympatric mitochondrial lineages, which are in some cases as divergent as human and platypus. Additionally, based on 54 complete mitogenomes, we observed mitochondrial gene order differences between several of these lineages. We examined nuclear divergence patterns (18S, 28S, and an intron) to determine the possible origin of these lineages, but did not find congruent patterns between mitochondrial and nuclear markers. We also show that extreme mitochondrial divergence in chaetognaths is not driven by positive selection. Hence, we propose that the extreme levels of mitochondrial variation could be the result of either a complex scenario of reproductive isolation, or a combination of large population size and accelerated mitochondrial mutation rate. These findings emphasize the importance of characterizing genome-wide levels of nuclear variation in these species and promote chaetognaths as a remarkable model to study mitochondrial evolution.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Department of Zoology, University of Oxford, United Kingdom.,Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Yannick Le Parco
- Institut Méditerranéen d'Océanologie (CNRS UMR 7294), Aix-Marseille Université, Campus de Luminy, Marseille, France
| | - Shenglin Liu
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, The Netherlands
| | - Katja T C A Peijnenburg
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, The Netherlands.,Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| |
Collapse
|
36
|
Porter TM, Hajibabaei M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol Ecol 2018; 27:313-338. [PMID: 29292539 DOI: 10.1111/mec.14478] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
The purpose of this review is to present the most common and emerging DNA-based methods used to generate data for biodiversity and biomonitoring studies. As environmental assessment and monitoring programmes may require biodiversity information at multiple levels, we pay particular attention to the DNA metabarcoding method and discuss a number of bioinformatic tools and considerations for producing DNA-based indicators using operational taxonomic units (OTUs), taxa at a variety of ranks and community composition. By developing the capacity to harness the advantages provided by the newest technologies, investigators can "scale up" by increasing the number of samples and replicates processed, the frequency of sampling over time and space, and even the depth of sampling such as by sequencing more reads per sample or more markers per sample. The ability to scale up is made possible by the reduced hands-on time and cost per sample provided by the newest kits, platforms and software tools. Results gleaned from broad-scale monitoring will provide opportunities to address key scientific questions linked to biodiversity and its dynamics across time and space as well as being more relevant for policymakers, enabling science-based decision-making, and provide a greater socio-economic impact. As genomic approaches are continually evolving, we provide this guide to methods used in biodiversity genomics.
Collapse
Affiliation(s)
- Teresita M Porter
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.,Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
|
38
|
Schultz JH, Adema CM. Comparative immunogenomics of molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:3-15. [PMID: 28322934 PMCID: PMC5494275 DOI: 10.1016/j.dci.2017.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 05/22/2023]
Abstract
Comparative immunology, studying both vertebrates and invertebrates, provided the earliest descriptions of phagocytosis as a general immune mechanism. However, the large scale of animal diversity challenges all-inclusive investigations and the field of immunology has developed by mostly emphasizing study of a few vertebrate species. In addressing the lack of comprehensive understanding of animal immunity, especially that of invertebrates, comparative immunology helps toward management of invertebrates that are food sources, agricultural pests, pathogens, or transmit diseases, and helps interpret the evolution of animal immunity. Initial studies showed that the Mollusca (second largest animal phylum), and invertebrates in general, possess innate defenses but lack the lymphocytic immune system that characterizes vertebrate immunology. Recognizing the reality of both common and taxon-specific immune features, and applying up-to-date cell and molecular research capabilities, in-depth studies of a select number of bivalve and gastropod species continue to reveal novel aspects of molluscan immunity. The genomics era heralded a new stage of comparative immunology; large-scale efforts yielded an initial set of full molluscan genome sequences that is available for analyses of full complements of immune genes and regulatory sequences. Next-generation sequencing (NGS), due to lower cost and effort required, allows individual researchers to generate large sequence datasets for growing numbers of molluscs. RNAseq provides expression profiles that enable discovery of immune genes and genome sequences reveal distribution and diversity of immune factors across molluscan phylogeny. Although computational de novo sequence assembly will benefit from continued development and automated annotation may require some experimental validation, NGS is a powerful tool for comparative immunology, especially increasing coverage of the extensive molluscan diversity. To date, immunogenomics revealed new levels of complexity of molluscan defense by indicating sequence heterogeneity in individual snails and bivalves, and members of expanded immune gene families are expressed differentially to generate pathogen-specific defense responses.
Collapse
Affiliation(s)
- Jonathan H Schultz
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
39
|
Fuentes-Pardo AP, Ruzzante DE. Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations. Mol Ecol 2017; 26:5369-5406. [PMID: 28746784 DOI: 10.1111/mec.14264] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022]
Abstract
Whole-genome resequencing (WGR) is a powerful method for addressing fundamental evolutionary biology questions that have not been fully resolved using traditional methods. WGR includes four approaches: the sequencing of individuals to a high depth of coverage with either unresolved or resolved haplotypes, the sequencing of population genomes to a high depth by mixing equimolar amounts of unlabelled-individual DNA (Pool-seq) and the sequencing of multiple individuals from a population to a low depth (lcWGR). These techniques require the availability of a reference genome. This, along with the still high cost of shotgun sequencing and the large demand for computing resources and storage, has limited their implementation in nonmodel species with scarce genomic resources and in fields such as conservation biology. Our goal here is to describe the various WGR methods, their pros and cons and potential applications in conservation biology. WGR offers an unprecedented marker density and surveys a wide diversity of genetic variations not limited to single nucleotide polymorphisms (e.g., structural variants and mutations in regulatory elements), increasing their power for the detection of signatures of selection and local adaptation as well as for the identification of the genetic basis of phenotypic traits and diseases. Currently, though, no single WGR approach fulfils all requirements of conservation genetics, and each method has its own limitations and sources of potential bias. We discuss proposed ways to minimize such biases. We envision a not distant future where the analysis of whole genomes becomes a routine task in many nonmodel species and fields including conservation biology.
Collapse
|
40
|
Abstract
BACKGROUND Mitogenome diversity is staggering among early branching animals with respect to size, gene density, content and order, and number of tRNA genes, especially in cnidarians. This last point is of special interest as tRNA cleavage drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-RNA processing in animals. Mitochondrial RNA processing in non-bilaterian metazoans, some of which possess a single tRNA gene in their mitogenomes, is essentially unstudied despite its importance in understanding the evolution of mitochondrial transcription in animals. RESULTS We characterized the mature mitochondrial mRNA transcripts in a species of the octocoral genus Sinularia (Alcyoniidae: Octocorallia), and defined precise boundaries of transcription units using different molecular methods. Most mt-mRNAs were polycistronic units containing two or three genes and 5' and/or 3' untranslated regions of varied length. The octocoral specific, mtDNA-encoded mismatch repair gene, the mtMutS, was found to undergo alternative polyadenylation, and exhibited differential expression of alternate transcripts suggesting a unique regulatory mechanism for this gene. In addition, a long noncoding RNA complementary to the ATP6 gene (lncATP6) potentially involved in antisense regulation was detected. CONCLUSIONS Mt-mRNA processing in octocorals possessing a single mt-tRNA is complex. Considering the variety of mitogenome arrangements known in cnidarians, and in general among non-bilaterian metazoans, our findings provide a first glimpse into the complex mtDNA transcription, mt-mRNA processing, and regulation among early branching animals and represent a first step towards understanding its functional and evolutionary implications.
Collapse
|
41
|
Voolstra CR, Wörheide G, Lopez JV. Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA). INVERTEBR SYST 2017; 31:1-7. [PMID: 28603454 PMCID: PMC5464758 DOI: 10.1071/is16059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research.
Collapse
|
42
|
Schell T, Feldmeyer B, Schmidt H, Greshake B, Tills O, Truebano M, Rundle SD, Paule J, Ebersberger I, Pfenninger M. An annotated draft genome for Radix auricularia (Gastropoda, Mollusca). Genome Biol Evol 2017; 9:2997437. [PMID: 28204581 PMCID: PMC5381561 DOI: 10.1093/gbe/evx032] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023] Open
Abstract
Molluscs are the second most species-rich phylum in the animal kingdom, yet only 11 genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia . Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72×. The assembly contains 94.6% of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ∼690 Mb compared with the estimated genome size of R. auricularia (1.6 Gb) results from a high repeat content of 70% mainly comprising DNA transposons. The annotation of 17,338 protein coding genes was supported by the use of publicly available transcriptome data. This draft will serve as starting point for further genomic and population genetic research in this scientifically important phylum.
Collapse
Affiliation(s)
- Tilman Schell
- Molecular Ecology Group, Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany
- Adaptation and Climate, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Barbara Feldmeyer
- Adaptation and Climate, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Hanno Schmidt
- Adaptation and Climate, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Bastian Greshake
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience Goethe-University, Frankfurt am Main, Germany
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, Marine Institute, School of Marine Science and Engineering, Plymouth University, United Kingdom
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, Marine Institute, School of Marine Science and Engineering, Plymouth University, United Kingdom
| | - Simon D. Rundle
- Marine Biology and Ecology Research Centre, Marine Institute, School of Marine Science and Engineering, Plymouth University, United Kingdom
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Adaptation and Climate, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience Goethe-University, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Molecular Ecology Group, Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany
- Adaptation and Climate, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Liew YJ, Aranda M, Voolstra CR. Reefgenomics.Org - a repository for marine genomics data. Database (Oxford) 2016; 2016:baw152. [PMID: 28025343 PMCID: PMC5199144 DOI: 10.1093/database/baw152] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 10/31/2016] [Indexed: 01/02/2023]
Abstract
Over the last decade, technological advancements have substantially decreased the cost and time of obtaining large amounts of sequencing data. Paired with the exponentially increased computing power, individual labs are now able to sequence genomes or transcriptomes to investigate biological questions of interest. This has led to a significant increase in available sequence data. Although the bulk of data published in articles are stored in public sequence databases, very often, only raw sequencing data are available; miscellaneous data such as assembled transcriptomes, genome annotations etc. are not easily obtainable through the same means. Here, we introduce our website (http://reefgenomics.org) that aims to centralize genomic and transcriptomic data from marine organisms. Besides providing convenient means to download sequences, we provide (where applicable) a genome browser to explore available genomic features, and a BLAST interface to search through the hosted sequences. Through the interface, multiple datasets can be queried simultaneously, allowing for the retrieval of matching sequences from organisms of interest. The minimalistic, no-frills interface reduces visual clutter, making it convenient for end-users to search and explore processed sequence data. DATABASE URL: http://reefgenomics.org.
Collapse
Affiliation(s)
- Yi Jin Liew
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Manuel Aranda
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Christian R Voolstra
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| |
Collapse
|
44
|
Mulcahy DG, Macdonald KS, Brady SG, Meyer C, Barker KB, Coddington J. Greater than X kb: a quantitative assessment of preservation conditions on genomic DNA quality, and a proposed standard for genome-quality DNA. PeerJ 2016; 4:e2528. [PMID: 27761327 DOI: 10.7287/peerj.preprints.2202v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/04/2016] [Indexed: 05/26/2023] Open
Abstract
Advances in biodiversity genomic sequencing will increasingly depend on the availability of DNA samples-and their quantifiable metadata-preserved in large institutional biorepositories that are discoverable to the scientific community. Improvements in sequencing technology constantly provide longer reads, such that longer fragment length, higher molecular weight, and overall "genome-quality" DNA (gDNA) will be desirable. Ideally, biorepositories should publish numerical scale measurements of DNA quality useful to the user community. However, the most widely used technique to evaluate DNA quality, the classic agarose gel, has yet to be quantified. Here we propose a simple and economical method using open source image analysis software to make gDNA gel images quantifiable, and propose percentage of gDNA "greater than X kb" as a standard of comparison, where X is a band from any widely used DNA ladder with desirably large band sizes. We employ two metadata standards ("DNA Threshold" and "Percent above Threshold") introduced as part of the Global Genome Biodiversity Network (GGBN) Darwin Core extension. We illustrate the method using the traditionally used HindIII ladder and the 9,416 base-pair (bp) band as a standard. We also present data, for two taxa, a vertebrate (fish) and an invertebrate (crab), on how gDNA quality varies with seven tissue preservation methods, time since death, preservation method (i.e. buffers vs. cold temperatures), and storage temperature of various buffers over time. Our results suggest that putting tissue into a buffer prior to freezing may be better than directly into ultra-cold conditions.
Collapse
Affiliation(s)
- Daniel G Mulcahy
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Kenneth S Macdonald
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution , Washingtion, DC , USA
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Katharine B Barker
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Jonathan Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washingtion, DC, USA
| |
Collapse
|
45
|
Mulcahy DG, Macdonald KS, Brady SG, Meyer C, Barker KB, Coddington J. Greater than X kb: a quantitative assessment of preservation conditions on genomic DNA quality, and a proposed standard for genome-quality DNA. PeerJ 2016; 4:e2528. [PMID: 27761327 PMCID: PMC5068448 DOI: 10.7717/peerj.2528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/04/2016] [Indexed: 12/02/2022] Open
Abstract
Advances in biodiversity genomic sequencing will increasingly depend on the availability of DNA samples—and their quantifiable metadata—preserved in large institutional biorepositories that are discoverable to the scientific community. Improvements in sequencing technology constantly provide longer reads, such that longer fragment length, higher molecular weight, and overall “genome-quality” DNA (gDNA) will be desirable. Ideally, biorepositories should publish numerical scale measurements of DNA quality useful to the user community. However, the most widely used technique to evaluate DNA quality, the classic agarose gel, has yet to be quantified. Here we propose a simple and economical method using open source image analysis software to make gDNA gel images quantifiable, and propose percentage of gDNA “greater than X kb” as a standard of comparison, where X is a band from any widely used DNA ladder with desirably large band sizes. We employ two metadata standards (“DNA Threshold” and “Percent above Threshold”) introduced as part of the Global Genome Biodiversity Network (GGBN) Darwin Core extension. We illustrate the method using the traditionally used HindIII ladder and the 9,416 base-pair (bp) band as a standard. We also present data, for two taxa, a vertebrate (fish) and an invertebrate (crab), on how gDNA quality varies with seven tissue preservation methods, time since death, preservation method (i.e. buffers vs. cold temperatures), and storage temperature of various buffers over time. Our results suggest that putting tissue into a buffer prior to freezing may be better than directly into ultra-cold conditions.
Collapse
Affiliation(s)
- Daniel G Mulcahy
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Kenneth S Macdonald
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution , Washingtion, DC , USA
| | - Christopher Meyer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Katharine B Barker
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Jonathan Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washingtion, DC, USA
| |
Collapse
|
46
|
Affiliation(s)
- Casey W. Dunn
- Department of Ecology and Evolutionary Biology Brown University 80 Waterman St Providence RIUSA
| | - Catriona Munro
- Department of Ecology and Evolutionary Biology Brown University 80 Waterman St Providence RIUSA
| |
Collapse
|
47
|
Lavrov DV, Pett W. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genome Biol Evol 2016; 8:2896-2913. [PMID: 27557826 PMCID: PMC5633667 DOI: 10.1093/gbe/evw195] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 12/11/2022] Open
Abstract
Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB, tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0-25), at least seven different genetic codes, presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable substitution rates, and a large range of genome sizes. This newly discovered diversity allows a better understanding of the evolutionary plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mitochondrial genomes.
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Walker Pett
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
48
|
Ballesteros JA, Hormiga G. A New Orthology Assessment Method for Phylogenomic Data: Unrooted Phylogenetic Orthology. Mol Biol Evol 2016; 33:2117-34. [PMID: 27189539 DOI: 10.1093/molbev/msw069] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current sequencing technologies are making available unprecedented amounts of genetic data for a large variety of species including nonmodel organisms. Although many phylogenomic surveys spend considerable time finding orthologs from the wealth of sequence data, these results do not transcend the original study and after being processed for specific phylogenetic purposes these orthologs do not become stable orthology hypotheses. We describe a procedure to detect and document the phylogenetic distribution of orthologs allowing researchers to use this information to guide selection of loci best suited to test specific evolutionary questions. At the core of this pipeline is a new phylogenetic orthology method that is neither affected by the position of the root nor requires explicit assignment of outgroups. We discuss the properties of this new orthology assessment method and exemplify its utility for phylogenomics using a small insects dataset. In addition, we exemplify the pipeline to identify and document stable orthologs for the group of orb-weaving spiders (Araneoidea) using RNAseq data. The scripts used in this study, along with sample files and additional documentation, are available at https://github.com/ballesterus/UPhO.
Collapse
Affiliation(s)
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University
| |
Collapse
|
49
|
Rosani U, Pallavicini A, Venier P. The miRNA biogenesis in marine bivalves. PeerJ 2016; 4:e1763. [PMID: 26989613 PMCID: PMC4793324 DOI: 10.7717/peerj.1763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova , Padova , Italy
| | | | - Paola Venier
- Department of Biology, University of Padova , Padova , Italy
| |
Collapse
|
50
|
|