1
|
Desika J, Yogendra K, Hepziba SJ, Patne N, Vivek BS, Ravikesavan R, Nair SK, Jaba J, Razak TA, Srinivasan S, Shettigar N. Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm ( Spodoptera frugiperda [J.E. Smith]) Infestation in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2451. [PMID: 39273935 PMCID: PMC11397220 DOI: 10.3390/plants13172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
The Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is a highly destructive lepidopteran pest known for its extensive feeding on maize (Zea mays L.) and other crops, resulting in a substantial reduction in crop yields. Understanding the metabolic response of maize to FAW infestation is essential for effective pest management and crop protection. Metabolomics, a powerful analytical tool, provides insights into the dynamic changes in maize's metabolic profile in response to FAW infestation. This review synthesizes recent advancements in metabolomics research focused on elucidating maize's metabolic responses to FAW and other lepidopteran pests. It discusses the methodologies used in metabolomics studies and highlights significant findings related to the identification of specific metabolites involved in FAW defense mechanisms. Additionally, it explores the roles of various metabolites, including phytohormones, secondary metabolites, and signaling molecules, in mediating plant-FAW interactions. The review also examines potential applications of metabolomics data in developing innovative strategies for integrated pest management and breeding maize cultivars resistant to FAW by identifying key metabolites and associated metabolic pathways involved in plant-FAW interactions. To ensure global food security and maximize the potential of using metabolomics in enhancing maize resistance to FAW infestation, further research integrating metabolomics with other omics techniques and field studies is necessary.
Collapse
Affiliation(s)
- Jayasaravanan Desika
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Sundararajan Juliet Hepziba
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nagesh Patne
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | | | - Rajasekaran Ravikesavan
- Centre for Plant Breeding & Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Jagdish Jaba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Thurapmohideen Abdul Razak
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Subbiah Srinivasan
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nivedita Shettigar
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
- Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad 500030, India
| |
Collapse
|
2
|
Zhao Y, Sun T, Liu J, Zhang R, Yu Y, Zhou G, Liu J, Gao B. The Key Role of Plant Hormone Signaling Transduction and Flavonoid Biosynthesis Pathways in the Response of Chinese Pine ( Pinus tabuliformis) to Feeding Stimulation by Pine Caterpillar ( Dendrolimus tabulaeformis). Int J Mol Sci 2024; 25:6354. [PMID: 38928063 PMCID: PMC11203464 DOI: 10.3390/ijms25126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In nature, plants have developed a series of resistance mechanisms to face various external stresses. As understanding of the molecular mechanisms underlying plant resistance continues to deepen, exploring endogenous resistance in plants has become a hot topic in this field. Despite the multitude of studies on plant-induced resistance, how plants respond to stress under natural conditions remains relatively unclear. To address this gap, we investigated Chinese pine (Pinus tabuliformis) using pine caterpillar (Dendrolimus tabulaeformis) under natural conditions. Healthy Chinese pine trees, approximately 10 years old, were selected for studying induced resistance in Huangtuliangzi Forestry, Pingquan City, Chengde City, Hebei Province, China. Pine needles were collected at 2 h and 8 h after feeding stimulation (FS) via 10 pine caterpillars and leaf clipping control (LCC), to simulate mechanical damage caused by insect chewing for the quantification of plant hormones and transcriptome and metabolome assays. The results show that the different modes of treatments significantly influence the contents of JA and SA in time following treatment. Three types of differentially accumulated metabolites (DAMs) were found to be involved in the initial response, namely phenolic acids, lipids, and flavonoids. Weighted gene co-expression network analysis indicated that 722 differentially expressed genes (DEGs) are positively related to feeding stimulation and the specific enriched pathways are plant hormone signal transduction and flavonoid biosynthesis, among others. Two TIFY transcription factors (PtTIFY54 and PtTIFY22) and a MYB transcription factor (PtMYB26) were found to be involved in the interaction between plant hormones, mainly in the context of JA signal transduction and flavonoid biosynthesis. The results of this study provide an insight into how JA activates, serving as a reference for understanding the molecular mechanisms of resistance formation in conifers responding to mandibulate insects.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Tianhua Sun
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Jie Liu
- College of Agronomy, Hebei Agricultural University, Baoding 071000, China;
| | - Ruibo Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Yongjie Yu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Guona Zhou
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Junxia Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| | - Baojia Gao
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; (Y.Z.); (T.S.); (R.Z.); (Y.Y.); (G.Z.); (J.L.)
| |
Collapse
|
3
|
Vasquez A, Balakrishnan D, Ayala J, Loftin K, Louis J, Kariyat R. Brown midrib (BMR) and plant age impact fall armyworm (Spodoptera frugiperda) growth and development in sorghum-sudangrass (Sorghum x drummondii). Sci Rep 2024; 14:12649. [PMID: 38825611 PMCID: PMC11144704 DOI: 10.1038/s41598-024-63397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Economic losses from insect herbivory in agroecosystems has driven the development of integrated pest management strategies that reduce pest incidence and damage; however, traditional chemicals-based control is either being complemented or substituted with sustainable and integrated methods. Major sustainable pest management strategies revolve around improving host plant resistance, and one of these traits of interest is Brown midrib (BMR). Originally developed to increase nutritional value and ease of digestion for animal agriculture, BMR is a recessive plant gene usually found in annual grasses, including sorghum and sorghum-sudangrass hybrids. In sorghum-sudangrass, BMR expressed plants have lower amounts of lignin, which produces a less fibrous, more digestible crop, with possible implications for plant defense against herbivores- an area currently unexplored. Fall Armyworm (FAW; Spodoptera frugiperda) is a ruinous pest posing immense threat for sorghum producers by severely defoliating crops and being present in every plant stage. Using FAW, we tested the effect of seed treatment, BMR, and plant age on FAW growth, development, and plant defense responses in sorghum-sudangrass. Our results show that seed treatment did not affect growth or development, or herbivory. However, presence of BMR significantly reduced pupal mass relative to its non-BMR counterpart, alongside a significant reduction in adult mass. We also found that plant age was a major factor as FAW gained significantly less mass, had longer pupation times, and had lower pupal mass on the oldest plant stage explored, 60-days, compared to younger plants. These findings collectively show that pest management strategies should consider plant age, and that the effects of BMR on plant defenses should also be studied.
Collapse
Affiliation(s)
- Alejandro Vasquez
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jessica Ayala
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kelly Loftin
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
4
|
Kundu P, Grover S, Perez A, Raya Vaca JD, Kariyat R, Louis J. Sorghum defense responses to sequential attack by insect herbivores of different feeding guilds. PLANTA 2023; 258:35. [PMID: 37389680 DOI: 10.1007/s00425-023-04195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
MAIN CONCLUSION Insect herbivores of different feeding guilds induced sorghum defenses through differential mechanisms, regardless of the order of herbivore arrival on sorghum plants. Sorghum, one of the world's most important cereal crops, suffers severe yield losses due to attack by insects of different feeding guilds. In most instances, the emergence of these pests are not secluded incidents and are followed by another or can also co-infest host plants. Sugarcane aphid (SCA) and fall armyworm (FAW) are the two most important destructive pests of sorghum, which belongs to sap-sucking and chewing feeding guilds, respectively. While the order of the herbivore arriving on the plants has been found to alter the defense response to subsequent herbivores, this is seldom studied with herbivores from different feeding guilds. In this study, we investigated the effects of sequential herbivory of FAW and SCA on sorghum defense responses and their underlying mechanism(s). Sequential feeding on the sorghum RTx430 genotype by either FAW primed-SCA or SCA primed-FAW were monitored to unravel the mechanisms underlying defense priming, and its mode of action. Regardless of the order of herbivore arrival on sorghum RTx430 plants, significant defense induction was observed in the primed state compared to the non-primed condition, irrespective of their feeding guild. Additionally, gene expression and secondary metabolite analysis revealed differential modulation of the phenylpropanoid pathway upon insect attack by different feeding guilds. Our findings suggest that priming in sorghum plants upon sequential herbivory induces defense by the accumulation of the total flavonoids and lignin/salicylic acid in FAW primed-SCA and SCA primed-FAW interaction, respectively.
Collapse
Affiliation(s)
- Pritha Kundu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Adryenna Perez
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Juan D Raya Vaca
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
5
|
Grover S, Shinde S, Puri H, Palmer N, Sarath G, Sattler SE, Louis J. Dynamic regulation of phenylpropanoid pathway metabolites in modulating sorghum defense against fall armyworm. FRONTIERS IN PLANT SCIENCE 2022; 13:1019266. [PMID: 36507437 PMCID: PMC9732255 DOI: 10.3389/fpls.2022.1019266] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Plants undergo dynamic metabolic changes at the cellular level upon insect infestation to better defend themselves. Phenylpropanoids, a hub of secondary plant metabolites, encompass a wide range of compounds that can contribute to insect resistance. Here, the role of sorghum (Sorghum bicolor) phenylpropanoids in providing defense against the chewing herbivore, fall armyworm (FAW), Spodoptera frugiperda, was explored. We screened a panel of nested association mapping (NAM) founder lines against FAW and identified SC1345 and Ajabsido as most resistant and susceptible lines to FAW, respectively, compared to reference parent, RTx430. Gene expression and metabolomic studies suggested that FAW feeding suppressed the expression level of genes involved in monolignol biosynthetic pathway and their associated phenolic intermediates at 10 days post infestation. Further, SC1345 genotype displayed elevated levels of flavonoid compounds after FAW feeding for 10 days, suggesting a diversion of precursors from lignin biosynthesis to the flavonoid pathway. Additionally, bioassays with sorghum lines having altered levels of flavonoids provided genetic evidence that flavonoids are crucial in providing resistance against FAW. Finally, the application of FAW regurgitant elevated the expression of genes associated with the flavonoid pathway in the FAW-resistant SC1345 genotype. Overall, our study indicates that a dynamic regulation of the phenylpropanoid pathway in sorghum plants imparts resistance against FAW.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nathan Palmer
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, United States
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Deng R, Li W, Berhow MA, Jander G, Zhou S. Phenolic sucrose esters: evolution, regulation, biosynthesis, and biological functions. PLANT MOLECULAR BIOLOGY 2022; 109:369-383. [PMID: 33783685 DOI: 10.1007/s11103-021-01142-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Phenolic sucrose esters (PSEs) are a diverse group of specialized metabolites that are present in several angiosperm lineages. Phylogenetic reconstruction and structural variation suggest that these metabolites may have evolved independently in monocots and dicots. Constitutive variation in PSE abundance across plant organs and developmental stages is correlated with transcriptional regulation of the upstream phenylpropanoid pathway, whereas pathogen induction is regulated by stress-related phytohormones such as ethylene. Shared structural features of PSEs indicate that their biosynthesis may involve one or more hydroxycinnamoyl transferases and BAHD acetyltransferases, which could be identified by correlative analyses of multi-omics datasets. Elucidation of the core biosynthetic pathway of PSEs will be essential for more detailed studies of the biological function of these compounds and their potential medicinal and agricultural applications.
Collapse
Affiliation(s)
- Renyu Deng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 440307, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 440307, China
| | - Mark A Berhow
- Functional Foods Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL, 61604, USA
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 440307, China.
| |
Collapse
|
7
|
Gruss SM, Ghaste M, Widhalm JR, Tuinstra MR. Seedling growth and fall armyworm feeding preference influenced by dhurrin production in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1037-1047. [PMID: 35001177 DOI: 10.4231/3pqe-np07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 05/27/2023]
Abstract
Cyanogenic glucosides (CGs) play a key role in host-plant defense to insect feeding; however, the metabolic tradeoffs between synthesis of CGs and plant growth are not well understood. In this study, genetic mutants coupled with nondestructive phenotyping techniques were used to study the impact of the CG dhurrin on fall armyworm [Spodoptera frugiperda (J.E. Smith)] (FAW) feeding and plant growth in sorghum [Sorghum bicolor (L.) Moench]. A genetic mutation in CYP79A1 gene that disrupts dhurrin biosynthesis was used to develop sets of near-isogenic lines (NILs) with contrasting dhurrin contents in the Tx623 bmr6 genetic background. The NILs were evaluated for differences in plant growth and FAW feeding damage in replicated greenhouse and field trials. Greenhouse studies showed that dhurrin-free Tx623 bmr6 cyp79a1 plants grew more quickly than wild-type plants but were more susceptible to insect feeding based on changes in green plant area (GPA), total leaf area, and total dry weight over time. The NILs exhibited similar patterns of growth in field trials with significant differences in leaf area and dry weight of dhurrin-free plants between the infested and non-infested treatments. Taken together, these studies reveal a significant metabolic tradeoff between CG biosynthesis and plant growth in sorghum seedlings. Disruption of dhurrin biosynthesis produces plants with higher growth rates than wild-type plants but these plants have greater susceptibility to FAW feeding.
Collapse
Affiliation(s)
- Shelby M Gruss
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Manoj Ghaste
- Department of Horticulture and Landscape Architecture and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
8
|
Gruss SM, Ghaste M, Widhalm JR, Tuinstra MR. Seedling growth and fall armyworm feeding preference influenced by dhurrin production in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1037-1047. [PMID: 35001177 PMCID: PMC8942933 DOI: 10.1007/s00122-021-04017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 05/13/2023]
Abstract
Cyanogenic glucosides (CGs) play a key role in host-plant defense to insect feeding; however, the metabolic tradeoffs between synthesis of CGs and plant growth are not well understood. In this study, genetic mutants coupled with nondestructive phenotyping techniques were used to study the impact of the CG dhurrin on fall armyworm [Spodoptera frugiperda (J.E. Smith)] (FAW) feeding and plant growth in sorghum [Sorghum bicolor (L.) Moench]. A genetic mutation in CYP79A1 gene that disrupts dhurrin biosynthesis was used to develop sets of near-isogenic lines (NILs) with contrasting dhurrin contents in the Tx623 bmr6 genetic background. The NILs were evaluated for differences in plant growth and FAW feeding damage in replicated greenhouse and field trials. Greenhouse studies showed that dhurrin-free Tx623 bmr6 cyp79a1 plants grew more quickly than wild-type plants but were more susceptible to insect feeding based on changes in green plant area (GPA), total leaf area, and total dry weight over time. The NILs exhibited similar patterns of growth in field trials with significant differences in leaf area and dry weight of dhurrin-free plants between the infested and non-infested treatments. Taken together, these studies reveal a significant metabolic tradeoff between CG biosynthesis and plant growth in sorghum seedlings. Disruption of dhurrin biosynthesis produces plants with higher growth rates than wild-type plants but these plants have greater susceptibility to FAW feeding.
Collapse
Affiliation(s)
- Shelby M Gruss
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Manoj Ghaste
- Department of Horticulture and Landscape Architecture and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
9
|
Dillapiole in Piper holtonii as an Inhibitor of the Symbiotic Fungus Leucoagaricus gongylophorus of Leaf-Cutting Ants. J Chem Ecol 2020; 46:668-674. [PMID: 32173778 DOI: 10.1007/s10886-020-01170-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
Abstract
Plants of the Piperaceae family are studied for their diverse secondary metabolism with a vast array of compounds that act as chemical defense agents against herbivores. Of all the agricultural pests, the management of insects is a highly significant challenge in the Neotropics, and ants of the Attini tribe pose a major problem. Due to their symbiotic association with the fungus Leucoagaricus gongylophorus (Möller) Singer (Agaricaceae), the species of Atta and Acromyrmex have exhaustive foraging activity which has intensified as deforestation and monoculture farming have increased. The control of leaf-cutting ants is still carried out with synthetic products with negative consequences to the environment and human health. In search for natural and sustainable alternatives to synthetic pesticides, Piper holtonii C. DC. was selected among other plant species after field observations of the foraging activity of Atta cephalotes, which revealed that P. holtonii was never chosen by ants. In vitro evaluation of an ethanol extract of the leaves of P. holtonii resulted in promising inhibitory activity (IC50 102 ppm) against L. gongylophorus. Subsequently, bioassay-guided fractionation led to the isolation of the phenylpropanoid dillapiole, which was also detected in the essential oil. This compound demonstrated inhibition of the fungus with an IC50 of 38 ppm. Considering the symbiotic relationship between the Attini ants and L. gongylophorus, the negative effect on the survival of one of the organisms will affect the survival of the other, so dillapiole or standardized essential oil extracts of P. holtonii containing this active principle could be a unique and useful source as a control agent for leaf cutting-ants.
Collapse
|
10
|
Ali E, Liao X, Yang P, Mao K, Zhang X, Shakeel M, Salim AMA, Wan H, Li J. Sublethal effects of buprofezin on development and reproduction in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Sci Rep 2017; 7:16913. [PMID: 29209084 PMCID: PMC5717270 DOI: 10.1038/s41598-017-17190-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/23/2017] [Indexed: 11/24/2022] Open
Abstract
In the present study, the effects of sublethal concentrations of buprofezin on life-table traits of S. furcifera were evaluated for two consecutive generations (F0 and F1). Our results exhibited that the fecundity, life span (longevity) and hatchability of the F0 and F1 generations were significantly decreased at LC30 compared to the control. However, copulation was not significantly affected for the F0 or F1 generations at sublethal concentrations. The female life span was affected negatively at both treatments in F0 and at LC30 in F1, compared to the control. Furthermore, significant effects of the sublethal concentrations were found on the developmental rate of all instars except the 3rd instar of F1. However, the pre-adult period, total pre-oviposition period (TPOP) and adult pre-oviposition period (APOP) significantly increased in F1 individuals at LC30 and LC10 compared to the control. Our findings revealed that demographic characters (survival rate, intrinsic rate of increase (ri), finite rate of increase (λ), net reproductive rate (R0), and gross reproductive rate (GRR)) of the F1 generation (from F0 parents) significantly decreased compared to the untreated group; however, the generation time (T) increased at LC10. Therefore, the results suggested that buprofezin could adversely affect individuals in the successive generation.
Collapse
Affiliation(s)
- Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xun Liao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Peng Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiaolei Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Muhammad Shakeel
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Abdalla M A Salim
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
11
|
Scully ED, Gries T, Funnell-Harris DL, Xin Z, Kovacs FA, Vermerris W, Sattler SE. Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:136-49. [PMID: 26172142 DOI: 10.1111/jipb.12375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 05/23/2023]
Abstract
The presence of lignin reduces the quality of lignocellulosic biomass for forage materials and feedstock for biofuels. In C4 grasses, the brown midrib phenotype has been linked to mutations to genes in the monolignol biosynthesis pathway. For example, the Bmr6 gene in sorghum (Sorghum bicolor) has been previously shown to encode cinnamyl alcohol dehydrogenase (CAD), which catalyzes the final step of the monolignol biosynthesis pathway. Mutations in this gene have been shown to reduce the abundance of lignin, enhance digestibility, and improve saccharification efficiencies and ethanol yields. Nine sorghum lines harboring five different bmr6 alleles were identified in an EMS-mutagenized TILLING population. DNA sequencing of Bmr6 revealed that the majority of the mutations impacted evolutionarily conserved amino acids while three-dimensional structural modeling predicted that all of these alleles interfered with the enzyme's ability to bind with its NADPH cofactor. All of the new alleles reduced in vitro CAD activity levels and enhanced glucose yields following saccharification. Further, many of these lines were associated with higher reductions in acid detergent lignin compared to lines harboring the previously characterized bmr6-ref allele. These bmr6 lines represent new breeding tools for manipulating biomass composition to enhance forage and feedstock quality.
Collapse
Affiliation(s)
- Erin D Scully
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Tammy Gries
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Deanna L Funnell-Harris
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79414, USA
| | - Frank A Kovacs
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Scott E Sattler
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
12
|
Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, Karlen SD, Bukhman YV, Foster CE, Thrower N, Bruno LC, Moskvin OV, Johnson ET, Willhoit ME, Phutane M, Ralph J, Mansfield SD, Nicholson P, Sedbrook JC. Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4317-35. [PMID: 26093023 PMCID: PMC4493789 DOI: 10.1093/jxb/erv269] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid pathway in plants synthesizes a variety of structural and defence compounds, and is an important target in efforts to reduce cell wall lignin for improved biomass conversion to biofuels. Little is known concerning the trade-offs in grasses when perturbing the function of the first gene family in the pathway, PHENYLALANINE AMMONIA LYASE (PAL). Therefore, PAL isoforms in the model grass Brachypodium distachyon were targeted, by RNA interference (RNAi), and large reductions (up to 85%) in stem tissue transcript abundance for two of the eight putative BdPAL genes were identified. The cell walls of stems of BdPAL-knockdown plants had reductions of 43% in lignin and 57% in cell wall-bound ferulate, and a nearly 2-fold increase in the amounts of polysaccharide-derived carbohydrates released by thermochemical and hydrolytic enzymic partial digestion. PAL-knockdown plants exhibited delayed development and reduced root growth, along with increased susceptibilities to the fungal pathogens Fusarium culmorum and Magnaporthe oryzae. Surprisingly, these plants generally had wild-type (WT) resistances to caterpillar herbivory, drought, and ultraviolet light. RNA sequencing analyses revealed that the expression of genes associated with stress responses including ethylene biosynthesis and signalling were significantly altered in PAL knocked-down plants under non-challenging conditions. These data reveal that, although an attenuation of the phenylpropanoid pathway increases carbohydrate availability for biofuel, it can adversely affect plant growth and disease resistance to fungal pathogens. The data identify notable differences between the stress responses of these monocot pal mutants versus Arabidopsis (a dicot) pal mutants and provide insights into the challenges that may arise when deploying phenylpropanoid pathway-altered bioenergy crops.
Collapse
Affiliation(s)
- Cynthia L Cass
- School of Biological Sciences, Illinois State University, Normal, IL 61790 USA US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA
| | - Antoine Peraldi
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Patrick F Dowd
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, IL 61604, USA
| | - Yaseen Mottiar
- US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA Department of Wood Science, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Nicholas Santoro
- US Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Steven D Karlen
- US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA
| | - Yury V Bukhman
- US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA
| | - Cliff E Foster
- US Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Nick Thrower
- US Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Laura C Bruno
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Oleg V Moskvin
- US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA
| | - Eric T Johnson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, IL 61604, USA
| | - Megan E Willhoit
- School of Biological Sciences, Illinois State University, Normal, IL 61790 USA US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA
| | - Megha Phutane
- School of Biological Sciences, Illinois State University, Normal, IL 61790 USA US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA
| | - John Ralph
- US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA Department of Biochemistry, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Shawn D Mansfield
- US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA Department of Wood Science, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - John C Sedbrook
- School of Biological Sciences, Illinois State University, Normal, IL 61790 USA US Department of Energy Great Lakes Bioenergy Research Center, Madison, WI 53706, USA
| |
Collapse
|