1
|
Grajal-Puche A, Driver EM, Propper CR. Review: Abandoned mines as a resource or liability for wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171017. [PMID: 38369145 DOI: 10.1016/j.scitotenv.2024.171017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Abandoned Mine Lands (AMLs) are areas where previous mineral extraction or processing has occurred. Hundreds of thousands of AMLs exist within the United States. Contaminated runoff from AMLs can negatively affect the physiology and ecology of surrounding terrestrial and aquatic habitats and species and can be detrimental to human health. As a response, several U.S. federal and state agencies have launched programs to assess health risks associated with AMLs. In some cases, however, AMLs may be beneficial to specific wildlife taxa. There is a relative paucity of studies investigating the physiological and ecological impacts of AMLs on wildlife. We conducted a systematic review examining published scientific articles that assessed the negative and positive impacts of AMLs across invertebrate and vertebrate taxa. We also offer suggestions on evaluating AMLs to develop effective mitigation strategies that reduce their negative tole on human and wildlife communities. Peer-reviewed publications were screened across WebofScience, PubMed and Google Scholar databases. Abandoned mine lands were generally detrimental to wildlife, with adverse effects ranging from bioaccumulation of heavy metals to decreased ecological fitness. Conversely, AMLs were an overall benefit to imperiled bat populations and could serve as tools for conservation. Studies were unevenly distributed across different wildlife taxa groups, echoing the necessity for additional taxonomically diverse research. We suggest that standardized wildlife survey methods be used to assess how different species utilize AMLs. Federal and state agencies can use these surveys to establish effective remediation plans for individual AML sites and minimize the risks to both wildlife and humans.
Collapse
Affiliation(s)
- Alejandro Grajal-Puche
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86004, United States of America
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86004, United States of America.
| |
Collapse
|
2
|
Mammola S, Meierhofer MB, Borges PA, Colado R, Culver DC, Deharveng L, Delić T, Di Lorenzo T, Dražina T, Ferreira RL, Fiasca B, Fišer C, Galassi DMP, Garzoli L, Gerovasileiou V, Griebler C, Halse S, Howarth FG, Isaia M, Johnson JS, Komerički A, Martínez A, Milano F, Moldovan OT, Nanni V, Nicolosi G, Niemiller ML, Pallarés S, Pavlek M, Piano E, Pipan T, Sanchez‐Fernandez D, Santangeli A, Schmidt SI, Wynne JJ, Zagmajster M, Zakšek V, Cardoso P. Towards evidence-based conservation of subterranean ecosystems. Biol Rev Camb Philos Soc 2022; 97:1476-1510. [PMID: 35315207 PMCID: PMC9545027 DOI: 10.1111/brv.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History Luomus (LUOMUS)University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
| | - Paulo A.V. Borges
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| | - Raquel Colado
- Departament of Ecology and HidrologyUniversity of MurciaMurcia30100Spain
| | - David C. Culver
- Department of Environmental ScienceAmerican University4400 Massachusetts Avenue, N.WWashingtonDC20016U.S.A.
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, UPMC, EPHEMuseum National d'Histoire Naturelle, Sorbonne UniversitéParisFrance
| | - Teo Delić
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET‐CNR), National Research CouncilVia Madonna del Piano 10, 50019 Sesto FiorentinoFlorenceItaly
| | - Tvrtko Dražina
- Division of Zoology, Department of BiologyFaculty of Science, University of ZagrebRooseveltov Trg 6Zagreb10000Croatia
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of LavrasCampus universitário s/n, Aquenta SolLavrasMG37200‐900Brazil
| | - Barbara Fiasca
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Diana M. P. Galassi
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Laura Garzoli
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Vasilis Gerovasileiou
- Department of Environment, Faculty of EnvironmentIonian University, M. Minotou‐Giannopoulou strPanagoulaZakynthos29100Greece
- Hellenic Centre for Marine Research (HCMR), Institute of Marine BiologyBiotechnology and Aquaculture (IMBBC)Thalassocosmos, GournesCrete71500Greece
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of LimnologyUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Stuart Halse
- Bennelongia Environmental Consultants5 Bishop StreetJolimontWA6014Australia
| | | | - Marco Isaia
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Joseph S. Johnson
- Department of Biological SciencesOhio University57 Oxbow TrailAthensOH45701U.S.A.
| | - Ana Komerički
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Alejandro Martínez
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Filippo Milano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Oana T. Moldovan
- Emil Racovita Institute of SpeleologyClinicilor 5Cluj‐Napoca400006Romania
- Romanian Institute of Science and TechnologySaturn 24‐26Cluj‐Napoca400504Romania
| | - Veronica Nanni
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Matthew L. Niemiller
- Department of Biological SciencesThe University of Alabama in Huntsville301 Sparkman Drive NWHuntsvilleAL35899U.S.A.
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, CSICCalle de José Gutiérrez Abascal 2Madrid28006Spain
| | - Martina Pavlek
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
- Ruđer Bošković InstituteBijenička cesta 54Zagreb10000Croatia
| | - Elena Piano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Tanja Pipan
- ZRC SAZUKarst Research InstituteNovi trg 2Ljubljana1000Slovenia
- UNESCO Chair on Karst EducationUniversity of Nova GoricaGlavni trg 8Vipava5271Slovenia
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiViikinkaari 1Helsinki00014Finland
| | - Susanne I. Schmidt
- Institute of Hydrobiology, Biology Centre CASNa Sádkách 702/7České Budějovice370 05Czech Republic
- Department of Lake ResearchHelmholtz Centre for Environmental ResearchBrückstraße 3aMagdeburg39114Germany
| | - J. Judson Wynne
- Department of Biological SciencesCenter for Adaptable Western Landscapes, Box 5640, Northern Arizona UniversityFlagstaffAZ86011U.S.A.
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Valerija Zakšek
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| |
Collapse
|
3
|
Loeb SC, Winters EA. Changes in hibernating tricolored bat ( Perimyotis subflavus) roosting behavior in response to white-nose syndrome. Ecol Evol 2022; 12:e9045. [PMID: 35822112 PMCID: PMC9259850 DOI: 10.1002/ece3.9045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding animals' behavioral and physiological responses to pathogenic diseases is critical for management and conservation. One such disease, white-nose syndrome (WNS), has greatly affected bat populations throughout eastern North America leading to significant population declines in several species. Although tricolored bat (Perimyotis subflavus) populations have experienced significant declines, little research has been conducted on their responses to the disease, particularly in the southeastern United States. Our objective was to document changes in tricolored bat roost site use after the appearance of WNS in a hibernaculum in the southeastern U.S. and relate these to microsite temperatures, ambient conditions, and population trends. We censused a tricolored bat hibernaculum in northwestern South Carolina, USA, once each year between February 26 and March 2, 2014-2021, and recorded species, section of the tunnel, distance from the entrance, and wall temperature next to each bat. The number of tricolored bats in the hibernaculum dropped by 90.3% during the first 3 years after the arrival of WNS. However, numbers stabilized and slightly increased from 2018 to 2021. Prior to the arrival of WNS, 95.6% of tricolored bats roosted in the back portion of the tunnel that was the warmest. After the arrival of WNS, we observed a significant increase in the proportion of bats using the front, colder portions of the tunnel, particularly during the period of population stabilization and increase. Roost temperatures of bats were also positively associated with February external temperatures. Our results suggest that greater use of the colder sections of the tunnel by tricolored bats could have led to increased survival due to slower growth rates of the fungus that causes WNS in colder temperatures or decreased energetic costs associated with colder hibernation temperatures. Thus, management actions that provide cold hibernacula may be an option for long-term management of hibernacula, particularly in southern regions.
Collapse
Affiliation(s)
- Susan C. Loeb
- U.S. Forest ServiceSouthern Research StationClemsonSouth CarolinaUSA
| | - Eric A. Winters
- U.S. Forest ServiceSouthern Research StationClemsonSouth CarolinaUSA
| |
Collapse
|
5
|
Cable AB, Willcox EV, Leppanen C. Contaminant exposure as an additional stressor to bats affected by white-nose syndrome: current evidence and knowledge gaps. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:12-23. [PMID: 34625892 DOI: 10.1007/s10646-021-02475-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Bats are exposed to numerous threats including pollution and emerging diseases. In North America, the fungal disease white-nose syndrome (WNS) has caused declines in many bat species. While the mechanisms of WNS have received considerable research attention, possible influences of contaminants have not. Herein, we review what is known about contaminant exposure and toxicity for four species whose populations have been severely affected by WNS (Myotis sodalis, M. septentrionalis, M. lucifugus, and Perimyotis subflavus) and identify temporal and spatial data gaps. We determine that there is limited information about the effects of contaminants on bats, and many compounds that have been detected in these bat species have yet to be evaluated for toxicity. The four species examined were exposed to a wide variety of contaminants; however, large spatial and knowledge gaps limit our ability to evaluate if contaminants contribute to species-level declines and if contaminant exposure exacerbates infection by WNS.
Collapse
Affiliation(s)
- Ashleigh B Cable
- Department of Forestry, Wildlife, and Fisheries, 274 Ellington Plant Sciences, University of Tennessee, Knoxville, TN, 37996-1610, USA
| | - Emma V Willcox
- Department of Forestry, Wildlife, and Fisheries, 274 Ellington Plant Sciences, University of Tennessee, Knoxville, TN, 37996-1610, USA.
| | - Christy Leppanen
- Department of Ecology and Evolutionary Biology, 569 Dabney Hall, University of Tennessee, Knoxville, TN, 37996-1610, USA
- The Center for Tobacco Products, United States Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| |
Collapse
|
7
|
Johnson C, Brown DJ, Sanders C, Stihler CW. Long-term changes in occurrence, relative abundance, and reproductive fitness of bat species in relation to arrival of White-nose Syndrome in West Virginia, USA. Ecol Evol 2021; 11:12453-12467. [PMID: 34594512 PMCID: PMC8462164 DOI: 10.1002/ece3.7991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
White-nose syndrome (WNS) is a disease caused by the fungus Pseudogymnoascus destructans which has resulted in the deaths of millions of bats across eastern North America. To date, hibernacula counts have been the predominant means of tracking the spread and impact of this disease on bat populations. However, an understanding of the impacts of WNS on demographic parameters outside the winter season is critical to conservation and recovery of bat populations impacted by this disease. We used long-term monitoring data to examine WNS-related impacts to summer populations in West Virginia, where WNS has been documented since 2009. Using capture data from 290 mist-net sites surveyed from 2003 to 2019 on the Monongahela National Forest, we estimated temporal patterns in presence and relative abundance for each bat species. For species that exhibited a population-level response to WNS, we investigated post-WNS changes in adult female reproductive state and body mass. Myotis lucifugus (little brown bat), M. septentrionalis (northern long-eared bat), and Perimyotis subflavus (tri-colored bat) all showed significant decreases in presence and relative abundance during and following the introduction of WNS, while Eptesicus fuscus (big brown bat) and Lasiurus borealis (eastern red bat) responded positively during the WNS invasion. Probability of being reproductively active was not significantly different for any species, though a shift to earlier reproduction was estimated for E. fuscus and M. septentrionalis. For some species, body mass appeared to be influenced by the WNS invasion, but the response differed by species and reproductive state. Results suggest that continued long-term monitoring studies, additional research into impacts of this disease on the fitness of WNS survivors, and a focus on providing optimal nonwintering habitat may be valuable strategies for assessing and promoting recovery of WNS-affected bat populations.
Collapse
Affiliation(s)
- Catherine Johnson
- Monongahela National ForestU.S. Forest ServiceElkinsWest VirginiaUSA
- Region 1National Park ServiceNarragansettRhode IslandUSA
| | - Donald J. Brown
- School of Natural ResourcesWest Virginia UniversityMorgantownWest VirginiaUSA
- Northern Research StationU.S.D.A. Forest ServiceParsonsWest VirginiaUSA
| | | | - Craig W. Stihler
- West Virginia Division of Natural Resources (retired)ElkinsWest VirginiaUSA
| |
Collapse
|
8
|
Kurta A, Smith SM. Changes in Population Size and Clustering Behavior of Hibernating Bats in the Upper Peninsula of Michigan After Arrival of White-Nose Syndrome. Northeast Nat (Steuben) 2020. [DOI: 10.1656/045.027.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Allen Kurta
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197
| | - Steven M. Smith
- S.M. Smith Company, 1105 Westwood Avenue, Iron Mountain, MI 49801
| |
Collapse
|