1
|
Gao C, Gao X, Gao F, Du X, Wu S. A CRISPR/Cas9 screen in embryonic stem cells reveals that Mdm2 regulates totipotency exit. Commun Biol 2024; 7:809. [PMID: 38961268 PMCID: PMC11222520 DOI: 10.1038/s42003-024-06507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
During early embryonic development, the transition from totipotency to pluripotency is a fundamental and critical process for proper development. However, the regulatory mechanisms governing this transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this transition. Notably, our study revealed Mdm2 as a significant negative regulator of 2CLCs, as perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate through its impact on cell cycle progression and H3K27me3 epigenetic modifications. In summary, the results of our CRISPR/Cas9 screen have uncovered several genes with distinct functions in regulating totipotency and pluripotency at various levels, offering a valuable resource for potential targets in future molecular studies.
Collapse
Affiliation(s)
- Chen Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xin Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
2
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
3
|
Bhat AA, Afzal O, Afzal M, Gupta G, Thapa R, Ali H, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Samuel VP, Gubbiyappa SK, Subramaniyan V. MALAT1: A key regulator in lung cancer pathogenesis and therapeutic targeting. Pathol Res Pract 2024; 253:154991. [PMID: 38070223 DOI: 10.1016/j.prp.2023.154991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
Lung cancer remains a formidable global health burden, necessitating a comprehensive understanding of the underlying molecular mechanisms driving its progression. Recently, lncRNAs have become necessary controllers of various biological functions, including cancer development. MALAT1 has garnered significant attention due to its multifaceted role in lung cancer progression. Lung cancer, among other malignancies, upregulates MALAT1. Its overexpression has been associated with aggressive tumor behavior and poor patient prognosis. MALAT1 promotes cellular proliferation, epithelial-mesenchymal transition (EMT), and angiogenesis in lung cancer, collectively facilitating tumor growth and metastasis. Additionally, MALAT1 enhances cancer cell invasion by interacting with numerous signaling pathways. Furthermore, MALAT1 has been implicated in mediating drug resistance in lung cancer, contributing to the limited efficacy of conventional therapies. Recent advancements in molecular biology and high-throughput sequencing technologies have offered fresh perspectives into the regulatory networks of MALAT1 in lung cancer. It exerts its oncogenic effects by acting as a ceRNA to sponge microRNAs, thereby relieving their inhibitory effects on target genes. Moreover, MALAT1 also influences chromatin remodeling and post-translational modifications to modulate gene expression, further expanding its regulatory capabilities. This review sheds light on the multifaceted roles of MALAT1 in lung cancer progression, underscoring its potential as an innovative therapeutic target and diagnostic biomarker. Targeting MALAT1 alone or combined with existing therapies holds promise to mitigate lung cancer progression and improve patient outcomes.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
| | - Haider Ali
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | | | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
4
|
Pavlakis E, Neumann M, Merle N, Wieboldt R, Wanzel M, Ponath V, Pogge von Strandmann E, Elmshäuser S, Stiewe T. Mutant p53-ENTPD5 control of the calnexin/calreticulin cycle: a druggable target for inhibiting integrin-α5-driven metastasis. J Exp Clin Cancer Res 2023; 42:203. [PMID: 37563605 PMCID: PMC10413714 DOI: 10.1186/s13046-023-02785-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND TP53, encoding the tumor suppressor p53, is frequently mutated in various cancers, producing mutant p53 proteins (mutp53) which can exhibit neomorphic, gain-of-function properties. The latter transform p53 into an oncoprotein that promotes metastatic tumor progression via downstream effectors such as ENTPD5, an endoplasmic reticulum UDPase involved in the calnexin/calreticulin cycle of N-glycoprotein biosynthesis. Elucidating the mechanisms underlying the pro-metastatic functions of the mutp53-ENTPD5 axis is crucial for developing targeted therapies for aggressive metastatic cancer. METHODS We analyzed pancreatic, lung, and breast adenocarcinoma cells with p53 missense mutations to study the impact of mutp53 and ENTPD5 on the N-glycoproteins integrin-α5 (ITGA5) and integrin-β1 (ITGB1), which heterodimerize to form the key fibronectin receptor. We assessed the role of the mutp53-ENTPD5 axis in integrin-dependent tumor-stroma interactions and tumor cell motility using adhesion, migration, and invasion assays, identifying and validating therapeutic intervention targets. We employed an orthotopic xenograft model of pancreatic ductal adenocarcinoma to examine in vivo targeting of mutp53-ENTPD5-mediated ITGA5 regulation for cancer therapy. RESULTS Mutp53 depletion diminished ITGA5 and ITGB1 expression and impaired tumor cell adhesion, migration, and invasion, rescued by ENTPD5. The mutp53-ENTPD5 axis maintained ITGA5 expression and function via the calnexin/calreticulin cycle. Targeting this axis using ITGA5-blocking antibodies, α-glucosidase inhibitors, or pharmacological degradation of mutp53 by HSP90 inhibitors, such as Ganetespib, effectively inhibited ITGA5-mediated cancer cell motility in vitro. In the orthotopic xenograft model, Ganetespib reduced ITGA5 expression and metastasis in an ENTPD5-dependent manner. CONCLUSIONS The mutp53-ENTPD5 axis fosters ITGA5 and ITGB1 expression and tumor cell motility through the calnexin/calreticulin cycle, contributing to cancer metastasis. ITGA5-blocking antibodies or α-glucosidase inhibitors target this axis and represent potential therapeutic options worth exploring in preclinical models. The pharmacologic degradation of mutp53 by HSP90 inhibitors effectively blocks ENTPD5-ITGA5-mediated cancer cell motility and metastasis in vivo, warranting further clinical evaluation in p53-mutant cancers. This research underscores the significance of understanding the complex interplay between mutp53, ENTPD5, and the calnexin/calreticulin cycle in integrin-mediated metastatic tumor progression, offering valuable insights for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Evangelos Pavlakis
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Ronja Wieboldt
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, 35043, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
| | | | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, 35043, Germany.
- Genomics Core Facility, Philipps-University, 35043, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
5
|
Yi J, Tavana O, Li H, Wang D, Baer RJ, Gu W. Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy. Nat Commun 2023; 14:1941. [PMID: 37024504 PMCID: PMC10079682 DOI: 10.1038/s41467-023-37617-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Since Mdm2 (Mouse double minute 2) inhibitors show serious toxicity in clinic studies, different approaches to achieve therapeutic reactivation of p53-mediated tumor suppression in cancers need to be explored. Here, we identify the USP2 (ubiquitin specific peptidase 2)-VPRBP (viral protein R binding protein) axis as an important pathway for p53 regulation. Like Mdm2, VPRBP is a potent repressor of p53 but VPRBP stability is controlled by USP2. Interestingly, the USP2-VPRBP axis also regulates PD-L1 (programmed death-ligand 1) expression. Strikingly, the combination of a small-molecule USP2 inhibitor and anti-PD1 monoclonal antibody leads to complete regression of the tumors expressing wild-type p53. In contrast to Mdm2, knockout of Usp2 in mice has no obvious effect in normal tissues. Moreover, no obvious toxicity is observed upon the USP2 inhibitor treatment in vivo as Mdm2-mediated regulation of p53 remains intact. Our study reveals a promising strategy for p53-based therapy by circumventing the toxicity issue.
Collapse
Affiliation(s)
- Jingjie Yi
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Huan Li
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Donglai Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Richard J Baer
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|
7
|
Heijkants RC, Teunisse AFAS, de Jong D, Glinkina K, Mei H, Kielbasa SM, Szuhai K, Jochemsen AG. MDMX Regulates Transcriptional Activity of p53 and FOXO Proteins to Stimulate Proliferation of Melanoma Cells. Cancers (Basel) 2022; 14:cancers14184482. [PMID: 36139642 PMCID: PMC9496676 DOI: 10.3390/cancers14184482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We have investigated the transcriptional changes occurring in uveal and cutaneous melanoma cell lines upon depletion of MDMX (aka:MDM4). Computational analyses of the mRNAs/genes affected upon MDMX depletion determined that many were containing a p53-bindingsite, but even more contained a FOX recognition site(s). Since connections between MDM2 and FOXO1 had already been published, we investigated whether indeed a subset of the MDMX-regulated genes are dependent on FOXO1/FOXO3 expression. Indeed, a number of such target genes, i.e., PIK3IP1, MXD4 and ZMAT3, were found to be FOXO target genes in our cell models. Some of these genes were recently identified as indirect p53-target genes, and their expression was found to be regulated by RFX7 transcription factor, which was found activated upon pharmacological activation of p53, e.g., by Nutlin-3. However, a clear involvement of RFX7 in our model could not be established, but an interplay between FOXO and RFX7 factors seems evident. Abstract The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, while MDMX inhibits p53-activated transcription by shielding the p53 transactivation domain. Interestingly, the oncogenic functions of MDMX appear to be more wide-spread than inhibition of p53. The present study aimed to elucidate the MDMX-controlled transcriptome. Therefore, we depleted MDMX with four distinct shRNAs from a high MDMX expressing uveal melanoma cell line and determined the effect on the transcriptome by RNAseq. Biological function analyses indicate the inhibition of the cell cycle regulatory genes and stimulation of cell death activating genes upon MDMX depletion. Although the inhibition of p53 activity clearly contributes to the transcription regulation controlled by MDMX, it appeared that the transcriptional regulation of multiple genes did not only rely on p53 expression. Analysis of gene regulatory networks indicated a role for Forkhead box (FOX) transcription factors. Depletion of FOXO proteins partly prevented the transcriptional changes upon MDMX depletion. Furthermore, depletion of FOXO proteins relatively diminished the growth inhibition upon MDMX knockdown, although the knockdown of the FOXO transcription factors also reduces cell growth. In conclusion, the p53-independent oncogenic functions of MDMX could be partially explained by its regulation of FOXO activity.
Collapse
Affiliation(s)
- Renier C. Heijkants
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Danielle de Jong
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Szymon M. Kielbasa
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Pant V, Aryal NK, Xiong S, Chau GP, Fowlkes NW, Lozano G. Alterations of the MDM2 C-terminus differentially impact its function in vivo. Cancer Res 2022; 82:1313-1320. [PMID: 35078816 PMCID: PMC8983537 DOI: 10.1158/0008-5472.can-21-2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/10/2023]
Abstract
Murine double minute 2 (Mdm2) is the principal E3-ubiquitin ligase for p53 and contains a C2H2C4 type RING domain wherein the last cysteine residue is followed by an evolutionarily conserved 13 amino acid C-terminal tail. Previous studies have indicated that integrity of the C-terminal tail is critical for Mdm2 function. Recently, a mutation extending the MDM2 length by five amino acids was identified and associated with enhanced p53 response in fibroblasts and premature aging in a human patient. To investigate the importance of the conserved Mdm2 C-terminal length on p53 regulatory function in vivo, we engineered three novel mouse alleles using CRISPR-Cas9 technology. Genetic studies with these murine models showed that curtailing Mdm2 C-terminal length by even a single amino acid leads to p53-dependent embryonic lethality. Extension of the Mdm2 C-terminal length by five amino acids (QLTCL) yielded viable mice that are smaller in size, exhibit fertility problems, and have a shortened life span. Analysis of early passage mouse embryonic fibroblasts indicated impaired Mdm2 function correlates with enhanced p53 activity under stress conditions. Furthermore, analysis in mice showed tissue-specific alterations in p53 target gene expression and enhanced radiosensitivity. These results confirm the physiological importance of the evolutionarily conserved Mdm2 C-terminus in regulating p53 functions. SIGNIFICANCE This in vivo study highlights that alterations to the C-terminus of Mdm2 perturb its regulation of the tumor suppressor p53.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Neeraj K. Aryal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Current address: Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Gilda P Chau
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Corresponding author: Guillermina Lozano, PhD, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, Tel. 713 834 6386,
| |
Collapse
|
9
|
MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53. Proc Natl Acad Sci U S A 2021; 118:2102420118. [PMID: 34716260 DOI: 10.1073/pnas.2102420118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2-Murine Double Minute X (MDM2-MDMX) heterodimer. The role of MDM2-MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.
Collapse
|
10
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
11
|
Maor-Nof M, Shipony Z, Lopez-Gonzalez R, Nakayama L, Zhang YJ, Couthouis J, Blum JA, Castruita PA, Linares GR, Ruan K, Ramaswami G, Simon DJ, Nof A, Santana M, Han K, Sinnott-Armstrong N, Bassik MC, Geschwind DH, Tessier-Lavigne M, Attardi LD, Lloyd TE, Ichida JK, Gao FB, Greenleaf WJ, Yokoyama JS, Petrucelli L, Gitler AD. p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell 2021; 184:689-708.e20. [PMID: 33482083 PMCID: PMC7886018 DOI: 10.1016/j.cell.2020.12.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.
Collapse
Affiliation(s)
- Maya Maor-Nof
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Zohar Shipony
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia A Castruita
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel R Linares
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kai Ruan
- Department of Neurology, Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gokul Ramaswami
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Simon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Aviv Nof
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Manuel Santana
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Laura D Attardi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E Lloyd
- Department of Neurology, Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Humpton TJ, Nomura K, Weber J, Magnussen HM, Hock AK, Nixon C, Dhayade S, Stevenson D, Huang DT, Strathdee D, Blyth K, Vousden KH. Differential requirements for MDM2 E3 activity during embryogenesis and in adult mice. Genes Dev 2021; 35:117-132. [PMID: 33334825 PMCID: PMC7778261 DOI: 10.1101/gad.341875.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
The p53 tumor suppressor protein is a potent activator of proliferative arrest and cell death. In normal cells, this pathway is restrained by p53 protein degradation mediated by the E3-ubiquitin ligase activity of MDM2. Oncogenic stress releases p53 from MDM2 control, so activating the p53 response. However, many tumors that retain wild-type p53 inappropriately maintain the MDM2-p53 regulatory loop in order to continuously suppress p53 activity. We have shown previously that single point mutations in the human MDM2 RING finger domain prevent the interaction of MDM2 with the E2/ubiquitin complex, resulting in the loss of MDM2's E3 activity without preventing p53 binding. Here, we show that an analogous mouse MDM2 mutant (MDM2 I438K) restrains p53 sufficiently for normal growth but exhibits an enhanced stress response in vitro. In vivo, constitutive expression of MDM2 I438K leads to embryonic lethality that is rescued by p53 deletion, suggesting MDM2 I438K is not able to adequately control p53 function through development. However, the switch to I438K expression is tolerated in adult mice, sparing normal cells but allowing for an enhanced p53 response to DNA damage. Viewed as a proof of principle model for therapeutic development, our findings support an approach that would inhibit MDM2 E3 activity without preventing MDM2/p53 binding as a promising avenue for development of compounds to activate p53 in tumors with reduced on-target toxicities.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Koji Nomura
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Julia Weber
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Helge M Magnussen
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Andreas K Hock
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Sandeep Dhayade
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - David Stevenson
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | | |
Collapse
|
13
|
p53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo. Proc Natl Acad Sci U S A 2020; 117:23663-23673. [PMID: 32900967 DOI: 10.1073/pnas.2008474117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene that encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 chromatin immunoprecipitation (ChIP) sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes, which included Mdm2 but not p21 Global p53 activation caused a metaplastic phenotype in the pancreas that was missing in mice with acinar-specific p53 activation, suggesting non-cell-autonomous effects. The p53 cellular response at single-cell resolution in the intestine altered transcriptional cell state, leading to a proximal enterocyte population enriched for genes within oxidative phosphorylation pathways. In addition, a population of active CD8+ T cells was recruited. Combined, this study provides a comprehensive profile of the p53 transcriptional response in vivo, revealing both tissue-specific transcriptomes and a unique signature, which were integrated to induce both cell-autonomous and non-cell-autonomous responses and transcriptional plasticity.
Collapse
|
14
|
Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol 2020; 11:284-292. [PMID: 30500901 PMCID: PMC6487777 DOI: 10.1093/jmcb/mjy070] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
p53 plays a key role in tumor suppression. The tumor suppressive function of p53 has long been attributed to its ability to induce apoptosis, cell cycle arrest, and senescence in cells. However, recent studies suggest that other functions of p53 also contribute to its role as a tumor suppressor, such as its function in metabolic regulation. p53 regulates various metabolic pathways to maintain the metabolic homeostasis of cells and adapt cells to stress. In addition, recent studies have also shown that gain-of-function (GOF) mutant p53 proteins drive metabolic reprogramming in cancer cells, contributing to cancer progression. Further understanding of p53 and its GOF mutants in metabolism will provide new opportunities for cancer therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Hilliard SA, Li Y, Dixon A, El-Dahr SS. Mdm4 controls ureteric bud branching via regulation of p53 activity. Mech Dev 2020; 163:103616. [PMID: 32464196 DOI: 10.1016/j.mod.2020.103616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
The antagonism between Mdm2 and its close homolog Mdm4 (also known as MdmX) and p53 is vital for embryogenesis and organogenesis. Previously, we demonstrated that targeted disruption of Mdm2 in the Hoxb7+ ureteric bud (Ub) lineage, which gives rise to the renal collecting system, causes renal hypodysplasia culminating in perinatal lethality. In this study, we examine the unique role of Mdm4 in establishing the collecting duct system of the murine kidney. Hoxb7Cre driven loss of Mdm4 in the Ub lineage (UbMdm4-/-) disrupts branching morphogenesis and triggers UB cell apoptosis. UbMdm4-/- kidneys exhibit abnormally dilated Ub tips while the medulla is hypoplastic. These structural alterations result in secondary depletion of nephron progenitors and nascent nephrons. As a result, newborn UbMdm4-/- mice have hypo-dysplastic kidneys. Transcriptional profiling revealed downregulation of the Ret-tyrosine kinase pathway components, Gdnf, Wnt11, Sox8, Etv4 and Cxcr4 in the UbMdm4-/- mice relative to controls. Moreover, the expression levels of the canonical Wnt signaling members Axin2 and Wnt9b are downregulated. Mdm4 deletion upregulated p53 activity and p53-target gene expression including Cdkn1a (p21), Gdf15, Ccng1, PERP, and Fas. Germline loss of p53 in UbMdm4-/- mice largely rescues kidney development and terminal differentiation of the collecting duct. We conclude that Mdm4 plays a unique and vital role in Ub branching morphogenesis and collecting system development.
Collapse
Affiliation(s)
- Sylvia A Hilliard
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Yuwen Li
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Angelina Dixon
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Samir S El-Dahr
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America.
| |
Collapse
|
16
|
Zheng H, Yang G, Fu J, Chen Z, Yuan G. Mdm2 Promotes Odontoblast-like Differentiation by Ubiquitinating Dlx3 and p53. J Dent Res 2020; 99:320-328. [PMID: 31847675 DOI: 10.1177/0022034519893672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dentin is an important structural component of the tooth. Odontoblast differentiation is an essential biological process that guarantees normal dentin formation, which is precisely regulated by various proteins. Murine double minute 2 (Mdm2) is an E3 ubiquitin ligase, and it plays a pivotal role in the differentiation of different cell types, such as osteoblasts and myoblasts. However, whether Mdm2 plays a role in odontoblast differentiation remains unknown. Here, we investigated the spatiotemporal expression of Mdm2 by immunostaining and found that Mdm2 was highly expressed in the odontoblasts and slightly in the dental papilla cells of mouse incisors and molars. Gene knockdown and overexpression experiments verified that Mdm2 promoted the odontoblast-like differentiation of mouse dental papilla cells (mDPCs). Intranuclear colocalization and physical interaction between Mdm2 and distal-less 3 (Dlx3), a transcription factor important for odontoblast differentiation, was found during the odontoblast-like differentiation of mDPCs by double immunofluorescence and immunoprecipitation. Mdm2 was proved to monoubiquitinate Dlx3, which enhanced the expression of Dlx3 target gene Dspp. In addition, p53, the canonical substrate of Mdm2, was validated to be also ubiquitinated but degraded by Mdm2 during the odontoblast-like differentiation of mDPCs. Gene knockdown experiments confirmed that p53 inhibited the odontoblast-like differentiation of mDPCs. p53 and Mdm2 double knockdown partially rescued the reduced odontoblast-like differentiation by knockdown of Mdm2 alone. Taken together, our study revealed that Mdm2 promoted the odontoblast-like differentiation of mDPCs by ubiquitinating both Dlx3 and p53. On one hand, the monoubiquitination of Dlx3 by Mdm2 led to upregulation of Dspp, which is a marker of the odontoblast differentiation. On the other hand, ubiquitination of p53 by Mdm2 resulted in its degradation, which eliminated the inhibitory effect of p53 on the odontoblast-like differentiation of mDPCs.
Collapse
Affiliation(s)
- H Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Choi BK, Fujiwara K, Dayaram T, Darlington Y, Dickerson J, Goodell MA, Donehower LA. WIP1 dephosphorylation of p27 Kip1 Serine 140 destabilizes p27 Kip1 and reverses anti-proliferative effects of ATM phosphorylation. Cell Cycle 2020; 19:479-491. [PMID: 31959038 PMCID: PMC7100888 DOI: 10.1080/15384101.2020.1717025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 01/07/2023] Open
Abstract
The phosphoinositide-3-kinase like kinases (PIKK) such as ATM and ATR play a key role in initiating the cellular DNA damage response (DDR). One key ATM target is the cyclin-dependent kinase inhibitor p27Kip1 that promotes G1 arrest. ATM activates p27Kip1-induced arrest in part through phosphorylation of p27Kip1 at Serine 140. Here we show that this site is dephosphorylated by the type 2C serine/threonine phosphatase, WIP1 (Wildtype p53-Induced Phosphatase-1), encoded by the PPM1D gene. WIP1 has been shown to dephosphorylate numerous ATM target sites in DDR proteins, and its overexpression and/or mutation has often been associated with oncogenesis. We demonstrate that wildtype, but not phosphatase-dead WIP1, efficiently dephosphorylates p27Kip1 Ser140 both in vitro and in cells and that this dephosphorylation is sensitive to the WIP1-specific inhibitor GSK 2830371. Increased expression of wildtype WIP1 reduces stability of p27Kip1 while increased expression of similar amounts of phosphatase-dead WIP1 has no effect on p27Kip1 protein stability. Overexpression of wildtype p27Kip1 reduces cell proliferation and colony forming capability relative to the S140A (constitutively non-phosphorylated) form of p27. Thus, WIP1 plays a significant role in homeostatic modulation of p27Kip1 activity following activation by ATM.
Collapse
Affiliation(s)
- Byung-Kwon Choi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kenichiro Fujiwara
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Tajhal Dayaram
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yolanda Darlington
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Dickerson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A. Goodell
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence A. Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Zhou H, Zhu P, Wang J, Toan S, Ren J. DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther 2019; 4:56. [PMID: 31839999 PMCID: PMC6895206 DOI: 10.1038/s41392-019-0094-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/19/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel housekeeper of hepatic mitochondrial homeostasis outside the DNA repair process. In this study, DNA-PKcs was upregulated in the livers of mice that were exposed to alcohol; the expression of DNA-PKcs positively correlated with hepatic steatosis, fibrosis, apoptosis, and mitochondrial damage. Functional studies revealed that liver-specific DNA-PKcs knockout (DNA-PKcs LKO ) mice were protected from chronic ethanol-induced liver injury and mitochondrial damage. Mechanistic investigations established that DNA-PKcs promoted p53 activation, which elevated dynamin-related protein 1 (Drp1)-related mitochondrial fission but repressed FUN14 domain containing 1 (FUNDC1)-required mitophagy. Excessive fission and defective mitophagy triggered mtDNA damage, mitochondrial respiratory inhibition, mROS overproduction, cardiolipin oxidation, redox imbalance, calcium overload, and hepatic mitochondrial apoptosis. In contrast, the deletion of DNA-PKcs rescued these phenotypic alterations, which alleviated the susceptibility of hepatocytes to alcohol-induced cytotoxicity. Additionally, we also showed that orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) was the upstream signal for DNA-PKcs activation and that the genetic ablation of NR4A1 ameliorated the progression of alcohol-related liver disease (ARLD); these results were similar to those obtained in DNA-PKcs knockout mice. Collectively, our results identified the NR4A1/DNA-PKcs/p53 axis as a novel signaling pathway responsible for ARLD pathogenesis that acts by activating Drp1-related mitochondrial fission and restricting FUNDC1-required mitophagy. The findings have potential implications for new approaches for ARLD therapy.
Collapse
Affiliation(s)
- Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
| | - Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812 USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| |
Collapse
|
19
|
Singh S, Vaughan CA, Rabender C, Mikkelsen R, Deb S, Palit Deb S. DNA replication in progenitor cells and epithelial regeneration after lung injury requires the oncoprotein MDM2. JCI Insight 2019; 4:128194. [PMID: 31527309 PMCID: PMC6824310 DOI: 10.1172/jci.insight.128194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Depletion of epithelial cells after lung injury prompts proliferation and epithelial mesenchymal transition (EMT) of progenitor cells, and this repopulates the lost epithelial layer. To investigate the cell proliferative function of human oncoprotein MDM2, we generated mouse models targeting human MDM2 expression in either lung Club or alveolar cells after doxycycline treatment. We report that MDM2 expression in lung Club or alveolar cells activates DNA replication specifically in lung progenitor cells only after chemical- or radiation-induced lung injury, irrespective of their p53 status. Activation of DNA replication by MDM2 triggered by injury leads to proliferation of lung progenitor cells and restoration of the lost epithelial layers. Mouse lung with no Mdm2 allele loses its ability to replicate DNA, whereas loss of 1 Mdm2 allele compromises this function, demonstrating the requirement of endogenous MDM2. We show that the p53-independent ability of MDM2 to activate Akt signaling is essential for initiating DNA replication in lung progenitor cells. Furthermore, MDM2 activates the Notch signaling pathway and expression of EMT markers, indicative of epithelial regeneration. This is the first report to our knowledge demonstrating a direct p53-independent participation of MDM2 in progenitor cell proliferation and epithelial repair after lung injury, distinct from a p53-degrading antiapoptotic effect preventing injury.
Collapse
Affiliation(s)
- Shilpa Singh
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| | | | - Christopher Rabender
- VCU Massey Cancer Center, and
- Department of Radiation Oncology, Virginia Commonwealth, University, Richmond, Virginia, USA
| | - Ross Mikkelsen
- VCU Massey Cancer Center, and
- Department of Radiation Oncology, Virginia Commonwealth, University, Richmond, Virginia, USA
| | - Sumitra Deb
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| | - Swati Palit Deb
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| |
Collapse
|
20
|
Timofeev O, Klimovich B, Schneikert J, Wanzel M, Pavlakis E, Noll J, Mutlu S, Elmshäuser S, Nist A, Mernberger M, Lamp B, Wenig U, Brobeil A, Gattenlöhner S, Köhler K, Stiewe T. Residual apoptotic activity of a tumorigenic p53 mutant improves cancer therapy responses. EMBO J 2019; 38:e102096. [PMID: 31483066 PMCID: PMC6792016 DOI: 10.15252/embj.2019102096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Engineered p53 mutant mice are valuable tools for delineating p53 functions in tumor suppression and cancer therapy. Here, we have introduced the R178E mutation into the Trp53 gene of mice to specifically ablate the cooperative nature of p53 DNA binding. Trp53R178E mice show no detectable target gene regulation and, at first sight, are largely indistinguishable from Trp53−/− mice. Surprisingly, stabilization of p53R178E in Mdm2−/− mice nevertheless triggers extensive apoptosis, indicative of residual wild‐type activities. Although this apoptotic activity suffices to trigger lethality of Trp53R178E;Mdm2−/− embryos, it proves insufficient for suppression of spontaneous and oncogene‐driven tumorigenesis. Trp53R178E mice develop tumors indistinguishably from Trp53−/− mice and tumors retain and even stabilize the p53R178E protein, further attesting to the lack of significant tumor suppressor activity. However, Trp53R178E tumors exhibit remarkably better chemotherapy responses than Trp53−/− ones, resulting in enhanced eradication of p53‐mutated tumor cells. Together, this provides genetic proof‐of‐principle evidence that a p53 mutant can be highly tumorigenic and yet retain apoptotic activity which provides a survival benefit in the context of cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Boris Klimovich
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Jean Schneikert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany
| | | | - Julia Noll
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Samet Mutlu
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Boris Lamp
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Ulrich Wenig
- Institute of Pathology, Justus Liebig University, Giessen, Germany
| | | | | | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Genomics Core Facility, Philipps University, Marburg, Germany
| |
Collapse
|
21
|
Bowen ME, McClendon J, Long HK, Sorayya A, Van Nostrand JL, Wysocka J, Attardi LD. The Spatiotemporal Pattern and Intensity of p53 Activation Dictates Phenotypic Diversity in p53-Driven Developmental Syndromes. Dev Cell 2019; 50:212-228.e6. [PMID: 31178404 PMCID: PMC6650355 DOI: 10.1016/j.devcel.2019.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022]
Abstract
Inappropriate activation of the p53 transcription factor contributes to numerous developmental syndromes characterized by distinct constellations of phenotypes. How p53 drives exquisitely specific sets of symptoms in diverse syndromes, however, remains enigmatic. Here, we deconvolute the basis of p53-driven developmental syndromes by leveraging an array of mouse strains to modulate the spatial expression pattern, temporal profile, and magnitude of p53 activation during embryogenesis. We demonstrate that inappropriate p53 activation in the neural crest, facial ectoderm, anterior heart field, and endothelium induces distinct spectra of phenotypes. Moreover, altering the timing and degree of p53 hyperactivation substantially affects the phenotypic outcomes. Phenotypes are associated with p53-driven cell-cycle arrest or apoptosis, depending on the cell type, with gene expression programs, rather than extent of mitochondrial priming, largely governing the specific response. Together, our findings provide a critical framework for decoding the role of p53 as a mediator of diverse developmental syndromes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob McClendon
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah K Long
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aryo Sorayya
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeanine L Van Nostrand
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institue, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Sanz G, Singh M, Peuget S, Selivanova G. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol 2019; 11:586-599. [PMID: 31310659 PMCID: PMC6735775 DOI: 10.1093/jmcb/mjz075] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
p53 is the major tumor suppressor and the most frequently inactivated gene in cancer. p53 could be disabled either by mutations or by upstream negative regulators, including, but not limited to MDM2 and MDMX. p53 activity is required for the prevention as well as for the eradication of cancers. Restoration of p53 activity in mouse models leads to the suppression of established tumors of different origin. These findings provide a strong support to the anti-cancer strategy aimed for p53 reactivation. In this review, we summarize recent progress in the development of small molecules, which restore the tumor suppressor function of wild-type p53 and discuss their clinical advance. We discuss different aspects of p53-mediated response, which contribute to suppression of tumors, including non-canonical p53 activities, such as regulation of immune response. While targeting p53 inhibitors is a very promising approach, there are certain limitations and concerns that the intensive research and clinical evaluation of compounds will hopefully help to overcome.
Collapse
Affiliation(s)
- Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| |
Collapse
|
23
|
Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11:564-577. [PMID: 31282934 PMCID: PMC6736412 DOI: 10.1093/jmcb/mjz060] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The last 40 years have witnessed how p53 rose from a viral binding protein to a central factor in both stress responses and tumor suppression. The exquisite regulation of p53 functions is of vital importance for cell fate decisions. Among the multiple layers of mechanisms controlling p53 function, posttranslational modifications (PTMs) represent an efficient and precise way. Major p53 PTMs include phosphorylation, ubiquitination, acetylation, and methylation. Meanwhile, other PTMs like sumoylation, neddylation, O-GlcNAcylation, adenosine diphosphate (ADP)-ribosylation, hydroxylation, and β-hydroxybutyrylation are also shown to play various roles in p53 regulation. By independent action or interaction, PTMs affect p53 stability, conformation, localization, and binding partners. Deregulation of the PTM-related pathway is among the major causes of p53-associated developmental disorders or diseases, especially in cancers. This review focuses on the roles of different p53 modification types and shows how these modifications are orchestrated to produce various outcomes by modulating p53 activities or targeted to treat different diseases caused by p53 dysregulation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Bowen ME, Attardi LD. The role of p53 in developmental syndromes. J Mol Cell Biol 2019; 11:200-211. [PMID: 30624728 PMCID: PMC6478128 DOI: 10.1093/jmcb/mjy087] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/22/2018] [Accepted: 01/06/2019] [Indexed: 12/17/2022] Open
Abstract
While it is well appreciated that loss of the p53 tumor suppressor protein promotes cancer, growing evidence indicates that increased p53 activity underlies the developmental defects in a wide range of genetic syndromes. The inherited or de novo mutations that cause these syndromes affect diverse cellular processes, such as ribosome biogenesis, DNA repair, and centriole duplication, and analysis of human patient samples and mouse models demonstrates that disrupting these cellular processes can activate the p53 pathway. Importantly, many of the developmental defects in mouse models of these syndromes can be rescued by loss of p53, indicating that inappropriate p53 activation directly contributes to their pathogenesis. A role for p53 in driving developmental defects is further supported by the observation that mouse strains with broad p53 hyperactivation, due to mutations affecting p53 pathway components, display a host of tissue-specific developmental defects, including hematopoietic, neuronal, craniofacial, cardiovascular, and pigmentation defects. Furthermore, germline activating mutations in TP53 were recently identified in two human patients exhibiting bone marrow failure and other developmental defects. Studies in mice suggest that p53 drives developmental defects by inducing apoptosis, restraining proliferation, or modulating other developmental programs in a cell type-dependent manner. Here, we review the growing body of evidence from mouse models that implicates p53 as a driver of tissue-specific developmental defects in diverse genetic syndromes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology in the Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology in the Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
Li D, Tavana O, Sun SC, Gu W. Peli1 Modulates the Subcellular Localization and Activity of Mdmx. Cancer Res 2018; 78:2897-2910. [PMID: 29523541 PMCID: PMC5984691 DOI: 10.1158/0008-5472.can-17-3531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Mdm2 and Mdmx, both major repressors of p53 in human cancers, are predominantly localized to the nucleus and cytoplasm, respectively. The mechanism by which subcellular localization of Mdmx is regulated remains unclear. In this study, we identify the E3 ligase Peli1 as a major binding partner and regulator of Mdmx in human cells. Peli1 bound Mdmx in vitro and in vivo and promoted high levels of ubiquitination of Mdmx. Peli1-mediated ubiquitination was degradation-independent, promoting cytoplasmic localization of Mdmx, which in turn resulted in p53 activation. Consistent with this, knockdown or knockout Peli1 in human cancer cells induced nuclear localization of Mdmx and suppressed p53 activity. Myc-induced tumorigenesis was accelerated in Peli1-null mice and associated with downregulation of p53 function. Clinical samples of human cutaneous melanoma had decreased Peli1 expression, which was associated with poor overall survival. Together, these results demonstrate that Peli1 acts as a critical factor for the Mdmx-p53 axis by modulating the subcellular localization and activity of Mdmx, thus revealing a novel mechanism of Mdmx deregulation in human cancers.Significance: Peli1-mediated regulation of Mdmx, a major inhibitor of p53, provides critical insight into activation of p53 function in human cancers. Cancer Res; 78(11); 2897-910. ©2018 AACR.
Collapse
Affiliation(s)
- Dawei Li
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Omid Tavana
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Shao-Cong Sun
- Department of Immunology, the University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York.
| |
Collapse
|
26
|
Tackmann NR, Zhang Y. Mouse modelling of the MDM2/MDMX-p53 signalling axis. J Mol Cell Biol 2017; 9:34-44. [PMID: 28096294 PMCID: PMC5907827 DOI: 10.1093/jmcb/mjx006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/12/2017] [Indexed: 01/10/2023] Open
Abstract
It is evident that p53 activity is critical for tumour prevention and stress response through its transcriptional activation of genes affecting cellular senescence, apoptosis, cellular metabolism, and DNA repair. The regulation of p53 is highly complex, and MDM2 and MDMX are thought to be critical for deciding the fate of p53, both through inhibitory binding and post-translational modification. Many mouse models have been generated to study the regulation of p53 in vivo, and they have altered our interpretations of how p53 is regulated by MDM2 and MDMX. Although MDM2 is absolutely required for p53 regulation, certain functions are dispensable under unstressed conditions, including the ability of MDM2 to degrade p53. MDMX, on the other hand, may only be required in select situations, like embryogenesis. These models have also clarified how cellular stress signals modify the p53-inhibiting activities of MDM2 and MDMX in vivo. It is clear that more work will need to be performed to further understand the contexts for each of these signals and the requirements of various MDM2 and MDMX functions. Here, we will discuss what we have learned from mouse modelling of MDM2 and MDMX and underscore the ways in which these models could inform future therapies.
Collapse
Affiliation(s)
- Nicole R Tackmann
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yanping Zhang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou 221002, China
| |
Collapse
|
27
|
Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol 2017; 10:133. [PMID: 28673313 PMCID: PMC5496368 DOI: 10.1186/s13045-017-0500-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
The two murine double minute (MDM) family members MDM2 and MDMX are at the center of an intense clinical assessment as molecular target for the management of cancer. Indeed, the two proteins act as regulators of P53, a well-known key controller of the cell cycle regulation and cell proliferation that, when altered, plays a direct role on cancer development and progression. Several evidence demonstrated that functional aberrations of P53 in tumors are in most cases the consequence of alterations on the MDM2 and MDMX regulatory proteins, in particular in patients with hematological malignancies where TP53 shows a relatively low frequency of mutation while MDM2 and MDMX are frequently found amplified/overexpressed. The pharmacological targeting of these two P53-regulators in order to restore or increase P53 expression and activity represents therefore a strategy for cancer therapy. From the discovery of the Nutlins in 2004, several compounds have been developed and reported with the ability of targeting the P53-MDM2/X axis by inhibiting MDM2 and/or MDMX. From natural compounds up to small molecules and stapled peptides, these MDM2/X pharmacological inhibitors have been extensively studied, revealing different biological features and different rate of efficacy when tested in in vitro and in vivo experimental tumor models. The data/evidence coming from the preclinical experimentation have allowed the identification of the most promising molecules and the setting of clinical studies for their evaluation as monotherapy or in therapeutic combination with conventional chemotherapy or with innovative therapeutic protocols in different tumor settings. Preliminary results have been recently published reporting data about safety, tolerability, potential side effects, and efficacy of such therapeutic approaches. In this light, the aim of this review is to give an updated overview about the state of the art of the clinical evaluation of MDM2/X inhibitor compounds with a special attention to hematological malignancies and to the potential for the management of pediatric cancers.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy.
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| |
Collapse
|