1
|
Dantas-Torres F, de Sousa-Paula LC, Otranto D. The Rhipicephalus sanguineus group: updated list of species, geographical distribution, and vector competence. Parasit Vectors 2024; 17:540. [PMID: 39731169 DOI: 10.1186/s13071-024-06572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/05/2024] [Indexed: 12/29/2024] Open
Abstract
The Rhipicephalus sanguineus group is an assembly of species morphologically and phylogenetically related to Rhipicephalus sanguineus sensu stricto. The taxonomy and systematics of this species group have remained obscure for a long time, but extensive research conducted during the past two decades has closed many knowledge gaps. These research advancements culminated in the redescription of R. sanguineus sensu stricto, with subsequent revalidation of former synonyms (Rhipicephalus linnaei, Rhipicephalus rutilus, and Rhipicephalus secundus) and even the description of new species (Rhipicephalus afranicus and Rhipicephalus hibericus). With a much clearer picture of the taxonomy of these species, we present an updated list of species belonging to the R. sanguineus group, along with a review of their geographic distribution and vector role for various pathogens of animals and humans. We also identify knowledge gaps to be bridged in future studies.
Collapse
Affiliation(s)
- Filipe Dantas-Torres
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil.
| | - Lucas C de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, MT, USA
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Acuña-Zegarra MA, Tocto-Erazo MR, García-Mendoza CC, Olmos-Liceaga D. Presence and infestation waves of hematophagous arthropod species. Math Biosci 2024; 376:109282. [PMID: 39159891 DOI: 10.1016/j.mbs.2024.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
The invasion of hematophagous arthropod species in human settlements represents a threat, not only to the economy but also to the health system in general. Recent examples of this phenomenon were seen in Paris and Mexico City, evidencing the importance of understanding these dynamics. In this work, we present a reaction-diffusion model to describe the invasion dynamics of hematophagous arthropod species. The proposed model considers a denso-dependent growth rate and parameters related to the control of the invasive species. Our results illustrate the existence of two invasion levels (presence and infestation) within a region, depending on control parameter values. We also prove analytically the existence of the presence and infestation waves and show different theoretical types of invasion waves that result from varying control parameters. In addition, we present a condition threshold that determines whether or not an infestation occurs. Finally, we illustrate some results when considering the case of bedbugs and brown dog ticks as invasion species.
Collapse
Affiliation(s)
- M Adrian Acuña-Zegarra
- Departamento de Matemáticas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, 83000, Hermosillo, Sonora, Mexico.
| | - Mayra R Tocto-Erazo
- Departamento de Matemáticas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, 83000, Hermosillo, Sonora, Mexico.
| | - Claudio C García-Mendoza
- Departamento de Matemáticas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, 83000, Hermosillo, Sonora, Mexico.
| | - Daniel Olmos-Liceaga
- Departamento de Matemáticas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
3
|
Backus L, Foley P, Foley J. A compartment and metapopulation model of Rocky Mountain spotted fever in southwestern United States and northern Mexico. Infect Dis Model 2024; 9:713-727. [PMID: 38659493 PMCID: PMC11039326 DOI: 10.1016/j.idm.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a fatal tick-borne zoonotic disease that has emerged as an epidemic in western North America since the turn of the 21st century. Along the US south-western border and across northern Mexico, the brown dog tick, Rhipicephalus sanguineus, is responsible for spreading the disease between dogs and humans. The widespread nature of the disease and the ongoing epidemics contrast with historically sporadic patterns of the disease. Because dogs are amplifying hosts for the Rickettsia rickettsii bacteria, transmission dynamics between dogs and ticks are critical for understanding the epidemic. In this paper, we developed a compartment metapopulation model and used it to explore the dynamics and drivers of RMSF in dogs and brown dog ticks in a theoretical region in western North America. We discovered that there is an extended lag-as much as two years-between introduction of the pathogen to a naïve population and epidemic-level transmission, suggesting that infected ticks could disseminate extensively before disease is detected. A single large city-size population of dogs was sufficient to maintain the disease over a decade and serve as a source for disease in surrounding smaller towns. This model is a novel tool that can be used to identify high risk areas and key intervention points for epidemic RMSF spread by brown dog ticks.
Collapse
Affiliation(s)
- Laura Backus
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Patrick Foley
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Janet Foley
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Stone NE, Ballard R, Bourgeois RM, Pemberton GL, McDonough RF, Ruby MC, Backus LH, López-Pérez AM, Lemmer D, Koch Z, Brophy M, Paddock CD, Kersh GJ, Nicholson WL, Sahl JW, Busch JD, Salzer JS, Foley JE, Wagner DM. A mutation associated with resistance to synthetic pyrethroids is widespread in US populations of the tropical lineage of Rhipicephalus sanguineus s.l. Ticks Tick Borne Dis 2024; 15:102344. [PMID: 38643721 DOI: 10.1016/j.ttbdis.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The brown dog tick, Rhipicephalus sanguineus sensu lato (s.l.), is an important vector for Rickettsia rickettsii, causative agent of Rocky Mountain spotted fever. Current public health prevention and control efforts to protect people involve preventing tick infestations on domestic animals and in and around houses. Primary prevention tools rely on acaricides, often synthetic pyrethroids (SPs); resistance to this chemical class is widespread in ticks and other arthropods. Rhipicephalus sanguineus s.l. is a complex that likely contains multiple unique species and although the distribution of this complex is global, there are differences in morphology, ecology, and perhaps vector competence among these major lineages. Two major lineages within Rh. sanguineus s.l., commonly referred to as temperate and tropical, have been documented from multiple locations in North America, but are thought to occupy different ecological niches. To evaluate potential acaricide resistance and better define the distributions of the tropical and temperate lineages throughout the US and in northern Mexico, we employed a highly multiplexed amplicon sequencing approach to characterize sequence diversity at: 1) three loci within the voltage-gated sodium channel (VGSC) gene, which contains numerous genetic mutations associated with resistance to SPs; 2) a region of the gamma-aminobutyric acid-gated chloride channel gene (GABA-Cl) containing several mutations associated with dieldrin/fipronil resistance in other species; and 3) three mitochondrial genes (COI, 12S, and 16S). We utilized a geographically diverse set of Rh sanguineus s.l. collected from domestic pets in the US in 2013 and a smaller set of ticks collected from canines in Baja California, Mexico in 2021. We determined that a single nucleotide polymorphism (T2134C) in domain III segment 6 of the VGSC, which has previously been associated with SP resistance in Rh. sanguineus s.l., was widespread and abundant in tropical lineage ticks (>50 %) but absent from the temperate lineage, suggesting that resistance to SPs may be common in the tropical lineage. We found evidence of multiple copies of GABA-Cl in ticks from both lineages, with some copies containing mutations associated with fipronil resistance in other species, but the effects of these patterns on fipronil resistance in Rh. sanguineus s.l. are currently unknown. The tropical lineage was abundant and geographically widespread, accounting for 79 % of analyzed ticks and present at 13/14 collection sites. The temperate and tropical lineages co-occurred in four US states, and as far north as New York. None of the ticks we examined were positive for Rickettsia rickettsii or Rickettsia massiliae.
Collapse
Affiliation(s)
- Nathan E Stone
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States
| | - Rebecca Ballard
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States
| | - Reanna M Bourgeois
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States
| | - Grant L Pemberton
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States
| | - Ryelan F McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States
| | - Megan C Ruby
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States
| | - Laura H Backus
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Andrés M López-Pérez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States; Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Xalapa 91073, Mexico
| | - Darrin Lemmer
- Translational Genomics Research Institute (TGen North), 3051 West Shamrell Boulevard, Suite 106, Flagstaff, AZ 86005, United States
| | - Zane Koch
- Translational Genomics Research Institute (TGen North), 3051 West Shamrell Boulevard, Suite 106, Flagstaff, AZ 86005, United States
| | - Maureen Brophy
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, United States
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, United States
| | - Gilbert J Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, United States
| | - William L Nicholson
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, United States
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States
| | - Joseph D Busch
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States
| | - Johanna S Salzer
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, United States
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, United States.
| |
Collapse
|
5
|
Almazán C, Torres Rodríguez L, Alanazi AD, Šlapeta J. American mitogenome reference for the tropical brown dog tick, Rhipicephalus linnaei (Audouin, 1826). CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100194. [PMID: 39036815 PMCID: PMC11260381 DOI: 10.1016/j.crpvbd.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
The brown dog tick, Rhipicephalus linnaei (Audouin, 1826), is distributed across the American continent and is formerly known as the "tropical lineage". It belongs to the Rhipicephalus sanguineus (Latreille, 1806) species complex, referred to as R. sanguineus (sensu lato). Mitochondrial genome sequences are frequently used for the identification and represent reference material for field studies. In the present study, the entire mitochondrial genomes of R. linnaei (∼15 kb) collected from dogs in Mexico were sequenced and compared with available mitogenomes of R. sanguineus (s.l.). The mitochondrial genome is ∼90% identical to the reference genome of R. sanguineus (sensu stricto, former "temperate lineage") and > 99% identical to R. linnaei mitogenome derived from the neotype. Two additional mitogenomes were obtained and described as R. linnaei and R. turanicus from dogs in Saudi Arabia. The present study delivers a molecular reference for R. linnaei from America and complements R. linnaei mitogenomes from Africa, Asia and Australia. We propose to consider the complete mitogenome, as the reference for American R. linnaei, even when partial mitochondrial cox1, 12S rRNA or 16S rRNA genes are characterised.
Collapse
Affiliation(s)
- Consuelo Almazán
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Qro., 76140, Mexico
| | - Lorena Torres Rodríguez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km 5 Carretera Victoria-Mante, Cd. Victoria, Tam., CP, 87000, Mexico
| | - Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi, 11911, Saudi Arabia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
6
|
Myers S, Clow K, DeWinter S, Sundstrom K, Little S. Multiple species of canine Rhipicephalus complex detected in Canada. Vet Parasitol Reg Stud Reports 2024; 48:100976. [PMID: 38316502 DOI: 10.1016/j.vprsr.2023.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 02/07/2024]
Abstract
Multiple species of brown dog ticks have been described in the United States and the Caribbean: Rhipicephalus sanguineus sensu stricto (s.s.), also referred to as temperate lineage; R. linnaei (=tropical lineage); and R. rutilus (=southeastern Europe lineage) However, Rhipicephalus spp. are rarely recovered from dogs in Canada. To identify canine Rhipicephalus spp. in Canada and determine the influence of travel history on infestation, ticks morphologically identified as brown dog ticks (n = 93) collected from dogs (n = 13) in British Columbia, Ontario, and Québec, Canada were submitted with information regarding each dog's geographic location and travel history. Nucleic acid was extracted from available individual ticks (n = 86) and PCR was used to amplify sequences of a 12S rRNA mitochondrial gene fragment. Sequences were compared to published reference sequences of known species and a phylogenetic tree constructed. Twenty-three ticks (26.7%) consistent with R. linnaei were identified on seven dogs, including dogs from British Columbia and Ontario, with a median infestation intensity of 2 ticks/dog (mean = 3.3 ticks/dog). Sixty-one ticks (70.9%) consistent with R. sanguineus s.s. were found on two dogs from Québec and Ontario (median = 30.5 ticks/dog; mean = 30.5 ticks/dog). One dog from Ontario was infested with R. rutilus (n = 2) (2.3%). Species could not be determined for ticks from three dogs from Ontario and Québec. Most infested dogs (10/13; 76.9%) had a recent (< 1 month) international travel history. These data confirm that multiple species of canine Rhipicephalus are occasionally found in Canada and suggest introduction following travel is likely responsible for these infestations. Further analysis will allow for greater understanding of the range and diversity of canine Rhipicephalus spp. in North America and may reveal risk factors for infestation.
Collapse
Affiliation(s)
- Sarah Myers
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Katie Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sydney DeWinter
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kellee Sundstrom
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Susan Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
7
|
Harman PR, Mendell NL, Harman MM, Draney PA, Boyle AT, Gompper ME, Orr TJ, Bouyer DH, Teel PD, Hanley KA. Science abhors a surveillance vacuum: Detection of ticks and tick-borne pathogens in southern New Mexico through passive surveillance. PLoS One 2024; 19:e0292573. [PMID: 38295027 PMCID: PMC10830002 DOI: 10.1371/journal.pone.0292573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Robust tick surveillance enhances diagnosis and prevention of tick-borne pathogens, yet surveillance efforts in the United States are highly uneven, resulting in large surveillance vacuums, one of which spans the state of New Mexico. As part of a larger effort to fill this vacuum, we conducted both active and passive tick sampling in New Mexico, focusing on the southern portion of the state. We conducted active tick sampling using dragging and CO₂ trapping at 45 sites across Hidalgo, Doña Ana, Otero, and Eddy counties between June 2021 to May 2022. Sampling occurred intermittently, with at least one sampling event each month from June to October 2021, pausing in winter and resuming in March through May 2022. We also conducted opportunistic, passive tick sampling in 2021 and 2022 from animals harvested by hunters or captured or collected by researchers and animals housed in animal hospitals, shelters, and farms. All pools of ticks were screened for Rickettsia rickettsii, Rickettsia parkeri, Rickettsia amblyommatis, Ehrlichia ewingii, and Ehrlichia chaffeensis. Active sampling yielded no ticks. Passive sampling yielded 497 ticks comprising Carios kelleyi from pallid bats, Rhipicephalus sanguineus from dogs, mule deer, and Rocky Mountain elk, Otobius megnini from dogs, cats, horses, and Coues deer, Dermacentor parumapertus from dogs and black-tailed jackrabbits, Dermacentor albipictus from domesticated cats, mule deer and Rocky Mountain elk, and Dermacentor spp. from American black bear, Rocky Mountain elk, and mule deer. One pool of D. parumapterus from a black-tailed jackrabbit in Luna County tested positive for R. parkeri, an agent of spotted fever rickettsiosis. Additionally, a spotted fever group Rickettsia was detected in 6 of 7 C. kelleyi pools. Two ticks showed morphological abnormalities; however, these samples did not test positive for any of the target pathogens, and the cause of the abnormalities is unknown. Passive surveillance yielded five identified species of ticks from three domestic and six wild mammal species. Our findings update tick distributions and inform the public, medical, and veterinary communities of the potential tick-borne pathogens present in southern New Mexico.
Collapse
Affiliation(s)
- Paige R. Harman
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nicole L. Mendell
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maysee M. Harman
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Puck A. Draney
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Anna T. Boyle
- Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Matthew E. Gompper
- Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Teri J. Orr
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Donald H. Bouyer
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pete D. Teel
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
8
|
Almazán C, Reyes de Luna G, Tinoco-Gracia L, González-Álvarez VH, Zając Z, Kulisz J, Woźniak A, Cabezas-Cruz A, Mosqueda J. Morphological and molecular identification of the brown dog tick in Mexico. Vet Parasitol Reg Stud Reports 2023; 44:100908. [PMID: 37652627 DOI: 10.1016/j.vprsr.2023.100908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Ticks of the Rhipicephalus sanguineus complex are known as the brown dog ticks. This complex groups at least 12 species of ticks that are distributed worldwide. On the American continents, R. sanguineus sensu stricto (s.s.), is distributed in temperate areas, while Rhipicephalus sanguineus sensu lato (s.l.), also called "tropical lineage" is distributed in tropical regions. Previous analyses of brown dog ticks from Mexico have identified the so-called tropical lineage and the country generally has a climate more favorable for these ticks (> 20o C in average). In addition, some pathogens thought to be transmitted by this lineage (such as Ehrlichia canis, and Rickettsia rickettsii) are prevalent in Mexico. Herein we aim to contribute to the study of brown dog ticks by providing morphological identification and molecular analysis of mt 12S rDNA and 16S rDNA sequences from ticks collected from 12 states in Mexico. Our results indicate that the tropical lineage of R. sanguineus s.l., recently redescribed as R. linnaei is widely distributed in Mexico.
Collapse
Affiliation(s)
- Consuelo Almazán
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro; Querétaro, Qro. 76140, Mexico.
| | - Gilberto Reyes de Luna
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro; Querétaro, Qro. 76140, Mexico.
| | - Luis Tinoco-Gracia
- Laboratorio de Salud Pública Veterinaria, Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali, BC, Mexico.
| | - Vicente Homero González-Álvarez
- Facultad de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero, Carretera Acapulco-Pinotepa Nacional Km. 197, Cuajinicuilapa, Gro. 41940, Mexico.
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 st, 20-080 Lublin, Poland.
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 st, 20-080 Lublin, Poland.
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 st, 20-080 Lublin, Poland.
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94706 Maisons-Alfort, France.
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro; Querétaro, Qro. 76140, Mexico.
| |
Collapse
|
9
|
Zygner W, Gójska-Zygner O, Bartosik J, Górski P, Karabowicz J, Kotomski G, Norbury LJ. Canine Babesiosis Caused by Large Babesia Species: Global Prevalence and Risk Factors-A Review. Animals (Basel) 2023; 13:2612. [PMID: 37627403 PMCID: PMC10451873 DOI: 10.3390/ani13162612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Canine babesiosis is a disease caused by protozoan pathogens belonging to the genus Babesia. Four species of large Babesia cause canine babesiosis (B. canis, B. rossi, B. vogeli, and the informally named B. coco). Although canine babesiosis has a worldwide distribution, different species occur in specific regions: B. rossi in sub-Saharan Africa, B. canis in Europe and Asia, and B. coco in the Eastern Atlantic United States, while B. vogeli occurs in Africa, southern parts of Europe and Asia, northern Australia, southern regions of North America, and in South America. B. vogeli is the most prevalent large Babesia species globally. This results from its wide range of monotropic vector species, the mild or subclinical nature of infections, and likely the longest evolutionary association with dogs. The most important risk factors for infection by large Babesia spp. include living in rural areas, kennels or animal shelters, or regions endemic for the infection, the season of the year (which is associated with increased tick activity), infestation with ticks, and lack of treatment with acaricides.
Collapse
Affiliation(s)
- Wojciech Zygner
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.B.); (P.G.); (J.K.)
| | - Olga Gójska-Zygner
- Labros Veterinary Clinic, Św. Bonifacego 92, 02-940 Warsaw, Poland; (O.G.-Z.); (G.K.)
| | - Justyna Bartosik
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.B.); (P.G.); (J.K.)
| | - Paweł Górski
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.B.); (P.G.); (J.K.)
| | - Justyna Karabowicz
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.B.); (P.G.); (J.K.)
| | - Grzegorz Kotomski
- Labros Veterinary Clinic, Św. Bonifacego 92, 02-940 Warsaw, Poland; (O.G.-Z.); (G.K.)
| | - Luke J. Norbury
- Department of Biosciences and Food Technology, School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
10
|
Moo-Llanes DA, Sánchez-Montes S, López-Ordoñez T, Dzul-Rosado K, Segura-Trejo D, Salceda-Sánchez B, Danis-Lozano R. Comparison of Climate Change Scenarios of Rhipicephalus sanguineus sensu lato (Latreille 1806) from México and the Boarders with Central America and the United States. Trop Med Infect Dis 2023; 8:307. [PMID: 37368725 PMCID: PMC10301199 DOI: 10.3390/tropicalmed8060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In America, the presence of Rhipicephalus sanguineus sensu stricto and Rhipicephalus linnaei has been confirmed. Both species are found in sympatry in the southern United States, northern Mexico, southern Brazil, and Argentina. The objective of this work is to evaluate the projection of the potential distribution of the ecological niche of Rhipicephalus sanguineus sensu lato in two climate change scenarios in Mexico and the border with Central America and the United States. Initially, a database of personal collections of the authors, GBIF, Institute of Epidemiological Diagnosis and Reference, and scientific articles was built. The ENMs were projected for the current period and two future scenarios: RCP and SSP used for the kuenm R package, the ecological niche of R. sanguineus s.l. It is distributed throughout the Mexico and Texas (United States), along with the border areas between Central America, Mexico, and the United States. Finally, it is observed that the ecological niche of R. sanguineus s.l. in the current period coincides in three degrees with the routes of human migration. Based on this information, and mainly on the flow of migrants from Central America to the United States, the risk of a greater gene flow in this area increases, so the risk relating to this border is a latent point that must be analyzed.
Collapse
Affiliation(s)
- David A. Moo-Llanes
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Mexico; (D.A.M.-L.); (T.L.-O.)
| | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.S.-M.); (D.S.-T.)
- Facultad de Ciencias Biológicas y Agropecuarias Región Tuxpán, Universidad Veracruzana, Tuxpán de Rodríguez Cano 92870, Mexico
| | - Teresa López-Ordoñez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Mexico; (D.A.M.-L.); (T.L.-O.)
| | - Karla Dzul-Rosado
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatan, Merida 97000, Mexico;
| | - Daniela Segura-Trejo
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.S.-M.); (D.S.-T.)
| | - Beatriz Salceda-Sánchez
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Ciudad de México 01480, Mexico;
| | - Rogelio Danis-Lozano
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Mexico; (D.A.M.-L.); (T.L.-O.)
| |
Collapse
|