1
|
Sasmaz HK, Adal E, Kadiroğlu P, Selli S, Uzlasir T, Kelebek H. Optimization of complex coacervation parameters for the production of encapsulated black garlic using response surface methodology. J Food Sci 2023; 88:4424-4439. [PMID: 37786327 DOI: 10.1111/1750-3841.16768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
The purpose of this study was to optimize black garlic encapsulation parameters (core/coating ratio, extract concentration, and coacervate/maltodextrin [MD] ratio) using central composite design of the response surface methodology based on encapsulation efficiency (EE) (%). The optimum parameters were determined as 4.0 for the coating material/core ratio, 50% for the extract concentration, and 6.0 for the MD/coacervate ratio depending on the EE (%). The antioxidant activity values were determined as 101 and 134 µmol Trolox/100 g dry weight (DW) for the 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods, respectively, whereas the total phenolic content was 49 mg gallic acid equivalent/100 g DW for the encapsulated black garlic samples. S-Allyl-l-cysteine (SAC), γ-l-glutamyl-SAC (GSAC), γ-l-glutamyl-(S)-trans-1-propenyl-l-cysteine, and allicin were the organosulfur (OS) compounds determined in the samples. The SAC concentration of the encapsulated black garlic samples was determined as 22.36 mg/g, whereas the GSAC content was found at a lower concentration (0.33 mg/g) compared to SAC. The allicin content was quantified to be 0.31 mg/g. The encapsulated samples were also characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The FT-IR analysis revealed specific functional groups, including hydroxyl, carbonyl, and glycosidic linkage. The interaction between lentil protein isolate and pectin was strong enough to encourage capsule formation as visualized in the SEM images. This study shows the potential of black garlic coacervates as a functional ingredient for the food industry due to their stability, solubility, and preservation of OS and antioxidant compounds.
Collapse
Affiliation(s)
- Hatice Kubra Sasmaz
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Eda Adal
- Faculty of Tourism, Gastronomy and Culinary Arts, Iskenderun Technical University, Hatay, Turkey
| | - Pınar Kadiroğlu
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Turkan Uzlasir
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
2
|
Phytochemicals from Red Onion, Grown with Eco-Sustainable Fertilizers, Protect Mammalian Cells from Oxidative Stress, Increasing Their Viability. Molecules 2022; 27:molecules27196365. [PMID: 36234903 PMCID: PMC9571596 DOI: 10.3390/molecules27196365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Red onion, a species of great economic importance rich in phytochemicals (bioactive compounds) known for its medicinal properties, was fertilized with sulphur-bentonite enriched with orange residue or olive pomace, with the aim of producing onion enriched in health beneficial compounds. There is a worldwide great demand of minimally processed food or food ingredients with functional properties because of a new awareness of how important healthy functional nutrition is in life. Phytochemicals have the capacity to regulate most of the metabolic processes resulting in health benefits. Red onion bioactive compound quantity and quality can vary according to cultivation practices. The main aims of the current research were to determine the chemical characteristics of the crude extracts from red onion bulbs differently fertilized and to evaluate their biological activity in normal and oxidative stress conditions. The lyophilized onion bulbs have been tested in vitro on two cellular models, i.e., the H9c2 rat cardiomyoblast cell line and primary human dermal fibroblasts, in terms of viability and oxygen radical homeostasis. The results evidenced different phytochemical compositions and antioxidant activities of the extracts obtained from red onions differently fertilized. Sulphur-bentonite fertilizers containing orange waste and olive pomace positively affected the red onion quality with respect to the red onion control, evidencing that sulphur-bentonite-organic fertilization was able to stimulate plant a secondary metabolism inducing the production of phytochemicals with healthy functions. A positive effect of the extracts from red onions treated with fertilizers—in particular, with those containing orange waste, such as the reduction of oxidative stress and induction of cell viability of H9c2 and human fibroblasts—was observed, showing a concentration- and time-dependent profile. The results evidenced that the positive effects were related to the phenols and, in particular, to chlorogenic and p-coumaric acids and to the flavonol kaempferol, which were more present in red onion treated with low orange residue than in the other treated ones.
Collapse
|
3
|
Tedeschi P, Nigro M, Travagli A, Catani M, Cavazzini A, Merighi S, Gessi S. Therapeutic Potential of Allicin and Aged Garlic Extract in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23136950. [PMID: 35805955 PMCID: PMC9266652 DOI: 10.3390/ijms23136950] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities. In light of these effects, garlic and its components have been examined in experimental models of Alzheimer’s disease (AD), the most common form of dementia without therapy, and a growing health concern in aging societies. With the aim of offering an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory.
Collapse
Affiliation(s)
- Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
- Correspondence: ; Tel.: +39-0532-455434
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| |
Collapse
|
4
|
Sagar NA, Pareek S, Benkeblia N, Xiao J. Onion (
Allium cepa
L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Noureddine Benkeblia
- Department of Life Sciences/The Biotechnology Centre The University of the West Indies Kingston Jamaica
| | - Jianbo Xiao
- Nutrition and Bromatology Group Department of Analytical and Food Chemistry Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
5
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
6
|
Lu Y, Shao M, Xiang H, Zheng P, Wu T, Ji G. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis. Food Funct 2021; 11:10058-10069. [PMID: 33135718 DOI: 10.1039/d0fo02123g] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kaempferol has been confirmed to be effective in improving metabolic diseases such as diabetes and obesity. However, its effect and mechanism in nonalcoholic steatohepatitis (NASH) are unclear. We aim to confirm whether kaempferol could improve NASH and find the corresponding differential genes and metabolites. Transcriptomics combined with metabolomics was used to investigate the alterations in genes and metabolites expression after kaempferol treatment in mice with high-fat-diet-induced NASH. The results showed that kaempferol reduced the level of alanine transaminase (ALT), low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) in serum and triglyceride (TG), lipid droplets, and inflammatory cell infiltration in liver. Further, 277 differentially expressed genes (DEGs) were identified through liver transcriptomics and the five most obvious DEGs were found to be CYP2b9, Cyp4a12b, Mup17, Mup7, and Mup16, which revealed that HFD induced fatty acid degradation, ribosome, and glyoxylic acid and dicarboxylic acid metabolism. Nine serum metabolites (methylcysteine, l-tryptophan, adrenic acid, d-2-hydroxyglutaric acid, tartaric acid, p-cresol sulfate, l-alanine, l-tryosine, and glutaconic acid) and 3 liver differential metabolites (gallic acid, γ-lindenic acid, and l-phenylalanine) were also identified, while the pathways were mainly involved in phenylalanine, tyrosine, and tryptophan biosynthesis; and phenylalanine metabolism. Integrating transcriptomics and metabolomics analyses indicated that kaempferol possesses the ability to improve NASH associated with energy metabolism, lipid metabolism, oxidative stress, and inflammation-related pathways. This study provides a powerful means of multiomics data integration and reveals the potent therapy and biomarkers for kaempferol.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | | | | | | | | | | |
Collapse
|
7
|
Zarei I, Baxter BA, Oppel RC, Borresen EC, Brown RJ, Ryan EP. Plasma and Urine Metabolite Profiles Impacted by Increased Dietary Navy Bean Intake in Colorectal Cancer Survivors: A Randomized-Controlled Trial. Cancer Prev Res (Phila) 2020; 14:497-508. [PMID: 33361317 DOI: 10.1158/1940-6207.capr-20-0270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Navy beans contain bioactive phytochemicals with colon cancer prevention properties as demonstrated in carcinogen-induced animal models. Human studies support that dietary navy bean intake modulates metabolism by the gut microbiome. This study investigated the effect of navy bean ingestion on plasma and urine metabolite profiles of overweight and obese colorectal cancer survivors. Twenty participants completed a single-blinded, randomized-controlled dietary intervention with precooked navy beans (35 g bean powder/day) or control (0 g/day) for 4 weeks. Plasma and urine were collected at baseline, 2 weeks, and 4 weeks following consumption. Nontargeted metabolomics was applied to study meals and snacks, navy beans, plasma, and urine. Increased navy bean consumption was hypothesized to (i) delineate dietary biomarkers and (ii) promote metabolic shifts relevant for cancer protection in the plasma and urine metabolome. At 4 weeks, 16 plasma and 16 urine metabolites were significantly different in the navy bean intervention group compared with placebo control (P < 0.05). Increased plasma 2,3-dihydroxy-2-methylbutyrate (1.34-fold), S-methylcysteine (1.92-fold), and pipecolate (3.89-fold), and urine S-adenosylhomocysteine (2.09-fold) and cysteine (1.60-fold) represent metabolites with cancer-protective actions following navy bean consumption. Diet-derived metabolites were detected in plasma or urine and confirmed for presence in the navy bean intervention meals and snacks. These included 3-(4-hydroxyphenyl)propionate, betaine, pipecolate, S-methylcysteine, choline, eicosapentaenoate (20:5n3), benzoate, S-adenosylhomocysteine, N-delta-acetylornithine, cysteine, 3-(4-hydroxyphenyl)lactate, gentisate, hippurate, 4-hydroxyhippurate, and salicylate. The navy bean dietary intervention for 4 weeks showed changes to pathways of metabolic importance to colorectal cancer prevention and merit continued attention for dietary modulation in future high-risk cohort investigations. PREVENTION RELEVANCE: This clinical study suggests that increased consumption of navy beans would deliver bioactive metabolites to individuals at high risk for colorectal cancer recurrence and produce metabolic shifts in plasma and urine profiles.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Renee C Oppel
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Regina J Brown
- University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.
| |
Collapse
|
8
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
9
|
Subramanian MS, Nandagopal MS G, Amin Nordin S, Thilakavathy K, Joseph N. Prevailing Knowledge on the Bioavailability and Biological Activities of Sulphur Compounds from Alliums: A Potential Drug Candidate. Molecules 2020; 25:molecules25184111. [PMID: 32916777 PMCID: PMC7570905 DOI: 10.3390/molecules25184111] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Allium sativum (garlic) is widely known and is consumed as a natural prophylactic worldwide. It produces more than 200 identified chemical compounds, with more than 20 different kinds of sulfide compounds. The sulfide compounds particularly are proven to contribute to its various biological roles and pharmacological properties such as antimicrobial, antithrombotic, hypoglycemic, antitumour, and hypolipidemic. Therefore, it is often referred as disease-preventive food. Sulphur-containing compounds from A. sativum are derivatives of S-alkenyl-l-cysteine sulfoxides, ajoene molecules, thiosulfinates, sulfides, and S-allylcysteine. This review presents an overview of the water-soluble and oil-soluble sulphur based phytochemical compounds present in garlic, highlighting their mechanism of action in treating various health conditions. However, its role as a therapeutic agent should be extensively studied as it depends on factors such as the effective dosage and the suitable method of preparation.
Collapse
Affiliation(s)
- Murugan Sesha Subramanian
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.S.S.); (S.A.N.)
| | - Giri Nandagopal MS
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India;
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.S.S.); (S.A.N.)
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Narcisse Joseph
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.S.S.); (S.A.N.)
- Correspondence:
| |
Collapse
|
10
|
El-Magd MA, Abdo WS, El-Maddaway M, Nasr NM, Gaber RA, El-Shetry ES, Saleh AA, Alzahrani FAA, Abdelhady DH. High doses of S-methylcysteine cause hypoxia-induced cardiomyocyte apoptosis accompanied by engulfment of mitochondaria by nucleus. Biomed Pharmacother 2017; 94:589-597. [DOI: 10.1016/j.biopha.2017.07.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
|
11
|
Perera T, Young MR, Zhang Z, Murphy G, Colburn NH, Lanza E, Hartman TJ, Cross AJ, Bobe G. Identification and monitoring of metabolite markers of dry bean consumption in parallel human and mouse studies. Mol Nutr Food Res 2015; 59:795-806. [PMID: 25641932 DOI: 10.1002/mnfr.201400847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/22/2014] [Accepted: 12/31/2014] [Indexed: 12/14/2022]
Abstract
SCOPE Aim of the study was to identify and monitor metabolite markers of dry bean consumption in parallel human and mouse studies that each had shown chemopreventive effects of dry bean consumption on colorectal neoplasia risk. METHODS AND RESULTS Using LC/mass spectroscopy ± ESI and GC/mass spectroscopy, serum metabolites of dry beans were measured in 46 men before and after a 4-week dry bean enriched diet (250 g/day) and 12 mice that received a standardized diet containing either 0 or 10% navy bean ethanol extract for 6 weeks; we also investigated fecal metabolites in the mice. The serum metabolites identified in these controlled feeding studies were then investigated in 212 polyp-free participants from the Polyp Prevention Trial who self-reported either increased (≥+31 g/day from baseline), high dry bean intake of ≥42 g/day in year 3 or low, unchanged dry bean consumption of <8 g/day; serum was analyzed from baseline and year 3. Serum pipecolic acid and S-methyl cysteine were elevated after dry bean consumption in human and mouse studies and reflected dry bean consumption in the Polyp Prevention Trial. CONCLUSION Serum levels of pipecolic acid and S-methyl cysteine are useful biomarkers of dry bean consumption.
Collapse
Affiliation(s)
- Thushanthi Perera
- Linus Pauling Institute and Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nakata T, Yamada T, Taji S, Ohishi H, Wada SI, Tokuda H, Sakuma K, Tanaka R. Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg Med Chem 2006; 15:257-64. [PMID: 17049251 DOI: 10.1016/j.bmc.2006.09.064] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 11/28/2022]
Abstract
Two new lanostane-type triterpenoids, inonotsuoxides A (1) and B (2) along with three known lanostane-type triterpenoids, inotodiol (3), trametenolic acid (4), and lanosterol (5), were isolated from the sclerotia of Inonotus obliquus (Pers.: Fr.) (Japanese name: Kabanoanakake) (Russian name: Chaga). Their structures were determined to be 22R,25-epoxylanost-8-ene-3beta,24S-diol (1) and 22S,25-epoxylanost-8-ene-3beta,24S-diol (2) on the basis of spectral data including single crystal X-ray analysis. These compounds except for 2 were tested for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), as a test for potential cancer chemopreventive agents. The most abundant triterpene, inotodiol (3), was investigated for the inhibitory effect in a two-stage carcinogenesis test on mouse skin using 7,12-dimethylbenz[a]anthracene (DMBA) as an initiator and TPA as a promoter. Compound 3 was found to exhibit the potent anti-tumor promoting activity in the in vivo carcinogenesis test.
Collapse
Affiliation(s)
- Tomoko Nakata
- Department of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tsuda H, Ohshima Y, Nomoto H, Fujita KI, Matsuda E, Iigo M, Takasuka N, Moore MA. Cancer prevention by natural compounds. Drug Metab Pharmacokinet 2005; 19:245-63. [PMID: 15499193 DOI: 10.2133/dmpk.19.245] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing attention is being paid to the possibility of applying cancer chemopreventive agents for individuals at high risk of neoplastic development. For this purpose by natural compounds have practical advantages with regard to availability, suitability for oral application, regulatory approval and mechanisms of action. Candidate substances such as phytochemicals present in foods and their derivatives have been identified by a combination of epidemiological and experimental studies. Plant constituents include vitamin derivatives, phenolic and flavonoid agents, organic sulfur compounds, isothiocyanates, curcumins, fatty acids and d-limonene. Examples of compounds from animals are unsaturated fatty acids and lactoferrin. Recent studies have indicated that mechanisms underlying chemopreventive potential may be combinations of anti-oxidant, anti-inflammatory, immune-enhancing, and anti-hormone effects, with modification of drug-metabolizing enzymes, influence on the cell cycle and cell differentiation, induction of apoptosis and suppression of proliferation and angiogenesis playing roles in the initiation and secondary modification stages of neoplastic development. Accordingly, natural agents are advantageous for application to humans because of their combined mild mechanism. Here we review naturally occurring compounds useful for cancer chemprevention based on in vivo studies with reference to their structures, sources and mechanisms of action.
Collapse
Affiliation(s)
- Hiroyuki Tsuda
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shukla Y, Kalra N, Katiyar S, Siddiqui IA, Arora A. Chemopreventive Effect of Indole-3-Carbinol on Induction of Preneoplastic Altered Hepatic Foci. Nutr Cancer 2004; 50:214-20. [PMID: 15623469 DOI: 10.1207/s15327914nc5002_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Indole-3-carbinol (I3C) is a cleavage product of glucobrassicanin, a natural compound present in a wide variety of plant food substances including members of the family Cruciferae. I3C is known to possess cancer-chemopreventive potential in various animal models. The present study reveals the protective effect of I3C on the development of diethylnitrosamine (DEN)-initiated and 2-acetylaminofluorene (AAF)-promoted preneoplastic, altered hepatic foci (AHF) in Wistar rats. I3C was given at dose levels of 0.5 and 1 mg/kg body weight for five consecutive days along with DEN and AAF. AHF were scored and analyzed by quantitative stereology using the Image Analysis System from frozen liver sections stained for positive and negative biological markers of AHF, that is, glutathione S-transferase (GST-P), gamma-glutamyl transpeptidase (GGT), glucose-6-phosphatase (G6Pase), adenosine triphosphatase (ATPase), and alkaline phosphatase (AlkPase). Results revealed the chemopreventive effect of I3C on the DEN-initiated AHF in Wistar rats. The expression of G6Pase, ATPase, and AlkPase was restored in the I3C-supplemented animal. Similarly the induced expression GST-P and GGT also decreased in the animals with I3C administration. The recovery of altered levels of these biomarkers was of comparatively higher magnitude in the animals given a higher dose of I3C (1 mg/kg body weight) in comparison with the animals given 0.5 mg/kg body weight dose of I3C, although no dose-dependence pattern was recorded in I3C-supplemented groups. These results thus suggest the chemopreventive effect of I3C in rat hepatocarcinogenesis by suppressing DEN- and AAF-induced AHF development.
Collapse
Affiliation(s)
- Yogeshwer Shukla
- Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, Lucknow, India.
| | | | | | | | | |
Collapse
|
15
|
Singh A, Arora A, Shukla Y. Modulation of altered hepatic foci induction by diallyl sulphide in Wistar rats. Eur J Cancer Prev 2004; 13:263-9. [PMID: 15554553 DOI: 10.1097/01.cej.0000127633.89678.fb] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diallyl sulphide (DAS) is a sulphur-containing volatile compound present in garlic (Allium sativum). It has been shown to inhibit a number of chemically induced forms of cancer in experimental animals. The present study demonstrates the inhibitory effect of DAS on the development of diethylnitrosamine (DEN) initiated and 2-acetyl-aminofluorene (2-AAF) promoted preneoplastic altered hepatic foci (AHF) in Wistar rats. AHF were scored and analysed by quantitative stereology using the Image Analysis system from frozen liver sections stained for biological markers, namely glutathione S-transferase, placental form (GST-P), gamma-glutamyl transpeptidase (GGT), adenosine triphosphatase (ATPase), glucose-6-phosphatase (G6 Pase) and alkaline phosphatase (AlkPase). DAS-supplemented rats were found to restore the near-normal levels of enzymes GST-P and GGT when exposed to DEN and 2-AAF. DAS administration following DEN and 2-AAF exposure led to the restoration of enzymic activity of ATPase, G6 Pase and AlkPase, as evident by number and area of the foci. These findings suggest the protective role of DAS in rat hepatocarcinogenesis, by suppressing DEN- and 2-AAF-induced AHF development.
Collapse
Affiliation(s)
- A Singh
- Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, PO Box No. 80, M.G. Marg, Lucknow 226 001, India
| | | | | |
Collapse
|
16
|
Mori H, Yamada Y, Kuno T, Hirose Y. Aberrant crypt foci and beta-catenin accumulated crypts; significance and roles for colorectal carcinogenesis. Mutat Res 2004; 566:191-208. [PMID: 15082237 DOI: 10.1016/j.mrrev.2003.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Revised: 08/19/2003] [Accepted: 08/21/2003] [Indexed: 12/23/2022]
Abstract
Preneoplastic or precancerous lesions in the large bowel have been characterized in terms of morphology and histochemical phenotype. However, the detailed histogenesis and relation of particular lesions to malignancies has not yet to be unequivocally clarified. Aberrant crypt foci (ACF), identified in whole-mount preparations of colonic mucosa in rodents and also recognized in human colon, are now frequently used as effective surrogate biomarkers for experimentally detection of chemopreventive agents against colorectal cancers, but the preneoplastic or precancerous nature of ACF in rodents and humans still remains inconclusive. Relatively recently, early appearing beta-catenin accumulated crypts (BCAC) have been described in en face preparations of colonic mucosa in rodents which differ from ACF in many features. BCAC are suggested to be premalignant rather than preneoplastic. The pathological significance of both lesions, including their advantages and disadvantages as surrogate end points for large bowel neoplasms, and roles in colorectal carcinogenesis are discussed here.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Tumor Pathology, Gifu University School of Medicine, 40 Tsukasa-machi, Gifu 500-8705, Japan.
| | | | | | | |
Collapse
|
17
|
Doi K, Wanibuchi H, Salim EI, Shen J, Wei M, Mitsuhashi M, Kudoh S, Hirata K, Fukushima S. Revised rat multi-organ carcinogenesis bioassay for whole-body detection of chemopreventive agents: modifying potential of S-methylcysteine. Cancer Lett 2004; 206:15-26. [PMID: 15019155 DOI: 10.1016/j.canlet.2003.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 09/30/2003] [Accepted: 10/02/2003] [Indexed: 11/25/2022]
Abstract
The DMBDD rat multi-organ carcinogenesis model based on two-stage carcinogenesis theory was revised to make more suitable assay system for detecting chemopreventive effects of chemical substances by increasing the doses of two carcinogens, 1,2-dimethylhydrazine dihydrochloride (DMH) and N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). The revised bioassay resulted in increasing preneoplastic or neoplastic lesions in the colon, urinary bladder and liver. S-Methylcysteine (SMC), a water-soluble organosulfur compound, was used as a test chemical in the new initiation regimen. Though SMC did not express clear-cut inhibitory effects in tumor levels, it showed modifying effects on the development of lung hyperplastic and colon preneoplastic lesions. In conclusion, the present model featuring high yields of preneoplastic and neoplastic lesions with low mortality in a short period (30 weeks), might be suitable for testing the efficacy of possible chemopreventive chemicals at the whole-body level.
Collapse
Affiliation(s)
- Kenichiro Doi
- Department of Pathology, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent and deadly cancers worldwide. Prominent risk factors for HCC include viral hepatitis infection; dietary exposure to hepatotoxic contaminants such as aflatoxins; alcoholism; smoking; and male gender. This review highlights ongoing efforts in HCC prevention. Strategies include vaccination against, and treatment of, viral hepatitis infection. In addition to interferon alpha, an acyclic retinoid (all-trans-3,7,11, 15-tetramethyl-2,4,6,10,14-hexadecapentanoic acid), glycyrrhizin and ginseng are currently under clinical investigation for HCC prevention in Japanese hepatitis C patients. Several recent clinical studies in a Chinese region of pervasive aflatoxin contamination also support the approach of favorably altering aflatoxin metabolism and excretion using the chemopreventive agents oltipraz or chlorophyllin. Agents exhibiting chemopreventive efficacy in preclinical HCC models include vitamins A, D, and E, herbal extracts, a 5alpha-reductase inhibitor, green tea, and D-limonene. Efforts to elucidate the molecular lesions and processes underlying HCC development have identified several putative molecular targets for preventive interventions. These include genes and gene products controlling viral replication, carcinogen metabolism, signal transduction, cell-cycle arrest, apoptosis, proliferation, and oxidative stress.
Collapse
Affiliation(s)
- Kathryn Z Guyton
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205-2179, USA
| | | |
Collapse
|