1
|
Jugan MC, Plattner BL, Ford AK, Freilich L, Bieberly Z, Schermerhorn T. Plasma glucagon-like peptide-2 in cats with chronic enteropathies. J Feline Med Surg 2025; 27:1098612X241305923. [PMID: 39840661 PMCID: PMC11755514 DOI: 10.1177/1098612x241305923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
OBJECTIVES The objective of this study was to compare plasma glucagon-like peptide-2 (GLP-2) concentrations in cats with chronic enteropathies (CE) with those of healthy cats. METHODS Nineteen client-owned cats with a histopathologic diagnosis of either idiopathic chronic enteropathy (CIE) or low-grade lymphoma and six healthy client-owned cats were enrolled in a prospective study between 2 December 2021 and 9 June 2023. Fasted and postprandial plasma GLP-2 concentrations were measured via ELISA in CE cats at the time gastrointestinal biopsies were obtained and before CE treatment. In cats with a histopathologic diagnosis of CIE, plasma GLP-2 concentrations were re-evaluated after 1 month of CE treatment. RESULTS There was no significant difference in plasma GLP-2 concentrations between healthy cats (0.53 ng/ml) and cats with CE (0.52 ng/ml). GLP-2 concentrations in cats with CIE were not significantly different following 1 month of treatment (0.43 ng/ml) from those at initial presentation (0.44 ng/ml). CONCLUSIONS AND RELEVANCE GLP-2 can be successfully detected in the plasma of cats with CE. Based on the lack of differences observed between this population of CE cats and healthy cats, GLP-2 cannot be recommended as a biomarker of feline CE using this ELISA method. Further investigation of larger CE cat populations and analytic methods would be needed to determine the overall utility of GLP-2 evaluation in feline CE.
Collapse
Affiliation(s)
- Maria C Jugan
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Brandon L Plattner
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Alexandra K Ford
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Leah Freilich
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- BluePearl Pet Hospital, 625 Ridge Pike, Conshohocken, PA, USA
| | - Zackery Bieberly
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Thomas Schermerhorn
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Yang S, Liu G, Savelkoul HFJ, Jansen CA, Li B. Mini-review: microbiota have potential to prevent PEDV infection by improved intestinal barrier. Front Immunol 2023; 14:1230937. [PMID: 37503350 PMCID: PMC10369048 DOI: 10.3389/fimmu.2023.1230937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection poses a significant threat to the global pig industry. Current prevention and control strategies are inadequate in protecting pigs from new PEDV variants. This review aims to examine the relationship between PEDV and intestinal microbes, and investigate whether modulating intestinal microbes could affect PEDV infection. The mechanisms by which various intestinal microbes affect viral infection were initially introduced. Intestinal microbes can influence enteric viral infection through direct contact, such as binding, or by affecting interferons (IFNs) production and the intestinal barrier. Influencing the intestinal barrier by microbes can impact PEDV infection in young piglets. To narrow down the range of microbes that may influence PEDV infection, this review summarized microbes that change after infection. Short chain fatty acids (SCFAs), bacterial cell components, and toxins from microbes were identified as important mediators affecting PEDV infection. SCFAs primarily strengthen the intestinal barrier and inhibit intestinal inflammation, while bacterial cell components and toxins are more likely to damage the intestinal barrier. Therefore, this review hypothesizes that fecal transplantation, which allows the host to colonize more SCFAs-producing microbes, may prevent PEDV infection. However, these hypotheses require further proof, and the transplantation of intestinal microbes in pigs requires more exploration.
Collapse
Affiliation(s)
- Shanshan Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Guangliang Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Velázquez E, Le Baut Ayuso Y, Blázquez E, Ruiz-Albusac JM. Glucose and Several Mitogenic Agents Modulate the Glucagon-Like Peptide-2 Receptor Expression in Cultured Rat Astrocytes. J Alzheimers Dis Rep 2022; 6:723-732. [PMID: 36606205 PMCID: PMC9741749 DOI: 10.3233/adr-220043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Glucagon-like peptide-2 (GLP-2) is an intestinal trophic factor that induces astrocyte proliferation through its own receptor (GLP-2R), but the control of its expression is not well known. Objective To study the effects of glucose and of different mitogenic agents on the control of GLP-2R expression in cultured rat astrocytes. Methods GLP-2R mRNA content was measured by quantitative RT-PCR. Results GLP-2R expression was higher in proliferating than in resting cells. The expression was dependent of glucose concentration both in the absence and in the presence of GLP-2. In the presence of a high glucose concentration, GLP-2, PDGF, and PDGF plus GLP-2 presented opposite effects depending on the incubation time. However, insulin, IGF-1, and EGF alone, and plus GLP-2 had no effect. IGF-2, but not IGF-2 plus GLP-2, increased the expression. On the contrary, NGF decreased the GLP-2R expression, but NGF plus GLP-2 increased it even until values similar to those obtained with GLP-2 alone. Interestingly, in the presence of a low glucose concentration, leptin and NPY produced a significant reduction of GLP-2R expression. Conclusion Astrocytes are distributed throughout the brain, where GLP-2 appears to have important functions. Since these cells express the GLP-2R, the results of this study could be considered of interest to advance the knowledge of the role of GLP-2 signaling in the CNS, which should lead a better understanding of the events that occur under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain
| | - Yannick Le Baut Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Enrique Blázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain,Correspondence to: Juan Miguel Ruiz-Albusac, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain. Tel.: +34 913941446; E-mail:
| |
Collapse
|
4
|
Analysis of Intestinal Mucosa Integrity and GLP-2 Gene Functions upon Porcine Epidemic Diarrhea Virus Infection in Pigs. Animals (Basel) 2021; 11:ani11030644. [PMID: 33804466 PMCID: PMC8000733 DOI: 10.3390/ani11030644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infects intestinal epithelial cells, destroys the intestinal mucosal barrier and then causes diarrhea in piglets. Glucagon-like peptide-2 (GLP-2) is a specific intestinal growth hormone that promotes the repair of damaged intestinal mucosa and improves the intestinal barrier. In this study, we investigated the functions of porcine GLP-2 gene in regulating PEDV infection. The intestinal tissues with damaged intestinal structures caused by PEDV infection were first confirmed and collected. Expression analysis indicated that the GLP-2 gene was expressed in the duodenum, jejunum and ileum tissues, and the mRNA level was significantly down-regulated in jejunum and ileum of piglets with damaged intestinal mucosa. Infection of PEDV to porcine small intestinal epithelial cells in vitro showed that GLP-2 gene was significantly decreased, which was consistent with the expression pattern in intestinal tissues. In addition, we silenced the GLP-2 gene by shRNA interfering and found that the copy numbers of PEDV were remarkably increased in the GLP-2 gene silencing cells. Our findings suggest that the GLP-2 gene was potentially involved in regulating PEDV infection and in maintaining the integrity of the intestinal mucosal barrier structure, which could contribute to our understanding of the mechanisms of PEDV pathogenesis and provide a theoretical basis for the identification and application of resistant genes in pig selective breeding for porcine epidemic diarrhea.
Collapse
|
5
|
Qi KK, Wu J, Wen Jun Z, Bo D, Xu ZW. Catch-up growth in intrauterine growth-restricted piglets associated with the restore of pancreatic and intestinal functions via porcine glucagon-like peptide-2 microspheres. Arch Anim Nutr 2020; 74:462-475. [PMID: 33076701 DOI: 10.1080/1745039x.2020.1833598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intrauterine growth restriction (IUGR) results in abnormal morphology and gastrointestinal function, such as reduced villi height and crypt depth, thinner mucosa and muscle layers, and reduced brush border enzyme activities, delayed gastric emptying, increased stress response. As a gastrointestinal growth factor, the manner by which the porcine glucagon-like peptide-2 (pGLP-2) microsphere administration restored the gastrointestinal function and growth performance of IUGR piglets was investigated. Fourteen newborn Duroc × (Yorkshire × Landrace) IUGR piglets (0.92 ± 0.113 kg) were assigned into the IUGR (negative control group) and pGLP-2 microsphere groups. The piglets in group pGLP-2 were intraperitoneally administered with 100 mg pGLP-2 microspheres on day 1 after birth. From days 15 to 26 of trial, the body weight of the pGLP-2 group was significantly higher than that of the control. IUGR piglets of group pGLP-2 showed a significantly increased pancreas weight, serum insulin content and activity of lipase and amylase. Injection of pGLP-2 microspheres restored the intestinal absorptive capacity by significantly increasing the mRNA expression of the sodium-glucose cotransporter 1 in the jejunum and the peptide transporter 1 in the jejunum. It also restored the redox balance by increasing the catalase mRNA expression and decreasing the heat shock protein 70 mRNA expression. In addition, this improvement was associated with the significant increase in gut diameter, length and weight. Therefore, it was concluded that the injection of pGLP-2 microspheres was a suitable therapeutic strategy for compensatory growth in low birth weight IUGR piglets.
Collapse
Affiliation(s)
- Ke Ke Qi
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Jie Wu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Zhou Wen Jun
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Deng Bo
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Zi Wei Xu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| |
Collapse
|
6
|
Chang Y, Deng Q, Zhang Z, Zhao H, Tang J, Chen X, Liu G, Tian G, Cai J, Jia G. Glucagon-like peptide 2 attenuates intestinal mucosal barrier injury through the MLCK/pMLC signaling pathway in a piglet model. J Cell Physiol 2020; 236:3015-3032. [PMID: 32960454 DOI: 10.1002/jcp.30068] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Glucagon-like peptide-2 (GLP-2), an intestinotrophic hormone, has drawn considerable attention worldwide due to its potential to promote intestinal development. We investigated the effects and mechanisms of GLP-2 against lipopolysaccharide (LPS)-induced intestinal inflammation and injury both in vitro and in vivo. Forty healthy piglets weaned at the age of 28 days with similar body weight (BW) were assigned to four in vivo treatments with ten piglets each: (i) nonchallenged control; (ii) LPS-challenged control; (iii) LPS + low dose GLP-2; and (iv) LPS + high dose GLP-2. Piglets were subcutaneously injected with phosphate-buffered saline supplemented with GLP-2 at doses of 0, 0, 2, and 10 nmol/kg BW per day for seven consecutive days. The piglets were challenged with an intraperitoneal injection with 100 μg/kg LPS on day 14 to induce intestinal damage. After that, the gene and protein expression levels of representative tight junction proteins and myosin light-chain kinase (MLCK)/phosphorylated myosin light chain (pMLC), as well as proinflammatory cytokine levels were determined using quantitative reverse transcription polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay methods. A high dose of GLP-2 pretreatment increased intestinal permeability by downregulating and redistributing tight junction proteins (p < .05), for example, zona occluden-1 (ZO-1) and occludin. GLP-2 decreased the transcription of proinflammatory cytokines genes including interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor-α in small intestines (p < .05). GLP-2 prevented the LPS-induced increase in the expression of MLCK dose-dependently and the increase in pMLC levels in the duodenum, jejunum, and ileum. To assess further the protective effect of GLP-2 on LPS-induced intestinal barrier injury after weaning and its possible mechanism, an in vitro intestinal epithelial barrier model was established with IPEC-J2 monolayers and treated with 100 μg/ml LPS with or without 1 × 10-8 mol/L GLP-2 pretreatment. The in vitro analysis included control, LPS, and GLP-2 + LPS treatments. GLP-2 treatment alleviated the destructive effect of LPS on barrier permeability by restoring the expression and ultrastructure of ZO-1 and occludin (p < .05). In addition, GLP-2 reversed the LPS-induced MLCK hyperexpression and pMLC hyperphosphorylation (p < .05). Taken together, our findings revealed a mechanism by which GLP-2 alleviated LPS-challenged intestinal barrier injury and inflammation in weaned piglets and IPEC-J2 cells via the MLCK/pMLC signaling pathway.
Collapse
Affiliation(s)
- Yaqi Chang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Qiuhong Deng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Zhenyu Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China.,Meishan Vocational Technical College, Meishan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| |
Collapse
|
7
|
Pyo J, Hare K, Pletts S, Inabu Y, Haines D, Sugino T, Guan LL, Steele M. Feeding colostrum or a 1:1 colostrum:milk mixture for 3 days postnatal increases small intestinal development and minimally influences plasma glucagon-like peptide-2 and serum insulin-like growth factor-1 concentrations in Holstein bull calves. J Dairy Sci 2020; 103:4236-4251. [PMID: 32171512 DOI: 10.3168/jds.2019-17219] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/05/2020] [Indexed: 11/19/2022]
Abstract
This study evaluated how feeding colostrum- or a colostrum-milk mixture for 3 d postnatal affects plasma glucagon-like peptide-2 (GLP-2), serum insulin-like growth factor-1 (IGF-1), and small intestinal histomorphology in calves. Holstein bulls (n = 24) were fed colostrum at 2 h postnatal and randomly assigned to receive either colostrum (COL), whole milk (WM), or a 1:1 COL:WM mixture (MIX) every 12 h from 12 to 72 h. A jugular venous catheter was placed at 1 h postnatal to sample blood frequently for the duration of the experiment. Samples were collected at 1, 2, 3, 6, 9, 11, and 12 h. Following the 12-h meal, blood was collected at half-hour intervals until 16 h and then at 1-h intervals from 16 to 24 h. A 27-h sample was taken, then blood was sampled every 6 h from 30 to 60 h. Again, blood was taken at half-intervals from 60 to 64 h, then at 65 and 66 h, following which, a 2-h sampling interval was used until 72 h. Plasma GLP-2 (all time points) and serum IGF-1 (at time points: 1, 6, 12, 18, 24, 36, 48, and 72 h) were both analyzed. Duodenal, jejunal, and ileal tissues were collected at 75 h of age to assess histomorphology and cellular proliferation. Feeding COL, rather than WM, increased plasma GLP-2 by 60% for 2 h and tended to increase GLP-2 by 49.4% for 4 h after the 60-h meal. Insulin-like growth factor-1 area under the curve (from 12 to 72 h) tended to be 27% greater for COL than WM calves but was otherwise unaffected by treatment. Ileal crypts tended to proliferate more with MIX than WM, whereas ileal crypt proliferation did not differ for COL compared with MIX or WM and was not different between treatments in the proximal jejunum. Villi height was increased 1.8 and 1.5× (COL and MIX vs. WM) in the proximal and distal jejunum, respectively, whereas MIX duodenal and ileal villi height tended to be 1.5 and 1.4× that of WM. Crypt depth did not differ in any region. Surface area of the gastrointestinal tract was reduced for WM by 60 and 58% (proximal jejunum) and 38 and 52% (ileum) relative to COL and MIX and was 54% less than MIX in the distal jejunum. Overall, extended COL feeding minimally increased plasma GLP-2 and serum IGF-1 compared with WM feeding. As COL and MIX similarly promoted small intestinal maturation, feeding calves transition milk to promote intestinal development could be a strategy for producers.
Collapse
Affiliation(s)
- J Pyo
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - K Hare
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - S Pletts
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Y Inabu
- The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan 739-8528
| | - D Haines
- The Saskatoon Colostrum Company Ltd., Saskatoon, SK, Canada S7K 6A2
| | - T Sugino
- The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan 739-8528
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - M Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2.
| |
Collapse
|
8
|
Spengler D, Rintz N, Krause MF. An Unsettled Promise: The Newborn Piglet Model of Neonatal Acute Respiratory Distress Syndrome (NARDS). Physiologic Data and Systematic Review. Front Physiol 2019; 10:1345. [PMID: 31736777 PMCID: PMC6831728 DOI: 10.3389/fphys.2019.01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Despite great advances in mechanical ventilation and surfactant administration for the newborn infant with life-threatening respiratory failure no specific therapies are currently established to tackle major pro-inflammatory pathways. The susceptibility of the newborn infant with neonatal acute respiratory distress syndrome (NARDS) to exogenous surfactant is linked with a suppression of most of the immunologic responses by the innate immune system, however, additional corticosteroids applied in any severe pediatric lung disease with inflammatory background do not reduce morbidity or mortality and may even cause harm. Thus, the neonatal piglet model of acute lung injury serves as an excellent model to study respiratory failure and is the preferred animal model for reasons of availability, body size, similarities of porcine and human lung, robustness, and costs. In addition, similarities to the human toll-like receptor 4, the existence of intraalveolar macrophages, the sensitivity to lipopolysaccharide, and the production of nitric oxide make the piglet indispensable in anti-inflammatory research. Here we present the physiologic and immunologic data of newborn piglets from three trials involving acute lung injury secondary to repeated airway lavage (and others), mechanical ventilation, and a specific anti-inflammatory intervention via the intratracheal route using surfactant as a carrier substance. The physiologic data from many organ systems of the newborn piglet—but with preference on the lung—are presented here differentiating between baseline data from the uninjured piglet, the impact of acute lung injury on various parameters (24 h), and the follow up data after 72 h of mechanical ventilation. Data from the control group and the intervention groups are listed separately or combined. A systematic review of the newborn piglet meconium aspiration model and the repeated airway lavage model is finally presented. While many studies assessed lung injury scores, leukocyte infiltration, and protein/cytokine concentrations in bronchoalveolar fluid, a systematic approach to tackle major upstream pro-inflammatory pathways of the innate immune system is still in the fledgling stages. For the sake of newborn infants with life-threatening NARDS the newborn piglet model still is an unsettled promise offering many options to conquer neonatal physiology/immunology and to establish potent treatment modalities.
Collapse
Affiliation(s)
- Dietmar Spengler
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Nele Rintz
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Martin F Krause
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
9
|
Zong E, Yan S, Wang M, Yin L, Wang Q, Yin J, Li J, Li Y, Ding X, Huang P, He S, Yang H, Yin Y. The effects of dietary supplementation with hyodeoxycholic acid on the differentiation and function of enteroendocrine cells and the serum biochemical indices in weaned piglets. J Anim Sci 2019; 97:5315629. [PMID: 30753616 PMCID: PMC6447273 DOI: 10.1093/jas/skz059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 02/09/2019] [Indexed: 08/03/2023] Open
Abstract
Bile acid, a cholesterol metabolite, promotes gastrointestinal tract digestion and absorption of cholesterol, lipids, and fat-soluble vitamins. It is a signaling regulatory molecule that influences a variety of endocrinal and metabolic activities. This study investigated the effects hyodeoxycholic acid (HDCA) as a dietary supplement on endocrine cell differentiation and function and weaned piglet serum biochemical indices. Sixteen piglets (Duroc × [Landrace × Yorkshire]) were individually housed and weaned at 21 days of age (body weight of 6.14 ± 0.22 kg). Uniform weight animals were randomly assigned to one of two treatments (eight replicate pens per treatment and one piglet per pen). The treatments were 1) base diet (control); and 2) base diet supplemented with 2 g/kg of HDCA. Control and HDCA piglet numbers of CgA-positive cells per crypt did not differ. HDCA CgA-positive cells numbers decreased (P < 0.05) in the jejunal villi, showed a tendency to decrease (P < 0.10) in the ileal villi, and showed tendency toward an increase (P < 0.10) in the duodenal villi compared to the controls. The HDCA diet led to a decline in GLP-2 (P < 0.01) concentrations, but did not affect plasma GLP-1. HDCA supplementation increased (P < 0.05) the mRNA expression of jejunal Insm1, Sst, PG, and Gast, but decreased (P < 0.05) duodenal expression of Insm1, jejunal Pdx1, and ileal NeuroD1. HDCA elevated GLO and IgA (P < 0.05) serum concentrations and decreased the A/G ratio (P < 0.05). TP and IgG serum levels tended to increase compared to the control group. These results indicate that dietary HDCA at 2 g/kg may regulate enteroendocrine cell differentiation and play a role in increasing weaned piglet humoral immunity.
Collapse
Affiliation(s)
- Enyan Zong
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanling Yan
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Meiwei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jia Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Chinese Academy of Science, Institute of Subtropical Agriculture, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Chinese Academy of Science, Institute of Subtropical Agriculture, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China
| |
Collapse
|
10
|
Haisan J, Oba M, Sugino T. The effects of feeding more milk on periprandial plasma glucagon-like peptide-2 concentrations in preweaning dairy calves. J Dairy Sci 2018; 101:11396-11402. [DOI: 10.3168/jds.2018-15026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022]
|
11
|
Sigalet DL, Lam V, Brindle M, Boctor D, Wallace L, de Heuval E, Hartmann B, Holst JJ. The glucagon like peptide-2 'axis': Capacity for production and response following intestinal resection or repair of gastroschisis in infants. J Pediatr Surg 2018. [PMID: 29523359 DOI: 10.1016/j.jpedsurg.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE This study investigates the relationship between the enteric hormone glucagon-like peptide 2 (GLP-2) production, sensitivity, and intestinal adaptation in infants following resection or repair of gastroschisis. METHODS With IRB approval (UCalgary #10656), consent was obtained from families of infants undergoing surgery for prospective monitoring of nutritional status, GLP-2 levels, and where possible, tissue sampling. RESULTS Infants who adapted and weaned from parenteral nutrition (PN) had increased GLP-2 (86±32) n=24 vs. controls: 45±20 n=10 and vs. patients on prolonged PN: 42±6 pM, n=10). This was maintained to one year: weaned patients: 72±49 vs. non-weaned: 35±15 pM (p<0.05). Infants with gastroschisis (n=33) had decreased GLP-2 levels until enteral function was achieved and then became elevated: (21±15 with first feeding vs. 102±60 at full feeds and 60±19 pM at one year). There were no changes in the density or distribution of GLP-2 producing L-cells related to gestational age, nor in the expression of the GLP-2 receptor. CONCLUSION GLP-2 levels correlate with intestinal adaptation in infants, and with recovery of intestinal function in gastroschisis. GLP-2 productive capacity (L-cell expression) and GLP-2 receptor expression do not vary with maturity. The findings support a role for GLP-2 in regulating intestinal function. Further study is suggested.
Collapse
Affiliation(s)
- David L Sigalet
- Department of Pediatric Surgery, Sidra Medical and Research Center, Doha, Qatar; Children's Hospital Intestinal Rehabilitation Program, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada.
| | - Viona Lam
- Children's Hospital Intestinal Rehabilitation Program, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Mary Brindle
- Children's Hospital Intestinal Rehabilitation Program, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Dana Boctor
- Children's Hospital Intestinal Rehabilitation Program, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Laurie Wallace
- Department of Pediatric Surgery, Sidra Medical and Research Center, Doha, Qatar; Children's Hospital Intestinal Rehabilitation Program, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Elaine de Heuval
- Department of Pediatric Surgery, Sidra Medical and Research Center, Doha, Qatar; Children's Hospital Intestinal Rehabilitation Program, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Bollette Hartmann
- NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Inabu Y, Fischer A, Song Y, Guan LL, Oba M, Steele MA, Sugino T. Short communication: The effect of delayed colostrum feeding on plasma concentrations of glucagon-like peptide 1 and 2 in newborn calves. J Dairy Sci 2018; 101:6627-6631. [PMID: 29680641 DOI: 10.3168/jds.2018-14412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023]
Abstract
Glucagon-like peptide (GLP)-1 is involved in glucose homeostasis via its role in stimulating insulin secretion, whereas GLP-2 increases mucosal growth of the small intestine. To our knowledge, the effect of delayed colostrum feeding on plasma GLP-1 and GLP-2 in neonatal calves has not been evaluated. To investigate the effect of delayed colostrum feeding on plasma concentrations of GLP-1 and GLP-2 in newborn calves, we randomly assigned 27 Holstein bull calves to 1 of 3 treatment groups: those fed colostrum within 1 h after birth (control), 6 h after birth (6H), and 12 h after birth (12H; n = 9 for each treatment). Blood samples were obtained before the colostrum feeding and every 3 h after each colostrum feeding for a 36-h period, and plasma concentrations of GLP-1, GLP-2, insulin, and glucose were measured. Plasma GLP-1 concentration at 12 h after colostrum feeding was lower in 12H than in control calves. In addition, plasma insulin concentration was lower in the 6H and 12H calves than in the controls. Plasma glucose and GLP-2 concentrations were, however, not affected by treatment. These results indicate that delayed colostrum feeding can decrease plasma GLP-1 and insulin concentrations without affecting glucose or GLP-2 concentration.
Collapse
Affiliation(s)
- Y Inabu
- The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan 739-8528
| | - A Fischer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | - Y Song
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | - M Oba
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | - M A Steele
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5.
| | - T Sugino
- The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan 739-8528.
| |
Collapse
|
13
|
Wu J, Qi KK, Xu ZW. Porcine glucagon-like peptide-2 microspheres ameliorate inflammation in lipopolysaccharide-challenged weaning piglets1. J Anim Sci 2016; 94:5286-5294. [DOI: 10.2527/jas.2016-1007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Thymann T. Endocrine regulation of gut maturation in early life in pigs. Domest Anim Endocrinol 2016; 56 Suppl:S90-3. [PMID: 27345327 DOI: 10.1016/j.domaniend.2016.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 01/17/2023]
Abstract
After birth, the newborn must adapt to the acute challenges of circulatory changes, active respiration, thermoregulation, microbial colonization, and enteral nutrition. Whereas these processes normally occur without clinical complications in neonates born at term, birth at a preterm state of gestation is associated with high morbidity and mortality. In commercial pig production, perinatal mortality is higher than in any other mammalian species. Asphyxia, hypothermia, hypoglycemia, sepsis, and gut dysmotility, represent some of the most common findings. The intestine is a particularly sensitive organ after birth, as it must adapt acutely to enteral nutrition and microbial colonization. Likewise, during the weaning phase, the intestine must adapt to new diet types. Both critical phases are associated with high morbidity. This review focuses on the endocrine changes occurring around birth and weaning. There are a number of endocrine adaptations in late gestation and early postnatal life that are under influence of development stage and environmental factors such as diet. The review discusses general endocrine changes in perinatal life but specifically focuses on the role of glucagon-like peptide-2. This gut-derived hormone plays a key role in development and function of the intestine in early life.
Collapse
Affiliation(s)
- T Thymann
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, Department of Clinical Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark.
| |
Collapse
|
15
|
Deng QH, Jia G, Zhao H, Chen ZL, Chen XL, Liu GM, Wang KN. The prolonged effect of glucagon-like peptide 2 pretreatment on growth performance and intestinal development of weaned piglets. J Anim Sci Biotechnol 2016; 7:28. [PMID: 27148449 PMCID: PMC4855712 DOI: 10.1186/s40104-016-0087-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 04/19/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Glucagon-like peptide 2 (GLP-2) is a potent epithelium-specific intestinal growth factor. The aim of this study was to demonstrate the prolonged effect of GLP-2 on the growth performance of weaned piglets. Forty piglets weaned at the age of 28 d with an average BW of 6.8 ± 0.4 kg were assigned to four treatments: (i) non-challenged control; (ii) LPS-challenged control; (iii) LPS + low GLP-2; and (iv) LPS + high GLP-2. Piglets in groups (i), (ii), and (iv) were s.c. injected with PBS supplemented with human [Gly2]GLP-21-34 at doses of 0, 2 and 10 nmol/kg BW per day for seven consecutive days. BW, gain:feed ratio (G:F), and plasma GLP-2 levels were determined on d 0, 7, and 14 after weaning. Piglets were challenged with i.p. administration of Escherichia coli lipopolysaccharide (LPS) at a dose of 100 μg/kg on d 14 to induce intestinal damage. Twenty-four hours later, intestinal tract samples were collected to assess intestinal morphology and quantify enzyme activity. RESULTS Plasma GLP-2 levels decreased after weaning, but in the high GLP-2 group, plasma GLP-2 was maintained on d 7 and even increased to a level higher than the preweaning level on d 14 (P < 0.05). High GLP-2 treatment significantly increased the duodenal, jejunal and ileal weight, as well as the gross weight of the small intestine (SI), and the SI weight index (P < 0.05). LPS caused villous atrophy and disrupted intestinal morphology in the duodenum, jejunum and ileum. GLP-2 also significantly increased the villus height and the villus height/crypt depth ratio (VCR) of the duodenum, jejunum, and ileum (P < 0.05). Histological examination revealed that in GLP-2-treated groups, the integrity of the villus was maintained, and the villus was protected against LPS-induced damage. GLP-2 significantly increased the activity of alkaline phosphatase (AKP), γ-glutamyltranspeptidase (γ-GT), and pancreatic lipase in the duodenum and jejunum (P < 0.05). GLP-2 treatment also significantly increased the average daily gain (ADG) and G:F of piglets at 0 to 7, 7 to 14, as well as 0 to14 d (P < 0.05), resulting in a significant increase of final BW in high GLP-2 pigs (P = 0.016). CONCLUSIONS Exogenous GLP-2 improved the growth of weaned piglets and protected them against LPS-induced intestinal damage. These effects may be due to the ability of GLP-2 to promote the secretion of endogenous GLP-2 to stimulate the small intestinal development.
Collapse
Affiliation(s)
- Qiu Hong Deng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Zheng Li Chen
- College of Animal Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Xiao Ling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Guang Mang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Kang Ning Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| |
Collapse
|
16
|
Nutrient-intake-level-dependent regulation of intestinal development in newborn intrauterine growth-restricted piglets via glucagon-like peptide-2. Animal 2016; 10:1645-54. [PMID: 27095347 DOI: 10.1017/s1751731116000690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The objective of the present study was to investigate the intestinal development of newborn intrauterine growth-restricted (IUGR) piglets subjected to normal nutrient intake (NNI) or restricted nutrient intake (RNI). Newborn normal birth weight (NBW) and IUGR piglets were allotted to NNI or RNI levels for 4 weeks from day 8 postnatal. IUGR piglets receiving NNI had similar growth performance compared with that of NBW piglets. Small intestine length and villous height were greater in IUGR piglets fed the NNI than that of piglets fed the RNI. Lactase activity was increased in piglets fed the NNI compared with piglets fed the RNI. Absorptive function, represented by active glucose transport by the Ussing chamber method and messenger RNA (mRNA) expressions of two main intestinal glucose transporters, Na+-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), were greater in IUGR piglets fed the NNI compared with piglets fed the RNI regimen. The apoptotic process, characterized by caspase-3 activity (a sign of activated apoptotic cells) and mRNA expressions of p53 (pro-apoptotic), bcl-2-like protein 4 (Bax) (pro-apoptotic) and B-cell lymphoma-2 (Bcl-2) (anti-apoptotic), were improved in IUGR piglets fed the NNI regimen. To test the hypothesis that improvements in intestinal development of IUGR piglets fed NNI might be mediated through circulating glucagon-like peptide-2 (GLP-2), GLP-2 was injected subcutaneously to IUGR piglets fed the RNI from day 8 to day 15 postnatal. Although the intestinal development of IUGR piglets fed the RNI regimen was suppressed compared with those fed the NNI regimen, an exogenous injection of GLP-2 was able to bring intestinal development to similar levels as NNI-fed IUGR piglets. Collectively, our results demonstrate that IUGR neonates that have NNI levels could improve intestinal function via the regulation of GLP-2.
Collapse
|
17
|
Hansen CF, Thymann T, Andersen AD, Holst JJ, Hartmann B, Hilsted L, Langhorn L, Jelsing J, Sangild PT. Rapid gut growth but persistent delay in digestive function in the postnatal period of preterm pigs. Am J Physiol Gastrointest Liver Physiol 2016; 310:G550-60. [PMID: 26822913 PMCID: PMC4836131 DOI: 10.1152/ajpgi.00221.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/22/2016] [Indexed: 01/31/2023]
Abstract
Preterm infants often tolerate full enteral nutrition a few weeks after birth but it is not known how this is related to gut maturation. Using pigs as models, we hypothesized that intestinal structure and digestive function are similar in preterm and term individuals at 3-4 wk after birth and that early enteral nutrition promotes maturation. Preterm or term cesarean-delivered pigs were fed total parenteral nutrition, or partial enteral nutrition [Enteral (Ent), 16-64 ml·kg(-1)·day(-1) of bovine colostrum] for 5 days, followed by full enteral milk feeding until day 26 The intestine was collected for histological and biochemical analyses at days 0, 5, and 26 (n = 8-12 in each of 10 treatment groups). Intestinal weight (relative to body weight) was reduced in preterm pigs at 0-5 days but ENT feeding stimulated the mucosal volume and peptidase activities. Relative to term pigs, mucosal volume remained reduced in preterm pigs until 26 days although plasma glucagon-like peptide 2 (GLP-2) and glucose-dependent insulin-trophic peptide (GIP) levels were increased. Preterm pigs also showed reduced hexose absorptive capacity and brush-border enzyme (sucrase, maltase) activities at 26 days, relative to term pigs. Intestinal structure shows a remarkable growth adaptation in the first week after preterm birth, especially with enteral nutrition, whereas some digestive functions remain immature until at least 3-4 wk. It is important to identify feeding regimens that stimulate intestinal maturation in the postnatal period of preterm infants because some intestinal functions may show long-term developmental delay.
Collapse
Affiliation(s)
- Carl Frederik Hansen
- 1Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark;
| | - Thomas Thymann
- 1Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark;
| | | | - Jens Juul Holst
- 2Novo Nordisk Foundation Center for Basic Metabolic Research, and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Bolette Hartmann
- 2Novo Nordisk Foundation Center for Basic Metabolic Research, and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Linda Hilsted
- 4Department of Clinical Biochemistry, Copenhagen University Hospital, Cophenhagen Denmark; and
| | - Louise Langhorn
- 1Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark;
| | | | - Per Torp Sangild
- 1Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark; ,5Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Denmark
| |
Collapse
|
18
|
Wu J, Qi K, Xu Z, Wan J. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model. J Microencapsul 2015. [PMID: 26218715 DOI: 10.3109/02652048.2015.1065923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes intestinal growth, but the rapid degradation by dipeptidyl peptidase-IV limits its applications. PLGA microsphere is a well-developed drug delivery system, while seldom been studied as a solution for prolonging in vivo effects of GLP-2. In this study, we encapsulated porcine GLP-2 (pGLP-2) into microspheres and investigated its therapeutic effects in dextran sulfate sodium (DSS)-treated mice. pGLP-2 microspheres showed 20.36% in initial burst and constant release for at least 9 d. In the DSS-treated mice, a single injection of GLP-2 microspheres significantly increased the body weight, colonic length, small intestinal weight and mRNA expression of Occludin, decreased the colonic damage score, mRNA expression of IL-6, IL-10, TNF-α and IFN-γ. In conclusion, pGLP-2 microspheres were resistant to degradation and decreased the severity of DSS-induced ulcerative colitis which suggested that GLP-2-loaded microspheres could be a proper candidate for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jie Wu
- a Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences , Hangzhou , People's Republic of China
| | | | | | | |
Collapse
|
19
|
Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166:12-27. [PMID: 25655839 PMCID: PMC4458388 DOI: 10.1016/j.trsl.2015.01.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/03/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
There is increasing interest in nonrodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia-reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine and mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine.
Collapse
|
20
|
de Diego-Cabero N, Mereu A, Menoyo D, Holst JJ, Ipharraguerre IR. Bile acid mediated effects on gut integrity and performance of early-weaned piglets. BMC Vet Res 2015; 11:111. [PMID: 25972097 PMCID: PMC4436113 DOI: 10.1186/s12917-015-0425-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/05/2015] [Indexed: 01/06/2023] Open
Abstract
Background Early weaning (EW) results in a transient period of impaired integrity of the intestinal mucosa that may be associated with reduced plasma concentration of glucagon-like peptide-(GLP) 2. We have previously shown that intragastric infusion of chenodeoxycholic acid (CDC) increases circulating GLP-2 in early-weaned piglets. The aim of this study was to expand previous work to establish whether feeding piglets a cereal-based diet supplemented with CDC can improve gut integrity and animal performance immediately after EW. A cohort of 36 piglets weaned at 20 days of age, 6.2 ± 0.34 kg of body weight (BW) were randomly assigned (n = 18) to receive a standard prestarter diet or the same diet supplemented with 60 mg of CDC per kg of initial BW for ad libitum intake until day 14 postweaning. Thereafter, all pigs were fed the same untreated starter diet for 21 days until the end of the study on day 35. On days 1, 7 and 14 blood samples were collected from 6 pigs per treatment to measure plasma GLP-2. On day 15, 6 pigs per treatment were euthanized to obtain intestinal tissue samples for later histological and gene expression analyses. Results Supplementing the diet with CDC tended to increase plasma GLP-2 (P < 0.07; 39 %) and the weight of the large intestine (P < 0.10; 11 %), and increased ileal crypt depth (P < 0.04; 15 %) after 14 days of treatment exposure. Although feed intake and BW gain were not affected by treatments, feeding CDC induced the expression of the cytokines TNF-α (P < 0.02; 1.9 fold), IL-6 (P < 0.01; 2.4 fold), and IL-10 (P < 0.006; 2.2 fold) and the tight junctional protein ZON-1 (P < 0.02; 1.5 fold) in the distal small intestine. Conclusions This study showed that the oral administration of CDC to early-weaned pigs has the potential to improve the protection of the intestinal mucosa independently of relevant changes in gut growth.
Collapse
Affiliation(s)
- Nuria de Diego-Cabero
- Departamento de Producción Animal, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, Ciudad Universitaria S/N, Madrid, 28040, Spain.
| | | | - David Menoyo
- Departamento de Producción Animal, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, Ciudad Universitaria S/N, Madrid, 28040, Spain.
| | - Jens J Holst
- The NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| | - Ignacio R Ipharraguerre
- Lucta S.A., Montornés del Vallés, Barcelona, 08170, Spain. .,Institute of Human Nutrition and Food Science, Christian-Albrechts-University, D-24118, Kiel, Germany.
| |
Collapse
|
21
|
PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS. Animal 2015; 9:1481-9. [PMID: 25963800 DOI: 10.1017/s1751731115000749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study was conducted to determine the effects on intestinal function, anti-inflammatory role and possible mechanism of polyethylene glycosylated (PEGylated) porcine glucagon-like peptide-2 (pGLP-2), a long-acting form of pGLP-2, in weaning piglets challenged with Escherichia coli lipopolysaccharide (LPS). We divided 18 weaned piglets on day 21 into three groups (control, LPS and LPS+PEG-pGLP-2; n=6). The piglets from the LPS+PEG-pGLP-2 group were injected with PEG-pGLP-2 at 10 nmol/kg BW from 5 to 7 days of the trials daily. On 8th day, the piglets in the LPS and LPS+PEG-pGLP-2 groups were intraperitoneally administered with 100 µg LPS/kg. The control group was administered with the same volume of saline solution. The piglets were then sacrificed on day 28. Afterwards, serum, duodenum, jejunum and ileum samples were collected for analysis of structural and functional endpoints. LPS+PEG-pGLP-2 treatment increased (P<0.05) lactase activities in the duodenum and the jejunum compared with LPS treatment. LPS+PEG-pGLP-2 treatment also significantly increased sucrase activity in the jejunum compared with LPS treatment. Furthermore, LPS treatment increased (P<0.05) the mRNA expression levels of interleukin (IL)-8, tumour necrosis factor-α (TNF-α) and IL-10 in the ileum compared with the control treatment. By contrast, LPS+PEG-pGLP-2 treatment decreased (P<0.05) the mRNA expression levels of IL-8, IL-10 and TNF-α in the ileum compared with the LPS treatment. LPS treatment also increased (P<0.05) the mRNA expression level of GLP-2 receptor (GLP-2R) and the percentage of GLP-2R-positive cells in the ileum; by comparison, these results were (P<0.05) reduced by LPS+PEG-pGLP-2 treatment. Moreover, LPS+PEG-pGLP-2 treatment increased (P<0.05) the content of serum keratinocyte growth factor compared with the control group and the LPS group. The protective effects of PEG-pGLP-2 on intestinal digestive function were associated with the release of GLP-2R mediator (keratinocyte growth factor) and the decrease in the expressions of intestinal pro-inflammatory cytokines.
Collapse
|
22
|
Bedford A, Chen T, Huynh E, Zhu C, Medeiros S, Wey D, de Lange C, Li J. Epidermal growth factor containing culture supernatant enhances intestine development of early-weaned pigs in vivo: potential mechanisms involved. J Biotechnol 2015; 196-197:9-19. [PMID: 25615942 DOI: 10.1016/j.jbiotec.2015.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022]
Abstract
We have previously generated epidermal factor expressing Lactococcus lactis (EGF-LL) using a bioengineering approach, and shown that EGF-LL fermentation supernatant enhanced newly weaned pigs growth. The objective of the current study was to further understand the mechanisms behind this improved performance. Sixty-four piglets were weaned at 3 weeks of age and then fed ad libitum according to a 2-phase feeding program. Four pens with 8 pigs per pen were assigned to each of two treatments for 3 weeks: (1) EGF containing supernatant from EGF-LL culture (SuperEGF) or (2) blank M17GE media (Control). Consistent with previous findings, SuperEGF pigs had an increased average daily gain during week 3 post-weaning (433.4 ± 10.86 vs 388.7 ± 7.76 g; P<0.05) and overall gain:feed ratio (0.757 ± 0.03 vs 0.677 ± 0.01 kg/kg, P < 0.05). Moreover, jejunal structure development was enhanced, and inflammation index was minimized in SuperEGF pigs as indicated by increased villi height (P<0.05), decreased lamina propria width (P<0.05), and higher expression of anti-inflammatory cytokine, IL-13 (P<0.05). Further, goblet cell numbers and Muc2 levels were increased in SuperEGF pigs. Interestingly, the weaning-induced decrease of glucose cotransporter sodium-glucose linked transporter 1 (SGLT1) and glucagon-like peptide-2 (GLP2) levels was reversed by SuperEGF supplementation. Our findings add to our understanding of the mechanisms behind enhancing piglet performance by EGF containing fermentation product.
Collapse
Affiliation(s)
- Andrea Bedford
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Tao Chen
- Department of Animal and Poultry Science, University of Guelph, Canada; College of Veterinary Medicine, Hunan Agricultural University, PR China
| | - Evanna Huynh
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Cuilan Zhu
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Samantha Medeiros
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Doug Wey
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Cornelis de Lange
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Canada.
| |
Collapse
|
23
|
Sangild PT, Ney DM, Sigalet DL, Vegge A, Burrin D. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1147-68. [PMID: 25342047 PMCID: PMC4269678 DOI: 10.1152/ajpgi.00088.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the choice of SBS model for each clinical or basic research question.
Collapse
Affiliation(s)
- Per T. Sangild
- 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; ,2Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark;
| | - Denise M. Ney
- 3Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin;
| | | | - Andreas Vegge
- 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; ,5Diabetes Pharmacology, Novo Nordisk, Måløv, Denmark; and
| | - Douglas Burrin
- 6USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
24
|
Jiang P, Sangild PT. Intestinal proteomics in pig models of necrotising enterocolitis, short bowel syndrome and intrauterine growth restriction. Proteomics Clin Appl 2014; 8:700-14. [PMID: 24634357 DOI: 10.1002/prca.201300097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
Necrotising enterocolitis (NEC), short bowel syndrome (SBS) and intrauterine growth restriction (IUGR) are three conditions associated with intestinal dysfunction in newborn infants, particularly those born preterm. Piglet (Sus scrofa) models have recently been developed for NEC, SBS and IUGR, and tissue proteomic analyses have identified unknown pathways and new prognostic disease markers. Intestinal HSPs, iron metabolism proteins and proteins related to amino acid (e.g. arginine) and glucose metabolism are consistently affected by NEC progression and some of these proteins are also affected by SBS and IUGR. Parallel changes in some plasma and urinary proteins (e.g. haptoglobin, globulins, complement proteins, fatty acid binding proteins) may mirror the intestinal responses and pave the way to biomarker discovery. Explorative non-targeted proteomics provides ideas about the cellular pathways involved in intestinal adaptation during the critical neonatal period. Proteomics, combined with other -omic techniques, helps to get a more holistic picture of intestinal adaptation during NEC, SBS and IUGR. Explorative -omic research methods also have limitations and cannot replace, but only supplement, classical hypothesis-driven research that investigate disease mechanisms using a single or few endpoints.
Collapse
Affiliation(s)
- Pingping Jiang
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
25
|
Thymann T, Le Huërou-Luron I, Petersen YM, Hedemann MS, Elinf J, Jensen BB, Holst JJ, Hartmann B, Sangild PT. Glucagon-like peptide 2 treatment may improve intestinal adaptation during weaning. J Anim Sci 2014; 92:2070-9. [PMID: 24663206 DOI: 10.2527/jas.2013-7015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transition from sow's milk to solid feed is associated with intestinal atrophy and diarrhea. We hypothesized that the intestinotrophic hormone glucagon-like peptide 2 (GLP-2) would induce a dose- and health status-dependent effect on gut adaptation. In Exp. 1, weaned pigs (average BW at weaning 4.98 ± 0.18 kg) were kept in a high-sanitary environment and injected with saline or short-acting GLP-2 (80 μg/(kg BW·12 h); n = 8). Under these conditions, there was no diarrhea and GLP-2 did not improve gastrointestinal structure or function. In Exp. 2, weaned pigs (average BW at weaning 6.68 ± 0.27 kg) were kept in a low-sanitary environment, leading to weaning diarrhea, and injected with saline or short-acting GLP-2 (200 µg/(kg BW·12 h); n = 11). Treatment with GLP-2 increased goblet cell density (P < 0.05) and reduced short chain fatty acid concentration in the colon (P < 0.01) but had limited effects on diarrhea. In Exp. 3, weaned pigs (average BW at weaning 6.90 ± 0.32 kg) were kept in a low-sanitary environment and injected with saline or a long-acting acylated GLP-2 analogue (25 µg/(kg BW·12 h); n = 8). In this experiment, GLP-2 increased intestinal weight (+22%; P < 0.01) and activity of brush border enzymes (+50-100%; P < 0.05). Circulating GLP-2 levels were in the pharmacological range in Exp. 3 (constant levels >20,000 pmol/L) and Exp. 2 (increases to 20,000 pmol/L for a few hours each day) while they were in the supraphysiological range in Exp. 1 (50-200 pmol/L). In conclusion, GLP-2 may improve gut structure and function in weanling pigs. However, the effects may be significant only under conditions of diarrhea and if GLP-2 exposure time is extended using long-acting analogues.
Collapse
Affiliation(s)
- T Thymann
- University of Copenhagen, Dep. of Human Nutrition, Exercise and Sports, DK-1958 Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sigalet DL, de Heuvel E, Wallace L, Bulloch E, Turner J, Wales PW, Nation P, Wizzard PR, Hartmann B, Assad M, Holst JJ. Effects of chronic glucagon-like peptide-2 therapy during weaning in neonatal pigs. ACTA ACUST UNITED AC 2013; 188:70-80. [PMID: 24368164 DOI: 10.1016/j.regpep.2013.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND The enteroendocrine hormone glucagon like peptide-2 (GLP-2) and its ligands are under development as therapeutic agents for a variety of intestinal pathologies. A number of these conditions occur in neonates and infants, and thus a detailed understanding of the effects of GLP-2 during the phase of rapid growth during infancy is required to guide the development of therapeutic applications. We studied the effects of GLP-2 in the neonatal pig to determine the potential effects of exogenous administration. METHODS Two day old newborn domestic piglets were treated with GLP-2 (1-33) at 40 μg/kg/day or control drug vehicle (saline), by subcutaneous injection, given in two doses per day, (n=6/group) for 42 days. Animals were weaned normally, over days 21-25. In the fifth week of life, they underwent neuro-developmental testing, and a pharmacokinetic study. On day 42, they were euthanized, and a complete necropsy performed, with histological assessment of tissues from all major organs. RESULTS GLP-2 treatment was well tolerated, one control animal died from unrelated causes. There were no effects of GLP-2 on weight gain, feed intake, or behavior. In the treated animals, GLP-2 levels were significantly elevated at 2400±600 pM while at necropsy, organ weights and histology were not affected except in the intestine, where the villus height in the small intestine and the crypt depth, throughout the small intestine and colon, were increased. Similarly, the rate of crypt cell proliferation (Ki-67 staining) was increased in the GLP-2 treated animals and the rate of apoptosis (Caspase-3) was decreased, the depth of the microvilli was increased and the expression of the mRNA for the GLP-2 receptor was decreased throughout the small and large intestine. CONCLUSIONS In these growing animals, exogenous GLP-2 at pharmacologic doses was well tolerated, with effects confined to the gastrointestinal tract.
Collapse
Affiliation(s)
- David L Sigalet
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Elaine de Heuvel
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie Wallace
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Estrella Bulloch
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Justine Turner
- Dept of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Paul W Wales
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Patrick Nation
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Meena Assad
- Gastrointestinal Research Group, Snyder Institute of Infection, Immunity and Inflammation, Dept of Surgery, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jens J Holst
- Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Ipharraguerre IR, Tedó G, Menoyo D, de Diego Cabero N, Holst JJ, Nofrarías M, Mereu A, Burrin DG. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs. J Nutr 2013; 143:1899-905. [PMID: 24047704 DOI: 10.3945/jn.113.177865] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestinal adaptation in weanling pigs. During the first 6 d after weaning, piglets were intragastrically infused once daily with either deionized water (control), chenodeoxycholic acid (CDC; 60 mg/kg body weight), or β-sitoesterol (BSE; 100 mg/kg body weight). Infusing CDC increased plasma GLP-2 (P < 0.05) but did not affect plasma GLP-1 and feed intake. The intestinal expression of glucagon-like peptide 2 receptor, sodium-dependent bile acid transporter, farnesoid X receptor, and guanosine protein-coupled bile acid receptor genes were not affected by CDC treatment. The intragastric administration of CDC did not alter the weight and length of the intestine, yet increased the activation of caspase-3 in ileal villi (P < 0.02) and the expression of interleukin 6 (P < 0.002) in the jejunum. In contrast, infusing BSE did not affect any of the variables that were measured. Our results show that the enteral administration of the bile acid CDC potentiates the nutrient-induced secretion of endogenous GLP-2 in early-weaned pigs. Bile acid-enhanced release of GLP-2, however, did not result in improved intestinal growth, morphology, or inflammation during the postweaning degenerative phase.
Collapse
|
28
|
Vegge A, Thymann T, Lund P, Stoll B, Bering SB, Hartmann B, Jelsing J, Qvist N, Burrin DG, Jeppesen PB, Holst JJ, Sangild PT. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates. Am J Physiol Gastrointest Liver Physiol 2013; 305:G277-85. [PMID: 23764891 PMCID: PMC4073902 DOI: 10.1152/ajpgi.00064.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following intestinal resection in preterm pigs. Preterm pigs were fed enterally for 48 h before undergoing resection of 50% of the small intestine and establishment of a jejunostomy. Following resection, pigs were maintained on total parenteral nutrition (TPN) without (SBS, n = 8) or with GLP-2 treatment (3.5 μg/kg body wt per h, SBS+GLP-2, n = 7) and compared with a group of unresected preterm pigs (control, n = 5). After 5 days of TPN, all piglets were fed enterally for 24 h, and a nutrient balance study was performed. Intestinal resection was associated with markedly reduced endogenous GLP-2 levels. GLP-2 increased the relative absorption of wet weight (46 vs. 22%), energy (79 vs. 64%), and all macronutrients (all parameters P < 0.05). These findings were supported by a 200% increase in sucrase and maltase activities, a 50% increase in small intestinal epithelial volume (P < 0.05), as well as increased DNA and protein contents and increased total protein synthesis rate in SBS+GLP-2 vs. SBS pigs (+100%, P < 0.05). Following intestinal resection in preterm pigs, GLP-2 induced structural and functional adaptation, resulting in a higher relative absorption of fluid and macronutrients. GLP-2 treatment may be a promising therapy to enhance intestinal adaptation and improve digestive function in preterm infants with jejunostomy following intestinal resection.
Collapse
Affiliation(s)
- Andreas Vegge
- Dept. of Human Nutrition, Faculty of Life Sciences, Univ. of Copenhagen, 30 Rolighedsvej, DK-1870 Frederiksberg C, Denmark.
| | - Thomas Thymann
- Departments of 1Nutrition, Exercise and Sports, Faculty of Science, and
| | - Pernille Lund
- Departments of 1Nutrition, Exercise and Sports, Faculty of Science, and
| | - Barbara Stoll
- 2USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
| | - Stine B. Bering
- Departments of 1Nutrition, Exercise and Sports, Faculty of Science, and
| | - Bolette Hartmann
- 3Biomedical Science, Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark;
| | | | - Niels Qvist
- 5Surgical Department A, Odense University Hospital, Odense, Denmark; and
| | - Douglas G. Burrin
- 2USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
| | - Palle B. Jeppesen
- 6Department of Gastroenterology, Rigshospitalet, Copenhagen, Denmark
| | - Jens J. Holst
- 3Biomedical Science, Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark;
| | - Per T. Sangild
- Departments of 1Nutrition, Exercise and Sports, Faculty of Science, and
| |
Collapse
|
29
|
Sangild PT, Thymann T, Schmidt M, Stoll B, Burrin DG, Buddington RK. Invited review: the preterm pig as a model in pediatric gastroenterology. J Anim Sci 2013; 91:4713-29. [PMID: 23942716 DOI: 10.2527/jas.2013-6359] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At birth, the newborn mammal undergoes a transition from a sterile uterine environment with a constant nutrient supply, to a microbe-rich environment with intermittent oral intake of complex milk nutrients via the gastrointestinal tract (GIT). These functional challenges partly explain the relatively high morbidity and mortality of neonates. Preterm birth interrupts prenatal organ maturation, including that of the GIT, and increases disease risk. Exemplary is necrotizing enterocolitis (NEC), which is associated closely with GIT immaturity, enteral feeding, and bacterial colonization. Infants with NEC may require resection of the necrotic parts of the intestine, leading to short bowel syndrome (SBS), characterized by reduced digestive capacity, fluid loss, and dependency on parenteral nutrition. This review presents the preterm pig as a translational model in pediatric gastroenterology that has provided new insights into important pediatric diseases such as NEC and SBS. We describe protocols for delivery, care, and handling of preterm pigs, and show how the immature GIT responds to delivery method and different nutritional and therapeutic interventions. The preterm pig may also provide a sensitive model for postnatal adaptation of weak term piglets showing high mortality. Attributes of the preterm pig model include close similarities with preterm infants in body size, organ development, and many clinical features, thereby providing a translational advantage relative to rodent models of GIT immaturity. On the other hand, the need for a sow surgical facility, a piglet intensive care unit, and clinically trained personnel may limit widespread use of preterm pigs. Studies on organ adaptation in preterm pigs help to identify the physiological basis of neonatal survival for hypersensitive newborns and aid in defining the optimal diet and rearing conditions during the critical neonatal period.
Collapse
Affiliation(s)
- P T Sangild
- Department of Nutrition, Exercise, and Sports
| | | | | | | | | | | |
Collapse
|
30
|
De Vos M, Che L, Huygelen V, Willemen S, Casteleyn C, Van Cruchten S, Van Ginneken C. Increased IGF-1 serum levels and discordant protein and mRNA IGF-1 receptor expression in the small intestine of formula-fed piglets. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Baldassano S, Amato A, Cappello F, Rappa F, Mulè F. Glucagon-like peptide-2 and mouse intestinal adaptation to a high-fat diet. J Endocrinol 2013; 217:11-20. [PMID: 23308022 DOI: 10.1530/joe-12-0500] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endogenous glucagon-like peptide-2 (GLP2) is a key mediator of refeeding-induced and resection-induced intestinal adaptive growth. This study investigated the potential role of GLP2 in mediating the mucosal responses to a chronic high-fat diet (HFD). In this view, the murine small intestine adaptive response to a HFD was analyzed and a possible involvement of endogenous GLP2 was verified using GLP2 (3-33) as GLP2 receptor (GLP2R) antagonist. In comparison with animals fed a standard diet, mice fed a HFD for 14 weeks exhibited an increase in crypt-villus mean height (duodenum, 27.5±3.0%; jejunum, 36.5±2.9%; P<0.01), in the cell number per villus (duodenum, 28.4±2.2%; jejunum, 32.0±2.9%; P<0.01), and in Ki67-positive cell number per crypt. No change in the percent of caspase-3-positive cell in the villus-crypt was observed. The chronic exposure to a HFD also caused a significant increase in GLP2 plasma levels and in GLP2R intestinal expression. Daily administration of GLP2 (3-33) (30-60 ng) for 4 weeks did not modify the crypt-villus height in control mice. In HFD-fed mice, chronic treatment with GLP2 (3-33) reduced the increase in crypt-villus height and in the cell number per villus through reduction of cell proliferation and increase in apoptosis. This study provides the first experimental evidence for a role of endogenous GLP2 in the intestinal adaptation to HFD in obese mice and for a dysregulation of the GLP2/GLP2R system after a prolonged HFD.
Collapse
Affiliation(s)
- Sara Baldassano
- Laboratorio di Fisiologia generale, Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università di Palermo, 90128 Palermo, Italy
| | | | | | | | | |
Collapse
|
32
|
Sigalet DL. NONRUMINANT NUTRITION SYMPOSIUM: The role of glucagon-like peptide-2 in controlling intestinal function in human infants: Regulator or bystander?1,2,3. J Anim Sci 2012; 90:1224-32. [DOI: 10.2527/jas.2011-4704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
33
|
Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components. Nutr Res Rev 2011; 24:155-75. [DOI: 10.1017/s0954422411000047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The weaning transition is characterised by morphological, histological and microbial changes, often leading to weaning-associated disorders. These intestinal changes can partly be ascribed to the lack of luminal nutrition arising from the reduced feed intake common in pigs after weaning. It is increasingly becoming clear that changes in the supply with enteral nutrients may have major impacts on intestinal gene expression. Furthermore, the major dietary constituents, i.e. carbohydrates, fatty acids and amino acids, participate in the regulation of intestinal gene expression. However, nutrients may also escape digestion by mammalian enzymes in the upper gastrointestinal tract. These nutrients can be used by the microflora, resulting in the production of bacterial metabolites, for example, SCFA, which may affect intestinal gene expression indirectly. The present review provides an insight on possible effects of reduced feed intake on intestinal gene expression, as it may occur post-weaning. Detailed knowledge on effects of reduced feed intake on intestinal gene expression may help to understand weaning-associated intestinal dysfunctions and diseases. Examples are given of intestinal genes which may be altered in their expression due to supply with specific nutrients. In that way, gene expression could be modulated by dietary means, thereby acting as a potential therapeutic tool. This could be achieved, for example, by influencing genes coding for digestive or absorptive proteins, thus optimising digestive function and metabolism, but also with regard to immune response, or by influencing proliferative processes, thereby enhancing mucosal repair. This would be of special interest when designing a diet to overcome weaning-associated problems.
Collapse
|
34
|
Affiliation(s)
- Rao N. Jaladanki
- University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center
| | - Jian-Ying Wang
- University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center
| |
Collapse
|
35
|
Velázquez E, Blázquez E, Ruiz-Albusac JM. Synergistic effect of glucagon-like peptide 2 (GLP-2) and of key growth factors on the proliferation of cultured rat astrocytes. Evidence for reciprocal upregulation of the mRNAs for GLP-2 and IGF-I receptors. Mol Neurobiol 2009; 40:183-93. [PMID: 19672727 DOI: 10.1007/s12035-009-8080-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/27/2009] [Indexed: 12/29/2022]
Abstract
The aim of this work was to determine whether the stimulating effect of glucagon-like peptide (GLP)-2 on astrocyte proliferation could be reinforced by proliferating substances, including growth factors such as EGF, platelet-derived growth factor, insulin-like growth factor type I (IGF-I) or a hormone such as insulin. Both DNA synthesis and astrocyte density, as well as the expression of c-Fos, Ki-67, proliferating cell nuclear antigen and glial fibrillary acidic proteins, were found to be higher in the presence of GLP-2 than in its absence. In an attempt to get a better understanding of this process, intracellular cyclic adenosine monophosphate (cAMP) production, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and the expression of GLP-2R and IGF-I receptor (IGF-IR) mRNAs were studied in response to growth factors. Our results indicate that, in the presence of different growth factors, GLP-2 does not increase cAMP production but raises ERK 1/2 phosphorylation. In addition, GLP-2R mRNA expression was increased by IGF-I, whilst mRNA expression of IGF-IR was higher in cells incubated with GLP-2 than in control cells. These results suggest for the first time that GLP-2 and several growth factors show synergistic effects on the proliferation of rat astrocytes, a process in which an enhanced expression of GLP-2R and IGF-IR may be involved, providing additional insights into the physiological role of this novel neuropeptide, specially during astroglial regeneration.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
36
|
Kaji T, Tanaka H, Wallace LE, Kravarusic D, Holst J, Sigalet DL. Nutritional effects of the serial transverse enteroplasty procedure in experimental short bowel syndrome. J Pediatr Surg 2009; 44:1552-9. [PMID: 19635304 DOI: 10.1016/j.jpedsurg.2008.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND/PURPOSE The serial transverse enteroplasty (STEP) procedure appears beneficial clinically, but the mechanism(s) underlying these effects remains unclear. The present study evaluated the nutritional, hormonal, and morphologic effects of the STEP procedure in a rodent model of short bowel syndrome. METHODS With institutional animal care ethics approval, Sprague-Dawley rats underwent an 80% distal bowel resection, anastomosing the 30 cm remnant of jejunum to the ascending colon; at day 14, animals were randomly assigned to control or a STEP procedure (n = 8/group). Animals were pair-fed with normal chow; after a further 3 weeks, intestinal transit, hormonal and metabolic balance studies were done, and intestinal tissues were taken for analysis. RESULTS The STEP group had increased weight gain (resected: -0.34% +/- 2.9% vs STEP: 2.5% +/- 1.5%), increased bowel length (34.1 +/- 1.5 vs 36.9 +/- 2.2 cm), increased jejunal villus height (555 +/- 59 vs 635 +/- 65 microm), decreased rates of crypt cell apoptosis, increased expression of mRNA for the GLP-2 receptor, and increased postprandial production of glucagon-like peptide 2 (45 +/- 14 vs 65 +/- 12 pmol/L) (P < .05 by Student t test). There were no differences in intestinal transit; absorption of total calories, protein, fat, or carbohydrate; crypt cell proliferation rates; or the expression of intestinal transporter proteins (SGLT-1, GLUT-2, and GLUT-5). CONCLUSIONS The STEP procedure improves weight gain and augments gross and microscopic intestinal morphology in severe experimental short bowel syndrome. Postprandial GLP-2 levels are increased, as is the expression of the GLP-2 receptor; these mechanisms may contribute to these metabolic effects and may be useful in guiding the use of the STEP procedure clinically.
Collapse
Affiliation(s)
- Tatsuru Kaji
- Alberta Children's Hospital, Department of Surgery and Gastrointestinal Research Group, Institution of Infection Immunity and Inflammation, Faculty of Medicine, University of Calgary, Health Science Center, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Ozer EA, Holst JJ, Duman N, Kumral A, Ozkan H. The relationship between glucagon-like peptide 2 and feeding intolerance in preterm infants. J Trop Pediatr 2009; 55:276-7. [PMID: 18499738 DOI: 10.1093/tropej/fmn033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glucagon-like peptide 2 (GLP-2) is a hormone produced primarily in the distal intestine, stimulated by enteral nutrients, and playing diverse roles in the intestinal adaptation and growth. We aimed to investigate whether GLP-2 may play a role in the development of feeding intolerance which is a common problem in preterm newborns resulting from the intestinal immaturity. The study included 20 term and 28 preterm neonates. Of preterm babies, 13 showed feeding intolerance fulfilling at least one of the following criteria: abdominal distension, increased gastric residual volume and presence of bile in the gastric aspirate. The plasma GLP-2 levels measured prior to enteral feeding (fasting level) and at 60 min after the beginning of the feeding (post-pradial level) were correlated with of clinical parameters. There was no statistical difference between GLP-2 levels of overall preterm babies and those of term newborns. However, preterm neonates with feeding intolerance showed significantly lower levels of GLP-2 and increased duration to achieve full enteral feeding and hospitalization. It is suggested that GLP-2 plays a significant role in the regulation of feeding in newborns and that preterm babies with low levels of GLP-2 carry a risk for development of feeding intolerance. It may, therefore, be of relevance to investigate the therapeutic and prophylactic effects of GLP-2 administration in the preterm babies.
Collapse
|
38
|
Izumi H, Ishizuka S, Inafune A, Hira T, Ozawa K, Shimizu T, Takase M, Hara H. alpha-Lactalbumin hydrolysate stimulates glucagon-like peptide-2 secretion and small intestinal growth in suckling rats. J Nutr 2009; 139:1322-7. [PMID: 19494023 DOI: 10.3945/jn.109.106401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated whether bovine milk constituents influenced glucagon-like peptide (GLP)-2 secretion and intestinal growth in suckling rats. Male Sprague-Dawley rats (14 d old) received i.g. infusions of a milk protein fraction, a lactose solution, or the cream fraction of milk. The serum concentration of GLP-2, but not GLP-1, markedly increased in rats administered milk protein compared with those given the lactose solution or the cream fraction from 60 to 120 min after administration. In another experiment, both casein (CN) and whey protein isolate stimulated GLP-2 secretion at 120 min after administration, but soy protein and ovalbumin did not. Stimulation of GLP-2 secretion by several milk proteins was similar, including alpha-CN, alpha-lactalbumin (alpha-La), and beta-lactoglobulin, in a separate experiment. A hydrolysate of alpha-La obtained by incubation with protease A extracted from Aspergillus oryzae (LaHPA) caused almost twice the GLP-2 release due to intact alpha-La and other alpha-La hydrolysates. Free amino acid concentrations and molecular size distributions did not differ among alpha-La hydrolysates, including LaHPA. In rat pups reared with milk formulae containing alpha-La or LaHPA, LaHPA significantly promoted small intestinal elongation and increased the number of crypt epithelial cells compared with a formula containing intact alpha-La. LaHPA administration also increased the maltase:lactase activity ratio, a marker of maturation of the intestinal mucosa. In conclusion, milk proteins stimulate GLP-2 secretion and contribute to growth and maturation of the small intestine in suckling rats.
Collapse
Affiliation(s)
- Hirohisa Izumi
- Nutritional Science Laboratory, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa 228-8583, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sangild PT, Mei J, Fowden AL, Xu RJ. The prenatal porcine intestine has low transforming growth factor-beta ligand and receptor density and shows reduced trophic response to enteral diets. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1053-62. [DOI: 10.1152/ajpregu.90790.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-beta (TGF-β) plays a role in enterocyte proliferation control, cell differentiation, and immune regulation via binding to specific TGF-β receptors (TGF-β R) in the intestinal epithelium. Endogenous TGF-β production is low in the intestine during the perinatal period, but some exogenous TGF-β ligands are supplied by amniotic fluid intake in the fetus and by colostrum ingestion in the neonate. It is not clear, however, whether luminal TGF-β receptors are present and functional at this critical time. We studied intestinal TGF-β receptors by immunohistochemistry during the last 20% of gestation in pigs and in chronically catheterized fetuses following exposure to colostrum, milk, and amniotic fluid (control). In fetal pigs, the TGF-β Rs were predominantly localized to the crypt epithelium, but staining intensity increased markedly just before term and shifted to the villous epithelium in newborn pigs, concurrently with marked increases in villous heights and crypt depths (+100–200%, P < 0.05). In contrast to previous observations in term newborn pigs, fetal pigs did not show any milk-induced change in TGF-β receptor densities or localization, although a moderate increase in villous height was observed, relative to control (+25–50%, P < 0.05). We conclude that intestinal TGF-β receptor density and localization are immature and unresponsive to TGF-β containing milk diets in prenatal pigs. Immaturity of TGF-β-mediated immune regulation may play a role in the increased sensitivity of preterm neonates to diet-induced intestinal inflammatory disorders.
Collapse
|
40
|
Temporal Changes in the Intestinal Growth Promoting Effects of Glucagon-Like Peptide 2 Following Intestinal Resection. J Surg Res 2009; 152:271-80. [DOI: 10.1016/j.jss.2008.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 04/15/2008] [Accepted: 05/18/2008] [Indexed: 12/19/2022]
|
41
|
Douard V, Choi HI, Elshenawy S, Lagunoff D, Ferraris RP. Developmental reprogramming of rat GLUT5 requires glucocorticoid receptor translocation to the nucleus. J Physiol 2008; 586:3657-73. [PMID: 18556366 DOI: 10.1113/jphysiol.2008.155226] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fructose consumption has increased dramatically but little is known about mechanisms regulating the intestinal fructose transporter GLUT5 in vivo. In neonatal rats, GLUT5 can be induced only by luminal fructose and only after 14 days of age, unless the gut is primed with dexamethasone prior to fructose perfusion. To elucidate the mechanisms underlying dexamethasone modulation of GLUT5 development, we first identified the receptor mediating its effects then determined whether those effects were genomic. The glucocorticoid receptor (GR) antagonist RU486 dose-dependently prevented the dexamethasone-mediated effects on body weight, intestinal arginase2 (a known GR-regulated gene) and GLUT5. In contrast, an antagonist of the mineralocorticoid receptor as well as agonists of progesterone (PR) and pregnane-X (PXR) receptors did not block the effects of dexamethasone. These receptor antagonists and agonists had no effect on the intestinal glucose transporter SGLT1. Translocation of the GR into the enterocyte nucleus occurred only in dexamethasone-injected pups perfused with fructose, was accompanied by marked increases in brush border GLUT5 abundance, and was blocked by RU486. A priming duration of approximately 24 h is optimal for induction but actinomycin D injection before dexamethasone priming prevented dexamethasone from allowing luminal fructose to induce GLUT5. Actinomycin D had no effect on dexamethasone-independent fructose-induced increases in glucose-6-phosphatase mRNA abundance, suggesting that it did not prevent fructose-induction of GLUT5, but instead prevented dexamethasone-induced synthesis of an intermediate required by fructose for GLUT5 regulation. In suckling rats < 14 days old, developmental regulation of transporters may involve cross-talk between hormonal signals modulating intestinal maturation and nutrient signals regulating specific transporters.
Collapse
Affiliation(s)
- Véronique Douard
- Department of Pharmacology and Physiology, NJ Medical School, 185 S. Orange Avenue, Newark, NJ 07101, USA
| | | | | | | | | |
Collapse
|
42
|
Sangild PT, Malo C, Schmidt M, Petersen YM, Elnif J, Holst JJ, Buddington RK. Glucagon-like peptide 2 has limited efficacy to increase nutrient absorption in fetal and preterm pigs. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2179-84. [PMID: 17898120 DOI: 10.1152/ajpregu.00395.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exogenous glucagon-like peptide 2 (GLP-2) prevents intestinal atrophy and increases nutrient absorption in term newborn pigs receiving total parenteral nutrition (TPN). We tested the hypothesis that the immature intestine of fetuses and preterm neonates has a diminished nutrient absorption response to exogenous GLP-2. This was accomplished using catheterized fetal pigs infused for 6 days (87-91% of gestation) with GLP-2 (25 nmol.kg(-1).day(-1) iv; n = 7) or saline (n = 7), and cesarean-delivered preterm pigs (92% of gestation) that received TPN with GLP-2 (25 nmol.kg(-1).day(-1) iv; n = 8) or saline (n = 7) for 6 days after birth. Responses to GLP-2 were assessed by measuring intestinal dimensions, absorption of nutrients (glucose, leucine, lysine, proline) by intact tissues and brush border membrane vesicles, and abundance of sodium-glucose cotransporter mRNA. Infusion of GLP-2 increased circulating GLP-2 levels in fetuses, but did not increase intestinal mass or absorption of nutrients by intact tissues and brush border membrane vesicles, except for lysine. Administration of exogenous GLP-2 to preterm TPN-fed pigs similarly did not increase rates of nutrient absorption, yet nutrient absorption capacities of the entire small intestine tended to increase (+10-20%, P < 0.10) compared with TPN alone due to increased intestinal mass (+30%, P < 0.05). GLP-2 infusion did not increase sodium-glucose cotransporter-1 mRNA abundance in fetuses or postnatal preterm pigs. Hence, the efficacy of exogenous GLP-2 to improve nutrient absorption by the intestine of fetal and preterm pigs is limited compared with term pigs and more mature animals and humans.
Collapse
Affiliation(s)
- Per T Sangild
- Department of Human Nutrition, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Sangild P, Schmidt M, Thymann T, Holst J, Raun K. Gut growth and glucose tolerance in newborn pigs subjected to prenatal protein restriction and postnatal Glucagon-like Peptides. Livest Sci 2007. [DOI: 10.1016/j.livsci.2007.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Abstract
Preterm birth is associated with immature digestive function that may require the use of total parenteral nutrition and special oral feeding regimens. Little is known about the responses to oral food in the preterm neonate and how enteral nutrients affect the immature gastrointestinal tract (GIT). In vivo studies are difficult to perform in laboratory rodents because of their small body size and that of immature organs at birth, and this makes the large farm animals (e.g., pigs, cattle, sheep) more attractive models in this field. In these species, preterm delivery at 88%-95% gestation is associated clinical complications and degrees of GIT immaturity similar to those in infants born at 70%-90% gestation. Studies in both animals and infants indicate that the immature GIT responds to the first enteral food with rapid increases in gut mass and surface area, blood flow, motility, digestive capacity, and nutrient absorption. To a large extent, the enteral food responses are birth independent, and can be elicited also in utero, at least during late gestation. Nevertheless, preterm neonates show compromised GIT structure, function, and immunology, particularly when delivered by caesarean section and fed diets other than mother's milk. Formula-fed preterm infants are thus at increased risk of developing diseases such as necrotizing enterocolitis, unless special care is taken to avoid excessive nutrient fermentation and bacterial overgrowth. The extent to which results obtained in preterm animals (most notably the pig) can be used to reflect similar conditions in preterm infants is discussed.
Collapse
Affiliation(s)
- Per T Sangild
- Department of Human Nutrition, Royal Veterinary and Agricultural and Veterinary University, 30 Rolighedsvej, Frederiksberg C, Denmark.
| |
Collapse
|
46
|
Bodé S, Hartmann B, Holst JJ, Greisen G. Glucagon-like peptide-2 in umbilical cord blood from mature infants. Neonatology 2007; 91:49-53. [PMID: 17344652 DOI: 10.1159/000096971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 03/20/2006] [Indexed: 01/04/2023]
Abstract
BACKGROUND Glucagon-like peptide-2 (GLP-2) seems to be a highly specific intestinotrophic mediator. From animal studies, GLP-2 is known to increase in the early neonatal period before it falls to adult level. No studies in newborn infants addressing this specific subject have been published so far. OBJECTIVES To measure GLP-2 concentrations in umbilical cord blood from healthy mature infants and to assess any influence from the processes associated with spontaneous birth to GLP-2 production. SUBJECTS Twenty-one children delivered by elective cesarean section for maternal reasons and 18 children delivered spontaneously vaginally and without complications were included. Gestational age (GA) was median (range) 38.7 (40.7-37.1) weeks and 40.2 (41.9-38) weeks, and birth weight was median (range) 3,210 (4,820-2,100) g and 3,396 (4,225-3,050) g, respectively. The infants had no diagnosed diseases or malformations. METHODS Umbilical cord blood was collected shortly after birth. Plasma was separated and GLP-2 immunoreactivity was measured with a specific NH(2)-terminal radioimmunoassay. RESULTS GLP-2 was detected in all samples. Mean values +/-SD were 16.7 +/- 3.9 pmol/l and range was 32-11 pmol/l, which is comparable to adult fasting levels. No significant correlation to birth weight (p = 0.087) or to cesarean section (p = 0.059) was found. In multiple linear regression analysis (GLP-2 vs. GA + cesarean section), neither vaginal delivery nor GA were statistically significantly related to the level of GLP-2 (p = 0.28 and 0.18), respectively. CONCLUSIONS GLP-2 is present in human cord blood by the time of birth. The level of GLP-2 is comparable to adult fasting levels. Spontaneous birth at most induces a minor increase in GLP-2 in term infants. In the narrow age interval studied, no significant effect of maturation was seen.
Collapse
Affiliation(s)
- Susan Bodé
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
47
|
Donovan SM. Role of human milk components in gastrointestinal development: Current knowledge and future NEEDS. The journal The Journal of Pediatrics 2006. [DOI: 10.1016/j.jpeds.2006.06.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Yoshikawa H, Miyata I, Eto Y. Serum glucagon-like peptide-2 levels in neonates: comparison between extremely low-birthweight infants and normal-term infants. Pediatr Int 2006; 48:464-9. [PMID: 16970784 DOI: 10.1111/j.1442-200x.2006.02255.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glucagon-like peptide-2 (GLP-2) arises from proglucagon within enteroendocrine L cells of the small and large intestines, and its physiological roles have been gradually elucidated. However, the circulating GLP-2 levels in human neonates are still unknown. The aim of the present study was to measure serum GLP-2 levels in extremely low-birthweight (ELBW) infants and normal-term infants, and to compare these values between the two groups. METHODS Blood samples were collected and serum GLP-2 concentrations measured, from 15 ELBW infants at three stages (stage I, before initial feeding after birth; stage II, point at which milk intake reached 100 mL/kg per day; stage III, corrected 40 weeks of gestation), and from 30 normal-term infants at two stages (stages I and II). RESULTS No significant difference in basal GLP-2 values at stage I (before initial feeding) was found between ELBW infants and normal-term infants (7.37 +/- 0.95 ng/mL vs 9.47 +/- 0.94 ng/mL). However, in ELBW infants, serum GLP-2 concentrations at stage II were significantly increased, compared with those at stage I (P < 0.0001). In normal-term infants, serum GLP-2 concentrations at stage II were also significantly increased compared with those at stage I (P < 0.001). CONCLUSION The results suggest that initial feeding stimulates secretion of serum GLP-2 in neonates. In addition, the secretion mechanism of GLP-2 is considered to be established at 24 weeks of gestation at the latest.
Collapse
Affiliation(s)
- Hideki Yoshikawa
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
49
|
Sangild PT, Tappenden KA, Malo C, Petersen YM, Elnif J, Bartholome AL, Buddington RK. Glucagon-like peptide 2 stimulates intestinal nutrient absorption in parenterally fed newborn pigs. J Pediatr Gastroenterol Nutr 2006; 43:160-7. [PMID: 16877979 DOI: 10.1097/01.mpg.0000228122.82723.1b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Parenteral nutrition is a critically important intervention for children with intestinal dysfunctions. However, total parenteral nutrition (TPN) with no enteral feeding is associated with small intestine atrophy and malabsorption, which complicate the transition to enteral nutrition. The objective of the present study was to evaluate the therapeutic potential of the intestinotrophic peptide glucagon-like peptide 2 (GLP-2), which reduces TPN-associated atrophy and maintains nutrient absorption in adult rats, for preventing nutrient malabsorption in neonates receiving TPN. METHODS Term pigs obtained by cesarean delivery received from birth TPN alone (TPN; n = 7) or TPN with GLP-2 (25 nmol . kg(-1) . d(-1); GLP-2; n = 8) or were fed sow milk enterally (n = 7). The small intestine was removed on postnatal day 6 to measure morphological responses and absorption of glucose, leucine, lysine and proline by intact tissues and brush border membrane vesicles and to quantify the abundances of mRNA and protein for enterocyte glucose transporters (SGLT-1 and GLUT2). RESULTS Relative to TPN alone, administration of GLP-2 resulted in small intestines that were larger (P < 0.01), had greater abundances of mRNA and protein for SGLT-1, but not for GLUT2, and had higher capacities to absorb nutrients (P < 0.01). Moreover, the intestines of GLP-2 pigs were comparable in size and absorptive capacities with those of pigs fed sow milk enterally. CONCLUSIONS Providing GLP-2 to neonates receiving TPN prevents small intestine atrophy, results in small intestine absorptive capacities that are comparable to when nutrients are provided enterally and may accelerate the transition from TPN to enteral nutrition.
Collapse
Affiliation(s)
- P T Sangild
- Department of Human Nutrition, Royal Veterinary and Agricultural University, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Sangild PT, Siggers RH, Schmidt M, Elnif J, Bjornvad CR, Thymann T, Grondahl ML, Hansen AK, Jensen SK, Boye M, Moelbak L, Buddington RK, Weström BR, Holst JJ, Burrin DG. Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology 2006; 130:1776-92. [PMID: 16697741 DOI: 10.1053/j.gastro.2006.02.026] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Accepted: 02/01/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Preterm birth and formula feeding are key risk factors associated with necrotizing enterocolitis (NEC) in infants, but little is known about intestinal conditions that predispose to disease. Thus, structural, functional, and microbiologic indices were used to investigate the etiology of spontaneous NEC development in preterm pigs. METHODS Piglets were delivered by cesarean section at 92% gestation, reared in infant incubators, and fed infant formula or colostrum every 3 hours (n = 120) until tissue collection at 1-2 days of age. RESULTS Clinical and histopathologic signs of NEC were observed in 57% of pigs fed FORMULA (26/46) and in 5% of pigs fed COLOSTRUM (2/38) (P < .05). Relative to COLOSTRUM, both healthy and sick FORMULA pigs had reduced intestinal villous heights, enzyme activities, nutrient absorption, and antioxidant levels and higher inducible nitric oxide synthetase activity (P < .05). In healthy pigs, mucosal microbial diversity remained low and diet independent. NEC pigs showed bacterial overgrowth, and a high mucosal density of Clostridium perfringens was detected in some but not all pigs. Germ-free conditions and antiserum against Clostridium perfringens toxin prevented intestinal dysfunction and NEC in formula-fed pigs, whereas the gut trophic factors, epidermal growth factor, and glucagon-like peptide 2 had limited effects. CONCLUSIONS A subclinical, formula-induced mucosal atrophy and dysfunction predispose to NEC and bacterial overgrowth. The adverse feeding effects are colonization dependent and may be reduced by factors in colostrum that include antibodies against aggressive toxins such as those of Clostridium perfringens.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Biopsy, Needle
- Causality
- Colony Count, Microbial
- Colostrum
- DNA, Bacterial/analysis
- Enterocolitis, Necrotizing/epidemiology
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/prevention & control
- Female
- Gastrointestinal Tract/microbiology
- Immunohistochemistry
- Infant Formula/administration & dosage
- Intestinal Absorption/physiology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Intestine, Small/embryology
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Molecular Sequence Data
- Polymerase Chain Reaction/methods
- Pregnancy
- Pregnancy, Animal
- Premature Birth
- Probability
- Risk Factors
- Sensitivity and Specificity
- Swine
Collapse
Affiliation(s)
- Per T Sangild
- Divisions of Nutrition and Reproduction, Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|