1
|
Jackson C, Kolba N, Tako E. Assessing the Interactions between Zinc and Vitamin A on Intestinal Functionality, Morphology, and the Microbiome In Vivo ( Gallus gallus). Nutrients 2023; 15:2754. [PMID: 37375657 DOI: 10.3390/nu15122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary deficiencies in zinc (Zn) and vitamin A (VA) are among the leading micronutrient deficiencies globally and previous research has proposed a notable interaction between Zn and VA physiological status. This study aimed to assess the effects of zinc and vitamin A (isolated and combined) on intestinal functionality and morphology, and the gut microbiome (Gallus gallus). The study included nine treatment groups (n~11)-no-injection (NI); H2O; 0.5% oil; normal zinc (40 mg/kg ZnSO4) (ZN); low zinc (20 mg/kg) (ZL); normal retinoid (1500 IU/kg retinyl palmitate) (RN); low retinoid (100 IU/kg) (RL); normal zinc and retinoid (40 mg/kg; 1500 IU/kg) (ZNRN); low zinc and retinoid (ZLRL) (20 mg/kg; 100 IU/kg). Samples were injected into the amniotic fluid of the fertile broiler eggs. Tissue samples were collected upon hatch to target biomarkers. ZLRL reduced ZIP4 gene expression and upregulated ZnT1 gene expression (p < 0.05). Duodenal surface area increased the greatest in RL compared to RN (p < 0.01), and ZLRL compared to ZNRN (p < 0.05). All nutrient treatments yielded shorter crypt depths (p < 0.01). Compared to the oil control, ZLRL and ZNRN reduced (p < 0.05) the cecal abundance of Bifidobacterium and Clostridium genera (p < 0.05). These results suggest a potentially improved intestinal epithelium proceeding with Zn and VA intra-amniotic administration. Intestinal functionality and gut bacteria were modulated. Further research should characterize long-term responses and the microbiome profile.
Collapse
Affiliation(s)
- Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Chen S, Zhou M, Zhao X, Han Y, Huang Y, Zhang L, Wang J, Xiao X, Li P. Metabolomics coupled with network pharmacology study on the protective effect of Keguan-1 granules in LPS-induced acute lung injury. PHARMACEUTICAL BIOLOGY 2022; 60:525-534. [PMID: 35253576 PMCID: PMC8903776 DOI: 10.1080/13880209.2022.2040544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 06/03/2023]
Abstract
CONTEXT Keguan-1 (KG-1) plays a vital role in enhancing the curative effects, improving quality of life, and reducing the development of acute lung injury (ALI). OBJECTIVE To unravel the protective effect and underlying mechanism of KG-1 against ALI. MATERIALS AND METHODS C57BL/6J mice were intratracheally instilled with lipopolysaccharide to establish the ALI model. Then, mice in the KG-1 group received a dose of 5.04 g/kg for 12 h. The levels of proinflammatory cytokines, chemokines, and pathological characteristics were determined to explore the effects of KG-1. Next, untargeted metabolomics was used to identify the differential metabolites and involved pathways for KG-1 anti-ALI. Network pharmacology was carried out to predict the putative active components and drug targets of KG-1 anti-ALI. RESULTS KG-1 significantly improved the levels of TNF-α (from 2295.92 ± 529.87 pg/mL to 1167.64 ± 318.91 pg/mL), IL-6 (from 4688.80 ± 481.68 pg/mL to 3604.43 ± 382.00 pg/mL), CXCL1 (from 4361.76 ± 505.73 pg/mL to 2981.04 ± 526.18 pg/mL), CXCL2 (from 5034.09 ± 809.28 pg/mL to 2980.30 ± 747.63 pg/mL), and impaired lung histological damage. Untargeted metabolomics revealed that KG-1 significantly regulated 12 different metabolites, which mainly related to lipid, amino acid, and vitamin metabolism. Network pharmacology showed that KG-1 exhibited anti-ALI effects through 17 potentially active components acting on seven putative drug targets to regulate four metabolites. DISCUSSION AND CONCLUSIONS This work elucidated the therapeutic effect and underlying mechanism by which KG-1 protects against ALI from the view of the metabolome, thus providing a scientific basis for the usage of KG-1.
Collapse
Affiliation(s)
- Shuaishuai Chen
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Mingxi Zhou
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xu Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanzhong Han
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ying Huang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Long Zhang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jiabo Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Pengyan Li
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Estrada‐Ortiz N, Starokozhko V, van Steenwijk H, van der Heide C, Permentier H, van Heemskerk L, Prins GH, Heegsma J, Faber KN, Bressers S, Steiblen G, de Groot A, Groome S, van Miert E, Groothuis G, de Graaf IAM. Disruption of vitamin A homeostasis by the biocide tetrakis(hydroxymethyl) phosphonium sulphate in pregnant rabbits. J Appl Toxicol 2022; 42:1921-1936. [PMID: 35857281 PMCID: PMC9804500 DOI: 10.1002/jat.4364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 01/05/2023]
Abstract
The biocide tetrakis(hydroxymethyl)phosphonium sulphate (THPS) and other members of the tetrakis(hydroxymethyl) phosphonium salts (THPX) family are associated with liver toxicity in several mammalian species and teratogenicity in rabbits. Malformations include skeletal changes and abnormalities in eye development and are very similar to those seen with vitamin A deficiency or excess. For this reason, it was hypothesized that teratogenicity of THPS(X) might be attributed to disturbances in retinol availability and/or metabolism as a result of maternal toxicity, for example, either due to insufficient dietary intake by the mothers or due to liver toxicity. Therefore, in the present study, liver toxicity and vitamin A homeostasis were studied in pregnant rabbits that were exposed to 13.8 or 46.0 mg/kg THPS during organogenesis and in precision-cut liver slices of rats and rabbits exposed to 0-70 μM THPS. Results show that in vivo exposure to THPS leads to a marked reduction of food intake, increased plasma concentrations of γ-glutamytransferase, degenerative changes in the liver and to changes in retinoid content in liver and plasma in the rabbits during organogenesis. In addition, THPS, both in vivo and ex vivo, caused a change in expression of proteins related to vitamin A metabolism and transport. Together, these observations could explain the birth defects observed in earlier teratogenicity studies.
Collapse
Affiliation(s)
- Natalia Estrada‐Ortiz
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Viktoriia Starokozhko
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Hidde van Steenwijk
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Cor van der Heide
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Hjalmar Permentier
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Lisanne van Heemskerk
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Grietje Harmanna Prins
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of GroningenUniversity Medi‐cal Center GroningenGroningenThe Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of GroningenUniversity Medi‐cal Center GroningenGroningenThe Netherlands
| | | | - Guy Steiblen
- Solvay, Toxicological and Environmental Risk Assessment UnitGenasFrance
| | - Antoinette de Groot
- Solvay, Toxicological and Environmental Risk Assessment UnitBruxellesBelgium
| | | | - Erik van Miert
- Solvay, Toxicological and Environmental Risk Assessment UnitBruxellesBelgium
| | - Geny Groothuis
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Inge Anne Maria de Graaf
- University Medical Center Groningen, Surgical Research LaboratoryUniversity of GroningenGroningenThe Netherlands,School of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
4
|
Xia QS, Gao Y, Wen-Bin W, Wu F, Dong H, Xu LJ, Fang K, Hu ML, Yuan F, Lu FE, Gong J. Ban-xia-xie-xin-tang ameliorates hepatic steatosis by regulating Cidea and Cidec expression in HFD-fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154351. [PMID: 35908522 DOI: 10.1016/j.phymed.2022.154351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ban-xia-xie-xin-tang (BXXXT) has been applied in treating metabolic diseases, such as nonalcohol fatty liver disease, diabetes mellitus, and obesity. However, the underlying molecular mechanism of BXXXT in treating diabetes mellitus is unknown. PURPOSE To clarify the underlying molecular mechanism of BXXXT in alleviating hepatic steatosis in high-fat diet (HFD)-fed mice. METHODS After 12 weeks of HFD treatment, mice were administered BXXXT for 4 weeks. The main chemical components of BXXXT were identified by UPLC-TQ-MS/MS. Indicators associated with insulin resistance and lipid metabolism were detected. The effect of improving glucose and lipid metabolism between BXXXT and the different components was compared. Differentially expressed genes (DEGs) were identified by hepatic transcriptomics. Key DEGs and proteins were further detected by real-time quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence staining. LDs and mitochondria were detected by transmission electron microscopy. RESULTS First of all, our data demonstrated that the capacity to improve glucose and lipid metabolism for BXXXT was significantly superior to different components of BXXXT. BXXXT was found to improve HFD-induced insulin resistance. Moreover, BXXXT decreased weight, serum/hepatic triglycerides, total cholesterol, and FFAs to alleviate HFD-induced hepatic steatosis. According to the results of the hepatic transcription, Cidea and Cidec were identified as critical DEGs for promoting LD fusion and reducing FFAs β-oxidation in mitochondria and peroxisome resulting in hepatic steatosis, which was reversed by BXXXT. CONCLUSION BXXXT ameliorates HFD-induced hepatic steatosis and insulin resistance by increasing Cidea and Cidec-mediated mitochondrial and peroxisomal fatty acid oxidation, which may provide a potential strategy for therapy of NAFLD and T2DM.
Collapse
Affiliation(s)
- Qing-Song Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Beijing Tcmages Pharmaceutical Co., Ltd, Beijing 100000, China
| | - Wu Wen-Bin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li-Jun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Mei-Lin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fen Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
5
|
Holloway C, Zhong G, Kim YK, Ye H, Sampath H, Hammerling U, Isoherranen N, Quadro L. Retinoic acid regulates pyruvate dehydrogenase kinase 4 (Pdk4) to modulate fuel utilization in the adult heart: Insights from wild-type and β-carotene 9',10' oxygenase knockout mice. FASEB J 2022; 36:e22513. [PMID: 36004605 PMCID: PMC9544431 DOI: 10.1096/fj.202101910rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Regulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown. However, vitamin A status and intake of its carotenoid precursor β-carotene have been linked to the prevention of heart diseases. Here, we provide in vitro and in vivo evidence that retinoic acid regulates cardiac Pdk4 expression and thus PDH activity. Furthermore, we show that mice lacking β-carotene 9',10'-oxygenase (BCO2), the only enzyme of the adult heart that cleaves β-carotene to generate retinoids (vitamin A and its derivatives), displayed cardiac retinoic acid insufficiency and impaired metabolic flexibility linked to a compromised PDK4/PDH pathway. These findings provide novel insights into the functions of retinoic acid in regulating energy metabolism in adult tissues, especially the heart.
Collapse
Affiliation(s)
- Chelsee Holloway
- Graduate Program in Endocrinology and Animal Bioscience, Rutgers University, New Brunswick, New Jersey, USA.,Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Hong Ye
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ulrich Hammerling
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Moon J, Ramkumar S, von Lintig J. Genetic dissection in mice reveals a dynamic crosstalk between the delivery pathways of vitamin A. J Lipid Res 2022; 63:100215. [PMID: 35452666 PMCID: PMC9142562 DOI: 10.1016/j.jlr.2022.100215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Vitamin A is distributed within the body to support chromophore synthesis in the eyes and retinoid signaling in most other tissues. Two pathways exist for the delivery of vitamin A: the extrinsic pathway transports dietary vitamin A in lipoproteins from intestinal enterocytes to tissues, while the intrinsic pathway distributes vitamin A from hepatic stores bound to serum retinol-binding protein. Previously, the transcription factor ISX and the retinol binding protein receptor STRA6 were identified as gatekeepers of these pathways; however, it is not clear how mutations in the corresponding genes affect retinoid homeostasis. Here, we used a genetic dissection approach in mice to examine the contributions of these proteins in select tissues. We observed that ISX-deficiency increased utilization of both preformed and pro-vitamin A. We found that increased storage of retinoids in peripheral tissues of ISX-deficient mice was dependent on STRA6 and induced by retinoid signaling. In addition, double mutant mice exhibited a partial rescue of the Stra6 mutant ocular phenotype. This rescue came at the expense of a massive accumulation of vitamin A in other tissues, demonstrating that vitamin A is randomly distributed when present in excessive amounts. Remarkably, pro-vitamin A supplementation of mutant mice induced the expression of the retinol-binding protein receptor 2 in the liver and was accompanied by increased hepatic retinyl ester stores. Taken together, these findings indicate dynamic crosstalk between the delivery pathways for this essential nutrient and suggest that hepatic reuptake of vitamin A takes place when excessive amounts circulate in the blood.
Collapse
Affiliation(s)
- Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
7
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:nu14061312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7253
| |
Collapse
|
8
|
Borel P, Troadec R, Damiani M, Halimi C, Nowicki M, Guichard P, Margier M, Astier J, Grino M, Reboul E, Landrier JF. β-Carotene Bioavailability and Conversion Efficiency Are Significantly Affected by Sex in Rats: First Observation Suggesting a Possible Hormetic Regulation of Vitamin A Metabolism in Female Rats. Mol Nutr Food Res 2021; 65:e2100650. [PMID: 34633772 DOI: 10.1002/mnfr.202100650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Indexed: 12/15/2022]
Abstract
SCOPE To study the effect of variation in dietary vitamin A (VA) content on its hepatic and intestinal metabolism. METHODS AND RESULTS Adult female and male rats are fed with diets containing 400, 2300, or 9858 IU kg-1 VA for 31-33 weeks. VA concentrations are measured in plasma and liver. Bioavailability and intestinal conversion efficiency of β-carotene to VA are assessed by measuring postprandial plasma β-carotene and retinyl palmitate concentrations after force-feeding rats with β-carotene. Expression of genes involved in VA metabolism, together with concentrations of RBP4, BCO1, and SR-BI proteins, are measured in the intestine and liver of female rats. Plasma retinol concentrations are lower and hepatic free retinol concentrations are higher in females than in males. There is no effect of dietary VA content on β-carotene bioavailability and its conversion efficiency, but bioavailability is higher and conversion efficiency is lower in females than in males. The expression of most genes exhibited a U-shaped dose response curve depending on VA intake. CONCLUSIONS β-Carotene bioavailability and conversion efficiency to VA are affected by the sex of rats. Results of gene expression suggest a hormetic regulation of VA metabolism in female rats.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France
| | - Romane Troadec
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France
| | | | | | - Marion Nowicki
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France
| | | | | | - Julien Astier
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France
| | - Michel Grino
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France
| | | | | |
Collapse
|
9
|
Li Y, Tajima A, Mattie FJ, Green MH, Ross AC. Pregnancy and Lactation Alter Vitamin A Metabolism and Kinetics in Rats under Vitamin A-Adequate Dietary Conditions. Nutrients 2021; 13:2853. [PMID: 34445012 PMCID: PMC8401525 DOI: 10.3390/nu13082853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Vitamin A (VA) plays critical roles in prenatal and postnatal development; however, limited information is available regarding maternal VA metabolism during pregnancy and lactation. OBJECTIVES We investigated the impact of pregnancy and lactation on VA metabolism and kinetics in rats, hypothesizing that changes in physiological status would naturally perturb whole-body VA kinetics. METHODS Eight-week old female rats (n = 10) fed an AIN-93G diet received an oral tracer dose of 3H-labeled retinol to initiate the kinetic study. On d 21 after dosing, six female rats were mated. Serial blood samples were collected from each female rat at selected times after dose administration until d 14 of lactation. Model-based compartmental analysis was applied to the plasma tracer data to develop VA kinetic models. RESULTS Our compartmental model revealed that pregnancy resulted in a gradual increase in hepatic VA mobilization, presumably to support different stages of fetal development. Additionally, the model indicates that during lactation, VA derived from dietary intake was the primary source of VA delivered to the mammary gland for milk VA secretion. CONCLUSION During pregnancy and lactation in rats with an adequate VA intake and previous VA storage, the internal redistribution of VA and increased uptake from diet supported the maintenance of VA homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.L.); (A.T.); (F.J.M.); (M.H.G.)
| |
Collapse
|
10
|
A Proteomics Study on the Mechanism of Nutmeg-Induced Hepatotoxicity. Molecules 2021; 26:molecules26061748. [PMID: 33804713 PMCID: PMC8003901 DOI: 10.3390/molecules26061748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Nutmeg is a traditional spice and medicinal plant with a variety of pharmacological activities. However, nutmeg abuse due to its hallucinogenic characteristics and poisoning cases are frequently reported. Our previous metabolomics study proved the hepatotoxicity of nutmeg and demonstrated that high-dose nutmeg can affect the synthesis and secretion of bile acids and cause oxidative stress. In order to further investigate the hepatotoxicity of nutmeg, normal saline, 1 g/kg, 4 g/kg nutmeg were administrated to male Kunming mice by intragastrical gavage for 7 days. Histopathological investigation of liver tissue, proteomics and biochemical analysis were employed to explore the mechanism of liver damage caused by nutmeg. The results showed that a high-dose (4 g/kg) of nutmeg can cause significant increased level of CYP450s and depletion of antioxidants, resulting in obvious oxidative stress damage and lipid metabolism disorders; but this change was not observed in low-dose group (1 g/kg). In addition, the increased level of malondialdehyde and decreased level of glutathione peroxidase were found after nutmeg exposure. Therefore, the present study reasonably speculates that nutmeg exposure may lead to liver injury through oxidative stress and the degree of this damage is related to the exposure dose.
Collapse
|
11
|
Klyuyeva AV, Belyaeva OV, Goggans KR, Krezel W, Popov KM, Kedishvili NY. Changes in retinoid metabolism and signaling associated with metabolic remodeling during fasting and in type I diabetes. J Biol Chem 2021; 296:100323. [PMID: 33485967 PMCID: PMC7949101 DOI: 10.1016/j.jbc.2021.100323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Liver is the central metabolic hub that coordinates carbohydrate and lipid metabolism. The bioactive derivative of vitamin A, retinoic acid (RA), was shown to regulate major metabolic genes including phosphoenolpyruvate carboxykinase, fatty acid synthase, carnitine palmitoyltransferase 1, and glucokinase among others. Expression levels of these genes undergo profound changes during adaptation to fasting or in metabolic diseases such as type 1 diabetes (T1D). However, it is unknown whether the levels of hepatic RA change during metabolic remodeling. This study investigated the dynamics of hepatic retinoid metabolism and signaling in the fed state, in fasting, and in T1D. Our results show that fed-to-fasted transition is associated with significant decrease in hepatic retinol dehydrogenase (RDH) activity, the rate-limiting step in RA biosynthesis, and downregulation of RA signaling. The decrease in RDH activity correlates with the decreased abundance and altered subcellular distribution of RDH10 while Rdh10 transcript levels remain unchanged. In contrast to fasting, untreated T1D is associated with upregulation of RA signaling and an increase in hepatic RDH activity, which correlates with the increased abundance of RDH10 in microsomal membranes. The dynamic changes in RDH10 protein levels in the absence of changes in its transcript levels imply the existence of posttranscriptional regulation of RDH10 protein. Together, these data suggest that the downregulation of hepatic RA biosynthesis, in part via the decrease in RDH10, is an integral component of adaptation to fasting. In contrast, the upregulation of hepatic RA biosynthesis and signaling in T1D might contribute to metabolic inflexibility associated with this disease.
Collapse
Affiliation(s)
- Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wojciech Krezel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) - INSERM, University of Strasbourg, Strasbourg, France
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
12
|
Hada M, Mondul AM, Weinstein SJ, Albanes D. Serum Retinol and Risk of Overall and Site-Specific Cancer in the ATBC Study. Am J Epidemiol 2020; 189:532-542. [PMID: 31612201 DOI: 10.1093/aje/kwz226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
Retinol, the most biologically active form of vitamin A, might influence cancer-related biological pathways. However, results from observational studies of serum retinol and cancer risk have been mixed. We prospectively examined serum retinol and risk of overall and site-specific cancer in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (n = 29,104 men), conducted in 1985-1993, with follow-up through 2012. Serum retinol concentration was measured using reverse-phase high-performance liquid chromatography. Cox proportional hazards models estimated the association between baseline serum retinol quintile and overall and site-specific cancer risk in 10,789 cases. After multivariable adjustment, higher serum retinol was not associated with overall cancer risk (highest vs. lowest quintile: hazard ratio (HR) = 0.97, 95% confidence interval (CI): 0.91, 1.03; P for trend = 0.43). Higher retinol concentrations were, however, associated with increased risk of prostate cancer (highest vs. lowest quintile: HR = 1.28, 95% CI: 1.13, 1.45; P for trend < 0.0001) and lower risk of both liver and lung cancers (highest vs. lowest quintile: for liver, HR = 0.62, 95% CI: 0.42, 0.91; P for trend = 0.004; and for lung, HR = 0.80, 95% CI: 0.72, 0.88; P for trend < 0.0001). No associations with other cancers were observed. Understanding the mechanisms that underlie these associations might provide insight into the role of vitamin A in cancer etiology.
Collapse
Affiliation(s)
- Manila Hada
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Hu L, Wang Y, Sun H, Xiong Y, Zhong L, Wu Z, Yang M. An untargeted metabolomics approach to investigate the wine-processed mechanism of Scutellariae radix in acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112665. [PMID: 32058008 DOI: 10.1016/j.jep.2020.112665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellariae radix (SR) is one of the most popular traditional Chinese medicines (TCM). Crude SR (CSR) and wine-processed SR (WSR) are the two most common commercial specifications. According to the theories of TCM, wine-processing increases the inclination and direction of SR's actions, thereby strengthening its efficacy in clearing the upper-energizer lung damp heat. The pharmacological mechanism-related research on WSR for the treatment of lung disease is limited and needs to be expanded. AIM OF THE STUDY The aim of this report was to identify the relevant biological pathways by assessing changes in plasma metabolites between CSR and WSR in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model, and thus, revealed the potential mechanism of wine processing in SR. MATERIALS AND METHODS Rats with LPS-induced ALI were treated with CSR and WSR. The contents of inflammatory cytokines and histopathological examination were determined to explore the effects of CSR and WSR. Next, the metabolic profiling of rat plasma samples was performed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Then, principal component analysis (PCA) were used to provide an overview for all of the groups and orthogonal partial least squares-discriminant analysis (OPLS-DA) was utilized to maximize the discrimination and present the differences in the metabolite between all of the groups. RESULTS WSR exhibited a more remarkable effect on improving ALI than CSR by reducing the levels of inflammatory factors, including nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8). On the basis of UPLC-QTOF-MS technology, an unequal curative effect was revealed by nontargeting metabolomics. Sixteen biomarkers were discovered in the plasma of LPS-induced rats. Pathway analysis indicated that CSR acted on ALI by regulating the abnormal sphingolipid metabolism pathways; however, an WSR-mediated cure of ALI was linked primarily to reversing the abnormality of retinol metabolism pathways and tryptophan metabolism pathways. CONCLUSIONS This report examined the underlying wine-processing mechanism of SR from the perspective of plasma metabolites. In addition, this work provided a novel and valuable insight into interpretation of the processing mechanisms of TCM in a holistic way.
Collapse
Affiliation(s)
- Lianqi Hu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yaqi Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Haojie Sun
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - You Xiong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Lingyun Zhong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Zhenfeng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
14
|
Skliarov PM, Fedorenko SY, Naumenko SV, Onischenko OV, Holda KО. Retinol deficiency in animals: Etiopathogenesis and consequences. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infertility is widespread for all species of animals and causes significant economic losses to livestock due to the loss and shortage of offspring, their reduced viability and, consequently, increased morbidity and mortality. Alimentary-deficiency factors are among the commonest causes of infertility, from which A-vitamin deficiency should be singled out. The precursor of vitamin A in the body is carotene, which is an unstable compound which is easily destroyed even under the influence of moderate factors of influence, in connection with which its deficiency is global, especially at the end of the winter – stall period of keeping animals. Accordingly it is the leading etiological factor of retinol deficiency infertility. As a result, the body has two negatives that act in parallel: carotene / vitamin A deficiency adversely affects the organs, the constituent and major functional unit of which is the secretory epithelial cell, and the free radical oxides formed in high concentration are extremely effective in destroying the cells, weakening antioxidant protection. Vitamin A has a significant effect on the reproductive function of animals both directly and indirectly. It is necessary to ensure the structure and functioning of the epithelial tissues of the organs of regulation and performance of sexual function, and therefore the physiological development of the fetus and the course of pregnancy, parturition and postpartum period, ovo- and spermiogenesis, the manifestation of sexual reflexes. Instead, its deficiency underlies the etiology and pathogenesis of retinol deficiency infertility of animals, causing changes in individual indices of homeostasis and prooxidate-antioxidant system, morphostructure of the reproductive and endocrine organs, hormonal status, sperm quality and reproductive function. The consequence is the emergence and development of gynecological, andrological, mammological and perinatal (ante-, intra-, post- and neo-) pathologies. At the same time, the addition of carotene or retinol to the diets of animals or their oral administration in cases of deficiency of vitamin A prevents impaired reproductive function. The study of the features of the etiopathogenesis of retinol deficiency infertility of animals allows programs of complex diagnostics, therapy and prevention to be developed which provide determination of carotene and vitamin A content and replenishment of the organism in cases of their deficiency.
Collapse
|
15
|
β-Carotene in the human body: metabolic bioactivation pathways - from digestion to tissue distribution and excretion. Proc Nutr Soc 2019; 78:68-87. [PMID: 30747092 DOI: 10.1017/s0029665118002641] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
β-Carotene intake and tissue/blood concentrations have been associated with reduced incidence of several chronic diseases. Further bioactive carotenoid-metabolites can modulate the expression of specific genes mainly via the nuclear hormone receptors: retinoic acid receptor- and retinoid X receptor-mediated signalling. To better understand the metabolic conversion of β-carotene, inter-individual differences regarding β-carotene bioavailability and bioactivity are key steps that determine its further metabolism and bioactivation and mediated signalling. Major carotenoid metabolites, the retinoids, can be stored as esters or further oxidised and excreted via phase 2 metabolism pathways. In this review, we aim to highlight the major critical control points that determine the fate of β-carotene in the human body, with a special emphasis on β-carotene oxygenase 1. The hypothesis that higher dietary β-carotene intake and serum level results in higher β-carotene-mediated signalling is partly questioned. Alternative autoregulatory mechanisms in β-carotene / retinoid-mediated signalling are highlighted to better predict and optimise nutritional strategies involving β-carotene-related health beneficial mediated effects.
Collapse
|
16
|
Nie M, Zhang Z, Liu C, Li D, Huang W, Liu C, Jiang N. Hesperetin and Hesperidin Improved β-Carotene Incorporation Efficiency, Intestinal Cell Uptake, and Retinoid Concentrations in Tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3363-3371. [PMID: 30827104 DOI: 10.1021/acs.jafc.9b00551] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dietary constituents can influence the bioavailability of carotenoids. This study investigated the effect of citrus flavanones on β-carotene (Bc) bioavailability using four experimental models: in vitro digestion procedure, synthetic mixed micelles, Caco-2 cell monolayers, and gavage experiments in mice. The addition of hesperetin (Hes, 25 μM) and hesperidin (Hes-G, 25 μM) standards significantly increased the incorporation efficiency of the Bc standard to 68.7 ± 3.6 and 75.2 ± 7.5% ( p < 0.05), respectively. However, the addition of naringenin (Nar, 25 μM) and naringin (Nar-G, 25 μM) standards significantly reduced the incorporation efficiency of Bc by 23.8 and 26.4%, respectively ( p < 0.05). The increases in scavenger receptor class B type I (SR-BI) expression promoted by citrus flavanones played an important role in Bc cellular absorption in the Caco-2 cell model. Furthermore, after 3 days of gavage, four citrus flavanones (7.5 mg kg-1 day-1) increased the retinoid concentrations in tissues; in contrast, after 7 days of gavage, Nar and Nar-G significantly decreased hepatic retinoid concentrations ( p < 0.05). This finding suggested that the incorporation efficiency into micelles was the main step governing carotenoid bioavailability.
Collapse
Affiliation(s)
- Meimei Nie
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
- College of Food and Technology , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Chunquan Liu
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
- College of Food and Technology , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Dajing Li
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Wuyang Huang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
- Institute of Botany , Jiangsu Province and Chinese Academy of Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Chunju Liu
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| | - Ning Jiang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu 210014 , People's Republic of China
| |
Collapse
|
17
|
Olsen K, Suri DJ, Davis C, Sheftel J, Nishimoto K, Yamaoka Y, Toya Y, Welham NV, Tanumihardjo SA. Serum retinyl esters are positively correlated with analyzed total liver vitamin A reserves collected from US adults at time of death. Am J Clin Nutr 2018; 108:997-1005. [PMID: 30475970 PMCID: PMC6692705 DOI: 10.1093/ajcn/nqy190] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Minimal human data exist on liver vitamin A (VA) compared with serum biomarkers. Cutoffs of 5% and 10% total serum VA as retinyl esters (REs) suggest a VA intoxication diagnosis. Objectives We compared total liver VA reserves (TLRs) with the percentage of total serum VA as REs to evaluate hypervitaminosis with the use of US adult autopsy samples. Secondary objectives evaluated serum retinol sensitivity, TLRs among lobes, and hepatic α-retinol concentrations, an α-carotene cleavage product. Design Matched serum and liver samples were procured from cadavers (n = 27; mean ± SD age: 70.7 ± 14.9 y; range: 49-101 y). TLRs and α-REs were quantified by ultra-performance liquid chromatography. Pearson correlations showed liver and serum associations. Sensitivity and specificity were calculated for >5%, 7.5%, and 10% total serum VA as REs to predict TLRs and for serum retinol <0.7 and 1 μmol/L to predict deficiency. Results Serum RE concentrations were correlated with TLRs (r = 0.497, P < 0.001). Nine subjects (33%) had hypervitaminosis A (≥1.0 μmol VA/g liver), 2 of whom had >7.5% total serum VA as REs; histologic indicators corroborated toxicity at 3 μmol/g liver. No subject had >10% total serum VA as REs. Serum retinol sensitivity to determine deficiency (TLRs <0.1 μmol VA/g) was 83% at 0.7 and 1 μmol/L. Hepatic α-retinol was positively correlated with age (P = 0.047), but removing an outlier nullified significance. Conclusions This study evaluated serum REs as a biomarker of VA status against TLRs (gold standard), and abnormal histology suggested that 7.5% total serum VA as REs is diagnostic for toxicity at the individual level in adults. The long-term impact of VA supplements and fortificants on VA status is currently unknown. Considering the high prevalence of hypervitaminotic TLRs in this cohort, and given that many countries are adding preformed VA to processed products, population biomarkers diagnosing hypervitaminosis before toxicity are urgently needed. This trial was registered at clinicaltrials.govas NCT03305042.
Collapse
Affiliation(s)
- Kiersten Olsen
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI
| | - Devika J Suri
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI
| | - Christopher Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI
| | - Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI
| | - Kohei Nishimoto
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI,Present address for KN and YT: Department of Otolaryngology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Yusuke Yamaoka
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI,Present address for YY: Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Yutaka Toya
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI,Present address for KN and YT: Department of Otolaryngology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin–Madison, Madison, WI,Address correspondence to SAT (e-mail: )
| |
Collapse
|
18
|
Takitani K, Kishi K, Miyazaki H, Koh M, Tamaki H, Inoue A, Tamai H. Altered Expression of Retinol Metabolism-Related Genes in an ANIT-Induced Cholestasis Rat Model. Int J Mol Sci 2018; 19:ijms19113337. [PMID: 30373117 PMCID: PMC6274878 DOI: 10.3390/ijms19113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
Cholestasis is defined as a reduction of bile secretion caused by a dysfunction of bile formation. Insufficient bile secretion into the intestine undermines the formation of micelles, which may result in the reduced absorption of lipids and fat-soluble vitamins. Here, we investigated the retinol homeostasis and the alterations of retinol metabolism-related genes, including β-carotene 15,15′ monooxygenase (BCMO), lecithin:retinol acyltransferase (LRAT), aldehyde dehydrogenase (ALDH), cytochrome P450 26A1 (CYP26A1), and retinoic acid receptors (RAR) β, in a α-naphthyl isothiocyanate (ANIT)-induced cholestasis rat model. Moreover, we examined the expression of the farnesoid X receptor (FXR) target genes. Our results showed that plasma retinol levels were decreased in ANIT rats compared to control rats. On the contrary, hepatic retinol levels were not different between the two groups. The expression of FXR target genes in the liver and intestine of cholestasis model rats was repressed. The BCMO expression was decreased in the liver and increased in the intestine of ANIT rats compared to control rats. Finally, the hepatic expression of LRAT, RARβ, and ALDH1A1 in cholestatic rats was decreased compared to the control rats, while the CYP26A1 expression of the liver was not altered. The increased expression of intestinal BCMO in cholestasis model rats might compensate for decreased circulatory retinol levels. The BCMO expression might be regulated in a tissue-specific manner to maintain the homeostasis of retinol.
Collapse
Affiliation(s)
- Kimitaka Takitani
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Kanta Kishi
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hiroshi Miyazaki
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
- Department of Pediatrics, Osaka Rosai Hospital, Osaka 591-8025, Japan.
| | - Maki Koh
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hirofumi Tamaki
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
- Department of Medicine, Shinseikai Daiichi Hospital, Aichi 468-0031, Japan.
| | - Akiko Inoue
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| | - Hiroshi Tamai
- Department of Pediatrics, Osaka Medical College, Osaka 569-8686, Japan.
| |
Collapse
|
19
|
Vitamin A Deficiency and the Lung. Nutrients 2018; 10:nu10091132. [PMID: 30134568 PMCID: PMC6164133 DOI: 10.3390/nu10091132] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Vitamin A (all-trans-retinol) is a fat-soluble micronutrient which together with its natural derivatives and synthetic analogues constitutes the group of retinoids. They are involved in a wide range of physiological processes such as embryonic development, vision, immunity and cellular differentiation and proliferation. Retinoic acid (RA) is the main active form of vitamin A and multiple genes respond to RA signalling through transcriptional and non-transcriptional mechanisms. Vitamin A deficiency (VAD) is a remarkable public health problem. An adequate vitamin A intake is required in early lung development, alveolar formation, tissue maintenance and regeneration. In fact, chronic VAD has been associated with histopathological changes in the pulmonary epithelial lining that disrupt the normal lung physiology predisposing to severe tissue dysfunction and respiratory diseases. In addition, there are important alterations of the structure and composition of extracellular matrix with thickening of the alveolar basement membrane and ectopic deposition of collagen I. In this review, we show our recent findings on the modification of cell-junction proteins in VAD lungs, summarize up-to-date information related to the effects of chronic VAD in the impairment of lung physiology and pulmonary disease which represent a major global health problem and provide an overview of possible pathways involved.
Collapse
|
20
|
Wang Y, Li J, Feng C, Zhao Y, Hu X, Li N. Transcriptome analysis of comb and testis from Rose-comb Silky chicken (R1/R1) and Beijing Fatty wild type chicken (r/r). Poult Sci 2018; 96:1866-1873. [PMID: 28339981 DOI: 10.3382/ps/pew447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022] Open
Abstract
Rose-comb was one of the chicken comb-variants first used by Bateson and Punnet in 1902 to demonstrate Mendelian inheritance in animals. Rose-comb is a monogenic trait that has been widely described in chickens. It is caused by a large structural rearrangement that leads to mis-expression of transcription factor MNR2 on chromosome 7. Rose-comb has pleiotropic effects in homozygous roosters, which is associated with poor sperm mobility. It was postulated that this is caused by the disruption of the CCDC108 gene located at the distal inversion breakpoint. In this study, we did the transcriptional profiling of combs and testes from Rose-comb Silky (RS) (R1/R1) and Beijing Fatty (BF) wild type chickens (r/r) using RNA-seq. We obtained 68,694,797 unique mapped reads and over 80% of the chicken genes were covered for each sample. In combs, we found that differentially expressed genes (DEGs) were significantly enriched in the retinol metabolism (RPE65, CYP26A1, and CYP26C1) and hedgehog-signaling pathway (PTCH1, GLI1, and HHIP), while genes related to cell differentiation and morphogenesis were down-regulated in R1/R1 chickens, suggesting that the transient expression of MNR2 might affect the expression of these genes and influence the development of comb tissue. For testes, DEGs were significantly enriched in the GO terms of binding activates and mitochondrial oxidation-reduction reactions. Our results suggested that the CCDC108 might be functionally related with mitochondrial oxidation-reduction reactions and caused subfertility of roosters. Compared with the genome average, the degree of expression variations within the inversion region did not show significant differences. However, DEGs near the breakpoints showed greater expression variance. Our results demonstrated that the large-scale rearrangements affected the gene expression only around the breakpoint in this case.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - J Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - C Feng
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Y Zhao
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - X Hu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - N Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Hodges JK, Tan L, Green MH, Ross AC. Vitamin A and retinoic acid combined have a more potent effect compared to vitamin A alone on the uptake of retinol into extrahepatic tissues of neonatal rats raised under vitamin A-marginal conditions. Curr Dev Nutr 2017; 1:cdn.116.000265. [PMID: 29377015 PMCID: PMC5779100 DOI: 10.3945/cdn.116.000265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Vitamin A (VA, retinol) supplementation is widely used to reduce child mortality in low-income countries. However, existing research suggests that supplementation with VA alone may not be optimal for infants. OBJECTIVE We compared the effect of VA vs. VA combined with retinoic acid (VARA) on retinol uptake and turnover in organs of neonatal rats raised under VA-marginal conditions. METHODS Secondary analysis was conducted on data obtained from two prior kinetic studies of Sprague-Dawley neonatal rats nursed by mothers fed a VA-marginal diet (0.35 mg retinol equivalents/kg diet). On postnatal d 4, pups had been treated with a single dose of VA (6 μg/g; n = 52; VA study), VA + 10% retinoic acid (6 μg/g; n = 42; VARA study) or placebo (canola oil; n = 94; both studies), all containing ~2 μCi of [3H]retinol as the tracer for VA. Total retinol concentrations and tracer levels had been measured in plasma and tissues from 1 h to 14 d after dosing. Control group data from both studies were merged prior to analysis. Kinetic parameters were re-estimated and compared statistically. RESULTS VARA supplementation administered to neonatal rats within a few days after birth resulted in a lower turnover of retinol in the lungs, kidneys, and carcass and less frequent recycling of retinol between plasma and organs (100 vs. 288 times in VARA- vs. VA-treated group). Although the VA supplementation resulted in a higher concentration of retinol in the liver, VARA supplementation led to a higher uptake of postprandial retinyl esters into the lungs, intestines, and carcass. CONCLUSIONS Given the relatively higher retinol uptake into several extrahepatic organs of neonates dosed orally with VARA, this form of supplementation may serve as a targeted treatment of low VA levels in the extrahepatic organs that continue to develop postnatally.
Collapse
Affiliation(s)
- Joanna K Hodges
- Department of Nutritional Sciences, 204 Chandlee Laboratory The Pennsylvania State University, University Park, PA
| | - Libo Tan
- Department of Nutritional Sciences, 204 Chandlee Laboratory The Pennsylvania State University, University Park, PA
| | - Michael H Green
- Department of Nutritional Sciences, 204 Chandlee Laboratory The Pennsylvania State University, University Park, PA
| | - A Catharine Ross
- Department of Nutritional Sciences, 204 Chandlee Laboratory The Pennsylvania State University, University Park, PA
| |
Collapse
|
22
|
Grumet L, Taschler U, Lass A. Hepatic Retinyl Ester Hydrolases and the Mobilization of Retinyl Ester Stores. Nutrients 2016; 9:nu9010013. [PMID: 28035980 PMCID: PMC5295057 DOI: 10.3390/nu9010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022] Open
Abstract
For mammals, vitamin A (retinol and metabolites) is an essential micronutrient that is required for the maintenance of life. Mammals cannot synthesize vitamin A but have to obtain it from their diet. Resorbed dietary vitamin A is stored in large quantities in the form of retinyl esters (REs) in cytosolic lipid droplets of cells to ensure a constant supply of the body. The largest quantities of REs are stored in the liver, comprising around 80% of the body’s total vitamin A content. These hepatic vitamin A stores are known to be mobilized under times of insufficient dietary vitamin A intake but also under pathological conditions such as chronic alcohol consumption and different forms of liver diseases. The mobilization of REs requires the activity of RE hydrolases. It is astounding that despite their physiological significance little is known about their identities as well as about factors or stimuli which lead to their activation and consequently to the mobilization of hepatic RE stores. In this review, we focus on the recent advances for the understanding of hepatic RE hydrolases and discuss pathological conditions which lead to the mobilization of hepatic RE stores.
Collapse
Affiliation(s)
- Lukas Grumet
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| |
Collapse
|
23
|
Green AS, Fascetti AJ. Meeting the Vitamin A Requirement: The Efficacy and Importance of β-Carotene in Animal Species. ScientificWorldJournal 2016; 2016:7393620. [PMID: 27833936 PMCID: PMC5090096 DOI: 10.1155/2016/7393620] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Vitamin A is essential for life in all vertebrate animals. Vitamin A requirement can be met from dietary preformed vitamin A or provitamin A carotenoids, the most important of which is β-carotene. The metabolism of β-carotene, including its intestinal absorption, accumulation in tissues, and conversion to vitamin A, varies widely across animal species and determines the role that β-carotene plays in meeting vitamin A requirement. This review begins with a brief discussion of vitamin A, with an emphasis on species differences in metabolism. A more detailed discussion of β-carotene follows, with a focus on factors impacting bioavailability and its conversion to vitamin A. Finally, the literature on how animals utilize β-carotene is reviewed individually for several species and classes of animals. We conclude that β-carotene conversion to vitamin A is variable and dependent on a number of factors, which are important to consider in the formulation and assessment of diets. Omnivores and herbivores are more efficient at converting β-carotene to vitamin A than carnivores. Absorption and accumulation of β-carotene in tissues vary with species and are poorly understood. More comparative and mechanistic studies are required in this area to improve the understanding of β-carotene metabolism.
Collapse
Affiliation(s)
- Alice S. Green
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Andrea J. Fascetti
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
24
|
Tanumihardjo SA, Russell RM, Stephensen CB, Gannon BM, Craft NE, Haskell MJ, Lietz G, Schulze K, Raiten DJ. Biomarkers of Nutrition for Development (BOND)-Vitamin A Review. J Nutr 2016; 146:1816S-48S. [PMID: 27511929 PMCID: PMC4997277 DOI: 10.3945/jn.115.229708] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/01/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-informed advice to anyone with an interest in the role of nutrition in health. The BOND program provides information with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect, which will be especially useful for readers who want to assess nutrient status. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutritional status at the individual and population levels. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, folate, zinc, iron, vitamin A, and vitamin B-12. This review of vitamin A is the current article in this series. Although the vitamin was discovered >100 y ago, vitamin A status assessment is not trivial. Serum retinol concentrations are under homeostatic control due in part to vitamin A's use in the body for growth and cellular differentiation and because of its toxic properties at high concentrations. Furthermore, serum retinol concentrations are depressed during infection and inflammation because retinol-binding protein (RBP) is a negative acute-phase reactant, which makes status assessment challenging. Thus, this review describes the clinical and functional indicators related to eye health and biochemical biomarkers of vitamin A status (i.e., serum retinol, RBP, breast-milk retinol, dose-response tests, isotope dilution methodology, and serum retinyl esters). These biomarkers are then related to liver vitamin A concentrations, which are usually considered the gold standard for vitamin A status. With regard to biomarkers, future research questions and gaps in our current understanding as well as limitations of the methods are described.
Collapse
Affiliation(s)
- Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | | | - Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | | | - Georg Lietz
- Newcastle University, Newcastle, United Kingdom
| | - Kerry Schulze
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD; and
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| |
Collapse
|
25
|
Kataria Y, Deaton RJ, Enk E, Jin M, Petrauskaite M, Dong L, Goldenberg JR, Cotler SJ, Jensen DM, van Breemen RB, Gann PH. Retinoid and carotenoid status in serum and liver among patients at high-risk for liver cancer. BMC Gastroenterol 2016; 16:30. [PMID: 26927700 PMCID: PMC4772305 DOI: 10.1186/s12876-016-0432-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/12/2016] [Indexed: 12/14/2022] Open
Abstract
Background Approximately 2.7 million Americans are chronically infected with hepatitis C virus (HCV). HCV patients with cirrhosis form the largest group of persons at high risk for hepatocellular carcinoma (HCC). Increased oxidative stress is regarded as a major mechanism of HCV-related liver disease progression. Deficiencies in retinoid and carotenoid antioxidants may represent a major modifiable risk factor for disease progression. This study aims to identify key predictors of serum antioxidant levels in patients with HCV, to examine the relationship between retinoid/carotenoid concentrations in serum and hepatic tissue, to quantify the association between systemic measures of oxidative stress and antioxidant status, and to examine the relationship between retinoids and stellate cell activation. Methods Patients undergoing liver biopsy (n = 69) provided fasting blood, fresh tissue, urine and completed a diet history questionnaire. Serum and questionnaire data from healthy volunteers (n = 11), normal liver tissue from public repositories and patients without liver disease (n = 11) were also collected. Urinary isoprostanes, serum and tissue retinoid concentrations were obtained by UHPLC-MS-MS. Immunohistochemistry for αSMA was performed on FFPE sections and subsequently quantified via digital image analysis. Associations between urinary isoprostanes, αSMA levels, and retinoids were assessed using Spearman correlation coefficients and non-parametric tests were utilized to test differences among disease severity groups. Results There was a significant inverse association between serum retinol, lycopene, and RBP4 concentrations with fibrosis stage. Serum β-carotene and lycopene were strongly associated with their respective tissue concentrations. There was a weak downward trend of tissue retinyl palmitate with increasing fibrosis stage. Tissue retinyl palmitate was inversely and significantly correlated with hepatic αSMA expression, a marker for hepatic stellate cell activation (r = −0.31, P < 0.02). Urinary isoprostanes levels were inversely correlated with serum retinol, β-carotene, and RBP4. Conclusions A decrease in serum retinol, β-carotene, and RBP4 is associated with early stage HCV. Retinoid and carotenoid levels decline as disease progresses, and our data suggest that this decline occurs early in the disease process, even before fibrosis is apparent. Measures of oxidative stress are associated with fibrosis stage and concurrent antioxidant depletion. Vitamin A loss is accompanied by stellate cell activation in hepatic tissue. Electronic supplementary material The online version of this article (doi:10.1186/s12876-016-0432-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yachana Kataria
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Ryan J Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Erika Enk
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ming Jin
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Milita Petrauskaite
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Linlin Dong
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph R Goldenberg
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Scott J Cotler
- Department of Hepatology, Loyola University, Chicago, IL, USA.
| | - Donald M Jensen
- Center for Liver Diseases, University of Chicago, Chicago, IL, USA.
| | - Richard B van Breemen
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, IL, USA.
| | - Peter H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Owusu SA, Ross AC. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age. PLoS One 2016; 11:e0145924. [PMID: 26731668 PMCID: PMC4701161 DOI: 10.1371/journal.pone.0145924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022] Open
Abstract
Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism-plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver.
Collapse
Affiliation(s)
- Sarah A Owusu
- Graduate Program in Physiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America.,Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.,Center for Molecular and Cellular Immunology, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
27
|
Hypercarotenodermia in Zambia: which children turned orange during mango season? Eur J Clin Nutr 2015; 69:1346-9. [DOI: 10.1038/ejcn.2015.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 11/08/2022]
|
28
|
Effects of dietary vitamin A supplementation or restriction and its timing on retinol and α-tocopherol accumulation and gene expression in heavy pigs. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Tyakht AV, Ilina EN, Alexeev DG, Ischenko DS, Gorbachev AY, Semashko TA, Larin AK, Selezneva OV, Kostryukova ES, Karalkin PA, Vakhrushev IV, Kurbatov LK, Archakov AI, Govorun VM. RNA-Seq gene expression profiling of HepG2 cells: the influence of experimental factors and comparison with liver tissue. BMC Genomics 2014; 15:1108. [PMID: 25511409 PMCID: PMC4378340 DOI: 10.1186/1471-2164-15-1108] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
Background Human hepatoma HepG2 cells are used as an in vitro model of the human liver. High-throughput transcriptomic sequencing is an advanced approach for assessing the functional state of a tissue or cell type. However, the influence of experimental factors, such as the sample preparation method and inter-laboratory variation, on the transcriptomic profile has not been evaluated. Results The whole-transcriptome sequencing of HepG2 cells was performed using the SOLiD platform and validated using droplet digital PCR. The gene expression profile was compared to the results obtained with the same sequencing method in another laboratory and using another sample preparation method. We also compared the transcriptomic profile HepG2 cells with that of liver tissue. Comparison of the gene expression profiles between the HepG2 cell line and liver tissue revealed the highest variation, followed by HepG2 cells submitted to two different sample preparation protocols. The lowest variation was observed between HepG2 cells prepared by two different laboratories using the same protocol. The enrichment analysis of the genes that were differentially expressed between HepG2 cells and liver tissue mainly revealed the cancer-associated gene signature of HepG2 cells and the activation of the response to chemical stimuli in the liver tissue. The HepG2 transcriptome obtained with the SOLiD platform was highly correlated with the published transcriptome obtained with the Illumina and Helicos platforms, with moderate correspondence to microarrays. Conclusions In the present study, we assessed the influence of experimental factors on the HepG2 transcriptome and identified differences in gene expression between the HepG2 cell line and liver cells. These findings will facilitate robust experimental design in the fields of pharmacology and toxicology. Our results were supported by a comparative analysis with previous HepG2 gene expression studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1108) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander V Tyakht
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119435, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barber T, Esteban-Pretel G, Marín MP, Timoneda J. Vitamin a deficiency and alterations in the extracellular matrix. Nutrients 2014; 6:4984-5017. [PMID: 25389900 PMCID: PMC4245576 DOI: 10.3390/nu6114984] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.
Collapse
Affiliation(s)
- Teresa Barber
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| | - Guillermo Esteban-Pretel
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| | - María Pilar Marín
- Unidad de Microscopía IIS La Fe Valencia, Avda Campanar, 21, 46009-Valencia, Spain.
| | - Joaquín Timoneda
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, Avda V. Andrés Estellés s/n, 46100-Burjassot, Spain.
| |
Collapse
|
31
|
Association of serum α-tocopherol, β-carotene, and retinol with liver cancer incidence and chronic liver disease mortality. Br J Cancer 2014; 111:2163-71. [PMID: 25314058 PMCID: PMC4260018 DOI: 10.1038/bjc.2014.365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Micronutrients may influence the development or progression of liver cancer and liver disease. We evaluated the association of serum α-tocopherol, β-carotene, and retinol with incident liver cancer and chronic liver disease (CLD) mortality in a prospective cohort of middle-aged Finnish male smokers. METHODS Baseline and 3-year follow-up serum were available from 29,046 and 22,805 men, respectively. After 24 years of follow-up, 208 men were diagnosed with liver cancer and 237 died from CLD. Hazards ratios and 95% confidence intervals were calculated for highest vs lowest quartiles from multivariate proportional hazards models. RESULTS Higher β-carotene and retinol levels were associated with less liver cancer (β-carotene: 0.35, 0.22-0.55, P-trend <0.0001; retinol: 0.58, 0.39-0.85, P-trend=0.0009) and CLD mortality (β-carotene: 0.47, 0.30-0.75, P-trend=0.001; retinol: 0.55, 0.38-0.78, P-trend=0.0007). α-Tocopherol was associated with CLD mortality (0.63, 0.40-0.99, P-trend=0.06), but not with liver cancer (1.06, 0.64-1.74, P-trend=0.77). Participants with higher levels of β-carotene and retinol, but not α-tocopherol, at both baseline and year 3 had lower risk of each outcome than those with lower levels. CONCLUSIONS Our findings suggest that higher concentrations of β-carotene and retinol are associated with incident liver cancer and CLD. However, such data do not indicate that supplementation should be considered for these diseases.
Collapse
|
32
|
High incidence of LRAT promoter hypermethylation in colorectal cancer correlates with tumor stage. Med Oncol 2014; 31:254. [PMID: 25260806 DOI: 10.1007/s12032-014-0254-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/17/2014] [Indexed: 12/11/2022]
Abstract
Lecithin:retinol acyltransferase (LRAT) is a major enzyme involved in vitamin A/retinol metabolism, which regulates various physiological processes like cell proliferation and differentiation. LRAT expression is reduced in numerous cancers, yet the underlying mechanisms have remained undefined. We hypothesized that methylation silencing may contribute to decreased LRAT gene expression in colorectal cancer (CRC). LRAT hypermethylation status was analyzed in five CRC cell lines, 167 colorectal tumors, and 69 adjacent normal colonic mucosae, using a quantitative bisulfite/PCR/LDR/Universal Array assay. LRAT transcription levels were determined by real-time RT-PCR in a subset of tumors and matched normal tissues and in CRC cell lines that were treated with a demethylating agent, 5-aza-2'-deoxycytidine. The incidence of LRAT hypermethylation was significantly higher in colorectal tumors than in adjacent normal mucosae (p = 0.0025). Aberrant methylation occurred in 51 % of microsatellite-stable CRCs, in 84 % of microsatellite-unstable CRCs, and in 12 out of 13 colonic polyps. The number of hypermethylated LRAT events was inversely correlated with CRC stage (p < 0.0001). Importantly, LRAT hypermethylation was associated with decreased mRNA level in CRC clinical specimens, and demethylation treatment resulted in LRAT transcriptional reactivation. Our data support the idea that LRAT promoter hypermethylation associates with LRAT gene expression in CRC. The higher frequency of LRAT hypermethylation in colonic polyps and early-stage CRCs indicates that it may occur early in malignant progression.
Collapse
|
33
|
Consequences of metal exposure on retinoid metabolism in vertebrates: a review. Toxicol Lett 2013; 225:1-11. [PMID: 24291063 DOI: 10.1016/j.toxlet.2013.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/21/2022]
Abstract
What we generally refer to as 'vitamin A' is a group of naturally-occurring molecules structurally similar to retinol that are capable of exerting biological activity. These retinoids are essential to diverse physiological functions including vision, immune response, bone mineralization, reproduction, cell differentiation, and growth. As well, some retinoids have antioxidant properties. Independent studies published over the last few decades have revealed that many fish and wildlife populations living in highly polluted environments have altered retinoid status possibly associated with retinoid metabolic or homeostatic mechanisms. Substantial evidence links organic contaminant exposure with changes in retinoid status in animal populations, but only a few detailed studies have been published implicating inorganic contaminants such as metals. This mini-review selectively deals with field and laboratory studies reporting associations between environmental contaminants, especially trace metals, and alterations in retinoid status. Both essential and non-essential trace metals have been reported to affect retinoid status. This review focuses on metabolic imbalances of retinoids in relation to metal contamination and illustrates possible modes of action. The role of retinoids as antioxidants and their potential as biomarkers of metal contamination are discussed.
Collapse
|
34
|
Kedishvili NY. Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 2013; 54:1744-60. [PMID: 23630397 PMCID: PMC3679379 DOI: 10.1194/jlr.r037028] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/17/2013] [Indexed: 12/18/2022] Open
Abstract
All-trans-retinoic acid is a biologically active derivative of vitamin A that regulates numerous physiological processes. The concentration of retinoic acid in the cells is tightly regulated, but the exact mechanisms responsible for this regulation are not completely understood, largely because the enzymes involved in the biosynthesis of retinoic acid have not been fully defined. Recent studies using in vitro and in vivo models suggest that several members of the short-chain dehydrogenase/reductase superfamily of proteins are essential for retinoic acid biosynthesis and the maintenance of retinoic acid homeostasis. However, the exact roles of some of these recently identified enzymes are yet to be characterized. The properties of the known contributors to retinoid metabolism have now been better defined and allow for more detailed understanding of their interactions with retinoid-binding proteins and other retinoid enzymes. At the same time, further studies are needed to clarify the interactions between the cytoplasmic and membrane-bound proteins involved in the processing of hydrophobic retinoid metabolites. This review summarizes current knowledge about the roles of various biosynthetic and catabolic enzymes in the regulation of retinoic acid homeostasis and outlines the remaining questions in the field.
Collapse
Affiliation(s)
- Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
35
|
Hill GE, Johnson JD. The Vitamin A–Redox Hypothesis: A Biochemical Basis for Honest Signaling via Carotenoid Pigmentation. Am Nat 2012; 180:E127-50. [DOI: 10.1086/667861] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Defo MA, Pierron F, Spear PA, Bernatchez L, Campbell PGC, Couture P. Evidence for metabolic imbalance of vitamin A2 in wild fish chronically exposed to metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 85:88-95. [PMID: 22959581 DOI: 10.1016/j.ecoenv.2012.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 07/16/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
In a recent study on indigenous yellow perch chronically exposed to metals, we reported a negative correlation between liver metal concentration and liver transcription levels of genes encoding for enzymes involved in the metabolism of retinoids. We therefore speculated that metals, and especially the non-essential metal Cd, could alter the metabolism of retinoids in wild fish. Thus the present field study investigates the impact of in situ metal exposure on retinoid storage. A total of 55 yellow perch (Perca flavescens) were sampled in six lakes representing a metal contamination gradient (8≤N≤10 per lake). Our results show that yellow perch from Cd-contaminated lakes had significantly higher concentrations of liver dehydroretinol and dehydroretinyl esters than did fish from reference lakes. However, the increase in retinyl ester stores with increasing Cd concentrations was quantitatively much more important than the increase in free dehydroretinol. As a result, a significant decrease in the percentage of hepatic free dehydroretinol with increasing renal Cd concentrations was observed. These results suggest that the enzymes and the binding proteins involved in vitamin A homeostasis are inhibited by the presence of Cd. Alternatively, the increase in tissue vitamin A (antioxidant) levels could serve to better counteract the oxidative stress engendered by Cd exposure. Overall our findings illustrate that vitamin A(2) homeostasis can be altered as a consequence of chronic exposure to low Cd concentrations. Thus, in the context of environmental risk assessment, the percentage of liver free dehydroretinol can be considered as a biomarker of for in situ Cd exposure.
Collapse
Affiliation(s)
- Michel A Defo
- Institut national de la Recherche scientifique (INRS), Centre Eau Terre et Environnement, 490 de la Couronne, Québec, QC, Canada G1K 9A9
| | | | | | | | | | | |
Collapse
|
37
|
Wang P, Pan X, Chen G, Li J, Liu L, Liu X, Jin S, Xie L, Wang G. Increased exposure of vitamin A by Chrysanthemum morifolium Ramat extract in rat was not via induction of CYP1A1, CYP1A2, and CYP2B1. J Food Sci 2012; 77:H121-7. [PMID: 22671526 DOI: 10.1111/j.1750-3841.2012.02732.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the effect of Chrysanthemum morifolium Ramat (CM) extract on the pharmacokinetics of retinol and activities of cytochrome P450s (CYP450s) related to retinoid metabolism. Rats were treated with CM extract for 15 d. Plasma concentrations of retinol were measured following oral administration of retinol (45 mg/kg). Basal levels of retinol and retinoic acid in serum and liver were also measured. 7-Ethoxyresorufin-O-deethylase activity, phenacetin-O-deethylase activity, and 7-pentoxyresorufin-O-deethylase activities were used to assay the activities of CYP1A1, CYP1A2, and CYP2B1 in hepatic microsomes of rats, respectively. Protein expressions of the 3 CYP450s were measured by western blot. Our studies demonstrated that CM extract dose-dependently increased basal level of retinol in serum. In pharmacokinetic experiment, CM extract dose-dependently increased plasma concentrations of retinol after oral administration of retinol to rats treated with CM extract. But activities and expressions of CYP1A1, CYP1A2, and CYP2B1 in hepatic microsomes of rats were also induced by CM extract.
Collapse
Affiliation(s)
- Ping Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical Univ, Nanjing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen L, Hu C, Huang C, Wang Q, Wang X, Yang L, Zhou B. Alterations in retinoid status after long-term exposure to PBDEs in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 120-121:11-18. [PMID: 22580571 DOI: 10.1016/j.aquatox.2012.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 05/31/2023]
Abstract
This study examined the disruptive effect of exposure to polybrominated diphenyl ethers (PBDEs) on retinoid content in zebrafish (Danio rerio). Adult zebrafish were exposed to an environmentally relevant concentration (0.45 μg/L) and a higher concentration (9.6 μg/L) of DE-71 for 60 days. Retinoid content and gene transcription levels were examined in female zebrafish. PBDE exposure caused a significant decrease of retinyl ester content in the intestine and a downregulation of intestinal cellular retinol binding protein gene transcription (CRBP1a). In the liver, retinyl ester content was significantly decreased, while retinol content was increased. An upregulation of liver CRBP2a and retinol binding protein (RBP) gene transcription and an increased level of RBP protein were observed. In the eyes, both the retinal and retinyl ester content were increased and CRBP1a gene transcription was upregulated. However, the gene encoding for retinal dehydrogenase (RALDH2), responsible for retinoic acid synthesis, was downregulated in the eyes. CYP26a, the gene responsible for retinoic acid degradation, was upregulated, which indicated an increased level of retinoic acid. In the ovaries, the increased deposition of retinoids was also observed, while gene transcription levels of both CRBPs (CRBP1a and CRBP1b) were upregulated. An increased deposition of retinal was measured in the eggs. Overall, this study demonstrated that long-term exposure of zebrafish to environmentally relevant concentrations of DE-71 disrupted the transport, storage and metabolism of retinoid in various tissues. This study also indicated that retinoid levels in zebrafish are sensitive to PBDE exposure and highlighted the importance of liver storage, which appears to support important functions in reproduction and vision.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Zolfaghari R, Chen Q, Ross AC. DHRS3, a retinal reductase, is differentially regulated by retinoic acid and lipopolysaccharide-induced inflammation in THP-1 cells and rat liver. Am J Physiol Gastrointest Liver Physiol 2012; 303:G578-88. [PMID: 22790594 PMCID: PMC3468555 DOI: 10.1152/ajpgi.00234.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/10/2012] [Indexed: 01/31/2023]
Abstract
Both retinoid status and inflammation have been shown to control the level of expression of retinoid homeostatic genes. In the present study, DHRS3, previously shown to possess retinal reductase activity, was identified by microarray analysis of THP-1 monocytes as a possible gene target of all-trans-retinoic acid (RA). In these cells, DHRS3 mRNA increased 30- to 40-fold after treatment with ≤20 nM RA for 24 h, while DHRS3 protein also increased. Of several synthetic retinoids tested, only Am580, a RA receptor-α-selective retinoid, increased DHRS3 mRNA expression. The full-length DHRS3 cDNA was cloned from rat liver and subjected to in vitro transcription-translation. Two major ∼30- and 35-kDa proteins were detected. In adult rat tissues, DHRS3 mRNA was most abundant in the adrenal gland, liver, and ovary. In the liver, DHRS3 is expressed in hepatocytes and possibly in all liver cells. To evaluate whether DHRS3 is regulated in the liver by RA and/or inflammatory stimuli, we treated rats for 6 h with RA or LPS or both. DHRS3 mRNA was doubled by RA but reduced by >90% after treatment with LPS in the absence and presence of RA. On the basis of our results, DHRS3 mRNA expression is regulated by RA in a tissue- or cell-type specific manner; the RA-induced increase in DHRS3 may contribute to retinoid storage; and a reduction of DHRS3 expression in the liver during inflammation may contribute to the perturbation of whole body vitamin A metabolism that has previously been shown to occur in conditions of inflammatory stress.
Collapse
Affiliation(s)
- Reza Zolfaghari
- Department of Nutritional Sciences, Pennsylvania State University, University Park, 16802, USA
| | | | | |
Collapse
|
40
|
Jiang W, Napoli JL. Reorganization of cellular retinol-binding protein type 1 and lecithin:retinol acyltransferase during retinyl ester biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:859-69. [PMID: 22498138 PMCID: PMC3366551 DOI: 10.1016/j.bbagen.2012.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cellular retinol-binding protein, type 1 (Crbp1), chaperones retinyl ester (RE) biosynthesis catalyzed by lecithin:retinol acyltransferase (LRAT). METHODS We monitored the subcellular loci of LRAT and Crbp1 before and during RE biosynthesis, and compared the results to diacylglycerol:acyltransferase type 2 (DGAT2) during triacylglycerol biosynthesis in three cell lines: COS7, CHO and HepG2. RESULTS Before initiation of RE biosynthesis, LRAT distributed throughout the endoplasmic reticulum (ER), similar to DGAT2, and Crpb1 localized with mitochondria associated membranes (MAM), surrounded by LRAT. Upon initiating RE biosynthesis in cells transfected with low amounts of vector to simulate physiological expression levels, Crpb1 remained with MAM, and both Crbp1 and MAM re-localized with LRAT. LRAT formed rings around the growing lipid droplets. LRAT activity was higher in these rings relative to the general ER. LRAT-containing rings colocalized with the lipid-droplet surface proteins, desnutrin/adipose triglyceride lipase and perilipin 2. Colocalization with lipid droplets required the 38 N-terminal amino acid residues of LRAT, and specifically K36 and R38. Formation of rings around the growing lipid droplets did not require functional microtubules. GENERAL SIGNIFICANCE These data indicate a relationship between LRAT and Crbp1 during RE biosynthesis in which MAM-associated Crpb1 and LRAT colocalize, and both surround the growing RE-containing lipid droplet. The N-terminus of LRAT, especially K36 and R38, is essential to colocalization with the lipid droplet.
Collapse
Affiliation(s)
- Weiya Jiang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, College of Natural Resources, University of California, Berkeley, California 94720, USA
| | - Joseph L. Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, College of Natural Resources, University of California, Berkeley, California 94720, USA
| |
Collapse
|
41
|
Thibodeau J, Filion S, Spear P, Paquin J, Boily M. Oxidation of retinoic acids in hepatic microsomes of wild bullfrogs Lithobates catesbeianus environmentally-exposed to a gradient of agricultural contamination. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1358-1370. [PMID: 22466160 DOI: 10.1007/s10646-012-0889-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/09/2012] [Indexed: 05/31/2023]
Abstract
Agricultural contaminants are suspected of contributing to the increased incidence of deformities and the decline of amphibians populations worldwide. Many authors have further suggested that a retinoid effect could be implicated in teratogenic mechanisms since the reported deformities resemble those caused by abnormal levels of retinoic acid (RA). We previously reported altered retinoid concentrations in male bullfrogs from the Yamaska River basin (Québec, Canada) associated with moderate-to-high agricultural activity, and the findings were consistent with a possible effect on hepatic RA oxidation. An in vitro assay was therefore optimized and hepatic microsomal RA oxidation in bullfrogs was found to be quite different from that of other vertebrates. With either all-transRA (atRA) or 13cisRA as the substrate, the major metabolite generated was at4-oxo-RA. The reaction with 13cisRA as substrate, markedly greater compared with atRA, was enhanced in the presence of a reducing agent and inhibited by cytochrome P450 inhibitors in a dose-dependent manner. Hepatic RA oxidation in male bullfrogs showed significant differences between sites with no clear relationship to a gradient of agricultural activity or 13cis-4-oxo-RA quantified in plasma. In contrast, the in vitro RA oxidation in females increased with the levels of contamination and coincided in vivo with higher plasma 13cis-4-oxo-RA concentration. The levels of circulating 4-oxo-derivatives could be influenced by hepatic RA oxidative metabolism as well as isomerization conditions or RA precursor levels.
Collapse
Affiliation(s)
- Janik Thibodeau
- Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal QC H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
42
|
Clugston RD, Blaner WS. The adverse effects of alcohol on vitamin A metabolism. Nutrients 2012; 4:356-71. [PMID: 22690322 PMCID: PMC3367262 DOI: 10.3390/nu4050356] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 02/03/2023] Open
Abstract
The objective of this review is to explore the relationship between alcohol and the metabolism of the essential micronutrient, vitamin A; as well as the impact this interaction has on alcohol-induced disease in adults. Depleted hepatic vitamin A content has been reported in human alcoholics, an observation that has been confirmed in animal models of chronic alcohol consumption. Indeed, alcohol consumption has been associated with declines in hepatic levels of retinol (vitamin A), as well as retinyl ester and retinoic acid; collectively referred to as retinoids. Through the use of animal models, the complex interplay between alcohol metabolism and vitamin A homeostasis has been studied; the reviewed research supports the notion that chronic alcohol consumption precipitates a decline in hepatic retinoid levels through increased breakdown, as well as increased export to extra-hepatic tissues. While the precise biochemical mechanisms governing alcohol's effect remain to be elucidated, its profound effect on hepatic retinoid status is irrefutable. In addition to a review of the literature related to studies on tissue retinoid levels and the metabolic interactions between alcohol and retinoids, the significance of altered hepatic retinoid metabolism in the context of alcoholic liver disease is also considered.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
43
|
Rossi C, Guantario B, Ferruzza S, Guguen-Guillouzo C, Sambuy Y, Scarino ML, Bellovino D. Co-cultures of enterocytes and hepatocytes for retinoid transport and metabolism. Toxicol In Vitro 2012; 26:1256-64. [PMID: 22542753 DOI: 10.1016/j.tiv.2012.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 02/03/2023]
Abstract
Dietary retinoid bioavailability involves the interplay of the intestine (transport and metabolism) and the liver (secondary metabolism). To reproduce these processes in vitro, differentiated human intestinal Caco-2/TC7 cells were co-cultured with two hepatocyte cell lines. Murine 3A cells and the more highly differentiated human HepaRG hepatocytes were both shown to respond to β-carotene (BC) and retinol (ROH) treatment by secreting Retinol Binding Protein 4 (RBP4). In co-culture experiments, Caco-2/TC7 were differentiated on filter inserts and transferred for the time of the experiment to culture wells containing confluent 3A or differentiated HepaRG cells. Functionality of the co-cultures was assayed using as endpoints the retinol-dependent secretion of RBP4 and the retinoic acid-dependent induction of CYP26A1 in hepatocytes. BC and ROH added to intestinal Caco-2/TC7 induced a reduction in intracellular RBP4 levels in the underlying hepatocytes and its secretion into the medium. HepaRG hepatocytes were also shown to up-regulate the expression of CYP26A1 mRNA in response to retinoid treatment. This in vitro model represents a useful tool to analyze the absorption and metabolism of retinoids and could be further developed to investigate other dietary compounds and molecules of pharmacological interest.
Collapse
Affiliation(s)
- Carlotta Rossi
- National Research Institute on Food and Nutrition (INRAN), Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Shirakami Y, Lee SA, Clugston RD, Blaner WS. Hepatic metabolism of retinoids and disease associations. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:124-36. [PMID: 21763780 PMCID: PMC3488285 DOI: 10.1016/j.bbalip.2011.06.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 12/12/2022]
Abstract
The liver is the most important tissue site in the body for uptake of postprandial retinoid, as well as for retinoid storage. Within the liver, both hepatocytes and hepatic stellate cells (HSCs) are importantly involved in retinoid metabolism. Hepatocytes play an indispensable role in uptake and processing of dietary retinoid into the liver, and in synthesis and secretion of retinol-binding protein (RBP), which is required for mobilizing hepatic retinoid stores. HSCs are the central cellular site for retinoid storage in the healthy animal, accounting for as much as 50-60% of the total retinoid present in the entire body. The liver is also an important target organ for retinoid actions. Retinoic acid is synthesized in the liver and can interact with retinoid receptors which control expression of a large number of genes involved in hepatic processes. Altered retinoid metabolism and the accompanying dysregulation of retinoid signaling in the liver contribute to hepatic disease. This is related to HSCs, which contribute significantly to the development of hepatic disease when they undergo a process of cellular activation. HSC activation results in the loss of HSC retinoid stores and changes in extracellular matrix deposition leading to the onset of liver fibrosis. An association between hepatic disease progression and decreased hepatic retinoid storage has been demonstrated. In this review article, we summarize the essential role of the liver in retinoid metabolism and consider briefly associations between hepatic retinoid metabolism and disease. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Medicine, College of Physcians and Surgeons, Columbia University, 630 W, 168th St, New York, NY 10032, USA
| | | | | | | |
Collapse
|
45
|
Shirakami Y, Gottesman ME, Blaner WS. Diethylnitrosamine-induced hepatocarcinogenesis is suppressed in lecithin:retinol acyltransferase-deficient mice primarily through retinoid actions immediately after carcinogen administration. Carcinogenesis 2011; 33:268-74. [PMID: 22116467 DOI: 10.1093/carcin/bgr275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Loss of retinoid-containing lipid droplets upon hepatic stellate cell (HSC) activation is one of the first events in the development of liver disease leading to hepatocellular carcinoma. Although retinoid stores are progressively lost from HSCs during the development of hepatic disease, how this affects hepatocarcinogenesis is unclear. To investigate this, we used diethylnitrosamine (DEN) to induce hepatic tumorigenesis in matched wild-type (WT) and lecithin:retinol acyltransferase (LRAT) knockout (KO) mice, which lack stored retinoid and HSC lipid droplets. Male 15-day-old WT or Lrat KO mice were given intraperitoneal injections of DEN (25 mg/kg body wt). Eight months later, Lrat KO mice showed significantly less liver tumor development compared with WT mice, characterized by less liver tumor incidence and smaller tumor size. Two days after DEN injection, lower serum levels of alanine aminotransferase and decreased hepatic levels of cyclin D1 were observed in Lrat KO mice. Lrat KO mice also exhibited increased levels of retinoic acid-responsive genes, including p21, lower levels of cytochrome P450 enzymes required for DEN bioactivation and higher levels of the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), both before and after DEN treatment. Our results indicate that Lrat KO mice are less susceptible to DEN-induced hepatocarcinogenesis due to increased retinoid signaling and higher expression of p21, which is accompanied by altered hepatic levels of DEN-activating enzymes and MGMT in Lrat KO mice also contribute to decreased cancer initiation and suppressed liver tumor development.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
46
|
Abstract
Vitamin A is essential for multiple functions in mammals. Without vitamin A, mammals cannot grow, reproduce, or fight off disease. Because of its numerous functions in humans, biomarkers of vitamin A status are quite diverse. Assessment of liver reserves of vitamin A is considered the gold standard because the liver is the major storage organ. However, this measure is not feasible in human studies. Alternative biomarkers of status can be classified as biological, functional, histologic, and biochemical. Historically, signs of xerophthalmia were used to determine vitamin A deficiency. Before overt clinical damage to the eye, individuals who suffer from vitamin A deficiency are plagued by night blindness and longer vision-restoration times. These types of assessments require large population-based evaluations. Therefore, surrogate biochemical measures of vitamin A status, as defined by liver reserves, have been developed. Serum retinol concentrations are a common method used to evaluate vitamin A deficiency. Serum retinol concentrations are homeostatically controlled until liver reserves are dangerously low. Therefore, other biochemical methods that respond to liver reserves in the marginal category were developed. These included dose-response tests and isotope dilution assays. Dose-response tests work on the principle that apo-retinol-binding protein builds up in the liver as liver reserves become depleted. A challenge dose of vitamin A binds to this protein, and serum concentrations increase within a few hours if liver vitamin A concentrations are low. Isotope dilution assays use stable isotopes as tracers of total body reserves of vitamin A and evaluate a wide range of liver reserves. Resources available and study objectives often dictate the choice of a biomarker.
Collapse
Affiliation(s)
- Sherry A Tanumihardjo
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
47
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:152-67. [PMID: 21621639 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
48
|
Wang C, Kane MA, Napoli JL. Multiple retinol and retinal dehydrogenases catalyze all-trans-retinoic acid biosynthesis in astrocytes. J Biol Chem 2010; 286:6542-53. [PMID: 21138835 DOI: 10.1074/jbc.m110.198382] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All-trans-retinoic acid (atRA) stimulates neurogenesis, dendritic growth of hippocampal neurons, and higher cognitive functions, such as spatial learning and memory formation. Although astrocyte-derived atRA has been considered a key factor in neurogenesis, little direct evidence identifies hippocampus cell types and the enzymes that biosynthesize atRA. Here we show that primary rat astrocytes, but not neurons, biosynthesize atRA using multiple retinol dehydrogenases (Rdh) of the short chain dehydrogenase/reductase gene family and retinaldehyde dehydrogenases (Raldh). Astrocytes secrete atRA into their medium; neurons sequester atRA. The first step, conversion of retinol into retinal, is rate-limiting. Neurons and astrocytes both synthesize retinyl esters and reduce retinal into retinol. siRNA knockdown indicates that Rdh10, Rdh2 (mRdh1), and Raldh1, -2, and -3 contribute to atRA production. Knockdown of the Rdh Dhrs9 increased atRA synthesis ∼40% by increasing Raldh1 expression. Immunocytochemistry revealed cytosolic and nuclear expression of Raldh1 and cytosol and perinuclear expression of Raldh2. atRA autoregulated its concentrations by inducing retinyl ester synthesis via lecithin:retinol acyltransferase and stimulating its catabolism via inducing Cyp26B1. These data show that adult hippocampus astrocytes rely on multiple Rdh and Raldh to provide a paracrine source of atRA to neurons, and atRA regulates its own biosynthesis in astrocytes by directing flux of retinol. Observation of cross-talk between Dhrs9 and Raldh1 provides a novel mechanism of regulating atRA biosynthesis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
49
|
Ross AC, Cifelli CJ, Zolfaghari R, Li NQ. Multiple cytochrome P-450 genes are concomitantly regulated by vitamin A under steady-state conditions and by retinoic acid during hepatic first-pass metabolism. Physiol Genomics 2010; 43:57-67. [PMID: 21045116 DOI: 10.1152/physiolgenomics.00182.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin A (retinol) is an essential precursor for the production of retinoic acid (RA), which in turn is a major regulator of gene expression, affecting cell differentiation throughout the body. Understanding how vitamin A nutritional status, as well as therapeutic retinoid treatment, regulates the expression of retinoid homeostatic genes is important for improvement of dietary recommendations and therapeutic strategies using retinoids. This study investigated genes central to processes of retinoid uptake and storage, release to plasma, and oxidation in the liver of rats under steady-state conditions after different exposures to dietary vitamin A (deficient, marginal, adequate, and supplemented) and acutely after administration of a therapeutic dose of all-trans-RA. Over a very wide range of dietary vitamin A, lecithin:retinol acyltransferase (LRAT) as well as multiple cytochrome P-450s (CYP26A1, CYP26B1, and CYP2C22) differed by diet and were highly correlated with one another and with vitamin A status assessed by liver retinol concentration (all correlations, P < 0.05). After acute treatment with RA, the same genes were rapidly and concomitantly induced, preceding retinoic acid receptor (RAR)β, a classical direct target of RA. CYP26A1 mRNA exhibited the greatest dynamic range (change of log 2(6) in 3 h). Moreover, CYP26A1 increased more rapidly in the liver of RA-primed rats than naive rats, evidenced by increased CYP26A1 gene expression and increased conversion of [(3)H]RA to polar metabolites. By in situ hybridization, CYP26A1 mRNA was strongly regulated within hepatocytes, closely resembling retinol-binding protein (RBP)4 in location. Overall, whether RA is produced endogenously from retinol or administered exogenously, changes in retinoid homeostatic gene expression simultaneously favor both retinol esterification and RA oxidation, with CYP26A1 exhibiting the greatest dynamic change.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University,University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
50
|
Bando N, Muraki N, Murota K, Terao J, Yamanishi R. Ingested quercetin but not rutin increases accumulation of hepatic β-carotene in BALB/c mice. Mol Nutr Food Res 2010; 54 Suppl 2:S261-7. [DOI: 10.1002/mnfr.200900329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|