1
|
Cao X, Wu VWY, Han Y, Hong H, Wu Y, Kong APS, Lui KO, Tian XY. Role of Argininosuccinate Synthase 1 -Dependent L-Arginine Biosynthesis in the Protective Effect of Endothelial Sirtuin 3 Against Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307256. [PMID: 38233193 DOI: 10.1002/advs.202307256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Atherosclerosis is initiated with endothelial cell (EC) dysfunction and vascular inflammation under hyperlipidemia. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase. However, the specific role of endothelial SIRT3 during atherosclerosis remains poorly understood. The present study aims to study the role and mechanism of SIRT3 in EC function during atherosclerosis. Wild-type Sirt3f/f mice and endothelium-selective SIRT3 knockout Sirt3f/f; Cdh5Cre/+ (Sirt3EC-KO) mice are injected with adeno-associated virus (AAV) to overexpress PCSK9 and fed with high-cholesterol diet (HCD) for 12 weeks to induce atherosclerosis. Sirt3EC-KO mice exhibit increased atherosclerotic plaque formation, along with elevated macrophage infiltration, vascular inflammation, and reduced circulating L-arginine levels. In human ECs, SIRT3 inhibition resulted in heightened vascular inflammation, reduced nitric oxide (NO) production, increased reactive oxygen species (ROS), and diminished L-arginine levels. Silencing of SIRT3 results in hyperacetylation and deactivation of Argininosuccinate Synthase 1 (ASS1), a rate-limiting enzyme involved in L-arginine biosynthesis, and this effect is abolished in mutant ASS1. Furthermore, L-arginine supplementation attenuates enhanced plaque formation and vascular inflammation in Sirt3EC-KO mice. This study provides compelling evidence supporting the protective role of endothelial SIRT3 in atherosclerosis and also suggests a critical role of SIRT3-induced deacetylation of ASS1 by ECs for arginine synthesis.
Collapse
Affiliation(s)
- Xiaoyun Cao
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Vivian Wei Yan Wu
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Yumeng Han
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Huiling Hong
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Yalan Wu
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Alice Pik Shan Kong
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Chen WH, Chen CH, Hsu MC, Chang RW, Wang CH, Lee TS. Advances in the molecular mechanisms of statins in regulating endothelial nitric oxide bioavailability: Interlocking biology between eNOS activity and L-arginine metabolism. Biomed Pharmacother 2024; 171:116192. [PMID: 38262153 DOI: 10.1016/j.biopha.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A, are widely used to treat hypercholesterolemia. In addition, statins have been suggested to reduce the risk of cardiovascular events owing to their pleiotropic effects on the vascular system, including vasodilation, anti-inflammation, anti-coagulation, anti-oxidation, and inhibition of vascular smooth muscle cell proliferation. The major beneficial effect of statins in maintaining vascular homeostasis is the induction of nitric oxide (NO) bioavailability by activating endothelial NO synthase (eNOS) in endothelial cells. The mechanisms underlying the increased NO bioavailability and eNOS activation by statins have been well-established in various fields, including transcriptional and post-transcriptional regulation, kinase-dependent phosphorylation and protein-protein interactions. However, the mechanism by which statins affect the metabolism of L-arginine, a precursor of NO biosynthesis, has rarely been discussed. Autophagy, which is crucial for energy homeostasis, regulates endothelial functions, including NO production and angiogenesis, and is a potential therapeutic target for cardiovascular diseases. In this review, in addition to summarizing the molecular mechanisms underlying increased NO bioavailability and eNOS activation by statins, we also discuss the effects of statins on the metabolism of L-arginine.
Collapse
Affiliation(s)
- Wen-Hua Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Man-Chen Hsu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ru-Wen Chang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chih-Hsien Wang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zhang M, Hillegass WB, Yu X, Majumdar S, Daryl Pollard J, Jackson E, Knudson J, Wolfe D, Kato GJ, Maher JF, Mei H. Genetic variants and effect modifiers of QT interval prolongation in patients with sickle cell disease. Gene 2024; 890:147824. [PMID: 37741592 DOI: 10.1016/j.gene.2023.147824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Sickle cell disease (SCD) is a common inherited blood disorder among African Americans (AA), with premature mortality which has been associated with prolongation of the heart rate-corrected QT interval (QTc), a known risk factor for sudden cardiac death. Although numerous genetic variants have been identified as contributors to QT interval prolongation in the general population, their impact on SCD patients remains unclear. This study used an unweighted polygenic risk score (PRS) to validate the previously identified associations between SNPs and QTc interval in SCD patients, and to explore possible interactions with other factors that prolong QTc interval in AA individuals with SCD. METHODS In SCD patients, candidate genetic variants associated with the QTc interval were genotyped. To identify any risk SNPs that may be correlated with QTc interval prolongation, linear regression was employed, and an unweighted PRS was subsequently constructed. The effect of PRS on the QTc interval was evaluated using linear regression, while stratification analysis was used to assess the influence of serum alanine transaminase (ALT), a biomarker for liver disease, on the PRS effect. We also evaluated the PRS with the two subcomponents of QTc, the QRS and JTc intervals. RESULTS Out of 26 candidate SNPs, five risk SNPs were identified for QTc duration under the recessive model. For every unit increase in PRS, the QTc interval prolonged by 4.0 ms (95% CI: [2.0, 6.1]; p-value: <0.001) in the additive model and 9.4 ms in the recessive model (95% CI: [4.6, 14.1]; p-value: <0.001). Serum ALT showed a modification effect on PRS-QTc prolongation under the recessive model. In the normal ALT group, each PRS unit increased QTc interval by 11.7 ms (95% CI: [6.3, 17.1]; p-value: 2.60E-5), whereas this effect was not observed in the elevated ALT group (0.9 ms; 95% CI: [-7.0, 8.8]; p-value: 0.823). CONCLUSION Several candidate genetic variants are associated with QTc interval prolongation in SCD patients, and serum ALT acts as a modifying factor. The association of a CPS1 gene variant in both QTc and JTc duration adds to NOS1AP as evidence of involvement of the urea cycle and nitric oxide metabolism in cardiac repolarization in SCD. Larger replication studies are needed to confirm these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Mengna Zhang
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William B Hillegass
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Xue Yu
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Suvankar Majumdar
- Division of Hematology, Children's National Hospital, Washington, DC, USA
| | - J Daryl Pollard
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Erin Jackson
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jarrod Knudson
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas Wolfe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Gregory J Kato
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joseph F Maher
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Internal Medicine/Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
4
|
Yang H, Shen M, Zhang Q, Li Y, Tan X, Li X, Chen H, Wu L, He S, Zhu X. Transcriptome and metabolomics analysis of adaptive mechanism of Chinese mitten crab (Eriocheir sinensis) to aflatoxin B1. PLoS One 2023; 18:e0295291. [PMID: 38060597 PMCID: PMC10703319 DOI: 10.1371/journal.pone.0295291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Aflatoxin B1 (AFB1), with the strong toxicity and carcinogenicity, has been reported to great toxicity to the liver and other organs of animals. It cause huge economic losses to breeding industry, including the aquaculture industry. Chinese mitten crabs (Eriocheir sinensis), as one of important species of freshwater aquaculture in China, are deeply disturbed by it. However, the molecular and metabolic mechanisms of hepatopancreas and ovary in crabs underlying coping ability are still unclear. Hence, we conducted targeted injection experiment with or without AFB1, and comprehensively analyzed transcriptome and metabolomics of hepatopancreas and ovary. As a result, 210 and 250 DEGs were identified in the L-C vs. L-30 m and L-C vs. L-60 m comparison, among which 14 common DEGs were related to six major functional categories, including antibacterial and detoxification, ATP energy reaction, redox reaction, nerve reaction, liver injury repair and immune reaction. A total of 228 and 401 DAMs in the ML-C vs. ML-30 m and ML-C vs. ML-60 m comparison both enriched 12 pathways, with clear functions of cutin, suberine and wax biosynthesis, tyrosine metabolism, purine metabolism, nucleotide metabolism, glycine, serine and threonine metabolism, ABC transporters and tryptophan metabolism. Integrated analysis of metabolomics and transcriptome in hepatopancreas discovered three Co-enriched pathways, including steroid biosynthesis, glycine, serine and threonine metabolism, and sphingolipid metabolism. In summary, the expression levels and functions of related genes and metabolites reveal the regulatory mechanism of Chinese mitten crab (Eriocheir sinensis) adaptability to the Aflatoxin B1, and the findings contribute to a new perspective for understanding Aflatoxin B1 and provide some ideas for dealing with it.
Collapse
Affiliation(s)
- Hongsheng Yang
- Fishery Analysis and Testing Center of Jiangsu Province, Nanjing, Jiangsu, China
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Meifang Shen
- Fishery Analysis and Testing Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Qiuyun Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yifeng Li
- College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Xiuhui Tan
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Huimin Chen
- SCIEX Analytical Instrument Trading Co., Shanghai, China
| | - Lei Wu
- Yitian Technologies Corporation, Nanjing, Jiangsu, China
| | - Shaofang He
- Yitian Technologies Corporation, Nanjing, Jiangsu, China
| | - Xiaohua Zhu
- Fishery Analysis and Testing Center of Jiangsu Province, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Lopes FF, Lamberty Faverzani J, Hammerschmidt T, Aguilar Delgado C, Ferreira de Oliveira J, Wajner M, Regla Vargas C. Evaluation of oxidative damage to biomolecules and inflammation in patients with urea cycle disorders. Arch Biochem Biophys 2023; 736:109526. [PMID: 36702451 DOI: 10.1016/j.abb.2023.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Urea cycle disorders (UCD) are inborn errors of metabolism that occur due to a loss of function in enzymes and transporters involved in the urea cycle, causing an intoxication by hyperammonemia and accumulation of metabolites. Patients can develop hepatic encephalopathy (HE), severe neurological and motor disabilities, and often death. The mechanisms involved in the pathophysiology of UCD are many and complex, but there are strong indications that oxidative stress and inflammation are present, being responsible for at least part of the cellular damage that occurs in these diseases. The aim of this study was to evaluate oxidative and nitrosative damage and inflammation in UCD, to better understand the pathophysiology mechanisms of these diseases. We evaluated the nitrite and nitrate content, thiobarbituric acid-reactive substances (TBARS), carbonyl protein content and a panel of cytokines in plasma sample of 14 patients. The UCD patients group consisted of individuals affected with ornithine transcarbamylase deficiency (n = 8), carbamoyl phosphate synthetase deficiency (n = 2), argininosuccinate synthetase deficiency (n = 2); arginase 1 deficiency (n = 1) and argininosuccinate lyase deficiency (n = 1). Patients mean age at diagnosis was 5.25 ± 9.86 years-old and mean concentrations were compared with healthy individuals of matched age and gender. We found a significant reduction in nitrogen reactive species in patients when compared to controls. TBARS was increased in patients, indicating lipid peroxidation. To evaluate protein oxidative damage in UCD, the carbonyl content was measured, and the results also demonstrated an increase in this biomarker. Finally, we found that UCD patients have enhanced concentrations of cytokines, with pro-inflammatory interleukins IL-6, IL-8, interferon-γ and TNF-α, and anti-inflammatory IL-10 being increased when compared to the control group. In conclusion, our results demonstrate that oxidative stress and inflammation occurs in UCD and probably contribute to the severe brain damage present in patients.
Collapse
Affiliation(s)
- Franciele Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Tatiane Hammerschmidt
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Camila Aguilar Delgado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Julia Ferreira de Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
6
|
Najimi M. Cell- and Stem Cell-Based Therapies for Liver Defects: Recent Advances and Future Strategies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Cavino K, Sung B, Su Q, Na E, Kim J, Cheng X, Gromada J, Okamoto H. Glucagon Receptor Inhibition Reduces Hyperammonemia and Lethality in Male Mice with Urea Cycle Disorder. Endocrinology 2021; 162:5988952. [PMID: 33206168 DOI: 10.1210/endocr/bqaa211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/14/2022]
Abstract
The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.
Collapse
Affiliation(s)
- Katie Cavino
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Biin Sung
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Qi Su
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Erqian Na
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | | | | |
Collapse
|
8
|
Du B, Jin N, Zhu X, Lu D, Jin C, Li Z, Han C, Zhang Y, Lai D, Liu K, Wei R. A prospective study of serum metabolomic and lipidomic changes in myopic children and adolescents. Exp Eye Res 2020; 199:108182. [PMID: 32781198 DOI: 10.1016/j.exer.2020.108182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myopia is a prevalent eye disorder, especially among children and adolescents in eastern Asian countries. Multiple measures have already been taken to prevent and treat myopia, including atropine and dopamine. However, the serum metabolic picture of myopia has not yet been studied as a whole and remains largely unclear. In this paper, a prospective and panoramic study was carried out to find out the whole serum metabolomic and lipidomic picture of myopia. METHODS With untargeted mass spectrometry (MS), myopia among 211 children and adolescents was studied. The MS features were first grouped across the samples. Then, compound annotation was carried out based on these features. Finally, the metabolite features were mapped to pathways, whose biological functions in myopia were studied and discussed. RESULTS A total of 275 metabolite features were derived from 92 aligned MS peak groups with significant fold changes, and then mapped to 33 pathways. By a comprehensive consideration of significance, fold change, importance score and appearance in different omics, 9 pathways were selected, and their biological functions were further analyzed. Among these selected pathways, 5 pathways were related with oxidative stress, a validated phenomenon during myopia development, while 5 pathways were related with dopamine receptor D2, whose molecular function in myopia treatment is not fully understood. A total of 177 metabolite features from 45 peak groups were related with the studied pathways. CONCLUSION This prospective study shed light on the whole picture of metabolomic mechanism underlying myopia and provided guidance to further elucidation of compounds and pathways in this whole picture.
Collapse
Affiliation(s)
- Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Nan Jin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiurui Zhu
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China; Department of Cardiothoracic Surgery, School of Medicine, Stanford University, CA, USA
| | - Daqian Lu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chengcheng Jin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zhen Li
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China; School of Electrical Engineering, Southeast University, Jiangsu Province, China
| | - Chunle Han
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Yani Zhang
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Donghai Lai
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Kang Liu
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
9
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:biomedicines8080277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Wafiq Khondkar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
- Correspondence:
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|
10
|
Sokulsky LA, Goggins B, Sherwin S, Eyers F, Kaiko GE, Board PG, Keely S, Yang M, Foster PS. GSTO1-1 is an upstream suppressor of M2 macrophage skewing and HIF-1α-induced eosinophilic airway inflammation. Clin Exp Allergy 2020; 50:609-624. [PMID: 32052502 DOI: 10.1111/cea.13582] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Glutathione S-transferases omega class 1 (GSTO1-1) is a unique member of the GST family regulating cellular redox metabolism and innate immunity through the promotion of LPS/TLR4/NLRP3 signalling in macrophages. House dust mite (HDM) triggers asthma by promoting type 2 responses and allergic inflammation via the TLR4 pathway. Although linked to asthma, the role of GSTO1-1 in facilitating type 2 responses and/or HDM-driven allergic inflammation is unknown. OBJECTIVE To determine the role of GSTO1-1 in regulating HDM-induced allergic inflammation in a preclinical model of asthma. METHODS Wild-type and GSTO1-1-deficient mice were sensitized and aeroallergen challenged with HDM to induce allergic inflammation and subsequently hallmark pathophysiological features characterized. RESULTS By contrast to HDM-challenged WT mice, exposed GSTO1-1-deficient mice had increased numbers of eosinophils and macrophages and elevated levels of eotaxin-1 and -2 in their lungs. M1 macrophage-associated factors, such as IL-1β and IL-6, were decreased in GSTO1-1-deficient mice. Conversely, M2 macrophage factors such as Arg-1 and Ym1 were up-regulated. HIF-1α expression was found to be higher in the absence of GSTO1-1 and correlated with the up-regulation of M2 macrophage markers. Furthermore, HIF-1α was shown to bind and activate the eotaxin-2 promotor. Hypoxic conditions induced significant increases in the levels of eotaxin-1 and -2 in GSTO1-deficient BMDMs, providing a potential link between inflammation-induced hypoxia and the regulation of M2 responses in the lung. Collectively, our results suggest that GSTO1-1 deficiency promotes M2-type responses and increased levels of nuclear HIF-1α, which regulates eotaxin (s)-induced eosinophilia and increased disease severity. CONCLUSION & CLINICAL IMPLICATION We propose that GSTO1-1 is a novel negative regulator of TLR4-regulated M2 responses acting as an anti-inflammatory pathway. The discovery of a novel HIF-1α-induced eotaxin pathway identifies an unknown connection between hypoxia and the regulation of the severity of allergic inflammation in asthma.
Collapse
Affiliation(s)
- Leon A Sokulsky
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Bridie Goggins
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simonne Sherwin
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Fiona Eyers
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gerard E Kaiko
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Philip G Board
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Simon Keely
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ming Yang
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Paul S Foster
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
11
|
Jain-Ghai S, Joffe AR, Bond GY, Siriwardena K, Chan A, Yap JYK, Hajihosseini M, Dinu IA, Acton BV, Robertson CMT. Pre-school neurocognitive and functional outcomes after liver transplant in children with early onset urea cycle disorders, maple syrup urine disease, and propionic acidemia: An inception cohort matched-comparison study. JIMD Rep 2020; 52:43-54. [PMID: 32154059 PMCID: PMC7052695 DOI: 10.1002/jmd2.12095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
Background Urea cycle disorders (UCD) and organic acid disorders classically present in the neonatal period. In those who survive, developmental delay is common with continued risk of regression. Liver transplantation improves the biochemical abnormality and patient survival is good. We report the neurocognitive and functional outcomes post‐transplant for nine UCD, three maple syrup urine disease, and one propionic acidemia patient. Methods Thirteen inborn errors of metabolism (IEM) patients were individually one‐to‐two matched to 26 non‐IEM patients. All patients received liver transplant. Wilcoxon rank sum test was used to compare full‐scale intelligence‐quotient (FSIQ) and Adaptive Behavior Assessment System‐II General Adaptive Composite (GAC) at age 4.5 years. Dichotomous outcomes were reported as percentages. Results FSIQ and GAC median [IQR] was 75 [54, 82.5] and 62.0 [47.5, 83] in IEM compared with 94.5 [79.8, 103.5] and 88.0 [74.3, 97.5] in matched patients (P‐value <.001), respectively. Of IEM patients, 6 (46%) had intellectual disability (FSIQ and GAC <70), 5 (39%) had autism spectrum disorder, and 1/13 (8%) had cerebral palsy, compared to 1/26 (4%), 0, 0, and 0% of matched patients, respectively. In the subgroup of nine with UCDs, FSIQ (64[54, 79]), and GAC (56[45, 75]) were lower than matched patients (100.5 [98.5, 101] and 95 [86.5, 99.5]), P = .005 and .003, respectively. Conclusion This study evaluated FSIQ and GAC at age 4.5 years through a case‐comparison between IEM and matched non‐IEM patients post‐liver transplantation. The neurocognitive and functional outcomes remained poor in IEM patients, particularly in UCD. This information should be included when counselling parents regarding post‐transplant outcome.
Collapse
Affiliation(s)
- Shailly Jain-Ghai
- Department of Medical Genetics University of Alberta Edmonton Alberta Canada
| | - Ari R Joffe
- Department of Pediatrics University of Alberta Edmonton Alberta Canada
| | - Gwen Y Bond
- Department of Pediatrics Glenrose Rehabilitation Hospital Edmonton Alberta Canada
| | - Komudi Siriwardena
- Department of Medical Genetics University of Alberta Edmonton Alberta Canada
| | - Alicia Chan
- Department of Medical Genetics University of Alberta Edmonton Alberta Canada
| | - Jason Y K Yap
- University of Melbourne The Royal Children's Hospital Melbourne Australia
| | - Morteza Hajihosseini
- School of Public Health (Biostatistics) University of Alberta Edmonton Alberta Canada
| | - Irina A Dinu
- School of Public Health (Biostatistics) University of Alberta Edmonton Alberta Canada
| | - Bryan V Acton
- Department of Psychology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Charlene M T Robertson
- Department of Pediatrics University of Alberta Edmonton Alberta Canada.,Department of Pediatrics Glenrose Rehabilitation Hospital Edmonton Alberta Canada
| | | |
Collapse
|
12
|
Brambilla A, Bianchi ML, Cancello R, Galimberti C, Gasperini S, Pretese R, Rigoldi M, Tursi S, Parini R. Resting energy expenditure in argininosuccinic aciduria and in other urea cycle disorders. J Inherit Metab Dis 2019; 42:1105-1117. [PMID: 31056765 DOI: 10.1002/jimd.12108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
No data are available on the specific energy needs of patients affected with Urea Cycle disorders (UCD) and especially argininosuccinic aciduria (ASA). In our experience, ASA patients tend to develop central adiposity and hypertriglyceridemia when treated with apparently adequate energy intake, while the other UCD do not. The aim of this study was to evaluate anthropometric parameters, body composition, risk of metabolic syndrome (MS) and resting energy expenditure (REE), both by indirect calorimetry (IC) and predictive equations, in UCD patients. Hypertension (5/13), pathological waist circumference-to-height ratio (WtHr) (6/13), hypertriglyceridemia (12/13), reduced HDL cholesterol (12/13), and MS (5/13) were found in ASA group. In the ASA cohort, the mean and median IC-REE were 88% of what was predicted by Food and Agriculture Organization of the United Nations and Harris-Benedict equations. The "other UCD" cohort did not show hypertension, dyslipidaemia nor MS; IC-REE was similar to the REE predicted by equations. A significant difference was seen for the presence of hypertension, dyslipidaemia, pathological WtHr, MS and IC-REE/predictive equations-REE in the two cohorts. ASA patients have a risk of overfeeding if their energy requirement is not assessed individually with IC. Excessive energy intake might increase the cardiovascular risk of ASA patients. We suggest to test ASA individuals with IC every year if the patient is sufficiently collaborative. We speculate that most of the features seen in ASA patients might depend on an imbalance of Krebs cycle. Further studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Alessandra Brambilla
- Department of Pediatrics, Fondazione MBBM, ATS Monza, University Hospital San Gerardo, Monza, Italy
| | - Maria L Bianchi
- Bone Metabolism Unit, Istituto Auxologico Italiano, Milano, Italy
| | | | - Cinzia Galimberti
- Department of Pediatrics, Fondazione MBBM, ATS Monza, University Hospital San Gerardo, Monza, Italy
| | - Serena Gasperini
- Department of Pediatrics, Fondazione MBBM, ATS Monza, University Hospital San Gerardo, Monza, Italy
| | - Roberta Pretese
- Department of Pediatrics, Fondazione MBBM, ATS Monza, University Hospital San Gerardo, Monza, Italy
| | - Miriam Rigoldi
- Department of Medical Genetics, Rare Disease Center, ASST San Gerardo, Monza, Italy
| | - Serena Tursi
- Department of Pediatrics, Fondazione MBBM, ATS Monza, University Hospital San Gerardo, Monza, Italy
| | - Rossella Parini
- Department of Pediatrics, Fondazione MBBM, ATS Monza, University Hospital San Gerardo, Monza, Italy
| |
Collapse
|
13
|
Oxidative stress in urea cycle disorders: Findings from clinical and basic research. Clin Chim Acta 2018; 477:121-126. [DOI: 10.1016/j.cca.2017.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
|
14
|
Pérez-Cabeza de Vaca R, Domínguez-López M, Guerrero-Celis N, Rodríguez-Aguilera JR, Chagoya de Sánchez V. Inflammation is regulated by the adenosine derivative molecule, IFC-305, during reversion of cirrhosis in a CCl4 rat model. Int Immunopharmacol 2018; 54:12-23. [DOI: 10.1016/j.intimp.2017.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
|
15
|
Maines E, Piccoli G, Pascarella A, Colucci F, Burlina AB. Inherited hyperammonemias: a Contemporary view on pathogenesis and diagnosis. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1409108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Evelina Maines
- Pediatric Unit, Provincial Centre for Rare Diseases, Department of Women’s and Children’s Health, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Giovanni Piccoli
- CIBIO - Centre for integrative biology, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Antonia Pascarella
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| | - Francesca Colucci
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| |
Collapse
|
16
|
Bigot A, Tchan MC, Thoreau B, Blasco H, Maillot F. Liver involvement in urea cycle disorders: a review of the literature. J Inherit Metab Dis 2017; 40:757-769. [PMID: 28900784 DOI: 10.1007/s10545-017-0088-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/13/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
Urea cycle disorders (UCDs) are inborn errors of metabolism of the nitrogen detoxification pathway and encompass six principal enzymatic deficiencies. The aging of UCD patients leads to a better knowledge of the long-term natural history of the condition and to the reporting of previously unnoticed manifestations. Despite historical evidence of liver involvement in UCDs, little attention has been paid to this organ until recently. Hence, we reviewed the available scientific evidence on acute and chronic liver dysfunction and liver carcinogenesis in UCDs and discuss their pathophysiology. Overall, liver involvement, such as acute liver failure or steatotic-like disease, which may evolve toward cirrhosis, has been reported in all six main UCDs. Excessive glycogen storage is also a prominent histologic feature, and hypoglycemia has been reported in citrin deficiency. Hepatocarcinomas seem frequent in some UCDs, such as in citrin deficiency, and can sometimes occur in non-cirrhotic patients. UCDs may differ in liver involvement according to the enzymatic deficiency. Ornithine transcarbamylase deficiency may be associated more with acute liver failure and argininosuccinic aciduria with chronic liver failure and cirrhosis. Direct toxicity of metabolites, downstream metabolic deficiencies, impaired tricarboxylic acid cycle, oxidative stress, mitochondrial dysfunction, energy deficit, and putative toxicity of therapies combine in various ways to cause the different liver diseases reported.
Collapse
Affiliation(s)
- Adrien Bigot
- CHRU de Tours, service médecine interne, Tours, France.
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France.
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia.
- Service de Médecine Interne, Hôpital Bretonneau, 2, boulevard Tonnelle, 37044, Tours, France.
| | - Michel C Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Benjamin Thoreau
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| | - Hélène Blasco
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- CHRU de Tours, service de biochimie-biologie moléculaire, Tours, France
- UMR INSERM U930, 37000, Tours, France
| | - François Maillot
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| |
Collapse
|
17
|
Delwing-de Lima D, Sasso S, Dalmedico L, Delwing-Dal Magro D, Pereira EM, Wyse ATS. Argininic acid alters markers of cellular oxidative damage in vitro: Protective role of antioxidants. ACTA ACUST UNITED AC 2017; 69:605-611. [PMID: 28554820 DOI: 10.1016/j.etp.2017.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/05/2017] [Accepted: 05/18/2017] [Indexed: 12/19/2022]
Abstract
We, herein, investigated the in vitro effects of argininic acid on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content and on the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the blood, kidney and liver of 60-day-old rats. We also verified the influence of the antioxidants (each at 1.0mM) trolox and ascorbic acid, as well as of NG-nitro-l-arginine methyl ester (L-NAME) at 1.0mM, a nitric oxide synthase inhibitor, on the effects elicited by argininic acid on the parameters tested. The liver, renal cortex and renal medulla were homogenized in 10vol (1:10w/v) of 20mM sodium phosphate buffer, pH 7.4, containing 140mM KCl; and erythrocytes and plasma were prepared from whole blood samples obtained from rats. For in vitro experiments, the samples were pre-incubated for 1h at 37°C in the presence of argininic acid at final concentrations of 0.1, 1.0 and 5.0μM. Control experiments were performed without the addition of argininic acid. Results showed that argininic acid (5.0μM) enhanced CAT and SOD activities and decreased GSH-Px activity in the erythrocytes, increased CAT and decreased GSH-Px activities in the renal cortex and decreased CAT and SOD activities in the renal medulla of 60-day-old rats, as compared to the control group. Antioxidants and/or L-NAME prevented most of the alterations caused by argininic acid on the oxidative stress parameters evaluated. Data suggest that argininic acid alters antioxidant defenses in the blood and kidney of rats; however, in the presence of antioxidants and L-NAME, most of these alterations in oxidative stress were prevented. These findings suggest that oxidative stress may be make an important contribution to the damage caused by argininic acid in hyperargininemic patients and that treatment with antioxidants may be beneficial in this pathology.
Collapse
Affiliation(s)
- Daniela Delwing-de Lima
- Departamento de Medicina, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972, Joinville, SC, Brazil; Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972, Joinville, SC, Brazil.
| | - Simone Sasso
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972, Joinville, SC, Brazil
| | - Leticia Dalmedico
- Departamento de Farmácia, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972, Joinville, SC, Brazil
| | - Débora Delwing-Dal Magro
- Departamento de Ciências Naturais, Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, CEP 89012-900, Blumenau, SC, Brazil
| | - Eduardo Manoel Pereira
- Departamento de Farmácia, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972, Joinville, SC, Brazil
| | - Angela T S Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Sivashanmugam M, J J, V U, K N S. Ornithine and its role in metabolic diseases: An appraisal. Biomed Pharmacother 2016; 86:185-194. [PMID: 27978498 DOI: 10.1016/j.biopha.2016.12.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/16/2016] [Accepted: 12/04/2016] [Indexed: 11/28/2022] Open
Abstract
Ornithine is a non-essential amino acid produced as an intermediate molecule in urea cycle. It is a key substrate for the synthesis of proline, polyamines and citrulline. Ornithine also plays an important role in the regulation of several metabolic processes leading to diseases like hyperorithinemia, hyperammonemia, gyrate atrophy and cancer in humans. However, the mechanism of action behind the multi-faceted roles of ornithine is yet to be unraveled completely. Several types of cancers are also characterized by excessive polyamine synthesis from ornithine by different rate limiting enzymes. Hence, in this review we aim to provide extensive insights on potential roles of ornithine in many of the disease related cellular processes and also on the structural features of ornithine interacting proteins, enabling development of therapeutic modalities.
Collapse
Affiliation(s)
- Muthukumaran Sivashanmugam
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India; School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Jaidev J
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Umashankar V
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.
| | - Sulochana K N
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.
| |
Collapse
|
19
|
Delwing-de Lima D, Delwing-Dal Magro D, Vieira CLP, Grola GMM, Fischer DA, de Souza Wyse AT. Hyperargininemia and renal oxidative stress: Prevention by antioxidants andNG-nitro-l-arginine methyl ester. J Biochem Mol Toxicol 2016; 31:1-7. [DOI: 10.1002/jbt.21830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Daniela Delwing-de Lima
- Departamento de Medicina; Universidade da Região de Joinville- UNIVILLE; Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972 Joinville SC Brazil
| | - Débora Delwing-Dal Magro
- Departamento de Ciências Naturais, Centro de Ciências Exatas e Naturais; Universidade Regional de Blumenau; Rua Antônio da Veiga, 140 CEP 89012-900 Blumenau SC Brazil
| | - Cindy Laís Pett Vieira
- Departamento de Farmácia; Universidade da Região de Joinville- UNIVILLE; Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972 Joinville SC Brazil
| | - Gislaine Maria Marestoni Grola
- Departamento de Farmácia; Universidade da Região de Joinville- UNIVILLE; Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972 Joinville SC Brazil
| | - Débora Adriana Fischer
- Departamento de Farmácia; Universidade da Região de Joinville- UNIVILLE; Rua Paulo Malschitzki, 10 - Zona Industrial Norte, CEP 89201-972 Joinville SC Brazil
| | - Angela Terezinha de Souza Wyse
- Laboratório deNeuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS; Universidade Federal do Rio Grande do Sul; Rua Ramiro Barcelos, 2600-Anexo Porto Alegre RS Brazil
| |
Collapse
|
20
|
Najimi M, Defresne F, Sokal EM. Concise Review: Updated Advances and Current Challenges in Cell Therapy for Inborn Liver Metabolic Defects. Stem Cells Transl Med 2016; 5:1117-25. [PMID: 27245366 DOI: 10.5966/sctm.2015-0260] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED : The development of liver cell transplantation (LCT), considered a major biotechnological breakthrough, was intended to provide more accessible treatments for liver disease patients. By preserving the native recipient liver and decreasing hospitalization time, this innovative approach has progressively gained interest among clinicians. LCT initially targets inborn errors of liver metabolism, enabling the compensation of deficient metabolic functions for up to 18 months post-transplantation, supporting its use at least as a bridge to transplantation. The rigorous clinical development and widespread use of LCT depends strongly on controlled and consistent clinical trial data, which may help improve several critical factors, including the standardization of raw biological material and immunosuppression regimens. Substantial effort has also been made in defining and optimizing the most efficient cell population to be transplanted in the liver setting. Although isolated hepatocytes remain the best cell type, showing positive clinical results, their widespread use is hampered by their poor resistance to both cryopreservation and in vitro culture, as well as ever-more-significant donor shortages. Hence, there is considerable interest in developing more standardized and widely accessible cell medicinal products to improve engraftment permanency and post-cell transplantation metabolic effects. SIGNIFICANCE In this therapeutic approach to liver disease, new solutions are being designed and evaluated to bypass the documented limitations and move forward toward wide clinical use. Future developments also require a deep knowledge of regulatory framework to launch specific clinical trials that will allow clear assessment of cell therapy and help patients with significant unmet medical needs.
Collapse
Affiliation(s)
- Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| | - Florence Defresne
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| |
Collapse
|
21
|
Abstract
Cardiovascular disease (CVD) is the most common cause of death and disability worldwide. Therefore, great importance has been placed on the discovery of novel risk factors and metabolic pathways relevant in the prevention and management of CVD. Such research is ongoing and may continue to lead to better risk stratification of individuals and/or the development of new intervention targets and treatment options. This review highlights emerging biomarkers related to lipid metabolism, glycemia, inflammation, and cardiac damage, some of which show promising associations with CVD risk and provide further understanding of the underlying pathophysiology. However, their measurement methodology and assays will require validation and standardization, and it will take time to accumulate evidence of their role in CVD in various population settings in order to fully assess their clinical utility. Several of the novel biomarkers represent intriguing, potentially game-changing targets for therapy.
Collapse
Affiliation(s)
- Leah E Cahill
- Department of Medicine, Dalhousie University, 5790 University Ave, Halifax, NS, B3H 1V7, Canada.
- Department of Nutrition, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Monica L Bertoia
- Department of Nutrition, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Sarah A Aroner
- Department of Nutrition, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| | - Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, 1309 Beacon Street, 2nd Floor, Brookline, Boston, MA, USA.
| | - Majken K Jensen
- Department of Nutrition, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Choi YJ, Yoon Y, Lee KY, Kang YP, Lim DK, Kwon SW, Kang KW, Lee SM, Lee BH. Orotic Acid Induces Hypertension Associated with Impaired Endothelial Nitric Oxide Synthesis. Toxicol Sci 2015; 144:307-317. [DOI: 10.1093/toxsci/kfv003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
23
|
Mace H, Srinivas C, Selzner M, Minkovich L. Anesthetic management of a patient with arginase deficiency undergoing liver transplantation. ACTA ACUST UNITED AC 2015; 3:85-7. [PMID: 25611620 DOI: 10.1213/xaa.0000000000000066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A 20-year-old female underwent orthotopic liver transplantation for arginase deficiency, a urea cycle disorder. A hyperammonemic state was prevented by the administration of lipid and carbohydrate substrate and avoidance of protein loading (including human albumin) and prolonged fasting. Caval cross-clamping may have been tolerated poorly owing to the potential interaction between hyperargininemia (a nitric oxide precursor) and the lack of collateral venous drainage. Ammonia and arginine levels improved in parallel with hepatic function after reperfusion of the hepatic graft.
Collapse
Affiliation(s)
- Hamish Mace
- From the *Department of Anesthesia and Pain Medicine, and †Division of General Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Welch AJ, Bedoya-Reina OC, Carretero-Paulet L, Miller W, Rode KD, Lindqvist C. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment. Genome Biol Evol 2015; 6:433-50. [PMID: 24504087 PMCID: PMC3942037 DOI: 10.1093/gbe/evu025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).
Collapse
Affiliation(s)
- Andreanna J Welch
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo
| | | | | | | | | | | |
Collapse
|
25
|
Park CH, Jeong YH, Jeong YI, Kwon JW, Shin T, Hyun SH, Jeung EB, Kim NH, Seo SK, Lee CK, Hwang WS. Amino acid supplementation affects imprinted gene transcription patterns in parthenogenetic porcine blastocysts. PLoS One 2014; 9:e106549. [PMID: 25180972 PMCID: PMC4152337 DOI: 10.1371/journal.pone.0106549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 08/08/2014] [Indexed: 12/15/2022] Open
Abstract
To determine whether exogenous amino acids affect gene transcription patterns in parthenogenetic porcine embryos, we investigated the effects of amino acid mixtures in culture medium. Parthenogenetic embryos were cultured in PZM3 medium under four experimental conditions: 1) control (no amino acids except L-glutamine and taurine); 2) nonessential amino acids (NEAA); 3) essential amino acids (EAA); and 4) NEAA and EAA. The rate of development of embryos to the four-cell stage was not affected by treatment. However, fewer (P<0.05) embryos cultured with EAA (12.8%) reached the blastocyst stage as compared with the control group (25.6%) and NEAA group (30.3%). Based on these findings, we identified genes with altered expression in parthenogenetic embryos exposed to medium with or without EAAs. The results indicated that EAA influenced gene expression patterns, particularly those of imprinted genes (e.g., H19, IGF2R, PEG1, XIST). However, NEAAs did not affect impaired imprinted gene expressions induced by EAA. The results also showed that mechanistic target of rapamycin (MTOR) mRNA expression was significantly increased by EAA alone as compared with control cultures, and that the combined treatment with NEAA and EAA did not differ significantly from those of control cultures. Our results revealed that gene transcription levels in porcine embryos changed differentially depending on the presence of EAA or NEAA. However, the changes in the H19 mRNA observed in the parthenogenetic blastocysts expression level was not related to the DNA methylation status in the IGF2/H19 domain. The addition of exogenous amino acid mixtures affected not only early embryonic development, but also gene transcription levels, particularly those of imprinted genes. However, this study did not reveal how amino acids affect expression of imprinted genes under the culture conditions used. Further studies are thus required to fully evaluate how amino acids affect transcriptional regulation in porcine embryos.
Collapse
Affiliation(s)
- Chi-Hun Park
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | | | - Yeun-Ik Jeong
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Jeong-Woo Kwon
- Department of Animal Sciences, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Taeyoung Shin
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Sang-Hwan Hyun
- College of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eui-Bae Jeung
- College of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang-Kyo Seo
- Animal Quarantine Division, Gyeonggi-Do, Suwon, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Woo-Suk Hwang
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Sasso S, Dalmedico L, Delwing-Dal Magro D, Wyse ATS, Delwing-de Lima D. Effect ofN-acetylarginine, a metabolite accumulated in hyperargininemia, on parameters of oxidative stress in rats: protective role of vitamins and L-NAME. Cell Biochem Funct 2014; 32:511-9. [DOI: 10.1002/cbf.3045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Simone Sasso
- Mestrado em Saúde e Meio Ambiente; Universidade da Região de Joinville-UNIVILLE; Joinville SC Brazil
| | - Leticia Dalmedico
- Departamento de Farmácia; Universidade da Região de Joinville-UNIVILLE; Joinville SC Brazil
| | - Débora Delwing-Dal Magro
- Departamento de Ciências Naturais, Centro de Ciências Exatas e Naturais; Universidade Regional de Blumenau; Blumenau SC Brazil
| | - Angela T. S. Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | | |
Collapse
|
27
|
Burrage LC, Nagamani SCS, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet 2014; 23:R1-8. [PMID: 24651065 DOI: 10.1093/hmg/ddu123] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Branched-chain amino acid (BCAA) metabolism plays a central role in the pathophysiology of both rare inborn errors of metabolism and the more common multifactorial diseases. Although deficiency of the branched-chain ketoacid dehydrogenase (BCKDC) and associated elevations in the BCAAs and their ketoacids have been recognized as the cause of maple syrup urine disease (MSUD) for decades, treatment options for this disorder have been limited to dietary interventions. In recent years, the discovery of improved leucine tolerance after liver transplantation has resulted in a new therapeutic strategy for this disorder. Likewise, targeting the regulation of the BCKDC activity may be an alternative potential treatment strategy for MSUD. The regulation of the BCKDC by the branched-chain ketoacid dehydrogenase kinase has also been implicated in a new inborn error of metabolism characterized by autism, intellectual disability and seizures. Finally, there is a growing body of literature implicating BCAA metabolism in more common disorders such as the metabolic syndrome, cancer and hepatic disease. This review surveys the knowledge acquired on the topic over the past 50 years and focuses on recent developments in the field of BCAA metabolism.
Collapse
Affiliation(s)
- Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Houston, TX 77030, USA
| |
Collapse
|
28
|
Novel complex Re-Arrangement of ARG1 commonly shared by unrelated patients with Hyperargininemia. Gene 2014; 533:240-5. [DOI: 10.1016/j.gene.2013.09.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022]
|
29
|
Fang RS, Dong YC, Xu TY, He GQ, Chen QH. Ethyl carbamate formation regulated by ornithine transcarbamylase and urea metabolism in the processing of Chinese yellow rice wine. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ruo-Si Fang
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
| | - Ya-Chen Dong
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
| | - Teng-Yang Xu
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
| | - Guo-Qing He
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
| | - Qi-He Chen
- Department of Food Science and Nutrition; Zhejiang University; Hangzhou 310058 China
- Food Microbiology Research Key Laboratory of Zhejiang Province; Hangzhou 310058 China
| |
Collapse
|
30
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
31
|
Abstract
Urea cycle disorder is a rare genetic disorder in which there is a full or partial deficiency in the enzymes of the urea cycle, causing a defect in the metabolism of excess nitrogen, and leading to hyperammonemia. This article reviews the clinical presentation, diagnosis, treatment, and drug-disease state implications of urea cycle disorders.
Collapse
Affiliation(s)
- Shari N. Allen
- 1 Assistant Professor of Pharmacy Practice, Philadelphia College of Osteopathic Medicine-School of Pharmacy, Suwanee, GA
| |
Collapse
|
32
|
Changes in the hepatic mitochondrial and membrane proteome in mice fed a non-alcoholic steatohepatitis inducing diet. J Proteomics 2013; 80:107-22. [PMID: 23313215 DOI: 10.1016/j.jprot.2012.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/30/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) accounts for a large proportion of cryptic cirrhosis in the Western societies. Nevertheless, we lack a deeper understanding of the underlying pathomolecular processes, particularly those preceding hepatic inflammation and fibrosis. In order to gain novel insights into early NASH-development from the first appearance of proteomic alterations to the onset of hepatic inflammation and fibrosis, we conducted a time-course analysis of proteomic changes in liver mitochondria and membrane-enriched fractions of female C57Bl/6N mice fed either a mere steatosis or NASH inducing diet. This data was complemented by quantitative measurements of hepatic glycerol-containing lipids, cholesterol and intermediates of the methionine cycle. Aside from energy metabolism and stress response proteins, enzymes of the urea cycle and methionine metabolism were found regulated. Alterations in the methionine cycle occur early in disease progression preceding molecular signs of inflammation. Proteins that hold particular promise in the early distinction between benign steatosis and NASH are methyl-transferase Mettl7b, the glycoprotein basigin and the microsomal glutathione-transferase.
Collapse
|
33
|
Mehta N, Kirk PC, Holder R, Precheur HV. Urea cycle disorder--argininosuccinic lyase deficiency. SPECIAL CARE IN DENTISTRY 2013; 32:155-9. [PMID: 22784324 DOI: 10.1111/j.1754-4505.2012.00263.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An increased level of ammonia in the bloodstream, or hyperammonemia, is a symptom associated with metabolic disorders referred to as inborn errors of metabolism. Urea cycle disorder is a congenital abnormality or absence of one of the six enzymes involved in the elimination of ammonia. Administration of certain medications, high protein diet, excessive exercise, surgical procedures, or trauma can precipitate symptoms of mental confusion, seizure-like activity, and ataxia. This paper reviews the literature with insight into current treatment and management options of the disorder and modification of treatment for the dental patient.
Collapse
Affiliation(s)
- Neeta Mehta
- Department of Advanced Dentistry, School of Dentistry, University of Mississippi, Jackson, Mississippi, USA.
| | | | | | | |
Collapse
|
34
|
Thomas A, Stevens AP, Klein MS, Hellerbrand C, Dettmer K, Gronwald W, Oefner PJ, Reinders J. Early changes in the liver-soluble proteome from mice fed a nonalcoholic steatohepatitis inducing diet. Proteomics 2012; 12:1437-51. [PMID: 22589191 DOI: 10.1002/pmic.201100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the increasing incidence of nonalcoholic steatohepatitis (NASH) with the rise in lifestyle-related diseases such as the metabolic syndrome, little is known about the changes in the liver proteome that precede the onset of inflammation and fibrosis. Here, we investigated early changes in the liver-soluble proteome of female C57BL/6N mice fed an NASH-inducing diet by 2D-DIGE and nano-HPLC-MS/MS. In parallel, histology and measurements of hepatic content of triglycerides, cholesterol and intermediates of the methionine cycle were performed. Hepatic steatosis manifested itself after 2 days of feeding, albeit significant changes in the liver-soluble proteome were not evident before day 10 in the absence of inflammatory or fibrotic signs. Proteomic alterations affected mainly energy and amino acid metabolism, detoxification processes, urea cycle, and the one-carbon/S-adenosylmethionine pathways. Additionally, intermediates of relevant affected pathways were quantified from liver tissue, confirming the findings from the proteomic analysis.
Collapse
Affiliation(s)
- Anja Thomas
- Institute of Functional Genomics, University of Regensburg, Josef-Engert-Strasse 9, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Brunetti-Pierri N, Lamance KM, Lewis RA, Craigen WJ. 30-year follow-up of a patient with classic citrullinemia. Mol Genet Metab 2012; 106:248-50. [PMID: 22494546 DOI: 10.1016/j.ymgme.2012.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
Citrullinemia is a urea cycle defect requiring long-term care with nutritional and pharmacological management. Despite treatment, morbidity and mortality of this disease remain high, and long-term complications include mild to profound mental retardation, seizures, and growth deficiency. We report a 31-year old woman with classic, neonatal-onset citrullinemia who developed progressive hypertrophic cardiomyopathy and cataracts, neither of which has been recognized previously as a complication of the disease or a consequence of long-term drug treatment.
Collapse
Affiliation(s)
- Nicola Brunetti-Pierri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
36
|
Impairment of the extrusion transporter for asymmetric dimethyl-L-arginine: a novel mechanism underlying vasospastic angina. Biochem Biophys Res Commun 2012; 423:218-23. [PMID: 22609206 DOI: 10.1016/j.bbrc.2012.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 11/21/2022]
Abstract
A 37-year old male patient presented with frequent angina attacks (up to 40/day) largely resistant to classical vasodilator therapy. The patient showed severe coronary and peripheral endothelial dysfunction, increased platelet aggregation and increased platelet-derived superoxide production. The endothelial nitric oxide synthase (eNOS)-inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) reduced superoxide formation in platelets identifying "uncoupled" eNOS as a superoxide source. Oral L-arginine normalized coronary and peripheral endothelial dysfunction and reduced platelet aggregation and eNOS-derived superoxide production. Plasma concentrations of the endogenous NOS inhibitor asymmetric dimethyl-L-arginine (ADMA), representing an independent risk factor for cardiovascular disease, were normal in the patient. However, immediately after oral administration of cationic amino acid (CAA), plasma ADMA levels rose markedly, demonstrating increased ADMA efflux from intracellular stores. ADMA efflux from mononuclear cells of the patient was accelerated by CAA, but not neutral amino acids (NAA) demonstrating impairment of y(+)LAT (whose expression was found reduced in these cells). These data suggest that impairment of y(+)LAT may cause intracellular (endothelial) ADMA accumulation leading to systemic endothelial dysfunction. This may represent a novel mechanism underlying vasospastic angina and vascular dysfunction in general. Moreover, these new findings contribute to the understanding of the l-arginine paradox, the improvement of eNOS activity by oral L-arginine despite sufficient cellular l-arginine levels to ensure proper function of this enzyme.
Collapse
|
37
|
Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 2012; 27:207-22. [PMID: 21431427 DOI: 10.1007/s00467-011-1838-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/09/2011] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
Ammonia is an important source of nitrogen and is required for amino acid synthesis. It is also necessary for normal acid-base balance. When present in high concentrations, ammonia is toxic. Endogenous ammonia intoxication can occur when there is impaired capacity of the body to excrete nitrogenous waste, as seen with congenital enzymatic deficiencies. A variety of environmental causes and medications may also lead to ammonia toxicity. Hyperammonemia refers to a clinical condition associated with elevated ammonia levels manifested by a variety of symptoms and signs, including significant central nervous system (CNS) abnormalities. Appropriate and timely management requires a solid understanding of the fundamental pathophysiology, differential diagnosis, and treatment approaches available. The following review discusses the etiology, pathogenesis, differential diagnosis, and treatment of hyperammonemia.
Collapse
|
38
|
Overexpression of (His) 6 -tagged human arginase I in Saccharomyces cerevisiae and enzyme purification using metal affinity chromatography. Protein Expr Purif 2012; 81:63-68. [DOI: 10.1016/j.pep.2011.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 08/21/2011] [Accepted: 09/07/2011] [Indexed: 11/20/2022]
|
39
|
Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med 2011; 17:1619-26. [PMID: 22081021 DOI: 10.1038/nm.2544] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/03/2011] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.
Collapse
|
40
|
Dhanwani R, Khan M, Alam SI, Rao PVL, Parida M. Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 2011; 11:1936-51. [PMID: 21472854 DOI: 10.1002/pmic.201000500] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 11/08/2022]
Abstract
Chikungunya infection is a major disease of public health concern. The recurrent outbreaks of this viral disease and its progressive evolution demands a potential strategy to understand major aspects of its pathogenesis. Unlike other alphaviruses, Chikungunya virus (CHIKV) pathogenesis is poorly understood. In every consecutive outbreak, some new symptoms associated with virulence and disease manifestations are being reported such as neurological implication, increased severity and enhanced vector competence. In order to unravel the mechanism of the disease process, proteomic analysis was performed to evaluate the host response in CHIKV-infected mice tissues. Comparative analysis of the multiple gels representing the particular tissue extract from mock and CHIKV-infected tissues revealed a drastic reprogramming of physiological conditions through 35 and 15 differentially expressed proteins belonging to different classes such as stress, inflammation, apoptosis, urea cycle, energy metabolism, etc. from liver and brain, respectively. Based on the alterations obtained in the CHIKV mouse model, most of the aspects of CHIKV infection such as disease severity, neurological complications, disease susceptibility and immunocompetence could be defined. This is the first report unravelling the complicated pathways involved in the mechanism of Chikungunya disease pathogenesis employing proteomic approach.
Collapse
Affiliation(s)
- Rekha Dhanwani
- Division of Virology, Defence Research and Development Establishment (DRDE), Gwalior, Madhya Pradesh, India
| | | | | | | | | |
Collapse
|
41
|
Erez A, Nagamani SCS, Lee B. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:45-53. [PMID: 21312326 DOI: 10.1002/ajmg.c.30289] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCD), a group of inborn errors of hepatic metabolism that often result in life threatening hyperammonemia. Argininosuccinate lyase (ASL) is a cytosolic enzyme which catalyzes the fourth reaction in the cycle and the first degradative step, that is, the breakdown of argininosuccinic acid to arginine and fumarate. Deficiency of ASL results in an accumulation of argininosuccinic acid in tissues, and excretion of argininosuccinic acid in urine leading to the condition argininosuccinic aciduria (ASA). ASA is an autosomal recessive disorder and is the second most common UCD. In addition to the accumulation of argininosuccinic acid, ASL deficiency results in decreased synthesis of arginine, a feature common to all UCDs except argininemia. Arginine is not only the precursor for the synthesis of urea and ornithine as part of the urea cycle but it is also the substrate for the synthesis of nitric oxide, polyamines, proline, glutamate, creatine, and agmatine. Hence, while ASL is the only enzyme in the body able to generate arginine, at least four enzymes use arginine as substrate: arginine decarboxylase, arginase, nitric oxide synthetase (NOS) and arginine/glycine aminotransferase. In the liver, the main function of ASL is ureagenesis, and hence, there is no net synthesis of arginine. In contrast, in most other tissues, its role is to generate arginine that is designated for the specific cell's needs. While patients with ASA share the acute clinical phenotype of hyperammonemia, encephalopathy, and respiratory alkalosis common to other UCD, they also present with unique chronic complications most probably caused by a combination of tissue specific deficiency of arginine and/or elevation of argininosuccinic acid. This review article summarizes the clinical characterization, biochemical, enzymatic, and molecular features of this disorder. Current treatment, prenatal diagnosis, diagnosis through the newborn screening as well as hypothesis driven future treatment modalities are discussed.
Collapse
Affiliation(s)
- Ayelet Erez
- Department of Molecular and Human, Genetics at Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
42
|
Perez CJ, Jaubert J, Guénet JL, Barnhart KF, Ross-Inta CM, Quintanilla VC, Aubin I, Brandon JL, Otto NW, DiGiovanni J, Gimenez-Conti I, Giulivi C, Kusewitt DF, Conti CJ, Benavides F. Two hypomorphic alleles of mouse Ass1 as a new animal model of citrullinemia type I and other hyperammonemic syndromes. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1958-68. [PMID: 20724589 DOI: 10.2353/ajpath.2010.100118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Citrullinemia type I (CTLN1, OMIM# 215700) is an inherited urea cycle disorder that is caused by an argininosuccinate synthetase (ASS) enzyme deficiency. In this report, we describe two spontaneous hypomorphic alleles of the mouse Ass1 gene that serve as an animal model of CTLN1. These two independent mouse mutant alleles, also described in patients affected with CTLN1, interact to produce a range of phenotypes. While some mutant mice died within the first week after birth, others survived but showed severe retardation during postnatal development as well as alopecia, lethargy, and ataxia. Notable pathological findings were similar to findings in human CTLN1 patients and included citrullinemia and hyperammonemia along with delayed cerebellar development, epidermal hyperkeratosis, and follicular dystrophy. Standard treatments for CTLN1 were effective in rescuing the phenotype of these mutant mice. Based on our studies, we propose that defective cerebellar granule cell migration secondary to disorganization of Bergmann glial cell fibers cause cerebellar developmental delay in the hyperammonemic and citrullinemic brain, pointing to a possible role for nitric oxide in these processes. These mouse mutations constitute a suitable model for both mechanistic and preclinical studies of CTLN1 and other hyperammonemic encephalopathies and, at the same time, underscore the importance of complementing knockout mutations with hypomorphic mutations for the generation of animal models of human genetic diseases.
Collapse
Affiliation(s)
- Carlos J Perez
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee B, Rhead W, Diaz GA, Scharschmidt BF, Mian A, Shchelochkov O, Marier JF, Beliveau M, Mauney J, Dickinson K, Martinez A, Gargosky S, Mokhtarani M, Berry SA. Phase 2 comparison of a novel ammonia scavenging agent with sodium phenylbutyrate in patients with urea cycle disorders: safety, pharmacokinetics and ammonia control. Mol Genet Metab 2010; 100:221-8. [PMID: 20382058 PMCID: PMC2905228 DOI: 10.1016/j.ymgme.2010.03.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/23/2022]
Abstract
UNLABELLED Glycerol phenylbutyrate (glyceryl tri (4-phenylbutyrate)) (GPB) is being studied as an alternative to sodium phenylbutyrate (NaPBA) for the treatment of urea cycle disorders (UCDs). This phase 2 study explored the hypothesis that GPB offers similar safety and ammonia control as NaPBA, which is currently approved as adjunctive therapy in the chronic management of UCDs, and examined correlates of 24-h blood ammonia. METHODS An open-label, fixed sequence switch-over study was conducted in adult UCD patients taking maintenance NaPBA. Blood ammonia and blood and urine metabolites were compared after 7 days (steady state) of TID dosing on either drug, both dosed to deliver the same amount of phenylbutyric acid (PBA). RESULTS Ten subjects completed the study. Adverse events were comparable for the two drugs; 2 subjects experienced hyperammonemic events on NaPBA while none occurred on GPB. Ammonia values on GPB were approximately 30% lower than on NaPBA (time-normalized AUC=26.2 vs. 38.4 micromol/L; Cmax=56.3 vs. 79.1 micromol/L; not statistically significant), and GPB achieved non-inferiority to NaPBA with respect to ammonia (time-normalized AUC) by post hoc analysis. Systemic exposure (AUC(0-24)) to PBA on GPB was 27% lower than on NaPBA (540 vs. 739 microgh/mL), whereas exposure to phenylacetic acid (PAA) (575 vs. 596 microg h/mL) and phenylacetylglutamine (PAGN) (1098 vs. 1133 microg h/mL) were similar. Urinary PAGN excretion accounted for approximately 54% of PBA administered for both NaPBA and GPB; other metabolites accounted for <1%. Intact GPB was generally undetectable in blood and urine. Blood ammonia correlated strongly and inversely with urinary PAGN (r=-0.82; p<0.0001) but weakly or not at all with blood metabolite levels. CONCLUSIONS Safety and ammonia control with GPB appear at least equal to NaPBA. Urinary PAGN, which is stoichiometrically related to nitrogen scavenging, may be a useful biomarker for both dose selection and adjustment for optimal control of venous ammonia.
Collapse
Affiliation(s)
- Brendan Lee
- Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Molecular biomarkers are used for various purposes, including disease diagnosis and prognosis, prediction and assessment of treatment response, and safety assessment. There has been a significant increase in the number of US FDA-approved drug labels containing information on molecular biomarkers over the last decade. Almost every pharmaceutical company has been developing molecular biomarker programs, either alone, through partnerships or other ventures. More molecular biomarkers are expected to be identified and validated in drug development, and used to support approval of drug products. This article summarizes the current status of molecular biomarkers used for FDA-approved drug products, and discusses the challenges and future perspectives for the identification and qualification of molecular biomarkers. Specific FDA programs and research projects related to molecular biomarkers are also discussed for supporting regulatory review in the future.
Collapse
Affiliation(s)
- Huixiao Hong
- Center for Toxicoinformatics, Division of Systems Toxicology, National Center for Toxicological Research, US FDA 3900 NCTR Road, Jefferson, AR, USA.
| | | | | | | |
Collapse
|
45
|
Paré G, Chasman DI, Parker AN, Zee RRY, Mälarstig A, Seedorf U, Collins R, Watkins H, Hamsten A, Miletich JP, Ridker PM. Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13 974 participants in the Women's Genome Health Study. ACTA ACUST UNITED AC 2010; 2:142-50. [PMID: 20031578 DOI: 10.1161/circgenetics.108.829804] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Homocysteine is a sulfur amino acid whose plasma concentration has been associated with the risk of cardiovascular diseases, neural tube defects, and loss of cognitive function in epidemiological studies. Although genetic variants of MTHFR and CBS are known to influence homocysteine concentration, common genetic determinants of homocysteine remain largely unknown. METHODS AND RESULTS To address this issue comprehensively, we performed a genome-wide association analysis, testing 336 469 single-nucleotide polymorphisms in 13 974 healthy white women. Although we confirm association with MTHFR (1p36.22; rs1801133; P=8.1 x 10(-35)) and CBS (21q22.3; rs6586282; P=3.2 x 10(-10)), we found novel associations with CPS1 (2q34; rs7422339; P=1.9 x 10(-11)), MUT (6p12.3; rs4267943; P=2.0 x 10(-9)), NOX4 (11q14.3; rs11018628; P=9.6 x 10(-12)), and DPEP1 (16q24.3; rs1126464; P=1.2 x 10(-12)). The associations at MTHFR, DPEP1, and CBS were replicated in an independent sample from the PROCARDIS study, whereas the association at CPS1 was only replicated among the women. CONCLUSIONS These associations offer new insight into the biochemical pathways involved in homocysteine metabolism and provide opportunities to better delineate the role of homocysteine in health and disease.
Collapse
Affiliation(s)
- Guillaume Paré
- Center for Cardiovascular Disease Prevention and the Donald W. Reynolds Center for Cardiovascular Research, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Ave. East, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Alfirevic A, Alfirevic Z, Pirmohamed M. Pharmacogenetics in reproductive and perinatal medicine. Pharmacogenomics 2010; 11:65-79. [DOI: 10.2217/pgs.09.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The clinical application of pharmacogenetics has been well accepted by some medical specialties, but not all. The aim of this review is to discuss the current use of pharmacogenetics in reproductive and perinatal medicine and to highlight areas where pharmacogenetics may be able to help in the future to predict response to medicines in terms of efficacy and safety. This applies to drugs that are specific to pregnancy and reproduction, as well as drugs prescribed for the treatment of medical disorders in pregnancy. Our review points out the need for well-designed clinical studies on the efficacy and safety of medicines used in women of childbearing age in order to define the additional utility provided by pharmacogenetic testing.
Collapse
Affiliation(s)
- Ana Alfirevic
- Department of Pharmacology & Therapeutics, Sherrington Building, Ashton Street, University of Liverpool, Liverpool, Merseyside, L69 3GE, UK
| | | | - Munir Pirmohamed
- Department of Pharmacology & Therapeutics, Sherrington Building, Ashton Street, University of Liverpool, Liverpool, Merseyside, L69 3GE, UK
| |
Collapse
|
47
|
Braissant O. Ammonia toxicity to the brain: effects on creatine metabolism and transport and protective roles of creatine. Mol Genet Metab 2010; 100 Suppl 1:S53-8. [PMID: 20227315 DOI: 10.1016/j.ymgme.2010.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/08/2010] [Indexed: 11/17/2022]
Abstract
Hyperammonemia can provoke irreversible damage to the developing brain, with the formation of cortical atrophy, ventricular enlargement, demyelination or gray and white matter hypodensities. Among the various pathogenic mechanisms involved, alterations in cerebral energy have been demonstrated. In particular, we could show that ammonia exposure generates a secondary deficiency in creatine in brain cells, by altering the brain expression and activity of the genes allowing creatine synthesis (AGAT and GAMT) and transport (SLC6A8). On the other hand, it is known that creatine administration can exert protective effects in various neurodegenerative processes. We could also show that creatine co-treatment under ammonia exposure can protect developing brain cells from some of the deleterious effects of ammonia, in particular axonal growth impairment. This article focuses on the effects of ammonia exposure on creatine metabolism and transport in developing brain cells, and on the potential neuroprotective properties of creatine in the brain exposed to ammonium.
Collapse
Affiliation(s)
- Olivier Braissant
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Center Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
48
|
Braissant O. Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 2010; 100 Suppl 1:S3-S12. [PMID: 20227314 DOI: 10.1016/j.ymgme.2010.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 02/08/2010] [Indexed: 12/14/2022]
Abstract
The common feature of urea cycle diseases (UCD) is a defect in ammonium elimination in liver, leading to hyperammonemia. This excess of circulating ammonium eventually reaches the central nervous system, where the main toxic effects of ammonium occur. These are reversible or irreversible, depending on the age of onset as well as the duration and the level of ammonium exposure. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood, and surviving UCD patients may develop cortical and basal ganglia hypodensities, cortical atrophy, white matter atrophy or hypomyelination and ventricular dilatation. While for a long time, the mechanisms leading to these irreversible effects of ammonium exposure on the brain remained poorly understood, these last few years have brought new data showing in particular that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy, nitric oxide synthesis, axonal and dendritic growth, signal transduction pathways, as well as K(+) and water channels. All these effects of ammonium on CNS may eventually lead to energy deficit, oxidative stress and cell death. Recent work also proposed neuroprotective strategies, such as the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine, to counteract the toxic effects of ammonium. Better understanding the pathophysiology of ammonium toxicity to the brain under UCD will allow the development of new strategies for neuroprotection.
Collapse
Affiliation(s)
- Olivier Braissant
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Lausanne, Switzerland.
| |
Collapse
|
49
|
Venkateswaran L, Scaglia F, McLin V, Hertel P, Shchelochkov OA, Karpen S, Mahoney D, Yee DL. Ornithine transcarbamylase deficiency: a possible risk factor for thrombosis. Pediatr Blood Cancer 2009; 53:100-2. [PMID: 19343772 PMCID: PMC4869977 DOI: 10.1002/pbc.22016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ornithine transcarbamylase (OTC) deficiency is the most common urea cycle defect. Thromboembolic complications have not heretofore been linked with this diagnosis. We describe four patients with neonatal-onset OTC deficiency who developed vascular thromboses. One patient had arterial thrombosis; the rest developed venous thromboses. Multiple pro-thrombotic risk factors were identified. Low plasma arginine levels were observed in all patients at the time of thrombosis. Arginine deficiency and the resultant nitric oxide insufficiency may contribute to thrombotic risk. Careful normalization of plasma arginine and citrulline levels and increased surveillance for thrombotic complications should be considered in patients with OTC deficiency.
Collapse
Affiliation(s)
- Lakshmi Venkateswaran
- Department of Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030-2399, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Valerie McLin
- Department of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Paula Hertel
- Department of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Oleg A. Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Saul Karpen
- Department of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Donald Mahoney
- Department of Hematology/Oncology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Donald L. Yee
- Department of Hematology/Oncology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
50
|
Yu W, Lin Y, Yao J, Huang W, Lei Q, Xiong Y, Zhao S, Guan KL. Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. J Biol Chem 2009; 284:13669-13675. [PMID: 19318352 DOI: 10.1074/jbc.m901921200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ornithine carbamoyltransferase (OTC) is a key enzyme in the urea cycle to detoxify ammonium produced from amino acid catabolism. OTC deficiency is an X-linked genetic disorder ranging from fatal in newborns to hyperammonemia and anorexia in adults. Through affinity purification of acetylated peptides and mass spectrometry, we identified that OTC is acetylated on lysine residues, including Lys88, which is also mutated in OTC-deficient patients. OTC acetylation was confirmed to occur under physiological conditions. Biochemical characterizations revealed that OTC Lys88 acetylation decreases the affinity for carbamoyl phosphate, one of the two OTC substrates, and the maximum velocity, whereas the K(m) for ornithine, the other OTC substrate, is not affected. Furthermore, Lys88 acetylation is regulated by both extracellular glucose and amino acid availability, indicating that OTC activity may be regulated by cellular metabolic status. Our results provide an example of the novel mechanism of regulating metabolic enzyme activity through protein acetylation.
Collapse
Affiliation(s)
- Wei Yu
- School of Life Sciences Fudan University, Shanghai 20032, China; Institute of Biomedical Sciences Fudan University, Shanghai 20032, China
| | - Yan Lin
- Institute of Biomedical Sciences Fudan University, Shanghai 20032, China
| | - Jun Yao
- Institute of Biomedical Sciences Fudan University, Shanghai 20032, China
| | - Wei Huang
- School of Life Sciences Fudan University, Shanghai 20032, China; Institute of Biomedical Sciences Fudan University, Shanghai 20032, China
| | - Qunying Lei
- Institute of Biomedical Sciences Fudan University, Shanghai 20032, China; Department of Biological Chemistry, School of Medicine, Fudan University, Shanghai 20032, China
| | - Yue Xiong
- Institute of Biomedical Sciences Fudan University, Shanghai 20032, China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Shimin Zhao
- School of Life Sciences Fudan University, Shanghai 20032, China; Institute of Biomedical Sciences Fudan University, Shanghai 20032, China.
| | - Kun-Liang Guan
- Institute of Biomedical Sciences Fudan University, Shanghai 20032, China; Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|