1
|
Cheng B, Feng H, Li C, Jia F, Zhang X. The mutual effect of dietary fiber and polyphenol on gut microbiota: Implications for the metabolic and microbial modulation and associated health benefits. Carbohydr Polym 2025; 358:123541. [PMID: 40383597 DOI: 10.1016/j.carbpol.2025.123541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025]
Abstract
Gut microbiota plays a critical role in maintaining human health by regulating digestion, metabolism, and immune function. Emerging research highlights the potential of dietary interventions, particularly dietary fiber (DF) and polyphenols, in modulating gut microbiota composition and function. DF serves as a fermentable substrate for beneficial gut bacteria, promoting the production of short-chain fatty acids (SCFAs). Polyphenols, a diverse group of bioactive compounds selectively modulate microbial populations and contribute to the production of bioactive metabolites with host health benefits. Importantly, the interplay between DF and polyphenols creates a synergistic effect within the gut microbiome, shaping microbial diversity, enhancing SCFAs production, and strengthening gut barrier function, which together support metabolic and immune homeostasis. This review systematically explores the synergistic effects of DF-polyphenol combinations on gut microbiota modulation, microbial metabolites, and their implications for overall health. The combined effects of DF and polyphenols hold promise for targeted nutritional strategies in preventing metabolic disorders and improving gut health. Moreover, the extent of these benefits is influenced by the structural characteristics of DF, the source and dosage of polyphenols, and individual gut microbiota composition. Further research is warranted to optimize DF-polyphenol interactions and facilitate their applications in personalized nutrition and functional food development.
Collapse
Affiliation(s)
- Bo Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongyan Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Carrillo-Beltrán D, Nahuelpan Y, Cuevas C, Fabres K, Silva P, Zubieta J, Navarro G, Muñoz JP, Gleisner MA, Salazar-Onfray F, Garcia-Romero N, Ayuso-Sacido A, Martin RS, Quezada-Monrás C. Glycosylated Delphinidins Decrease Chemoresistance to Temozolomide by Regulating NF-κB/MGMT Signaling in Glioblastoma. Cells 2025; 14:179. [PMID: 39936970 PMCID: PMC11816850 DOI: 10.3390/cells14030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Glioblastoma (GB) is a highly malignant brain tumor with a poor prognosis, with a median survival of only 14.6 months despite aggressive treatments. Resistance to chemotherapy, particularly temozolomide (TMZ), is a significant challenge. The DNA repair enzyme MGMT and glioblastoma stem cells (GSCs) often mediate this resistance. Recent studies highlight the therapeutic potential of natural compounds, particularly delphinidins, found in deep purple berries. Delphinidins are known for their ability to inhibit NF-κB signaling, a critical pathway for GB progression, chemoresistance, and MGMT expression. Our research demonstrates that glycosylated delphinidins have potential adjuvant use in the treatment of GB, offering a promising natural strategy to combat TMZ resistance. Specifically, we observed that delphinidin 3,5 di-glucoside has potent anticancer effects when used alone. Meanwhile, delphinidin 3 glucoside acted in synergy with temozolomide to decrease cell viability, highlighting its potential as an adjuvant. It also exerted a faster and more sustained inhibition of NF-κB, highlighting its potential for long-lasting therapeutic effects. These findings open new avenues for targeted therapies against glioblastoma, particularly to overcome treatment resistance.
Collapse
Affiliation(s)
- Diego Carrillo-Beltrán
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (M.A.G.); (F.S.-O.)
| | - Yessica Nahuelpan
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
| | - Constanza Cuevas
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
| | - Karen Fabres
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
| | - Pamela Silva
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
| | - Jimena Zubieta
- Laboratorio de Virología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.C.-B.); (Y.N.); (C.C.); (K.F.); (J.Z.)
| | - Giovanna Navarro
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - María A. Gleisner
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (M.A.G.); (F.S.-O.)
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (M.A.G.); (F.S.-O.)
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (A.A.-S.)
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (A.A.-S.)
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Rody San Martin
- Laboratorio de Patología Molecular, Instituto de Bioquímica Y Microbiología, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.S.); (G.N.)
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile; (M.A.G.); (F.S.-O.)
| |
Collapse
|
3
|
Li F, Sun Q, Chen L, Zhang R, Zhang Z. Unlocking the health potential of anthocyanins: a structural insight into their varied biological effects. Crit Rev Food Sci Nutr 2024; 65:2134-2154. [PMID: 38494796 DOI: 10.1080/10408398.2024.2328176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Anthocyanins have become increasingly important to the food industry due to their colorant features and many health-promoting activities. Numerous studies have linked anthocyanins to antioxidant, anti-inflammatory, anticarcinogenic properties, as well as protection against heart disease, certain types of cancer, and a reduced risk of diabetes and cognitive disorders. Anthocyanins from various foods may exhibit distinct biological and health-promoting activities owing to their structural diversity. In this review, we have collected and tabulated the key information from various recent published studies focusing on investigating the chemical structure effect of anthocyanins on their stability, antioxidant activities, in vivo fate, and changes in the gut microbiome. This information should be valuable in comprehending the connection between the molecular structure and biological function of anthocyanins, with the potential to enhance their application as both colorants and functional compounds in the food industry.
Collapse
Affiliation(s)
- Fangfang Li
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruojie Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Zipei Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Teixeira M, De Luca L, Faria A, Bordiga M, de Freitas V, Mateus N, Oliveira H. First Insights on the Bioaccessibility and Absorption of Anthocyanins from Edible Flowers: Wild Pansy, Cosmos, and Cornflower. Pharmaceuticals (Basel) 2024; 17:191. [PMID: 38399406 PMCID: PMC10892915 DOI: 10.3390/ph17020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Edible flowers are regaining interest among both the scientific community and the general population, not only for their appealing sensorial characteristics but also from the growing evidence about their health benefits. Among edible flowers, those that contain anthocyanins are among the most consumed worldwide. However, little is known regarding the bioaccessibility and absorption of their bioactive compounds upon ingestion. The aim of this work was to explore, for the first time, the behavior of anthocyanin-rich extracts from selected edible flowers under different food processing conditions and after ingestion using simulated digestions, as well as their absorption at the intestinal level. Overall, the results showed that the monoglucoside and rutinoside anthocyanin extracts were less stable under different pH, temperature, and time conditions as well as different digestive processes in the gastrointestinal tract. There was a prominent decrease in the free anthocyanin content after the intestinal phase, which was more pronounced for the rutinoside anthocyanin extract (78.41% decrease from the oral phase). In contrast, diglucoside and rutinoside anthocyanin extracts showed the highest absorption efficiencies at the intestinal level, of approximately 5% after 4 h of experiment. Altogether, the current results emphasize the influence of anthocyanins' structural arrangement on both their chemical stability as well as their intestinal absorption. These results bring the first insights about the bioaccessibility and absorption of anthocyanins from wild pansy, cosmos, and cornflower and the potential outcomes of such alternative food sources.
Collapse
Affiliation(s)
- Margarida Teixeira
- REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.T.); (V.d.F.); (N.M.)
| | - Lorenzo De Luca
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (L.D.L.); (M.B.)
| | - Ana Faria
- CHRC, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal;
- CINTESIS@RISE, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (L.D.L.); (M.B.)
| | - Victor de Freitas
- REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.T.); (V.d.F.); (N.M.)
| | - Nuno Mateus
- REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.T.); (V.d.F.); (N.M.)
| | - Hélder Oliveira
- REQUIMTE/LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (M.T.); (V.d.F.); (N.M.)
| |
Collapse
|
5
|
Xu J, Li Y, Kaur L, Singh J, Zeng F. Functional Food Based on Potato. Foods 2023; 12:foods12112145. [PMID: 37297391 DOI: 10.3390/foods12112145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Potato (Solanum tuberosum L.) has gradually become a stable food worldwide since it can be a practical nutritional supplement and antioxidant as well as an energy provider for human beings. Financially and nutritionally, the cultivation and utility of potatoes is worthy of attention from the world. Exploring the functionality and maximizing the utilization of its component parts as well as developing new products based on the potato is still an ongoing issue. To maximize the benefits of potato and induce new high-value products while avoiding unfavorable properties of the crop has been a growing trend in food and medical areas. This review intends to summarize the factors that influence changes in the key functional components of potatoes and to discuss the focus of referenced literature which may require further research efforts. Next, it summarizes the application of the latest commercial products and potential value of components existing in potato. In particular, there are several main tasks for future potato research: preparing starchy foods for special groups of people and developing fiber-rich products to supply dietary fiber intake, manufacturing bio-friendly and specific design films/coatings in the packaging industry, extracting bioactive proteins and potato protease inhibitors with high biological activity, and continuing to build and examine the health benefits of new commercial products based on potato protein. Notably, preservation methods play a key role in the phytochemical content left in foods, and potato performs superiorly to many common vegetables when meeting the demands of daily mineral intake and alleviating mineral deficiencies.
Collapse
Affiliation(s)
- Jian Xu
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Li
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lovedeep Kaur
- Riddet Institute, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Jaspreet Singh
- Riddet Institute, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Fankui Zeng
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Husain A, Chanana H, Khan SA, Dhanalekshmi UM, Ali M, Alghamdi AA, Ahmad A. Chemistry and Pharmacological Actions of Delphinidin, a Dietary Purple Pigment in Anthocyanidin and Anthocyanin Forms. Front Nutr 2022; 9:746881. [PMID: 35369062 PMCID: PMC8969030 DOI: 10.3389/fnut.2022.746881] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Anthocyanins are naturally occurring water-soluble flavonoids abundantly present in fruits and vegetables. They are polymethoxyderivatives of 2-phenyl-benzopyrylium or flavylium salts. Delphinidin (Dp) is a purple-colored plant pigment, which occurs in a variety of berries, eggplant, roselle, and wine. It is found in a variety of glycosidic forms ranging from glucoside to arabinoside. Dp is highly active in its aglycone form, but the presence of a sugar moiety is vital for its bioavailability. Several animal and human clinical studies have shown that it exerts beneficial effects on gut microbiota. Dp exhibits a variety of useful biological activities by distinct and complex mechanisms. This manuscript highlights the basic characteristics, chemistry, biosynthesis, stability profiling, chemical synthesis, physicochemical parameters along with various analytical methods developed for extraction, isolation and characterization, diverse biological activities and granted patents to this lead anthocyanin molecule, Dp. This review aims to open pathways for further exploration and research investigation on the true potential of the naturally occurring purple pigment (Dp) in its anthocyanidin and anthocyanin forms beyond nutrition.
Collapse
Affiliation(s)
- Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harshit Chanana
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - U M Dhanalekshmi
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Anwar A Alghamdi
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Higbee J, Solverson P, Zhu M, Carbonero F. The emerging role of dark berry polyphenols in human health and nutrition. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jerome Higbee
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Patrick Solverson
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Meijun Zhu
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Franck Carbonero
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| |
Collapse
|
8
|
Sun Q, Wang N, Xu W, Zhou H. Genus Ribes Linn. (Grossulariaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114166. [PMID: 33940086 DOI: 10.1016/j.jep.2021.114166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Ribes Linn., which belongs to the Grossulariaceae family, contains 160 species distributed mainly in temperate and cold regions of the Northern Hemisphere. There are 59 species in southwest, northwest and northeast China. Some species of Ribes have been used as traditional and local medicines for the treatment of glaucoma, cardiovascular disease, stomachache, hepatitis, hyperlipidemia, hypertension and other ailments. However, the data provided in recent years have not been collated and compared. AIM OF THE STUDY This review aims to summarize the current status of ethnopharmacological uses, phytochemistry, pharmacology, clinical applications, and pharmacokinetics of the genus Ribes to better understand the therapeutic potential of the genus Ribes in the future and hope to provide a relatively novel perspective for further clinical application on the genus. MATERIALS AND METHODS The literature on Ribes was collected through a series of scientific search engines including Elsevier, ACS, Springer, Web of Science, PubMed, Google Scholar, Baidu Scholar, Wiley, China National Knowledge Infrastructure (CNKI) and books. RESULTS Ribes species have been used for detoxification, glaucoma, cardiovascular disease, stomachache, hepatitis, hyperlipidemia, hypertension and other ailments. These plants mainly contain phenolic glycosides, flavonoids, proanthocyanidins, polysaccharides, etc. Most traditional uses are related to biological activity and have been confirmed by modern research. Pharmacological studies in vitro and in vivo revealed that the extracts and pure compounds possessed significant hypolipidemic, antioxidant, anti-inflammatory, antitumor, antibacterial, and antiviral activity, eyesight protection and other effects. CONCLUSIONS The traditional uses, phytochemistry, pharmacology, pharmacokinetics, and clinical applications described in this article explained that the Ribes species has numerous activities, and these findings will promote further action in the area of mechanism research. However, very few preclinical and clinical studies have focused on the toxicology and pharmacokinetics of crude extracts and pure compounds from the genus Ribes. Moreover, several clinical evidence to support the health benefits of Ribes plants. The development of new medicines based on Ribes species as ingredients may be restricted. The pharmacological activity, clinical efficacy and safety of Ribes species need to be verified by systematic and comprehensive preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Qing Sun
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhua Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Xining, Qinghai, 810008, China
| |
Collapse
|
9
|
Imangali N, Phan QT, Mahady G, Winkler C. The dietary anthocyanin delphinidin prevents bone resorption by inhibiting Rankl-induced differentiation of osteoclasts in a medaka (Oryzias latipes) model of osteoporosis. JOURNAL OF FISH BIOLOGY 2021; 98:1018-1030. [PMID: 32155282 DOI: 10.1111/jfb.14317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The anthocyanin delphinidin is a natural compound found as water-soluble pigment in coloured fruits and berries. Anthocyanin-rich diets have been proposed to have bone protective effects in humans and mice, but the underlying mechanisms remain unclear. In this study, we used a medaka (Oryzias latipes) osteoporosis model to test the effects of delphinidin on bone cells in vivo. In this model, inducible transgenic expression of receptor-activator of NF-kβ ligand (Rankl) leads to ectopic formation of osteoclasts and excessive bone resorption, similar to the situation in human osteoporosis patients. Using live imaging in medaka bone reporter lines, we show that delphinidin significantly reduces the number of osteoclasts after Rankl induction and protects bone integrity in a dose-dependent manner. Our in vivo findings suggest that delphinidin primarily affects the de novo differentiation of macrophages into osteoclasts rather than the recruitment of macrophages to sites of bone resorption. For already existing osteoclasts, delphinidin treatment affected their morphology, leading to fewer protrusions and a more spherical shape. Apoptosis rates were not increased by delphinidin, suggesting that osteoclast numbers were reduced primarily by impaired differentiation from macrophage progenitors and reduced maintenance of pre-existing osteoclasts. Importantly, and in contrast to previously reported cell culture experiments, no effect of delphinidin on osteoblast differentiation and distribution was observed in medaka in vivo. Our study is the first report on the effects of delphinidin on bone cells in fish embryos, which are a unique model system for compound testing that is suitable for live imaging of bone cell behaviour in vivo.
Collapse
Affiliation(s)
- Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Quang Tien Phan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Gail Mahady
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois, Chicago, Illinois, USA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Methylation of Cyanidin-3- O-Glucoside with Dimethyl Carbonate. Molecules 2021; 26:molecules26051342. [PMID: 33802304 PMCID: PMC7959148 DOI: 10.3390/molecules26051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/05/2022] Open
Abstract
The approach presented in this study is the first for the hemisynthesis of methylated anthocyanins. It was possible to obtain cyanidin-3-O-glucoside derivatives with different degrees of methylation. Cautious identification of 4′-, 5-, and 7-OH monomethylated derivatives was also accomplished. The methylation agent used was the “green chemical” dimethyl carbonate (DMC), which is characterized by low human and ecological toxicity. The influence of the temperature, reaction time, and amount of the required diazabicyclo[5.4.0]undec-7-en (DBU) catalyst on the formation of the products was examined. Compared to conventional synthesis methods for methylated flavonoids using DMC and DBU, the conditions identified in this study result in a reduction of reaction time, and an important side reaction, so-called carboxymethylation, was minimized by using higher amounts of catalyst.
Collapse
|
11
|
Chokeberry anthocyanins and their metabolites ability to cross the blood-cerebrospinal fluid barrier. Food Chem 2020; 346:128730. [PMID: 33293147 DOI: 10.1016/j.foodchem.2020.128730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study was to determine whether anthocyanins and their phase II metabolites permeate the blood-cerebrospinal fluid barrier (B-CSF-B) of sheep and to profile these compounds in sheep biofluids after chokeberry intraruminal administration. Anthocyanins were analyzed using micro-HPLC-MS/MS. After chokeberry administration, anthocyanins were absorbed and occurred in body fluids mainly in the form of methylated, glucuronidated, and sulfated derivatives (in total, 21 derivatives were identified). The study showed that anthocyanins penetrated the B-CSF-B and their change in profile and concentration in the cerebrospinal fluid (CSF) resulted from fluctuations in concentrations of these compounds in blood plasma, although the presence of various cyanidin derivatives in CSF also depended on their chemical structure. The biological fate of chokeberry anthocyanins, from absorption into blood to penetration into CSF, was tracked to facilitate the design of further experimental procedures to determine the biological properties of these compounds, including potentially neuroprotective activities.
Collapse
|
12
|
Su H, Xie L, Xu Y, Ke H, Bao T, Li Y, Chen W. Pelargonidin-3- O-glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13025-13037. [PMID: 31322351 DOI: 10.1021/acs.jafc.9b03338] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing evidence indicates that anthocyanins exert beneficial effects on type 2 diabetes (T2D), but the underlying mechanism remains unclear. Herein, the hyperglycemia-lowering effect of Pg3G derived from wild raspberry was investigated on high-glucose/high-fat (HG+HF)-induced hepatocytes and db/db diabetic mice. Our results indicated that Pg3G promoted glucose uptake in HG+HF-induced hepatocytes. Moreover, Pg3G induced autophagy, whereas autophagy inhibitors blocked the hypoglycemic effect of Pg3G. Transcriptional factor EB (TFEB) was found to be linked to Pg3G-induced autophagy. In vivo study showed that Pg3G treatment contributed to the improvement of glucose tolerance, insulin sensitivity, and induction of autophagy. Furthermore, Pg3G not only modified the gut microbiota composition, as indicated by an increased abundance of Prevotella, and elevated Bacteroidetes/Firmicutes ratio, but also strengthened the intestinal barrier integrity. This study unveils a novel mechanism that Pg3G attenuates hyperglycemia through inducing autophagy and modulating gut microbiota, which implicates a potential nutritional intervention strategy for T2D.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
13
|
Gonzali S, Perata P. Anthocyanins from Purple Tomatoes as Novel Antioxidants to Promote Human Health. Antioxidants (Basel) 2020; 9:E1017. [PMID: 33092051 PMCID: PMC7590037 DOI: 10.3390/antiox9101017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Anthocyanins are plant secondary metabolites belonging to the class of polyphenols, whose beneficial roles in the prevention and treatment of several important human diseases have been demonstrated in many epidemiological studies. Their intake through diet strictly depends on the eating habits, as anthocyanins are contained in red and purple fruit and vegetables as well as in some processed foods and beverages, such as red wine. Genetic engineering and breeding programs have been recently carried out to increase the content of anthocyanins in candidate plant species which cannot offer satisfactory levels of these precious compounds. Tomato (Solanum lycopersicum) is a vegetable commodity where these strategies have resulted in success, leading to the production of new anthocyanin-rich fruit varieties, some of which are already marketed. These varieties produce purple fruits with a high nutraceutical value, combining the health benefits of the anthocyanins to the other classical tomato phytochemicals, particularly carotenoids. The antioxidant capacity in tomato purple fruits is higher than in non-anthocyanin tomatoes and their healthy role has already been demonstrated in both in vitro and in vivo studies. Recent evidence has indicated a particular capacity of tomato fruit anthocyanins to act as scavengers of harmful reactive chemical species and inhibitors of proliferating cancer cells, as well as anti-inflammatory molecules.
Collapse
Affiliation(s)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| |
Collapse
|
14
|
Diaconeasa Z, Știrbu I, Xiao J, Leopold N, Ayvaz Z, Danciu C, Ayvaz H, Stǎnilǎ A, Nistor M, Socaciu C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020; 8:336. [PMID: 32916849 PMCID: PMC7555344 DOI: 10.3390/biomedicines8090336] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins' preventative and inhibitory effects, underlying molecular mechanisms, and such. However, there is no targeted review available regarding the anticarcinogenic effects of dietary anthocyanins on skin cancers. If diagnosed at the early stages, the survival rate of skin cancer is quite high. Nevertheless, the metastatic form has a short prognosis. In fact, the incidence of melanoma skin cancer, the type with high mortality, has increased exponentially over the last 30 years, causing the majority of skin cancer deaths. Malignant melanoma is considered a highly destructive type of skin cancer due to its particular capacity to grow and spread faster than any other type of cancers. Plants, in general, have been used in disease treatment for a long time, and medicinal plants are commonly a part of anticancer drugs on the market. Accordingly, this work primarily aims to emphasize the most recent improvements on the anticarcinogenic effects of anthocyanins from different plant sources, with an in-depth emphasis on melanoma skin cancer. We also briefly summarized the anthocyanin chemistry, their rich dietary sources in flowers, fruits, and vegetables, as well as their associated potential health benefits. Additionally, the importance of anthocyanins in topical applications such as their use in cosmetics is also given.
Collapse
Affiliation(s)
- Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ioana Știrbu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 999078, China;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Zayde Ayvaz
- Faculty of Marine Science and Technology, Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey;
| | - Corina Danciu
- Victor Babes University of Medicine and Pharmacy, Department of Pharmacognosy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Huseyin Ayvaz
- Department of Food Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey;
| | - Andreea Stǎnilǎ
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Mǎdǎlina Nistor
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
15
|
Van Noten N, Van Liefferinge E, Degroote J, De Smet S, Desmet T, Michiels J. Weaning affects the glycosidase activity towards phenolic glycosides in the gut of piglets. J Anim Physiol Anim Nutr (Berl) 2020; 104:1432-1443. [PMID: 32333473 DOI: 10.1111/jpn.13368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Phenolic compounds in pig diets, originating either from feed ingredients or additives, may occur as glycosides, that is conjugated to sugar moieties. Upon ingestion, their bioavailability and functionality depend on hydrolysis of the glycosidic bond by endogenous or microbial glycosidases. Hence, it is essential to map the glycosidase activities towards phenolic glycosides present along gut. Therefore, the activity of three key glycosidases, that is α-glucosidase (αGLU), β-glucosidase (βGLU) and β-galactosidase (βGAL), was quantified in small intestinal mucosa and digesta of piglets at different gastrointestinal sites (stomach, three parts of small intestine, caecum and colon) and at different ages around weaning (10 days before and 0, 2, 5, 14 and 28 days after weaning). Activity assays were performed with p-nitrophenyl glycosides at neutral pH. The αGLU activities in mucosa and digesta were low (overall means 1.4 and 60 U respectively) as compared to βGLU (15.2 and 199 U) and βGAL (23.4 and 298 U; p < .001). Moreover, αGLU activity in mucosa was unaffected by age. Conversely, βGLU and βGAL activities dropped significantly after weaning. Minimal levels, ranging between 18% and 54% of the pre-weaning values, were reached at 5 days post-weaning. Similarly, in small intestinal digesta, reductions from 60% up to 90% were observed for the three enzyme activities on day five post-weaning as compared to pre-weaning levels. In caecal contents, activities were lowest at 14 days post-weaning, while in stomach and colon no clear weaning-induced effects were observed. Our data suggest that weaning affects the glycosidase activity in mucosa (mainly endogenous origin) and digesta (primarily bacterial origin) with the most pronounced effects occurring 5 days post-weaning. Moreover, differences in activities exist between different glycosidases and between gut locations. These insights can facilitate the prediction of the fate of existing and newly synthetized glycosides after oral ingestion in piglets.
Collapse
Affiliation(s)
- Noémie Van Noten
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | | | - Jeroen Degroote
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Stefaan De Smet
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Tom Desmet
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Masoodi H, Villaño D, Zafrilla P. A comprehensive review on fruit Aristotelia chilensis (Maqui) for modern health: towards a better understanding. Food Funct 2019; 10:3057-3067. [PMID: 31066379 DOI: 10.1039/c8fo02429d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human and animal intervention studies have provided enough evidence for the protective effects of different foods rich in polyphenols against non-communicable diseases, including cardiovascular disease, cancer and diabetes. Though over the last decade South American berries, rich sources of polyphenols, especially maqui, have become the subject of research interest due to their remarkable potential health benefits, yet so far very limited studies have been conducted on the effect of maqui berry on non-communicable diseases, and information about its domestication is also still deficient. This comprehensive review focuses on the health potential of maqui, especially on its effect on non-communicable diseases. It is anticipated that this article will extend our understanding of the maqui-health benefit relationship. More detailed and long term in vivo intervention and in vitro studies are needed to fully understand how maqui interacts with human physiological and pathological processes, considering the rapid increase in the prevalence of non-communicable diseases.
Collapse
Affiliation(s)
- H Masoodi
- Universidad Católica San Antonio de Murcia, Programa de Doctorado en Ciencias de la Salud, Campus Los Jerónimos s/n, Guadalupe (Murcia) 30107, Spain.
| | | | | |
Collapse
|
17
|
Evaluation of the availability of delphinidin and cyanidin-3-O-sambubioside from Hibiscus sabdariffa and 6-gingerol from Zingiber officinale in colon using liquid chromatography and mass spectrometry detection. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03358-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Gardeli C, Varela K, Krokida E, Mallouchos A. Investigation of Anthocyanins Stability from Pomegranate Juice ( Punica Granatum L. Cv Ermioni) under a Simulated Digestion Process. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E90. [PMID: 31434230 PMCID: PMC6789892 DOI: 10.3390/medicines6030090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
Abstract
Background: Pomegranate gained a widespread popularity as a functional food due to the high content of bioactive components of the whole fruit, as well as its juice and extracts. There is a large amount of research that assigns them very important functions for the human organism. Methods: The anthocyanins (ACNs) of pomegranate juice (PJ) from the Ermioni variety are quantitatively identified and their stability under a simulated digestion process (SDP) is investigated. ACNs, as well as phenolic compounds, were isolated through solid phase extraction and determined using high-performance liquid chromatography in every stage of the SDP. Total phenolics, total monomeric ACNs, polymeric color and antioxidant activity were also determined in pomegranate juice and during the digestion process. Results: The predominant anthocyanin was Cy-3-glucoside followed by the corresponding 3,5-diglucoside, which accounted for 40.8% and 27.4% of the total ACN content, respectively. About 65% of the total monomeric ACN content remained intact by the end of the simulated digestion process. Conclusions: The PJ of the Ermioni variety seems to retain a large amount of the bioactive compounds after the SDP. The antioxidant activity and total phenolic content (TPC) remain almost stable during the SDP, suggesting that the products formed during ACN degradation maintain the antioxidant activity of the parent molecule.
Collapse
Affiliation(s)
- Chrysavgi Gardeli
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Kalliopi Varela
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni Krokida
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
19
|
Fang J, Huang J. Accumulation of plasma levels of anthocyanins following multiple saskatoon berry supplements. Xenobiotica 2019; 50:454-457. [PMID: 31269857 DOI: 10.1080/00498254.2019.1637967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Anthocyanins are a subgroup of flavonoids responsible for the blue, purple and red color of many fruits, flowers and leaves. Consumption of foods rich in anthocyanins is associated with a reduced risk of cardiovascular disease and cancer. Most food intervention studies employ once or twice per day dose schedules. 2. The current study demonstrated that plasma concentrations of cyanidin-3-galactoside and cyanidin-3-xyloside, the two major components of saskatoon berries, were significantly increased following three consecutive saskatoon berry supplements 4 hours apart. This accumulation is due to the residual concentrations of anthocyanins at the time of second and third supplements. 3. Accumulation was especially pronounced for peonidin-3-glucoside and peonidin-3-galactoside, the methylated metabolites of cyanidin-3-glucoside and cyanidin-3-galactoside, respectively. Little or no accumulation was observed for cyanidin-3-arabinoside and cyanidin-3-glucoside, two other components of saskatoon berries, possibly due to their short half-lives. 4. Thus, taking anthocyanin supplements with every meal would provide higher plasma concentrations for some anthocyanins and their metabolites than the once or twice-a-day dose regimens.
Collapse
Affiliation(s)
- Jim Fang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Jiannan Huang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
20
|
Schmitt S, Tratzka S, Schieber A, Passon M. Hemisynthesis of Anthocyanin Phase II Metabolites by Porcine Liver Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6177-6189. [PMID: 31083903 DOI: 10.1021/acs.jafc.9b01315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this work was to obtain phase II metabolites of cyanidin-3- O-glucoside and its aglycone using porcine liver enzymes. For this purpose, anthocyanins extracted from blackberry concentrate and containing mostly cyanidin-3- O-glucoside were incubated with the S9, microsomal, and cytosolic fractions of porcine liver. The reactions were targeted to the direction of the respective phase II transformation by the addition of activated cofactors. LC-MS n and LC-IMS-QTOF-MS analyses showed that one methylated, three glucuronidated and three sulfated metabolites of cyanidin-3- O-glucoside were generated. The aglycone, cyanidin, was sulfated and glucuronidated by the liver enzymes. In addition, both were glucuronidated and methylated simultaneously. The detected compounds and the generated data like exact masses, mass spectra, and CCS values may serve as a basis in the search for metabolites formed in vivo. As their effects are largely unexplored, the described synthesis may contribute to a better understanding of the metabolism of anthocyanins.
Collapse
Affiliation(s)
- Sarah Schmitt
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Sebastian Tratzka
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Andreas Schieber
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Maike Passon
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| |
Collapse
|
21
|
Pan F, Liu Y, Liu J, Wang E. Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer HeLa cells. RSC Adv 2019; 9:10842-10853. [PMID: 35515294 PMCID: PMC9062492 DOI: 10.1039/c9ra01772k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
Anthocyan-rich foods have attracted lots of attention because of their potential biological and pharmacological applications. Anthocyanins richly exist in blueberry fruits and have been proved to possess various bioactive properties. Despite the potential application of anthocyanins in the food, pharmaceutical and cosmetic industries, their use is limited because of their relative instability. Recently, much attention has been given to a particular family of anthocyanin derivatives, the pyranoanthocyanins that have been indicated to have higher stability than the original anthocyanins. However, the anti-cancer activity of pyranoanthocyanins is largely unknown. The objective of this study was to conduct a comparative analysis on the stability and anti-cancer activities of anthocyanins, anthocyanidins and pyranoanthocyanidins. Pyranoanthocyanidins exhibited the highest stability in the pH range 3.0-9.0, while anthocyanidins had the strongest inhibition on HeLa cells among the three anthocyan pigments. All the anthocyan pigments could effectively induce cell cycle arrest at the G2/M phase in conjunction with a marked increase in the expression of the p53 protein. Exposure of HeLa cells to three anthocyan pigments caused pronounced late apoptosis that might be involved in the activation of the p38 MAPK/p53 signaling pathway. These findings suggest that anthocyanidins and pyranoanthocyanidins might be more promising anti-cancer agents than anthocyanins and warrant further evaluation regarding the molecular mechanisms.
Collapse
Affiliation(s)
- Fengguang Pan
- Lab of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University Changchun 130062 Jilin China
| | - Yanjun Liu
- Lab of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University Changchun 130062 Jilin China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University Changchun 130062 Jilin China
| | - Erlei Wang
- Lab of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University Changchun 130062 Jilin China
| |
Collapse
|
22
|
Aglycone structures and glycosylations affect anthocyanin transport and uptake in human gastric epithelial (NCI-N87) cells. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9260701. [PMID: 29081896 PMCID: PMC5610832 DOI: 10.1155/2017/9260701] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/22/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations.
Collapse
|
24
|
Lee HJ, Jeong HY, Jin MR, Lee HJ, Cho JY, Moon JH. Metabolism and antioxidant effect of malaxinic acid and its corresponding aglycone in rat blood plasma. Free Radic Biol Med 2017; 110:399-407. [PMID: 28669626 DOI: 10.1016/j.freeradbiomed.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/01/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Malaxinic acid (MA) is a phenolic acid compound, found mainly in pear fruits (Pyrus pyrifolia N.), that is isoprenylated on the C-3 position of benzoic acid. Recently, the effects of prenylated phenolics on health have received much interest owing to their reported potent beneficial biological effects. We conducted a comparative study in rats to determine the metabolism, pharmacokinetics, and antioxidative activities of MA and its corresponding aglycone (MAA). MA and MAA were orally administered to rats (Sprague-Dawley, male, 6 weeks old) and their metabolites in plasma were analyzed. In addition, the MA metabolites in plasma were separated and the structures were confirmed via NMR and HR-MS analyses. The antioxidative activities of MA and MAA were evaluated by measuring their inhibitory effects on the 2,2'-azobis(2-amidinopropane)dihydrochloride- or copper ion-induced lipid peroxidation of rat plasma. MA was not absorbed in the intact form (the glucoside); both MA and MAA were absorbed as MAA and its metabolite form (glucuronide or sulfate). Moreover, the observed metabolite was the glucuronate of MAA rather than the glucuronide or sulfate. Concentrations of the free form of aglycone (MA administration, 4.6 ± 2.2μM; MAA administration, 7.2 ± 2.3μM) and total MAA (MA administration, 19.6 ± 4.4μM; MAA administration, 21.7 ± 3.3μM) in plasma reached a maximum at 15min after the oral administration of MA and MAA, respectively. The relative inhibitory effects on the formation of cholesteryl ester hydroperoxides in plasma collected at 15min after the oral administration of MA, MAA, and p-hydroxybenzoic acid (p-HBA) were as follows: MAA > MA ≥ p-HBA > control. Although the majority of MA and MAA is metabolized to conjugates, the compounds may contribute to the antioxidant defenses in the blood circulation owing to the presence of a phenolic hydroxyl group in the free form.
Collapse
Affiliation(s)
- Hyun Joo Lee
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Hang Yeon Jeong
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Mi Rim Jin
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Hyoung Jae Lee
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science and Technology, BK21 Plus Program, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea.
| |
Collapse
|
25
|
Mulberry anthocyanins, cyanidin 3-glucoside and cyanidin 3-rutinoside, increase the quantity of mitochondria during brown adipogenesis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant'Ana HM. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr 2017; 57:372-390. [PMID: 25875451 DOI: 10.1080/10408398.2014.887057] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sorghum is the fifth most produced cereal in the world and is a source of nutrients and bioactive compounds for the human diet. We summarize the recent findings concerning the nutrients and bioactive compounds of sorghum and its potential impact on human health, analyzing the limitations and positive points of the studies and proposing directions for future research. Sorghum is basically composed of starch, which is more slowly digested than that of other cereals, has low digestibility proteins and unsaturated lipids, and is a source of some minerals and vitamins. Furthermore, most sorghum varieties are rich in phenolic compounds, especially 3-deoxyanthocyanidins and tannins. The results obtained in vitro and in animals have shown that phenolics compounds and fat soluble compounds (polycosanols) isolated from sorghum benefit the gut microbiota and parameters related to obesity, oxidative stress, inflammation, diabetes, dyslipidemia, cancer, and hypertension. The effects of whole sorghum and its fractions on human health need to be evaluated. In conclusion, sorghum is a source of nutrients and bioactive compounds, especially 3-deoxyanthocyanidins, tannins, and polycosanols, which beneficially modulate, in vitro and in animals, parameters related to noncommunicable diseases. Studies should be conducted to evaluate the effects of different processing on protein and starch digestibility of sorghum as well as on the profile and bioavailability of its bioactive compounds, especially 3-deoxyanthocyanidins and tannins. Furthermore, the benefits resulting from the interaction of bioactive compounds in sorghum and human microbiota should be studied.
Collapse
Affiliation(s)
| | - Soraia Silva Pinheiro
- b Laboratory of Vitamins Analysis, Department of Nutrition and Health , Federal University of Viçosa , Minas Gerais , Brazil
| | - Hércia Stampini Duarte Martino
- c Laboratory of Experimental Nutrition, Department of Nutrition and Health , Federal University of Viçosa , Viçosa, Minas Gerais , Brazil
| | - Helena Maria Pinheiro-Sant'Ana
- b Laboratory of Vitamins Analysis, Department of Nutrition and Health , Federal University of Viçosa , Minas Gerais , Brazil
| |
Collapse
|
27
|
Marques Peixoto F, Fernandes I, Gouvêa ACM, Santiago MC, Galhardo Borguini R, Mateus N, Freitas V, Godoy RL, Ferreira IM. Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Michalska A, Wojdyło A, Bogucka B. The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Fornasaro S, Ziberna L, Gasperotti M, Tramer F, Vrhovšek U, Mattivi F, Passamonti S. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study. Sci Rep 2016; 6:22815. [PMID: 26965389 PMCID: PMC4786809 DOI: 10.1038/srep22815] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/22/2016] [Indexed: 01/25/2023] Open
Abstract
Anthocyanins exert neuroprotection in various in vitro and in vivo experimental models. However, no details regarding their brain-related pharmacokinetics are so far available to support claims about their direct neuronal bioactivity as well as to design proper formulations of anthocyanin-based products. To gather this missing piece of knowledge, we intravenously administered a bolus of 668 nmol cyanidin 3-glucoside (C3G) in anaesthetized Wistar rats and shortly after (15 s to 20 min) we collected blood, brain, liver, kidneys and urine samples. Extracts thereof were analysed for C3G and its expected metabolites using UPLC/MS-MS. The data enabled to calculate a set of pharmacokinetics parameters. The main finding was the distinctive, rapid distribution of C3G in the brain, with an apparently constant plasma/brain ratio in the physiologically relevant plasma concentration range (19-355 nM). This is the first report that accurately determines the distribution pattern of C3G in the brain, paving the way to the rational design of future tests of neuroprotection by C3G in animal models and humans.
Collapse
Affiliation(s)
- Stefano Fornasaro
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Lovro Ziberna
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mattia Gasperotti
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Federica Tramer
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Urška Vrhovšek
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Fulvio Mattivi
- Fondazione Edmund Mach (FEM), Department of Food Quality and Nutrition, Research and Innovation Centre, via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Sabina Passamonti
- University of Trieste, Department of Life Sciences, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
30
|
Vrzal R. Anthocyanidins but not anthocyanins inhibit P-glycoprotein-mediated calcein extrusion - possible implication for orally administered drugs. Fundam Clin Pharmacol 2016; 30:248-52. [DOI: 10.1111/fcp.12183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/29/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics; Faculty of Science; Palacky University; Slechtitelu 27 783 71 Olomouc Czech Republic
| |
Collapse
|
31
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-López A, Quiles JL, Mezzetti B, Battino M. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 2016; 21:169. [PMID: 26840292 PMCID: PMC6273426 DOI: 10.3390/molecules21020169] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological studies indicate that diets rich in fruit, such as berries, provide significant health benefits against several types of cancer, including colon cancer. The anticancer activities of berries are attributed to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and in vivo studies have demonstrated that berries and their bioactive components exert therapeutic and preventive effects against colon cancer by the suppression of inflammation, oxidative stress, proliferation and angiogenesis, through the modulation of multiple signaling pathways such as NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK. Based on the exciting outcomes of preclinical studies, a few berries have advanced to the clinical phase. A limited number of human studies have shown that consumption of berries can prevent colorectal cancer, especially in patients at high risk (familial adenopolyposis or aberrant crypt foci, and inflammatory bowel diseases). In this review, we aim to highlight the findings of berries and their bioactive compounds in colon cancer from in vitro and in vivo studies, both on animals and humans. Thus, this review could be a useful step towards the next phase of berry research in colon cancer.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Ranieri 65, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| |
Collapse
|
32
|
Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food – a review. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.07.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
|
34
|
Fang J. Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: extensive presystemic metabolism reduces apparent bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3904-3911. [PMID: 24650097 DOI: 10.1021/jf405356b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite the accumulating evidence supporting the health effects of anthocyanins, their plasma concentrations were found to be very low. However, 30 and 56% of cyanidin 3-glucoside (Cy-3-glc) and pelargonidin 3-glucoside (Pg-3-glc) were found as protocatechuic acid (PCA) and 4-hydroxybenzoic acid, respectively, in plasma following oral administration in humans. Second, 12.4% of (13)C was recovered from urine and breath following oral ingestion of [(13)C]-Cy-3-glc in humans. The actual percentage of [(13)C]-Cy-3-glc absorbed across the gastrointestinal wall could be higher because of the involvement of enterohepatic recycling in the disposition of anthocyanins. In animal studies, high total urinary recoveries were found following oral ingestion of (14)C-labeled anthocyanins. Third, anthocyanins seem to be efficiently absorbed following in situ gastric and intestinal perfusions in rats. Therefore, some anthocyanins could be efficiently absorbed from the gastrointestinal lumen, undergo extensive first-pass metabolism, and enter the systemic circulation as metabolites.
Collapse
Affiliation(s)
- Jim Fang
- College of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
35
|
Liu Y, Zhang D, Wu Y, Wang D, Wei Y, Wu J, Ji B. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. Int J Food Sci Nutr 2014; 65:440-8. [DOI: 10.3109/09637486.2013.869798] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Kamiloglu S, Capanoglu E. In vitrogastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12396] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Senem Kamiloglu
- Department of Food Engineering; Faculty of Chemical and Metallurgical Engineering; Istanbul Technical University; 34469 Maslak Istanbul Turkey
| | - Esra Capanoglu
- Department of Food Engineering; Faculty of Chemical and Metallurgical Engineering; Istanbul Technical University; 34469 Maslak Istanbul Turkey
| |
Collapse
|
37
|
Pojer E, Mattivi F, Johnson D, Stockley CS. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Compr Rev Food Sci Food Saf 2013; 12:483-508. [DOI: 10.1111/1541-4337.12024] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/13/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Elisa Pojer
- Dept. of Food Quality and Nutrition; Research and Innovation Centre, Fondazione Edmund Mach; Via E. Mach 1; 38010 San Michele all'Adige; Italy
| | - Fulvio Mattivi
- Dept. of Food Quality and Nutrition; Research and Innovation Centre, Fondazione Edmund Mach; Via E. Mach 1; 38010 San Michele all'Adige; Italy
| | - Dan Johnson
- The Australian Wine Research Inst.; P. O. Box 197; Glen Osmond; SA 5064; Australia
| | - Creina S. Stockley
- The Australian Wine Research Inst.; P. O. Box 197; Glen Osmond; SA 5064; Australia
| |
Collapse
|
38
|
Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18:1818-92. [PMID: 22794138 PMCID: PMC3619154 DOI: 10.1089/ars.2012.4581] [Citation(s) in RCA: 1662] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist in planta, at concentrations in the low-μM-to-mM range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds nM concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes.
Collapse
Affiliation(s)
- Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Lee MJ, Park JS, Choi DS, Jung MY. Characterization and quantitation of anthocyanins in purple-fleshed sweet potatoes cultivated in Korea by HPLC-DAD and HPLC-ESI-QTOF-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3148-3158. [PMID: 23464823 DOI: 10.1021/jf3055455] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The characterization and quantitative analysis of anthocyanins in four purple-fleshed sweet potato varieties (Borami, Mokpo 62, Shinzami, and Zami) cultivated in Korea were carried out by HPLC/diode array detector (DAD), HPLC-TOF/MS, and HPLC-MS/MS analyses. For the identification of anthocyanins, molecular formulas were first calculated by using the exact mass data of the molecular ions ([M](+)). The patterns of isotope ions of M(+) were also monitored to confirm the assignment of the molecular formulas. HPLC-MS(2) analysis was further conducted for elucidating their molecular structures. Twenty-seven different anthocyanins were tentatively identified in the sweet potatoes. Six of them are the first reported in sweet potatoes roots. The quantity and profiles of anthocyanins in sweet potatoes varied greatly with variety. Borami was found, for the first time, to be a rare sweet potato variety with an exceptionally high quantity of pelargonidin-based anthocyanins.
Collapse
Affiliation(s)
- Mi Jin Lee
- College of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 565-701, Republic of Korea
| | | | | | | |
Collapse
|
41
|
Yamaura K, Ishiwatari M, Yamamoto M, Shimada M, Bi Y, Ueno K. Anthocyanins, but not Anthocyanidins, from Bilberry (Vaccinium myrtillusL.) Alleviate Pruritus via Inhibition of Mast Cell Degranulation. J Food Sci 2012; 77:H262-7. [DOI: 10.1111/j.1750-3841.2012.02974.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Denev PN, Kratchanov CG, Ciz M, Lojek A, Kratchanova MG. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: in vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2012.00198.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Howard LR, Prior RL, Liyanage R, Lay JO. Processing and storage effect on berry polyphenols: challenges and implications for bioactive properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6678-6693. [PMID: 22243517 DOI: 10.1021/jf2046575] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Anthocyanins and tannins in blueberries, blackberries and black raspberries are susceptible to degradation during processing, with juices showing the greatest losses due to physical removal of skins and seeds. Anthocyanins and procyanidins are also degraded in processed products stored at ambient temperature with losses accompanied by increased polymeric pigments (PPs). Using chokeberry as a model, formation of PPs occurred in both pasteurized and aged juices and pasteurized juice contained a greater proportion of low molecular weight PPs than aged juice, while aged juice contained a greater proportion of higher molecular PPs. Formation of PP accounts for some of the losses of anthocyanins and procyanidins during processing and storage, but the complete fate of anthocyanins remains unclear. In this review we highlight the steps in processing where significant losses of polyphenols occur, and discuss potential mechanisms responsible for losses, methods to mitigate losses, and implications on bioactive properties.
Collapse
Affiliation(s)
- Luke R Howard
- Department of Food Science, University of Arkansas , 2650 North Young Avenue, Fayetteville, Arkansas 72704, United States
| | | | | | | |
Collapse
|
44
|
Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5693-708. [PMID: 22300613 PMCID: PMC3383353 DOI: 10.1021/jf204084f] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known to influence cell proliferation and evasion of cell-death. Two receptor pathways, estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family, are drivers of cell proliferation and play a significant role in the development of both primary and recurrent breast cancer. There is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol, and pterostilbene interact with and alter the effects of these pathways. Furthermore, they also induce cell death (apoptosis and autophagy) via their influence on kinase signaling. This review summarizes in vitro data regarding the interaction of berry polyphenols with the specific receptors and the mechanisms by which they induce cell death. This paper also presents in vivo data of primary breast cancer prevention by individual compounds and whole berries. Finally, a possible role for berries and berry compounds in the prevention of breast cancer and a perspective on the areas that require further research are presented.
Collapse
Affiliation(s)
- Harini S Aiyer
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
- Corresponding author: Harini S. Aiyer, PhD (Tel: 202-687-4060; Fax: 202-687-7505; )
| | - Anni M Warri
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Denzel R Woode
- Columbia University, 5992 Lerner Hall, New York, NY 10027
| | - Leena Hilakivi-Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Robert Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| |
Collapse
|
45
|
Lila MA, Ribnicky DM, Rojo LE, Rojas-Silva P, Oren A, Havenaar R, Janle EM, Raskin I, Yousef GG, Grace MH. Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenolics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5763-5771. [PMID: 22111523 PMCID: PMC3310271 DOI: 10.1021/jf203526h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two different strategies for investigating the likely fate, after ingestion, of natural, bioactive berry constituents (anthocyanins and other non-nutritive flavonoids) are compared. A model of the human gastrointestinal tract (TIM-1) that mimicked the biological environment from the point of swallowing and ingestion through the duodenum, jejunum, and ileum (but not the colon) was used to monitor the stability and bioaccessibility of anthocyanins from both maqui berry and wild blueberry. TIM-1 revealed that most anthocyanins were bioaccessible between the second and third hours after intake. Alternatively, biolabeled anthocyanins and other flavonoids generated in vitro from berry and grape cell cultures were administered to in vivo (rodent) models, allowing measurement and tracking of the absorption and transport of berry constituents and clearance through the urinary tract and colon. The advantages and limitations of the alternative strategies are considered.
Collapse
Affiliation(s)
- Mary Ann Lila
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University , 600 Laureate Way, Kannapolis, North Carolina 28081, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M. The strawberry: composition, nutritional quality, and impact on human health. Nutrition 2012; 28:9-19. [PMID: 22153122 DOI: 10.1016/j.nut.2011.08.009] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 07/28/2011] [Accepted: 08/19/2011] [Indexed: 12/27/2022]
Abstract
Strawberries are a common and important fruit in the Mediterranean diet because of their high content of essential nutrients and beneficial phytochemicals, which seem to have relevant biological activity in human health. Among these phytochemicals, anthocyanin and ellagitannins are the major antioxidant compounds. Although individual phytochemical constituents of strawberries have been studied for their biological activities, human intervention studies using whole fruits are still lacking. Here, the nutritional contribution and phytochemical composition of the strawberry are reviewed, as is the role played by the maturity, genotype, and storage effects on this fruit. Specific attention is focused on fruit absorption, metabolism, and the possible beneficial biological activity on human health.
Collapse
Affiliation(s)
- Francesca Giampieri
- Department of Biochemistry, Biology & Genetics, Medical School, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Kelsey N, Hulick W, Winter A, Ross E, Linseman D. Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress. Nutr Neurosci 2012; 14:249-59. [PMID: 22053756 DOI: 10.1179/1476830511y.0000000020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Mitochondrial oxidative stress (MOS) is a major factor in the underlying pathology of many neurodegenerative diseases. Here, we investigated the neuroprotective effects of a unique class of nutraceutical antioxidants, anthocyanins, against MOS-induced death of cultured cerebellar granule neurons (CGNs). Callistephin and kuromanin are anthocyanins derived from strawberries and black rice, respectively, whose neuroprotective properties have yet to be examined in detail. METHODS Glutathione (GSH)-sensitive MOS and intrinsic apoptosis were induced in CGNs by incubation with the Bcl-2 inhibitor, HA14-1. The effects of anthocyanin co-incubation on CGN survival were assessed. RESULTS The anthocyanins demonstrated significant protection from MOS-induced apoptosis which was equivalent to that provided by the green tea polyphenol, epigallocatechin 3-gallate; however, neither anthocyanin was as effective as GSH at rescuing CGNs. Inhibition of Bcl-2 caused a significant reduction of mitochondrial GSH which was prevented by the anthocyanins. Furthermore, the anthocyanins inhibited iron-induced lipid peroxidation in rat brain homogenates and prevented cardiolipin oxidation induced by MOS in CGNs. MOS-induced mitochondrial fragmentation and proteolytic cleavage of the optic atrophy 1 (OPA1) fusion GTPase were also attenuated by the anthocyanins. Finally, the anthocyanins significantly enhanced GSH peroxidase activity in a cell-free assay. DISCUSSION These data show that anthocyanins suppress MOS-induced apoptosis by preserving mitochondrial GSH and inhibiting cardiolipin oxidation and mitochondrial fragmentation. These nutraceutical antioxidants warrant further study as potential therapeutic agents for neurodegenerative diseases caused by MOS.
Collapse
Affiliation(s)
- Natalie Kelsey
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
The kinetics of anthocyanin metabolism was investigated in a human feeding trial. Volunteers (n 12) consumed purple carrots containing five anthocyanin forms: cyanidin-3-(xylose-glucose-galactoside), cyanidin-3-(xylose-galactoside), cyanidin-3-(xylose-sinapoyl-glucose-galactoside), cyanidin-3-(xylose-feruloyl-glucose-galactoside) and cyanidin-3-(xylose-coumuroyl-glucose-galactoside). The purple carrots were served as three different treatments in a crossover design with a 3-week washout between treatments. Purple carrot treatments were 250 g raw carrots, 250 g cooked carrots and 500 g cooked carrots. Serial blood and urine samples were collected for 8 and 24 h after the dose, respectively, and analysed for anthocyanins. Of the anthocyanin forms ingested, four were detected in plasma and urine: cyanidin-3-(xylose-glucose-galactoside), cyanidin-3-(xylose-galactoside), cyanidin-3-(xylose-sinapoyl-glucose-galactoside) and cyanidin-3-(xylose-feruloyl-glucose-galactoside). The time courses of plasma and urine anthocyanin contents were evaluated with compartmental modelling. Results showed that absorption, gastrointestinal transit and plasma elimination are dependent on anthocyanin structure. Absorption efficiencies of acylated compounds (cyanidin-3-(xylose-sinapoyl-glucose-galactoside) and cyanidin-3-(xylose-feruloyl-glucose-galactoside)) were less than those for non-acylated anthocyanins (cyanidin-3-(xylose-glucose-galactoside) and cyanidin-3-(xylose-galactoside)). The acylated anthocyanins exhibited a shorter half-life for gastrointestinal absorption than the non-acylated anthocyanins. Fractional elimination of non-acylated compounds was slower than that for acylated anthocyanins. These results provide the first information about the kinetics of individual anthocyanins in human beings.
Collapse
Affiliation(s)
- Janet A Novotny
- U. S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|