1
|
Machover D, Almohamad W, Castagné V, Desterke C, Gomez L, Goldschmidt E. Treatment of patients with carcinomas in advanced stages with 5-fluorouracil, folinic acid and pyridoxine in tandem. Sci Rep 2024; 14:12054. [PMID: 38802419 PMCID: PMC11130240 DOI: 10.1038/s41598-024-62860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
The effect of high-dose pyridoxine (PN) on activity of 5-fluorouracil (FUra) and folinic acid (FA)-containing regimens was studied in 50 patients including 14 with digestive tract, and 36 with breast carcinomas (BC) in advanced stages with poor prognostic characteristics. Patients with colorectal, and pancreas adenocarcinoma received oxaliplatin, irinotecan, FUra, FA (Folfirinox), and patients with squamous cell carcinoma of the esophagus had paclitaxel, carboplatin, FUra, FA (TCbF). Patients with BC received AVCF (doxorubicin, vinorelbine, cyclophosphamide, FUra, FA) followed by TCbF or TCbF only, and patients who overexpressed HER2 received TCbF plus trastuzumab and pertuzumab. PN (1000-3000 mg/day iv) preceded each administration of FUra and FA. 47 patients (94%) responded, including 16 (32%) with CR. Median tumor reduction was 93%. Median event-free survival (EFS) was 37.7 months. The 25 patients with tumor shrinkage ≥ 91% had EFS of 52% from 42 months onwards. Unexpected toxicity did not occur. PN enhances potency of chemotherapy regimens comprising FUra and FA.
Collapse
Affiliation(s)
- David Machover
- INSERM U935-UA09, University Paris-Saclay, Paul-Brousse Hospital, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France.
| | - Wathek Almohamad
- Department of Medical Oncology, University Paris-Saclay, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris (APHP), 94800, Villejuif, France
| | - Vincent Castagné
- Department of Pharmacy, University Paris-Saclay, Paul-Brousse Hospital, APHP, 94800, Villejuif, France
| | - Christophe Desterke
- INSERM U935-UA09, University Paris-Saclay, Paul-Brousse Hospital, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France
| | - Léa Gomez
- Department of Biophysics and Nuclear Medicine, University Paris-Saclay, Kremlin-Bicêtre Hospital, APHP, 94270, Le Kremlin-Bicêtre, France
| | - Emma Goldschmidt
- Department of Medical Oncology, University Paris-Saclay, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris (APHP), 94800, Villejuif, France
| |
Collapse
|
2
|
Roman JV, Mascarenhas R, Ceric K, Ballou DP, Banerjee R. Disease-causing cystathionine β-synthase linker mutations impair allosteric regulation. J Biol Chem 2023; 299:105449. [PMID: 37949228 PMCID: PMC10746528 DOI: 10.1016/j.jbc.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cystathionine β-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates H2S, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (∼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.
Collapse
Affiliation(s)
- Joseph V Roman
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Karanfil Ceric
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - David P Ballou
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| |
Collapse
|
3
|
Luo Y, Liu D, Wang Y, Zhang F, Xu Y, Pu Q, Zhao L, Wei T, Fan T, Lou Y, Liu S. Combined analysis of the proteome and metabolome provides insight into microRNA-1174 function in Aedes aegypti mosquitoes. Parasit Vectors 2023; 16:271. [PMID: 37559132 PMCID: PMC10413549 DOI: 10.1186/s13071-023-05859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Pathogenic viruses can be transmitted by female Aedes aegypti (Ae. aegypti) mosquitoes during blood-meal acquisition from vertebrates. Silencing of mosquito- and midgut-specific microRNA (miRNA) 1174 (miR-1174) impairs blood intake and increases mortality. Determining the identity of the proteins and metabolites that respond to miR-1174 depletion will increase our understanding of the molecular mechanisms of this miRNA in controlling blood-feeding and nutrient metabolism of mosquitoes. METHODS Antisense oligonucleotides (antagomirs [Ant]) Ant-1174 and Ant-Ct were injected into female Ae. aegypti mosquitoes at 12-20 h posteclosion, and depletion of miR-1174 was confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Ant-1174-injected and control mosquitoes were collected before the blood meal at 72 h post-injection for tandem mass tag-based proteomic analysis and liquid chromatography-tandom mass spectrometry non-target metabolomic analysis to identify differentially expressed proteins and metabolites, respectively. RNA interference (RNAi) using double-stranded RNA (dsRNA) injection was applied to investigate the biological roles of these differentially expressed genes. The RNAi effect was verified by RT-qPCR and western blotting assays. Triglyceride content and ATP levels were measured using the appropriate assay kits, following the manufacturers' instructions. Statistical analyses were conducted with GraphPad7 software using the Student's t-test. RESULTS Upon depletion of mosquito- and midgut-specific miR-1174, a total of 383 differentially expressed proteins (DEPs) were identified, among which 258 were upregulated and 125 were downregulated. Functional analysis of these DEPs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggested that miR-1174 plays important regulatory roles in amino acid metabolism, nucleotide metabolism, fatty acid metabolism and sugar metabolism pathways. A total of 292 differential metabolites were identified, of which 141 were upregulated and 151 were downregulated. Integrative analysis showed that the associated differential proteins and metabolites were mainly enriched in a variety of metabolic pathways, including glycolysis, citrate cycle, oxidative phosphorylation and amino acid metabolism. Specifically, the gene of one upregulated protein in miR-1174-depleted mosquitoes, purine nucleoside phosphorylase (PNP; AAEL002269), was associated with the purine, pyrimidine and niacin-nicotinamide metabolism pathways. PNP knockdown seriously inhibited blood digestion and ovary development and increased adult mortality. Mechanically, PNP depletion led to a significant downregulation of the vitellogenin gene (Vg); in addition, some important genes in the ecdysone signaling and insulin-like peptide signaling pathways related to ovary development were affected. CONCLUSIONS This study demonstrates differential accumulation of proteins and metabolites in miR-1174-depleted Ae. aegypti mosquitoes using proteomic and metabolomic techniques. The results provide functional evidence for the role of the upregulated gene PNP in gut physiological activities. Our findings highlight key molecular changes in miR-1174-depleted Ae. aegypti mosquitoes and thus provide a basis and novel insights for increased understanding of the molecular mechanism involved in a lineage-specific miRNA in mosquito vectors.
Collapse
Affiliation(s)
- Yangrui Luo
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Dun Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuanmei Wang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Fan Zhang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Yuqi Lou
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
4
|
Machover D, Goldschmidt E, Almohamad W, Castagné V, Dairou J, Desterke C, Gomez L, Gaston-Mathé Y, Boucheix C. Pharmacologic modulation of 5-fluorouracil by folinic acid and pyridoxine for treatment of patients with advanced breast carcinoma. Sci Rep 2022; 12:9079. [PMID: 35641554 PMCID: PMC9156777 DOI: 10.1038/s41598-022-12998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
High concentration pyridoxal 5’-phosphate, the cofactor of vitamin B6, potentiates cytotoxicity in cancer cells exposed to 5-fluorouracil (FUra) and folinic acid (FA). We studied the effect of high-dose pyridoxine on antitumor activity of regimens comprising FUra and FA in 27 advanced breast carcinoma patients. Of 18 previously untreated patients, 12 had tumors that did not overexpress HER2 (Group I), and 6 that overexpressed HER2 (Group II). Nine patients (Group III) had prior chemotherapy. Group I received AVCF (doxorubicin, vinorelbine, cyclophosphamide, FUra, FA) or FAC (doxorubicin, cyclophosphamide, FUra, FA) followed by TCbF (paclitaxel carboplatin, FUra, FA). Groups II, and III received TCbF. Pyridoxine iv (1000–3000 mg/day) preceded each FA and FUra. Group II also received trastuzumab and pertuzumab. 26 patients responded. Three patients in Group I had CRs and 9 had PRs with 62–98% reduction rates; 4 patients in Group II had CRs and 2 had PRs with 98% reduction. Of 7 measurable patients in Group III, 2 attained CRs, and 5 had PRs with 81–94% reduction rates. Median time to response was 3.4 months. Unexpected toxicity did not occur. This pilot study suggests that high-dose vitamin B6 enhances antitumor potency of regimens comprising FUra and FA.
Collapse
Affiliation(s)
- David Machover
- INSERM U935-UA09 and Institut de Cancérologie et d'Immunogénétique (ICIG), Paul-Brousse Hospital, University Paris-Saclay, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France.
| | - Emma Goldschmidt
- Department of Medical Oncology, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris (APHP), University Paris-Saclay, 94800, Villejuif, France
| | - Wathek Almohamad
- Department of Medical Oncology, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris (APHP), University Paris-Saclay, 94800, Villejuif, France
| | - Vincent Castagné
- Department of Pharmacy, Paul-Brousse Hospital, APHP, University Paris-Saclay, 94800, Villejuif, France
| | - Julien Dairou
- Laboratory of Pharmacologic Biochemistry and Toxicology, CNRS UMR 8601, University Paris-Descartes, 45, Rue des Saints-Pères, 75006, Paris, France
| | - Christophe Desterke
- INSERM U935-UA09 and Institut de Cancérologie et d'Immunogénétique (ICIG), Paul-Brousse Hospital, University Paris-Saclay, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France
| | - Léa Gomez
- Department of Biophysics and Nuclear Medicine, Kremlin-Bicêtre Hospital, APHP, University Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | | | - Claude Boucheix
- INSERM U935-UA09 and Institut de Cancérologie et d'Immunogénétique (ICIG), Paul-Brousse Hospital, University Paris-Saclay, 12, Avenue Paul-Vaillant-Couturier, 94800, Villejuif, France
| |
Collapse
|
5
|
Zhao LN, Kaldis P. Pairing structural reconstruction with catalytic competence to evaluate the mechanisms of key enzymes in the folate-mediated one-carbon pathway. FEBS J 2022; 290:2279-2291. [PMID: 35303396 DOI: 10.1111/febs.16439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Mammalian metabolism comprises a series of interlinking pathways that include two major cycles: the folate and methionine cycles. The folate-mediated metabolic cycle uses several oxidation states of tetrahydrofolate to carry activated one-carbon units to be readily used and interconverted within the cell. They are required for nucleotide synthesis, methylation and metabolism, and particularly for proliferation of cancer cells. Based on the latest progress in genome-wide CRISPR loss-of-function viability screening of 789 cell lines, we focus on the most cancer-dependent enzymes in this pathway, especially those that are hyperactivated in cancer, to provide new insight into the chemical basis for cancer drug development. Since the complete 3D structure of several of these enzymes of the one-carbon pathway in their active form are not available, we used homology modelling integrated with the interpretation of the reaction mechanism. In addition, have reconstructed the most likely scenario for the reactions taking place paired with their catalytic competence that provides a testable framework for this pathway.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
6
|
Di Pierro E, Granata F. Nutrients and Porphyria: An Intriguing Crosstalk. Int J Mol Sci 2020; 21:ijms21103462. [PMID: 32422947 PMCID: PMC7279006 DOI: 10.3390/ijms21103462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Porphyria refers to a group of fascinating diseases from a metabolic and nutritional standpoint as it provides an example of how metabolic manipulation can be used for therapeutic purposes. It is characterized by defects in heme synthesis, particularly in the erythrocytes and liver. Specific enzymes involved in heme biosynthesis directly depend on adequate levels of vitamins and minerals in the tissues. Moreover, micronutrients that are required for producing succinyl CoA and other intermediates in the Krebs (TCA) cycle are indirectly necessary for heme metabolism. This review summarizes articles that describe the nutritional status, supplements intake, and dietary practices of patients affected by porphyria, paying special attention to the therapeutic use of nutrients that may help or hinder this group of diseases.
Collapse
|
7
|
Mujica-Coopman MF, Farias DR, Franco-Sena AB, Vaz JS, Kac G, Lamers Y. Maternal Plasma Pyridoxal 5'-Phosphate Concentration Is Inversely Associated with Plasma Cystathionine Concentration across All Trimesters in Healthy Pregnant Women. J Nutr 2019; 149:1354-1362. [PMID: 31098628 DOI: 10.1093/jn/nxz082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vitamin B-6 (B-6), in the form of pyridoxal 5'phosphate (PLP), is critical for one-carbon metabolism reactions and cellular function. Plasma PLP concentration decreases throughout pregnancy, but the functional consequences of this have not been studied. Plasma cystathionine is a sensitive indicator of suboptimal B-6 status in healthy adults. OBJECTIVES The aim of this study was to determine the relation between plasma PLP and cystathionine concentrations, and to assess longitudinal changes in plasma concentrations of metabolites of one-carbon metabolism, including total homocysteine (tHcy), cysteine, methionine, glycine, serine, and glutathione, over the course of pregnancy. DESIGN This was a prospective cohort study of 186 healthy Brazilian pregnant women (20-40 y). Plasma PLP and metabolite concentrations were quantified in fasting maternal blood samples collected between 5-13, 20-26, and 30-36 weeks of gestation. Linear mixed regression models were used to determine the association of 1) first-trimester PLP tertiles, and 2) the variation of PLP concentration throughout pregnancy, with related metabolite concentrations across weeks of gestation. RESULTS Median (IQR) PLP concentration decreased from 36.2 (29.2-44.5) to 21.0 (15.9-26.0) to 16.8 (12.9-21.4) nmol/L in the first, second, and third trimester, respectively, whereas cystathionine concentration increased from 63.2 (49.7-78.9) to 122 (98.0-167) to 143 (114-193) nmol/L, respectively (both P < 0.001). The variation of PLP throughout pregnancy was inversely associated with cystathionine concentration across weeks of gestation, after adjusting for confounding factors; β (95% CI) = -0.387 (-0.752, -0.219), P = 0.04. This association significantly differed by trimester and was strongest in the third trimester. Plasma concentrations of glycine, serine, methionine, cysteine, and tHcy decreased, and that of glutathione increased, between the first and second trimesters (all P < 0.05). CONCLUSIONS The variation of PLP concentration predicted cystathionine concentration throughout pregnancy. Increases in plasma cystathionine across trimesters may reflect maternal intracellular B-6 deficiency.
Collapse
Affiliation(s)
- Maria F Mujica-Coopman
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Dayana R Farias
- Nutrition Institute, Federal University Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana B Franco-Sena
- Nutrition Institute, Federal University Rio de Janeiro, Rio de Janeiro, Brazil.,Emília de Jesus Ferreiro Nutrition School, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Juliana S Vaz
- Nutrition Institute, Federal University Rio de Janeiro, Rio de Janeiro, Brazil.,Faculty of Nutrition, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Gilberto Kac
- Nutrition Institute, Federal University Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yvonne Lamers
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med 2016; 53:10-27. [PMID: 27593095 DOI: 10.1016/j.mam.2016.08.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| |
Collapse
|
9
|
Rios-Avila L, Coats B, Ralat M, Chi YY, Midttun Ø, Ueland PM, Stacpoole PW, Gregory JF. Pyridoxine supplementation does not alter in vivo kinetics of one-carbon metabolism but modifies patterns of one-carbon and tryptophan metabolites in vitamin B-6-insufficient oral contraceptive users. Am J Clin Nutr 2015; 102:616-25. [PMID: 26201817 PMCID: PMC4548178 DOI: 10.3945/ajcn.115.113159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low chronic vitamin B-6 status can occur in a subset of women who use oral contraceptives (OCs) with uncertain metabolic consequences. An insufficiency of cellular pyridoxal 5'-phosphate (PLP), which is the coenzyme form of vitamin B-6, may impair many metabolic processes including one-carbon and tryptophan metabolism. OBJECTIVE We investigated the effects of vitamin B-6 supplementation on the in vivo kinetics of one-carbon metabolism and the concentration of one-carbon and tryptophan metabolites in vitamin B-6-deficient OC users. DESIGN A primed, constant infusion of [(13)C5]methionine, [3-(13)C]serine, and [(2)H3]leucine was performed on 10 OC users (20-40 y old; plasma PLP concentrations <30 nmol/L) before and after 28 d of supplementation with 10 mg pyridoxine hydrochloric acid/d. In vivo fluxes of total homocysteine remethylation, the remethylation of homocysteine from serine, and rates of homocysteine and cystathionine production were assessed. Targeted metabolite profiling was performed, and data were analyzed by using orthogonal partial least-squares-discriminant analysis and paired t tests adjusted for multiple testing. RESULTS Pyridoxine supplementation increased the mean ± SD plasma PLP concentration from 25.8 ± 3.6 to 143 ± 58 nmol/L (P < 0.001) and decreased the leucine concentration from 103 ± 17 to 90 ± 20 nmol/L (P = 0.007) and glycine concentration from 317 ± 63 to 267 ± 58 nmol/L (P = 0.03). Supplementation did not affect in vivo rates of homocysteine remethylation or the appearance of homocysteine and cystathionine. A multivariate analysis showed a clear overall effect on metabolite profiles resulting from supplementation. Leucine, glycine, choline, cysteine, glutathione, trimethylamine N-oxide, and the ratios glycine:serine, 3-hydroxykynurenine:kynurenine, 3-hydroxykynurenine:3-hydroxyanthranilic acid, and 3-hydroxykynurenine:anthranilic acid were significant discriminating variables. CONCLUSIONS Consistent with previous vitamin B-6-restriction studies, fluxes of one-carbon metabolic processes exhibited little or no change after supplementation in low-vitamin B-6 subjects. In contrast, changes in the metabolic profiles after supplementation indicated perturbations in metabolism, suggesting functional vitamin B-6 deficiency. This study was registered at clinicaltrials.gov as NCT01128244.
Collapse
Affiliation(s)
| | - Bonnie Coats
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine
| | | | | | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine, Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
10
|
Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF, Mills JL, Pfeiffer CM, Fazili Z, Zhang M, Ueland PM, Molloy AM, Caudill MA, Shane B, Berry RJ, Bailey RL, Hausman DB, Raghavan R, Raiten DJ. Biomarkers of Nutrition for Development-Folate Review. J Nutr 2015; 145:1636S-1680S. [PMID: 26451605 PMCID: PMC4478945 DOI: 10.3945/jn.114.206599] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/11/2014] [Accepted: 04/14/2015] [Indexed: 12/13/2022] Open
Abstract
The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate's history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development.
Collapse
Affiliation(s)
- Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA;
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Helene McNulty
- Northern Ireland Centre for Food and Health, Biomedical Sciences Research Institute, University of Ulster, Londonderry, United Kingdom
| | - Michael F Fenech
- Genome Health Nutrigenomics Laboratory, Food, Nutrition, and Bioproducts Flagship, Commonwealth Scientific and Industrial Research Organization, Adelaide, Australia
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - James L Mills
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | | | - Zia Fazili
- National Center for Environmental Health, CDC, Atlanta, GA
| | - Mindy Zhang
- National Center for Environmental Health, CDC, Atlanta, GA
| | - Per M Ueland
- Department of Clinical Science, Univeristy of Bergen, Bergen, Norway
| | - Anne M Molloy
- Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA; and
| | | | - Dorothy B Hausman
- Department of Foods and Nutrition, University of Georgia, Athens, GA
| | - Ramkripa Raghavan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD;
| |
Collapse
|
11
|
Abstract
Measures of B6 status are categorized as direct biomarkers and as functional biomarkers. Direct biomarkers measure B6 vitamers in plasma/serum, urine and erythrocytes, and among these plasma pyridoxal 5'-phosphate (PLP) is most commonly used. Functional biomarkers include erythrocyte transaminase activities and, more recently, plasma levels of metabolites involved in PLP-dependent reactions, such as the kynurenine pathway, one-carbon metabolism, transsulfuration (cystathionine), and glycine decarboxylation (serine and glycine). Vitamin B6 status is best assessed by using a combination of biomarkers because of the influence of potential confounders, such as inflammation, alkaline phosphatase activity, low serum albumin, renal function, and inorganic phosphate. Ratios between substrate-products pairs have recently been investigated as a strategy to attenuate such influence. These efforts have provided promising new markers such as the PAr index, the 3-hydroxykynurenine:xanthurenic acid ratio, and the oxoglutarate:glutamate ratio. Targeted metabolic profiling or untargeted metabolomics based on mass spectrometry allow the simultaneous quantification of a large number of metabolites, which are currently evaluated as functional biomarkers, using data reduction statistics.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, and the Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway;
| | | | | | | | | |
Collapse
|
12
|
Bilinsky LM, Reed MC, Nijhout HF. The role of skeletal muscle in liver glutathione metabolism during acetaminophen overdose. J Theor Biol 2015; 376:118-33. [PMID: 25890031 DOI: 10.1016/j.jtbi.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 01/03/2023]
Abstract
Marked alterations in systemic glutamate-glutamine metabolism characterize the catabolic state, in which there is an increased breakdown and decreased synthesis of skeletal muscle protein. Among these alterations are a greatly increased net release of glutamine (Gln) from skeletal muscle into blood plasma and a dramatic depletion of intramuscular Gln. Understanding the catabolic state is important because a number of pathological conditions with very different etiologies are characterized by its presence; these include major surgery, sepsis, trauma, and some cancers. Acetaminophen (APAP) overdose is also accompanied by dramatic changes in systemic glutamate-glutamine metabolism including large drops in liver glutathione (for which glutamate is a precursor) and plasma Gln. We have constructed a mathematical model of glutamate and glutamine metabolism in rat which includes liver, blood plasma and skeletal muscle. We show that for the normal rat, the model solutions fit experimental data including the diurnal variation in liver glutathione (GSH). We show that for the rat chronically dosed with dexamethasone (an artificial glucocorticoid which induces a catabolic state) the model can be used to explain empirically observed facts such as the linear decline in intramuscular Gln and the drop in plasma glutamine. We show that for the Wistar rat undergoing APAP overdose the model reproduces the experimentally observed rebound of liver GSH to normal levels by the 24-h mark. We show that this rebound is achieved in part by the action of the cystine-glutamate antiporter, an amino acid transporter not normally expressed in liver but induced under conditions of oxidative stress. Finally, we explain why supplementation with Gln, a Glu precursor, assists in the preservation of liver GSH during APAP overdose despite the fact that under normal conditions only Cys is rate-limiting for GSH formation.
Collapse
Affiliation(s)
- L M Bilinsky
- Department of Mathematics, Duke University, United States.
| | - M C Reed
- Department of Mathematics, Duke University, United States
| | - H F Nijhout
- Department of Biology, Duke University, United States
| |
Collapse
|
13
|
Abstract
Epidemiologic and laboratory animal studies have suggested that the availability of vitamin B6 modulates cancer risk. The means by which B6 mediates this effect is not known with any surety but it has been reported that high dietary vitamin B6 attenuates and low dietary vitamin B6 increases the risk of cancer. In fact vitamin B6 is widely distributed in foods and overt deficiency of this vitamin is not common. Nevertheless, marginal or secondary vitamin B6 deficiency, which might have an adverse effect on carcinogenesis, is rather common especially among old adults and alcoholics. This chapter addressed currently available information regarding the relationship between vitamin B6 and cancer.
Collapse
|
14
|
da Silva VR, Ralat MA, Quinlivan EP, DeRatt BN, Garrett TJ, Chi YY, Frederik Nijhout H, Reed MC, Gregory JF. Targeted metabolomics and mathematical modeling demonstrate that vitamin B-6 restriction alters one-carbon metabolism in cultured HepG2 cells. Am J Physiol Endocrinol Metab 2014; 307:E93-101. [PMID: 24824655 PMCID: PMC4080146 DOI: 10.1152/ajpendo.00697.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low vitamin B-6 nutritional status is associated with increased risk for cardiovascular disease and certain cancers. Pyridoxal 5'-phosphate (PLP) serves as a coenzyme in many cellular processes, including several reactions in one-carbon (1C) metabolism and the transsulfuration pathway of homocysteine catabolism. To assess the effect of vitamin B-6 deficiency on these processes and associated pathways, we conducted quantitative analysis of 1C metabolites including tetrahydrofolate species in HepG2 cells cultured in various concentrations of pyridoxal. These results were compared with predictions of a mathematical model of 1C metabolism simulating effects of vitamin B-6 deficiency. In cells cultured in vitamin B-6-deficient medium (25 or 35 nmol/l pyridoxal), we observed >200% higher concentrations of betaine (P < 0.05) and creatinine (P < 0.05) and >60% lower concentrations of creatine (P < 0.05) and 5,10-methenyltetrahydrofolate (P < 0.05) compared with cells cultured in medium containing intermediate (65 nmol/l) or the supraphysiological 2,015 nmol/l pyridoxal. Cystathionine, cysteine, glutathione, and cysteinylglycine, which are components of the transsulfuration pathway and subsequent reactions, exhibited greater concentrations at the two lower vitamin B-6 concentrations. Partial least squares discriminant analysis showed differences in overall profiles between cells cultured in 25 and 35 nmol/l pyridoxal vs. those in 65 and 2,015 nmol/l pyridoxal. Mathematical model predictions aligned with analytically derived results. These data reveal pronounced effects of vitamin B-6 deficiency on 1C-related metabolites, including previously unexpected secondary effects on creatine. These results complement metabolomic studies in humans demonstrating extended metabolic effects of vitamin B-6 insufficiency.
Collapse
Affiliation(s)
- Vanessa R da Silva
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Maria A Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Eoin P Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Barbara N DeRatt
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Timothy J Garrett
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Yueh-Yun Chi
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, North Carolina
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida;
| |
Collapse
|
15
|
da Silva VR, Rios-Avila L, Lamers Y, Ralat MA, Midttun Ø, Quinlivan EP, Garrett TJ, Coats B, Shankar MN, Percival SS, Chi YY, Muller KE, Ueland PM, Stacpoole PW, Gregory JF. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women. J Nutr 2013; 143:1719-27. [PMID: 23966327 PMCID: PMC3796343 DOI: 10.3945/jn.113.180588] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022] Open
Abstract
Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5'-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (<0.35 mg/d). liquid chromatography-tandem mass spectrometry analysis of the compounds relevant to one-carbon metabolism showed that vitamin B-6 restriction yielded increased cystathionine (53% pre- and 76% postprandial; P < 0.0001) and serine (12% preprandial; P < 0.05), and lower creatine (40% pre- and postprandial; P < 0.0001), creatinine (9% postprandial; P < 0.05), and dimethylglycine (16% postprandial; P < 0.05) relative to the vitamin B-6-adequate state. In the tryptophan pathway, vitamin B-6 restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P < 0.01) and higher 3-hydroxykynurenine (39% pre- and 34% postprandial; P < 0.01). Multivariate ANOVA analysis showed a significant global effect of vitamin B-6 restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency.
Collapse
Affiliation(s)
- Vanessa R. da Silva
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Luisa Rios-Avila
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Yvonne Lamers
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Maria A. Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | | | - Eoin P. Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute
| | - Timothy J. Garrett
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | - Bonnie Coats
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | | | - Susan S. Percival
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W. Stacpoole
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| |
Collapse
|
16
|
A BRISC-SHMT complex deubiquitinates IFNAR1 and regulates interferon responses. Cell Rep 2013; 5:180-93. [PMID: 24075985 DOI: 10.1016/j.celrep.2013.08.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
Lysine63-linked ubiquitin (K63-Ub) chains represent a particular ubiquitin topology that mediates proteasome-independent signaling events. The deubiquitinating enzyme (DUB) BRCC36 segregates into distinct nuclear and cytoplasmic complexes that are specific for K63-Ub hydrolysis. RAP80 targets the five-member nuclear BRCC36 complex to K63-Ub chains at DNA double-strand breaks. The alternative four-member BRCC36 containing complex (BRISC) lacks a known targeting moiety. Here, we identify serine hydroxymethyltransferase (SHMT) as a previously unappreciated component that fulfills this function. SHMT directs BRISC activity at K63-Ub chains conjugated to the type 1 interferon (IFN) receptor chain 1 (IFNAR1). BRISC-SHMT2 complexes localize to and deubiquitinate actively engaged IFNAR1, thus limiting its K63-Ub-mediated internalization and lysosomal degradation. BRISC-deficient cells and mice exhibit attenuated responses to IFN and are protected from IFN-associated immunopathology. These studies reveal a mechanism of DUB regulation and suggest a therapeutic use of BRISC inhibitors for treating pathophysiological processes driven by elevated IFN responses.
Collapse
|
17
|
Kutyshenko VP, Beskaravayny PM, Molchanov MV, Paskevich SI, Prokhorov DA, Uversky VN. Looking at microbial metabolism by high-resolution (2)H-NMR spectroscopy. PeerJ 2013; 1:e101. [PMID: 23862103 PMCID: PMC3709107 DOI: 10.7717/peerj.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022] Open
Abstract
We analyzed the applicability of high-resolution 2H-HMR spectroscopy for the analysis of microbe metabolism in samples of mitochondrion isolated from rat liver and from aqueous extracts of homogenates of rat liver and other organs and tissues in the presence of high D2O contents. Such analysis is possible due to the fast microbe adaptation to life in the heavy water. It is also shown that some enzymatic processes typical for the intact cells are preserved in the homogenized tissue preparations. The microbial and cellular metabolic processes can be differentiated via the strategic use of cell poisons and antibiotics.
Collapse
Affiliation(s)
- Victor P Kutyshenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences , Pushchino , Russia
| | | | | | | | | | | |
Collapse
|
18
|
Gregory JF, Park Y, Lamers Y, Bandyopadhyay N, Chi YY, Lee K, Kim S, da Silva V, Hove N, Ranka S, Kahveci T, Muller KE, Stevens RD, Newgard CB, Stacpoole PW, Jones DP. Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects. PLoS One 2013; 8:e63544. [PMID: 23776431 PMCID: PMC3679127 DOI: 10.1371/journal.pone.0063544] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/05/2013] [Indexed: 12/31/2022] Open
Abstract
Marginal deficiency of vitamin B-6 is common among segments of the population worldwide. Because pyridoxal 5′-phosphate (PLP) serves as a coenzyme in the metabolism of amino acids, carbohydrates, organic acids, and neurotransmitters, as well as in aspects of one-carbon metabolism, vitamin B-6 deficiency could have many effects. Healthy men and women (age: 20-40 y; n = 23) were fed a 2-day controlled, nutritionally adequate diet followed by a 28-day low-vitamin B-6 diet (<0.5 mg/d) to induce marginal deficiency, as reflected by a decline of plasma PLP from 52.6±14.1 (mean ± SD) to 21.5±4.6 nmol/L (P<0.0001) and increased cystathionine from 131±65 to 199±56 nmol/L (P<0.001). Fasting plasma samples obtained before and after vitamin B6 restriction were analyzed by 1H-NMR with and without filtration and by targeted quantitative analysis by mass spectrometry (MS). Multilevel partial least squares-discriminant analysis and S-plots of NMR spectra showed that NMR is effective in classifying samples according to vitamin B-6 status and identified discriminating features. NMR spectral features of selected metabolites indicated that vitamin B-6 restriction significantly increased the ratios of glutamine/glutamate and 2-oxoglutarate/glutamate (P<0.001) and tended to increase concentrations of acetate, pyruvate, and trimethylamine-N-oxide (adjusted P<0.05). Tandem MS showed significantly greater plasma proline after vitamin B-6 restriction (adjusted P<0.05), but there were no effects on the profile of 14 other amino acids and 45 acylcarnitines. These findings demonstrate that marginal vitamin B-6 deficiency has widespread metabolic perturbations and illustrate the utility of metabolomics in evaluating complex effects of altered vitamin B-6 intake.
Collapse
Affiliation(s)
- Jesse F Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Involvement of 5-Methyltetrahydrofolate in the Amelioration of Hyperhomocysteinemia Caused by Vitamin B 6 Deficiency and L-Methionine Supplementation. Biosci Biotechnol Biochem 2013; 77:378-80. [DOI: 10.1271/bbb.120661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
de Andrade Belo MA, Soares VE, de Souza LM, da Rosa Sobreira MF, Cassol DMS, Toma SB. Hepatoprotective treatment attenuates oxidative damages induced by carbon tetrachloride in rats. ACTA ACUST UNITED AC 2012; 64:155-65. [DOI: 10.1016/j.etp.2010.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 07/08/2010] [Accepted: 08/11/2010] [Indexed: 11/16/2022]
|
21
|
Galbiatti ALS, Ruiz MT, Maniglia JV, Raposo LS, Pavarino-Bertelli ÉC, Goloni-Bertollo EM. Head and neck cancer: genetic polymorphisms and folate metabolism. Braz J Otorhinolaryngol 2012; 78:132-9. [PMID: 22392251 PMCID: PMC9443880 DOI: 10.1590/s1808-86942012000100021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/18/2010] [Indexed: 12/31/2022] Open
|
22
|
Lamers Y, Coats B, Ralat M, Quinlivan EP, Stacpoole PW, Gregory JF. Moderate vitamin B-6 restriction does not alter postprandial methionine cycle rates of remethylation, transmethylation, and total transsulfuration but increases the fractional synthesis rate of cystathionine in healthy young men and women. J Nutr 2011; 141:835-42. [PMID: 21430249 PMCID: PMC3077887 DOI: 10.3945/jn.110.134197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Methionine is the precursor for S-adenosylmethionine (SAM), the major 1-carbon donor involved in >100 transmethylation reactions. Homocysteine produced from SAM must be metabolized either by remethylation for recycling of methionine or transsulfuration to form cystathionine and then cysteine. Pyridoxal 5'-phosphate (PLP) serves as a coenzyme in enzymes involved in transsulfuration as well as for primary acquisition of 1-carbon units used for remethylation and other phases of 1-carbon metabolism. Because the intake of vitamin B-6 is frequently low in humans and metabolic consequences of inadequacy may be amplified in the postprandial state, we aimed to determine the effects of marginal vitamin B-6 deficiency on the postprandial rates of remethylation, transmethylation, overall transsulfuration, and cystathionine synthesis. Healthy, young adults (4 male, 5 female; 20-35 y) received a primed, constant infusion of [1-(13)C]methionine, [methyl-(2)H(3)]methionine, and [5,5,5-(2)H(3)]leucine to quantify in vivo kinetics at normal vitamin B-6 status and after a 28-d dietary vitamin B-6 restriction. Vitamin B-6 restriction lowered the plasma PLP concentration from 49 ± 4 nmol/L (mean ± SEM) to 19 ± 2 nmol/L (P < 0.0001). Mean remethylation, transsulfuration, and transmethylation rates did not change in response to vitamin B-6 restriction; however, the responses to vitamin B-6 restriction varied greatly among individuals. The plasma cystathionine concentration increased from 142 ± 8 to 236 ± 9 nmol/L (P < 0.001), whereas the fractional cystathionine synthesis rate increased by a mean of 12% in 8 of 9 participants. Interrelationships among plasma concentrations of glycine and cystathionine and kinetic results suggest that individual variability occurs in normal postprandial 1-carbon metabolism and in the response to vitamin B-6 restriction.
Collapse
Affiliation(s)
- Yvonne Lamers
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, College of Medicine, University of Florida, Gainesville, FL 32611-0370
| | - Bonnie Coats
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32611-0370
| | - Maria Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, College of Medicine, University of Florida, Gainesville, FL 32611-0370
| | - Eoin P. Quinlivan
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32611-0370
| | - Peter W. Stacpoole
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32611-0370,Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611-0370
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, College of Medicine, University of Florida, Gainesville, FL 32611-0370,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
La Merrill M, Torres-Sánchez L, Ruiz-Ramos R, López-Carrillo L, Cebrián ME, Chen J. The association between first trimester micronutrient intake, MTHFR genotypes, and global DNA methylation in pregnant women. J Matern Fetal Neonatal Med 2011; 25:133-7. [PMID: 21443409 PMCID: PMC3279137 DOI: 10.3109/14767058.2011.564242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective Our aim was to evaluate possible associations between consumption of micronutrients involved in one-carbon metabolism, MTHFR genotypes, and global DNA methylation in pregnant women. Methods A semi-quantitative dietary questionnaire was administered to 195 women during their first trimester in Morelos, Mexico. Two functional polymorphisms of the key folate-metabolizing gene, i.e. MTHFR 677 C>T and 1298 A>C, as well as global DNA methylation were assessed in peripheral blood drawn during the interview. Results Independent of maternal age and caloric intake, vitamin B6 deficiency was associated with 1.8 fold increased risk of hypomethylation in women carrying the MTHFR 677 T allele. Conclusions There exists a subpopulation that is more susceptible to B vitamin deficiencies.
Collapse
Affiliation(s)
- Michele La Merrill
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Jeon YM, Park SK, Rhee SK, Lee MY. Proteomic profiling of the differentially expressed proteins by TiO2 nanoparticles in mouse kidney. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0055-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Holmuhamedov EL, Teplova VV, Johnson CB, MacDonald J. A study of the effect of ethanol on the synthesis of serine and the exchange of methyl groups in hepatocytes by NMR spectroscopy. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Teplova VV, Belosludtsev KN, Belosludtseva NV, Holmuhamedov EL. Role of mitochondria in hepatotoxicity of ethanol. Biophysics (Nagoya-shi) 2010; 55:951-958. [DOI: 10.1134/s0006350910060114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
|
27
|
Tibbetts AS, Appling DR. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 2010; 30:57-81. [PMID: 20645850 DOI: 10.1146/annurev.nutr.012809.104810] [Citation(s) in RCA: 496] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recognition that mitochondria participate in folate-mediated one-carbon metabolism grew out of pioneering work beginning in the 1950s from the laboratories of D.M. Greenberg, C.G. Mackenzie, and G. Kikuchi. These studies revealed mitochondria as the site of oxidation of one-carbon donors such as serine, glycine, sarcosine, and dimethylglycine. Subsequent work from these laboratories and others demonstrated the participation of folate coenzymes and folate-dependent enzymes in these mitochondrial processes. Biochemical and molecular genetic approaches in the 1980s and 1990s identified many of the enzymes involved and revealed an interdependence of cytoplasmic and mitochondrial one-carbon metabolism. These studies led to the development of a model of eukaryotic one-carbon metabolism that comprises parallel cytosolic and mitochondrial pathways, connected by one-carbon donors such as serine, glycine, and formate. Sequencing of the human and other mammalian genomes has facilitated identification of the enzymes that participate in this intercompartmental one-carbon metabolism, and animal models are beginning to clarify the roles of the cytoplasmic and mitochondrial isozymes of these enzymes. Identifying the mitochondrial transporters for the one-carbon donors and elucidating how flux through these pathways is controlled are two areas ripe for exploration.
Collapse
Affiliation(s)
- Anne S Tibbetts
- Department of Chemistry and Biochemistry, and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
28
|
Nijhout HF, Gregory JF, Fitzpatrick C, Cho E, Lamers KY, Ulrich CM, Reed MC. A mathematical model gives insights into the effects of vitamin B-6 deficiency on 1-carbon and glutathione metabolism. J Nutr 2009; 139:784-91. [PMID: 19244383 PMCID: PMC2666368 DOI: 10.3945/jn.109.104265] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We experimented with a mathematical model for 1-carbon metabolism and glutathione (GSH) synthesis to investigate the effects of vitamin B-6 deficiency on the reaction velocities and metabolite concentrations in this metabolic network. The mathematical model enabled us to independently alter the activities of each of the 5 vitamin B-6-dependent enzymes and thus determine which inhibitions were responsible for the experimentally observed consequences of a vitamin B-6 deficiency. The effect of vitamin B-6 deficiency on serine and glycine concentrations in tissues and plasma was almost entirely due to its effects on the activity of glycine decarboxylase. The effect of vitamin B-6 restriction on GSH concentrations appeared to be indirect, arising from the fact that vitamin B-6 restriction increases oxidative stress, which, in turn, affects several enzymes in 1-carbon metabolism as well as the GSH transporter. Vitamin B-6 restriction causes an abnormally high and prolonged homocysteine response to a methionine load test. This effect appeared to be mediated solely by its effects on cystathionine beta-synthase. Reduction of the enzymatic activity of serine hydroxymethyltransferase (SHMT) had negligible effects on most metabolite concentrations and reaction velocities. Reduction or total elimination of cytoplasmic SHMT had a surprisingly moderate effect on metabolite concentrations and reaction velocities. This corresponds to the experimental findings that a reduction in the enzymatic activity of SHMT has little effect on 1-carbon metabolism. Our simulations showed that the primary function of SHMT was to increase the rate by which the glycine-serine balance was reequilibrated after a perturbation.
Collapse
Affiliation(s)
- H. Frederik Nijhout
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Jesse F. Gregory
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Courtney Fitzpatrick
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Eugenia Cho
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - K. Yvonne Lamers
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Cornelia M. Ulrich
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| | - Michael C. Reed
- Department of Biology, Duke University, Durham, NC 27708; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Mathematics, Duke University, Durham, NC 27708; Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and University of Washington, Department of Epidemiology and Interdisciplinary Graduate Program in the Nutrition Sciences, Seattle, WA 98195
| |
Collapse
|
29
|
Lamers Y, Williamson J, Ralat M, Quinlivan EP, Gilbert LR, Keeling C, Stevens RD, Newgard CB, Ueland PM, Meyer K, Fredriksen A, Stacpoole PW, Gregory JF. Moderate dietary vitamin B-6 restriction raises plasma glycine and cystathionine concentrations while minimally affecting the rates of glycine turnover and glycine cleavage in healthy men and women. J Nutr 2009; 139:452-60. [PMID: 19158217 PMCID: PMC2646220 DOI: 10.3945/jn.108.099184] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycine is a precursor of purines, protein, glutathione, and 1-carbon units as 5,10-methylenetetrahydrofolate. Glycine decarboxylation through the glycine cleavage system (GCS) and glycine-serine transformation by serine hydroxymethyltransferase (SHMT) require pyridoxal 5'-phosphate (PLP; active form of vitamin B-6) as a coenzyme. The intake of vitamin B-6 is frequently low in humans. Therefore, we determined the effects of vitamin B-6 restriction on whole-body glycine flux, the rate of glycine decarboxylation, glycine-to-serine conversion, use of glycine carbons in nucleoside synthesis, and other aspects of 1-carbon metabolism. We used a primed, constant infusion of [1,2-(13)C(2)]glycine and [5,5,5-(2)H(3)]leucine to quantify in vivo kinetics in healthy adults (7 males, 6 females; 20-39 y) of normal vitamin B-6 status or marginal vitamin B-6 deficiency. Vitamin B-6 restriction lowered the plasma PLP concentration from 55 +/- 4 nmol/L (mean +/- SEM) to 23 +/- 1 nmol/L (P < 0.0001), which is consistent with marginal deficiency, whereas the plasma glycine concentration increased (P < 0.01). SHMT-mediated conversion of glycine to serine increased from 182 +/- 7 to 205 +/- 9 micromol x kg(-1) x h(-1) (P < 0.05), but serine production using a GCS-derived 1-carbon unit (93 +/- 9 vs. 91 +/- 6 micromol x kg(-1) x h(-1)) and glycine cleavage (163 +/- 11 vs. 151 +/- 8 micromol x kg(-1) x h(-1)) were not changed by vitamin B-6 restriction. The GCS produced 1-carbon units at a rate (approximately 140-170 micromol x kg(-1) x h(-1)) that greatly exceeds the demand for remethylation and transmethylation processes (approximately 4-7 micromol x kg(-1) x h(-1)). We conclude that the in vivo GCS and SHMT reactions are quite resilient to the effects of marginal vitamin B-6 deficiency, presumably through a compensatory effect of increasing substrate concentration.
Collapse
Affiliation(s)
- Yvonne Lamers
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Jerry Williamson
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Maria Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Eoin P. Quinlivan
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Lesa R. Gilbert
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Christine Keeling
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Robert D. Stevens
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Christopher B. Newgard
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Per M. Ueland
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Klaus Meyer
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Ase Fredriksen
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Peter W. Stacpoole
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, General Clinical Research Center, Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611; Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704; and Section for Pharmacology, Institute of Medicine, University of Bergen, and Bevital A/S, Armauer Hansens Hus, 5021 Bergen, Norway
| |
Collapse
|
30
|
Impairments in pyridoxine-dependent sulphur amino acid metabolism are highly sensitive to the degree of vitamin B6 deficiency and repletion in the pig. Animal 2009; 3:826-37. [DOI: 10.1017/s1751731109004078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Abstract
Tetrahydrofolate (THF) polyglutamates are a family of cofactors that carry and chemically activate one-carbon units for biosynthesis. THF-mediated one-carbon metabolism is a metabolic network of interdependent biosynthetic pathways that is compartmentalized in the cytoplasm, mitochondria, and nucleus. One-carbon metabolism in the cytoplasm is required for the synthesis of purines and thymidylate and the remethylation of homocysteine to methionine. One-carbon metabolism in the mitochondria is required for the synthesis of formylated methionyl-tRNA; the catabolism of choline, purines, and histidine; and the interconversion of serine and glycine. Mitochondria are also the primary source of one-carbon units for cytoplasmic metabolism. Increasing evidence indicates that folate-dependent de novo thymidylate biosynthesis occurs in the nucleus of certain cell types. Disruption of folate-mediated one-carbon metabolism is associated with many pathologies and developmental anomalies, yet the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be established. This chapter focuses on our current understanding of mammalian folate-mediated one-carbon metabolism, its cellular compartmentation, and knowledge gaps that limit our understanding of one-carbon metabolism and its regulation.
Collapse
Affiliation(s)
- Jennifer T Fox
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
32
|
Midttun Ø, Hustad S, Schneede J, Vollset SE, Ueland PM. Plasma vitamin B-6 forms and their relation to transsulfuration metabolites in a large, population-based study. Am J Clin Nutr 2007; 86:131-8. [PMID: 17616772 DOI: 10.1093/ajcn/86.1.131] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vitamin B-6 exists in different forms; one of those forms, pyridoxal 5'-phosphate (PLP), serves a cofactor in many enzyme reactions, including the transsulfuration pathway, in which homocysteine is converted to cystathionine and then to cysteine. Data on the relations between indexes of vitamin B-6 status and transsulfuration metabolites in plasma are sparse and conflicting. OBJECTIVE We investigated the distribution and associations of various vitamin B-6 species in plasma and their relation to plasma concentrations of transsulfuration metabolites. DESIGN Nonfasting blood samples from 10 601 healthy subjects with a mean age of 56.4 y were analyzed for all known vitamin B-6 vitamers, folate, cobalamin, riboflavin, total homocysteine, cystathionine, total cysteine, methionine, and creatinine. All subjects were genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism. RESULTS Plasma concentrations of the main vitamin B-6 vitamers--PLP, pyridoxal, and 4-pyridoxic acid--were strongly correlated. Among the vitamin B-6 vitamers, PLP showed the strongest and most consistent inverse relation to total homocysteine and cystathionine, but the dose response was different for the 2 metabolites. The PLP-total homocysteine relation was significant only in the lowest quartile of the vitamin B-6 distribution and was strongest in subjects with the MTHFR 677TT genotype, whereas cystathionine showed a graded response throughout the range of vitamin B-6 vitamer concentrations, and the effect was not modified by the MTHFR 677C-->T genotype. CONCLUSION This large population-based study provided precise estimates of the relation between plasma concentrations of vitamin B-6 forms and transsulfuration metabolites as modified by the MTHFR 677C-->T genotype.
Collapse
|
33
|
Perry C, Yu S, Chen J, Matharu KS, Stover PJ. Effect of vitamin B6 availability on serine hydroxymethyltransferase in MCF-7 cells. Arch Biochem Biophys 2007; 462:21-7. [PMID: 17482557 PMCID: PMC1976282 DOI: 10.1016/j.abb.2007.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 11/24/2022]
Abstract
Folate-activated one-carbon units are derived from serine through the activity of the pyridoxal-phosphate (PLP)-dependent isozymes of serine hydroxymethyltransferase (SHMT). The effect of vitamin B(6) availability on the activity and expression of the human mitochondrial and cytoplasmic SHMT isozymes was investigated in human MCF-7 cells. Cells were cultured for 6 months in vitamin B(6) replete (4.9 microM pyridoxine) minimal essential medium (alphaMEM) or vitamin B(6)-deficient medium containing 49, 4.9 or 0.49 nM pyridoxine. Total cellular PLP levels and SHMT activity were reduced 72% and 7%, respectively, when medium pyridoxine was decreased from 4.9 microM to 49 nM. Cells cultured in medium containing 4.9 nM pyridoxine exhibited 75%, 27% and 60% reduced levels of PLP, SHMT activity and S-adenosylmethionine, respectively, compared to cells cultured in alphaMEM. Cytoplasmic SHMT activity and protein levels, but not mRNA levels, were decreased in cells cultured in vitamin B(6) deficient medium, whereas mitochondrial SHMT activity and protein levels were less sensitive to vitamin B(6) availability. PLP bound to cytoplasmic SHMT with a K(d)=850 nM, a value two orders of magnitude lower than previously reported for the bovine cytoplasmic SHMT isozyme. Collectively, these data indicate that vitamin B(6) restriction decreases the activity and stability of SHMT, and that the cytoplasmic isozyme is more sensitive to vitamin B(6) deficiency than the mitochondrial isozyme in MCF-7 cells.
Collapse
Affiliation(s)
- Cheryll Perry
- Cornell University, Division of Nutritional Science, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
34
|
Jordao AA, Dos Santos FL, Marchini JS, Vannucchi H. Role of vitamin b(6) deficiency in the nitrogen balance of streptozotocin-diabetic rats. Toxicol Mech Methods 2007; 17:275-9. [PMID: 20020950 DOI: 10.1080/15376510601003744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ABSTRACT Male Wistar rats with streptozotocin-induced diabetes received a control diet and a pyridoxine-deficient diet. The animals were divided at random into four groups: control rats (CR), control diabetic rats (CDR), diabetic rats receiving a pyridoxine-free diet (DRB6), and diabetic rats receiving saline solution and no insulin treatment (DRSS). The experiment lasted 45 days. During the first 15 days the animals were observed for the development of diabetes and during the remaining 30 days they received the respective diets. The absence of vitamin B(6) did not influence the glycemia levels at the end of the experiment or the weight evolution of the animals. The rats that did not receive pyridoxine (DRB6) only showed a reduction in GPT activity (17.79 U/mL) compared to the other groups. The DRB6 group presented a significantly lower (p <0.05) nitrogen balance during each period (2.38 +/- 0.44 g N/7 days) compared to the CDR group (3.28 +/- 0.56 g N/7 days). The DRSS group presented similar or significantly higher values (2.81 +/- 0.77 g N/7 days) compared to the CDR group. Pyridoxine-deficient diabetic rats treated with insulin suffered important changes in the utilization of dietary proteins, as observed by nitrogen balance and enzyme activity studies.
Collapse
Affiliation(s)
- Alceu Afonso Jordao
- Course of Nutrition and Metabolism, and Division of Nutrology, Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto/USP
| | | | | | | |
Collapse
|
35
|
Lima CP, Davis SR, Mackey AD, Scheer JB, Williamson J, Gregory JF. Vitamin B-6 deficiency suppresses the hepatic transsulfuration pathway but increases glutathione concentration in rats fed AIN-76A or AIN-93G diets. J Nutr 2006; 136:2141-7. [PMID: 16857832 DOI: 10.1093/jn/136.8.2141] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transsulfuration pathway, which aids in regulating homocysteine concentration and mediates cysteine synthesis, may be sensitive to vitamin B-6 status because cystathionine beta-synthase (CBS) and cystathionine gamma-lyase (CGL) require pyridoxal 5'-phosphate (PLP). To assess relations between vitamin B-6 and transsulfuration, we evaluated the effects of dietary pyridoxine (PN) on the hepatic concentration of relevant metabolites and in vitro activity of CBS and CGL. Growing rats were fed AIN-93G- or AIN-76A-based diets that ranged from adequate to deficient in vitamin B-6 (2, 1, 0.5, 0.1, or 0 mg of PN/kg diet, n = 5). This design allowed assessment of the effects of supplemental methionine (AIN-76A) vs. cysteine (AIN-93G) in common research diets over a range of vitamin B-6 levels. CBS activity, assayed in the presence or absence of added S-adenosylmethionine, was independent of diet type and PN level. CGL activity was independent of diet type but proportional to dietary PN. Rats fed deficient (0 and 0.1 mg PN/kg) diets exhibited only approximately 30% of the CGL activity of those fed the 2 mg PN/kg diets. Hepatic cystathionine increased from 20 to 30 nmol/g for the 1-2 mg PN/kg diets to approximately 85 nmol/g for the 0 mg PN/kg diet; however, cysteine was reduced only in B-6-deficient rats consuming the AIN-93G diet (means of 30-40 nmol/g for adequate to 11.6 nmol/g for 0 mg PN/kg AIN-76A diet). In spite of these effects, hepatic glutathione concentration increased in vitamin B-6 deficiency. These results suggest that vitamin B-6-dependent changes in transsulfuration do not limit hepatic glutathione production.
Collapse
Affiliation(s)
- Carolina P Lima
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | |
Collapse
|
36
|
Fu TF, Hunt S, Schirch V, Safo MK, Chen BH. Properties of human and rabbit cytosolic serine hydroxymethyltransferase are changed by single nucleotide polymorphic mutations. Arch Biochem Biophys 2005; 442:92-101. [PMID: 16137637 DOI: 10.1016/j.abb.2005.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/21/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a key enzyme in the formation and regulation of the folate one-carbon pool. Recent studies on human subjects have shown the existence of two single nucleotide polymorphisms that may be associated with several disease states. One of these mutations results in Ser394 being converted to an Asn (S394N) and the other in the change of Leu474 to a Phe (L474F). These mutations were introduced into the cDNA for both human and rabbit cytosolic SHMT and the mutant enzymes expressed and purified from an Escherichia coli expression system. The mutant enzymes show normal values for kcat and Km for serine. However, the S394N mutant enzyme has increased dissociation constant values for both glycine and tetrahydrofolate (tetrahydropteroylglutamate) and its pentaglutamate form compared to wild-type enzyme. The L474F mutant shows lowered affinity (increased dissociation constant) for only the pentaglutamate form of the folate ligand. Both mutations result in decreased rates of pyridoxal phosphate addition to the mutant apo enzymes to form the active holo enzymes. Neither mutation significantly affects the stability of SHMT or the rate at which it converts 5,10-methenyl tetrahydropteroyl pentaglutamate to 5-formyl tetrahydropteroyl pentaglutamate. Analysis of the structures of rabbit and human SHMT show how mutations at these two sites can result in the observed functional differences.
Collapse
Affiliation(s)
- Tzu-Fun Fu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan 701, Taiwan.
| | | | | | | | | |
Collapse
|
37
|
Ames BN, Atamna H, Killilea DW. Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Mol Aspects Med 2005; 26:363-78. [PMID: 16102804 DOI: 10.1016/j.mam.2005.07.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondrial oxidative decay, which is a major contributor to aging, is accelerated by many common micronutrient deficiencies. One major mechanism is inhibition of the pathway of heme biosynthesis in mitochondria, which causes a deficit of heme-a. Heme-a, only found in Complex IV, is selectively diminished, resulting in oxidant leakage and accelerated mitochondrial decay, which leads to DNA damage, neural decay, and aging. We emphasize those deficiencies, which appear to cause damage through this mechanism, particularly minerals such as iron (25% of menstruating women ingest <50% of the RDA) or zinc (10% of the population ingest <50% of the RDA). Several vitamin deficiencies, such as biotin or pantothenic acid, also increase mitochondrial oxidants through this mechanism. Additionally, other minerals such as magnesium and manganese that play a role in mitochondrial metabolism, but do not affect heme directly, are discussed. An optimum intake of micronutrients could tune up metabolism and give a marked increase in health, particularly for the poor, elderly, and obese, at little cost.
Collapse
Affiliation(s)
- Bruce N Ames
- Nutrition, Metabolisms and Genomics Center, Children's Hospital Oakland Research Institute, Oakland, CA 94609, U States.
| | | | | |
Collapse
|