1
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
2
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Lacouture A, Lafront C, Peillex C, Pelletier M, Audet-Walsh É. Impacts of endocrine-disrupting chemicals on prostate function and cancer. ENVIRONMENTAL RESEARCH 2022; 204:112085. [PMID: 34562481 DOI: 10.1016/j.envres.2021.112085] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Because of their historical mode of action, endocrine-disrupting chemicals (EDCs) are associated with sex-steroid receptors, namely the two estrogen receptors (ERα and ERβ) and the androgen receptor (AR). Broadly, EDCs can modulate sex-steroid receptor functions. They can also indirectly impact the androgen and estrogen pathways by influencing steroidogenesis, expression of AR or ERs, and their respective activity as transcription factors. Additionally, many of these chemicals have multiple cellular targets other than sex-steroid receptors, which results in a myriad of potential effects in humans. The current article reviews the association between prostate cancer and the endocrine-disrupting functions of four prominent EDC families: bisphenols, phthalates, phytoestrogens, and mycoestrogens. Results from both in vitro and in vivo models are included and discussed to better assess the molecular mechanisms by which EDCs can modify prostate biology. To overcome the heterogeneity of results published, we established common guidelines to properly study EDCs in the context of endocrine diseases. Firstly, the expression of sex-steroid receptors in the models used must be determined before testing. Then, in parallel to EDCs, pharmacological compounds acting as positive (agonists) and negative controls (antagonists) have to be employed. Finally, EDCs need to be used in a precise range of concentrations to modulate sex-steroid receptors and avoid off-target effects. By adequately integrating molecular endocrinology aspects in EDC studies and identifying their underlying molecular mechanisms, we will truly understand their impact on prostate cancer and distinguish those that favor the progression of the disease from those that slow down tumor development.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada
| | - Camille Lafront
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada
| | - Cindy Peillex
- Infectious and Immune Diseases Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Martin Pelletier
- Infectious and Immune Diseases Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada.
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada.
| |
Collapse
|
4
|
Zhou D, Bai Z, Guo T, Li J, Li Y, Hou Y, Chen G, Li N. Dietary flavonoids and human top-ranked diseases: The perspective of in vivo bioactivity and bioavailability. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Lee HB, Lee AY, Jang Y, Kwon YH. Soy isoflavone ameliorated the alterations in circulating adipokines and microRNAs of mice fed a high-fat diet. Food Funct 2022; 13:12268-12277. [DOI: 10.1039/d2fo02106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mice fed a high-fat diet, soy isoflavone consumption regulated the circulating miRNA profiles, which were significantly associated with adiposity and serum levels of adipokines, including leptin and adiponectin.
Collapse
Affiliation(s)
- Hyo Bin Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Ah Young Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Yumi Jang
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Bosland MC, Huang J, Schlicht MJ, Enk E, Xie H, Kato I. Impact of 18-Month Soy Protein Supplementation on Steroid Hormones and Serum Biomarkers of Angiogenesis, Apoptosis, and the Growth Hormone/IGF-1 Axis: Results of a Randomized, Placebo-Controlled Trial in Males Following Prostatectomy. Nutr Cancer 2022; 74:110-121. [PMID: 33432829 PMCID: PMC8996680 DOI: 10.1080/01635581.2020.1870706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many studies have addressed the effects of dietary supplementation with soy protein on cancer risk and mortality, but there are only few randomized studies with soy in males. We used serum samples from a two-year trial of soy protein isolate supplementation in middle-aged to older males at risk of recurrence of prostate cancer after radical prostatectomy to determine soy effects on steroid hormones involved in prostate cancer (testosterone, SHBG, and estradiol) and explore the effects on biomarkers of the growth hormone/IGF-1 axis, apoptosis, and angiogenesis. Compared with a casein-based placebo, 18 mo, of consumption of 19.2 g/day of whole soy protein isolate containing 24 mg genistein-reduced circulating testosterone and SHBG, but not free testosterone, and did not affect serum concentrations of estradiol, VEGF, IGF-1, IGFBP-3, IGF-1/IGFBP-3 ratio, soluble Fas, Fas-ligand, and sFas/Fas-ligand ratio. Thus, soy protein supplementation for 18 mo, affected the androgen axis, but the effects on other cancer biomarkers remain to be more definitively determined. The study was registered at clinicaltrials.gov (NCT00765479).
Collapse
Affiliation(s)
- Maarten C. Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jonathan Huang
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Current affiliation: Rush Copley Medical Center, Aurora, IL, USA
| | - Michael J. Schlicht
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Erika Enk
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Hui Xie
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Ikuko Kato
- Departments of Oncology and Pathology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Singla RK, Sharma P, Dubey AK, Gundamaraju R, Kumar D, Kumar S, Madaan R, Shri R, Tsagkaris C, Parisi S, Joon S, Singla S, Kamal MA, Shen B. Natural Product-Based Studies for the Management of Castration-Resistant Prostate Cancer: Computational to Clinical Studies. Front Pharmacol 2021; 12:732266. [PMID: 34737700 PMCID: PMC8560712 DOI: 10.3389/fphar.2021.732266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: With prostate cancer being the fifth-greatest cause of cancer mortality in 2020, there is a dire need to expand the available treatment options. Castration-resistant prostate cancer (CRPC) progresses despite androgen depletion therapy. The mechanisms of resistance are yet to be fully discovered. However, it is hypothesized that androgens depletion enables androgen-independent cells to proliferate and recolonize the tumor. Objectives: Natural bioactive compounds from edible plants and herbal remedies might potentially address this need. This review compiles the available cheminformatics-based studies and the translational studies regarding the use of natural products to manage CRPC. Methods: PubMed and Google Scholar searches for preclinical studies were performed, while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were not in English and not available as full text were excluded. The period of literature covered was from 1985 to the present. Results and Conclusion: Our analysis suggested that natural compounds exert beneficial effects due to their broad-spectrum molecular disease-associated targets. In vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine, berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based phytochemicals. Molecular modeling tools, including machine and deep learning, have made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy isoflavone, lycopene, quercetin, and gossypol have further validated the translational potential of the natural products in the management of prostate cancer.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | | | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Sri Sai College of Pharmacy, Amritsar, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Thiruvananthapuram, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Reed KE, Camargo J, Hamilton-Reeves J, Kurzer M, Messina M. Neither soy nor isoflavone intake affects male reproductive hormones: An expanded and updated meta-analysis of clinical studies. Reprod Toxicol 2020; 100:60-67. [PMID: 33383165 DOI: 10.1016/j.reprotox.2020.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
Concerns that the phytoestrogens (isoflavones) in soy may feminize men continue to be raised. Several studies and case-reports describing feminizing effects including lowering testosterone levels and raising estrogen levels in men have been published. For this reason, the clinical data were meta-analyzed to determine whether soy or isoflavone intake affects total testosterone (TT), free testosterone (FT), estradiol (E2), estrone (E1), and sex hormone binding globulin (SHBG). PubMed and CAB Abstracts databases were searched between 2010 and April 2020, with use of controlled vocabulary specific to the databases. Peer-reviewed studies published in English were selected if (1) adult men consumed soyfoods, soy protein, or isoflavone extracts (from soy or red clover) and [2] circulating TT, FT, SHBG, E2 or E1 was assessed. Data were extracted by two independent reviewers. With one exception, studies included in a 2010 meta-analysis were included in the current analysis. A total of 41 studies were included in the analyses. TT and FT levels were measured in 1753 and 752 men, respectively; E2 and E1 levels were measured in 1000 and 239 men, respectively and SHBG was measured in 967 men. Regardless of the statistical model, no significant effects of soy protein or isoflavone intake on any of the outcomes measured were found. Sub-analysis of the data according to isoflavone dose and study duration also showed no effect. This updated and expanded meta-analysis indicates that regardless of dose and study duration, neither soy protein nor isoflavone exposure affects TT, FT, E2 or E1 levels in men.
Collapse
Affiliation(s)
- Katharine E Reed
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, ESA.3.11, Colchester Campus, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom.
| | - Juliana Camargo
- University of Kansas Medical Center, Department of Dietetics & Nutrition, 3901 Rainbow Blvd, MS 4013, Kansas City, KS, 66160, United States.
| | - Jill Hamilton-Reeves
- Kansas University Department of Urology and Department of Dietetics & Nutrition, University of Kansas Medical Center, Mail Stop 3016, 3901 Rainbow Blvd., Kansas City, KS, 66160, United States.
| | - Mindy Kurzer
- Dept. of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN, 55108, United States.
| | - Mark Messina
- Nutrition Matters, Inc. 26 Spadina Parkway, Pittsfield, MA, 01201, United States.
| |
Collapse
|
9
|
Cui Y, Huang C, Momma H, Niu K, Nagatomi R. Daily dietary isoflavone intake in relation to lowered risk of depressive symptoms among men. J Affect Disord 2020; 261:121-125. [PMID: 31610313 DOI: 10.1016/j.jad.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND The relationship between isoflavone intake and depressive symptoms has been examined among premenopausal and postmenopausal women but not among men. Therefore, we investigated whether isoflavone intake is associated with depressive symptoms among men. METHODS This cross-sectional study was conducted between 2008 and 2011. A total of 1335 Japanese men aged 19-83 participated in the present study. Isoflavone intake was measured using the Brief-type Self-administered Diet History Questionnaire (BDHQ). Depressive symptoms were assessed using the Self-rating Depression Scale (SDS), and two cut-off values (i.e., 40 and 50) were used. Multiple logistic regression analysis was conducted to examine the association between isoflavone intake and depressive symptoms. RESULTS When the cut-off value for SDS was specified as 40, the odds ratios (ORs) for depressive symptoms were higher for the categories that were characterized by high rather than low levels of isoflavone intake in the crude model (p = 0.002). This association remained unchanged (p = 0.029) when potential cofounds were controlled for in Model 3. Multivariate linear regression analysis also showed a significant inverse association between isoflavone intake and SDS scores (p = 0.027; final adjusted model). LIMITATIONS Cross-sectional study is difficult to draw any conclusions about causality CONCLUSIONS: The findings suggest that a high level of dietary isoflavone intake is associated with a lower prevalence of depressive symptoms among men. Therefore, isoflavone intake may have a beneficial effect on men's mental health.
Collapse
Affiliation(s)
- Yufei Cui
- Department of Physical Education, Huaiyin Institute of Technology, 1 Meicheng Road, Huaian 223003, PR China; Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Cong Huang
- Department of Physical Education, Zhejiang University, Hangzhou, PR China
| | - Haruki Momma
- Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kaijun Niu
- Department of Epidemiology, School of Public Health, Tianjin Medical University, Heping District, Tianjin, PR China
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| |
Collapse
|
10
|
Shappell NW, Berg EP, Magolski JD, Billey LO. An In Vitro Comparison of Estrogenic Equivalents Per Serving Size of Some Common Foods. J Food Sci 2019; 84:3876-3884. [PMID: 31742680 DOI: 10.1111/1750-3841.14847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 11/30/2022]
Abstract
The public assumes that some foods, such as milk and ground beef from cattle receiving steroidal implants, are associated with estrogenic hormones, while other foods are presumed "safe" or nonestrogenic. Here, we investigate these assumptions by assessing the relative estrogenic activity of a serving size of four foods: skim milk (8 oz), rice (48 g dry wt) in cooking bag, ground beef patties from steers raised with or without hormone implantation (quarter lb each, 114 g), and tofu burgers (isocaloric to beef burger, 198 g), using an in vitro assay (E-Screen). Mean picogram (pg) estradiol equivalents (E2Eqs) on a serving basis were as follows: skim milk 120; rice 400; rice prepared in cooking bag 370; rice boiling bag alone 4 pg per bag, ground beef burger (obtained from the tissue of cattle that had received no hormone implants) 389, beef burger (obtained from cattle that had received hormone implant) 384, and tofu burger 1,020,000. Rice E2Eqs were highly variable, but the plastic cooking bags provided by the manufacturer added negligible E2Eqs. The source of estrogenic activity in rice may have been due to contamination with the mycotoxin zearalenone. The E-Screen E2Eqs of tofu burger extracts agreed with those predicted based on chemical concentrations of the most estrogenic component times their E2Eq factor. While a tofu burger contained around three times the estrogenic activity of a daily dose of estrogen replacement therapy (125 mg, Premarin®, 303,000 pg); the other foods--a quarter pound ground beef burger at approximately equal calorie count, a serving of milk, or rice, were all at least 750-fold less estrogenic. PRACTICAL APPLICATION: When consuming the recognized serving size of a food, how much estrogenic activity can we expect? While the public assumes that some foods, such as milk and ground beef from cattle receiving steroidal implants, are associated with estrogenic hormones, other foods are presumed "safe" or nonestrogenic. Using one assay, a tofu burger contained three times the estrogenic activity of a dose of hormone replacement therapy commonly prescribed for women after hysterectomy or menopause (Premarin®); while other foods--a quarter pound ground beef burger at approximately equal calorie count, a serving of milk, or rice, were all at least 750-fold less estrogenic.
Collapse
Affiliation(s)
- Nancy W Shappell
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center Biosciences Research Laboratory, 1616 Albrecht Boulevard, Fargo, ND, 58102, USA
| | - Eric P Berg
- Dept. of Animal Sciences, North Dakota State Univ, Fargo, ND, 58108, USA
| | - James D Magolski
- Dept. of Animal Sciences, North Dakota State Univ., Fargo, ND, 58108, USA.,Coleman Natural Foods, Westminster, CO, 80234, USA
| | - Lloyd O Billey
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center Biosciences Research Laboratory, 1616 Albrecht Boulevard, Fargo, ND, 58102, USA
| |
Collapse
|
11
|
Deshpande SS, Nemani H, Pothani S, Balasinor NH. Altered endocrine, cytokine signaling and oxidative stress: A plausible reason for differential changes in testicular cells in diet-induced and genetically-inherited - obesity in adult rats. Reprod Biol 2019; 19:303-308. [PMID: 31272928 DOI: 10.1016/j.repbio.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 01/31/2023]
Abstract
Obesity is emerging as a potential risk factor for male infertility. It is a multifactorial disorder with primarily genetic and/or environmental factors. Our earlier studies have shown differential effects of genetically inherited-and high fat diet induced-obesity on hormones, fertility and spermatogenesis in adult male rats. In the present study, we assessed the effect of high fat diet induced - and genetically inherited - obesity on the underlying molecular mechanisms affecting spermatogenesis. The expression of hormone receptors, cytokines and markers of oxidative stress as well as cell cycle mediators were affected in both the obese groups, however, the changes were different in the two groups. This could be due to difference in fat distribution between the two types of obese groups. Altered expression of hormone receptors, cytokines, cell cycle mediators and differential effects on oxidative stress could be the plausible reason for differential changes in germ cell population in both the groups.
Collapse
Affiliation(s)
- Sharvari S Deshpande
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - Harishankar Nemani
- National Centre for Laboratory Animal Sciences (NCLAS), National Institute of Nutrition, Jamai-Osmania PO Hyderabad, 500 007, India
| | - Suresh Pothani
- National Centre for Laboratory Animal Sciences (NCLAS), National Institute of Nutrition, Jamai-Osmania PO Hyderabad, 500 007, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400012, India.
| |
Collapse
|
12
|
Chhabra G, Singh CK, Ndiaye MA, Fedorowicz S, Molot A, Ahmad N. Prostate cancer chemoprevention by natural agents: Clinical evidence and potential implications. Cancer Lett 2018; 422:9-18. [PMID: 29471004 DOI: 10.1016/j.canlet.2018.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer and the second leading cause of cancer-related deaths in American men. Due to its long latency period, PCa is considered as an ideal cancer type for chemopreventive interventions. Chemopreventive agents include various natural or synthetic agents that prevent or delay cancer development, progression and/or recurrence. Pre-clinical studies suggest that many natural products and dietary agents have chemopreventive properties. However, a limited number of these agents have been tested in clinical trials, with varying success. In this review, we have discussed the available clinical studies regarding the efficacy of natural chemopreventive agents against PCa, including tea polyphenols, selenium, soy proteins, vitamins and resveratrol. We have also provided a discussion on the clinical challenges and opportunities for the potential use of chemopreventive agents against PCa. Based on available literature, it appears that the variable outcomes of the chemopreventive clinical studies necessitate a need for additional studies with more rigorous designs and methodical interpretations in order to measure the potential of the natural agents against PCa.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | | | - Arielle Molot
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Medical Center, Madison, WI, USA.
| |
Collapse
|
13
|
Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci 2017; 18:ijms18071381. [PMID: 28657580 PMCID: PMC5535874 DOI: 10.3390/ijms18071381] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022] Open
Abstract
In mammals, the effects of estrogen are mainly mediated by two different estrogen receptors, ERα and ERβ. These proteins are members of the nuclear receptor family, characterized by distinct structural and functional domains, and participate in the regulation of different biological processes, including cell growth, survival and differentiation. The two estrogen receptor (ER) subtypes are generated from two distinct genes and have partially distinct expression patterns. Their activities are modulated differently by a range of natural and synthetic ligands. Some of these ligands show agonistic or antagonistic effects depending on ER subtype and are described as selective ER modulators (SERMs). Accordingly, a few phytochemicals, called phytoestrogens, which are synthesized from plants and vegetables, show low estrogenic activity or anti-estrogenic activity with potentially anti-proliferative effects that offer nutraceutical or pharmacological advantages. These compounds may be used as hormonal substitutes or as complements in breast cancer treatments. In this review, we discuss and summarize the in vitro and in vivo effects of certain phytoestrogens and their potential roles in the interaction with estrogen receptors.
Collapse
|
14
|
Zhang HY, Cui J, Zhang Y, Wang ZL, Chong T, Wang ZM. Isoflavones and Prostate Cancer: A Review of Some Critical Issues. Chin Med J (Engl) 2017; 129:341-7. [PMID: 26831238 PMCID: PMC4799580 DOI: 10.4103/0366-6999.174488] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: The purpose of this review is to discuss some critical issues of isoflavones protective against the development of prostate cancer (PCa). Data Sources: Data cited in this review were obtained primarily from PubMed and Embase from 1975 to 2015. Study Selection: Articles were selected with the search terms “isoflavone”, “Phytoestrogen”, “soy”, “genistin”, and “PCa”. Results: Isoflavones do not play an important role on prostate-specific antigen levels reduction in PCa patients or healthy men. The effect of isoflavones on sex hormone levels and PCa risk may be determined by equol converting bacteria in the intestine, specific polymorphic variation and concentrations of isoflavones. The intake of various types of phytoestrogens with lower concentrations in the daily diet may produce synergistic effects against PCa. Moreover, prostate tissue may concentrate isoflavones to potentially anti-carcinogenic levels. In addition, it is noteworthy that isoflavones may act as an agonist in PCa. Conclusions: Isoflavones play a protective role against the development of PCa. However, careful consideration should be given when isoflavones are used in the prevention and treatment of PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Zi-Ming Wang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
15
|
Hussain SS, Kumar AP, Ghosh R. Food-based natural products for cancer management: Is the whole greater than the sum of the parts? Semin Cancer Biol 2016; 40-41:233-246. [PMID: 27397504 PMCID: PMC5067244 DOI: 10.1016/j.semcancer.2016.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/08/2023]
Abstract
The rise in cancer incidence and mortality in developing countries together with the human and financial cost of current cancer therapy mandates a closer look at alternative ways to overcome this burgeoning global healthcare problem. Epidemiological evidence for the association between cancer and diet and the long latency of most cancer progression have led to active exploration of whole and isolated natural chemicals from different naturally occurring substances in various preclinical and clinical settings. In general the lack of systemic toxicities of most 'whole' and 'isolated' natural compounds, their potential to reduce toxic doses and potential to delay the development of drug-resistance makes them promising candidates for cancer management. This review article examines the suggested molecular mechanisms affected by these substances focusing to a large extent on prostate cancer and deliberates on the disparate results obtained from cell culture, preclinical and clinical studies in an effort to highlight the use of whole extracts and isolated constituents for intervention. As such these studies underscore the importance of factors such as treatment duration, bioavailability, route of administration, selection criteria, standardized formulation and clinical end points in clinical trial design with both entities. Overall lack of parallel comparison studies between the whole natural products and their isolated compounds limits decisive conclusions regarding the superior utility of one over the other. We suggest the critical need for rigorous comparative research to identify which one of the two or both entities from nature would be best qualified to take on the mantle of cancer management.
Collapse
Affiliation(s)
- Suleman S Hussain
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Addanki P Kumar
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| | - Rita Ghosh
- Department of Urology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Pharmacology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Itsumi M, Shiota M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, Kajioka S, Uchiumi T, Naito S, Eto M, Yokomizo A. Equol inhibits prostate cancer growth through degradation of androgen receptor by S-phase kinase-associated protein 2. Cancer Sci 2016; 107:1022-8. [PMID: 27088761 PMCID: PMC4946716 DOI: 10.1111/cas.12948] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Chemopreventive and potential therapeutic effects of soy isoflavones have been shown to be effective in numerous preclinical studies as well as clinical studies in prostate cancer. Although the inhibition of androgen receptor signaling has been supposed as one mechanism underlying their effects, the precise mechanism of androgen receptor inhibition remains unclear. Thus, this study aimed to clarify their mechanism. Among soy isoflavones, equol suppressed androgen receptor as well as prostate-specific antigen expression most potently in androgen-dependent LNCaP cells. However, the inhibitory effect on androgen receptor expression and activity was less prominent in castration-resistant CxR and 22Rv1 cells. Consistently, cell proliferation was suppressed and cellular apoptosis was induced by equol in LNCaP cells, but less so in CxR and 22Rv1 cells. We revealed that the proteasome pathway through S-phase kinase-associated protein 2 (Skp2) was responsible for androgen receptor suppression. Taken together, soy isoflavones, especially equol, appear to be promising as chemopreventive and therapeutic agents for prostate cancer based on the fact that equol augments Skp2-mediated androgen receptor degradation. Moreover, because Skp2 expression was indicated to be crucial for the effect of soy isoflavones, soy isoflavones may be applicable for precancerous and cancerous prostates.
Collapse
Affiliation(s)
- Momoe Itsumi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsunori Tatsugami
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Urology, Harasanshin Hospital, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Yokomizo
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Frasinyuk MS, Mrug GP, Bondarenko SP, Khilya VP, Sviripa VM, Syrotchuk OA, Zhang W, Cai X, Fiandalo MV, Mohler JL, Liu C, Watt DS. Antineoplastic Isoflavonoids Derived from Intermediate ortho-Quinone Methides Generated from Mannich Bases. ChemMedChem 2016; 11:600-11. [PMID: 26889756 PMCID: PMC4818953 DOI: 10.1002/cmdc.201600008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/08/2016] [Indexed: 12/31/2022]
Abstract
The regioselective condensations of various 7-hydroxyisoflavonoids with bis(N,N-dimethylamino)methane in a Mannich reaction provided C-8 N,N-dimethylaminomethyl-substituted isoflavonoids in good yield. Similar condensations of 7-hydroxy-8-methylisoflavonoids led to the C-6-substituted analogs. Thermal eliminations of dimethylamine from these C-6 or C-8 N,N-dimethylaminomethyl-substituted isoflavonoids generated ortho-quinone methide intermediates within isoflavonoid frameworks for the first time. Despite other potential competing outcomes, these ortho-quinone methide intermediates trapped dienophiles including 2,3-dihydrofuran, 3,4-dihydro-2H-pyran, 3-(N,N-dimethylamino)-5,5-dimethyl-2-cyclohexen-1-one, 1-morpholinocyclopentene, and 1-morpholinocyclohexene to give various inverse electron-demand Diels-Alder adducts. Several adducts derived from 8-N,N-dimethylaminomethyl-substituted isoflavonoids displayed good activity in the 1-10 μm concentration range in an in vitro proliferation assay using the PC-3 prostate cancer cell line.
Collapse
Affiliation(s)
- Mykhaylo S Frasinyuk
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0596, USA.
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0509, USA.
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, 02094, Ukraine.
| | - Galyna P Mrug
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Svitlana P Bondarenko
- Department of Chemistry, Taras Shevchenko Kyiv National University, Kyiv, 01601, Ukraine
| | - Volodymyr P Khilya
- Department of Chemistry, Taras Shevchenko Kyiv National University, Kyiv, 01601, Ukraine
| | - Vitaliy M Sviripa
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0596, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Oleksandr A Syrotchuk
- Central Laboratory for Quality Control of Medicines and Medical Products, Kyiv, 04053, Ukraine
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0596, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
| | - Xianfeng Cai
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0596, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
| | - Michael V Fiandalo
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - James L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0596, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0596, USA.
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0509, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
18
|
Frasinyuk MS, Mrug GP, Bondarenko SP, Sviripa VM, Zhang W, Cai X, Fiandalo MV, Mohler JL, Liu C, Watt DS. Application of Mannich bases to the synthesis of hydroxymethylated isoflavonoids as potential antineoplastic agents. Org Biomol Chem 2015; 13:11292-301. [PMID: 26416505 DOI: 10.1039/c5ob01828e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The regiospecific Mannich aminomethylation of 7-hydroxyisoflavonoids using bis(N,N-dimethylamino)methane afforded C-8 substituted N,N-dimethylaminomethyl adducts, and the regioselective aminomethylation of 5-hydroxy-7-methoxyisoflavonoids afforded predominantly the C-6 substituted N,N-dimethylaminomethyl adducts. Acetylation of these C-6 or C-8 Mannich bases with potassium acetate in acetic anhydride provided access to the corresponding acetoxymethyl derivatives that were subsequently converted to hydroxymethyl- and methoxymethyl-substituted 5-hydroxy- or 7-hydroxyisoflavonoids related to naturally occurring flavonoids. The C-8 acetoxymethyl, hydroxymethyl or methoxymethyl-substituted isoflavonoids possessed promising inhibitory potency in the low micromolar range in a prostate cancer PC-3 cell proliferation assay.
Collapse
Affiliation(s)
- Mykhaylo S Frasinyuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv 02094, Ukraine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Soy phytoestrogens are dietary components with considerable effects on reducing the incidence of prostate cancer. Epidemiological studies demonstrated that occurrence of prostate cancer is relatively low in Asia and Southern Europe, a status associated with consuming of soy isoflavones, such as genistein, daidzein, and glycitein. Soy phytoestrogens exert their activity on molecular mechanisms, including cell-cycle control, induction of apoptosis, inhibition of angiogenesis, and metastasis. In addition, they have antioxidant activity and show regulatory effect on the expression of genes involved in DNA damage and repair. Furthermore, the epigenetic regulation of gene expression can be modified by soy phytoestrogens. They show regulatory effects on gene activity by altering DNA methylation and/or histone modification patterns. In this chapter, we discuss the role of soy phytoestrogens on the genetic and epigenetic mechanisms of prostate cancer. We attempt to provide further insight in order to understand the underlying mechanisms of protective effects of soy phytoestrogens in preventing prostate cancer.
Collapse
|
20
|
Xiong P, Wang R, Zhang X, DeLa Torre E, Leon F, Zhang Q, Zheng S, Wang G, Chen QH. Design, Synthesis, and Evaluation of Genistein Analogues as Anti-Cancer Agents. Anticancer Agents Med Chem 2015; 15:1197-203. [PMID: 25991428 PMCID: PMC4748842 DOI: 10.2174/1871520615666150520142437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/04/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022]
Abstract
Genistein is a bioactive isoflavone derived from soybeans. The tie-in between the intake of genistein and the decreased incidence of some solid tumors (including prostate cancer) has been demonstrated by epidemiological studies. The potential of genistein in treating prostate cancer has also been displayed by in vitro cell-based and in vivo animal experiments. Genistein has entered clinical trials for both chemoprevention and potential treatment of prostate cancer. Even though the low oral bioavailability has presented the major challenges to genistein's further clinical development, chemical modulation of genistein holds the promise to generate potential anti-prostate cancer agents with enhanced potency and/or better pharmacokinetic profiles than genistein. As part of our ongoing project to develop natural products-based anti-prostate cancer agents, the current study was undertaken to synthesize eight genistein analogues for cytotoxic evaluation in three prostate cancer cell lines (PC-3, DU-145, LNCaP; both androgen-sensitive and androgen-refractory cell lines), as well as one aggressive cervical cancer cell line (HeLa). Eight genistein analogues have been successfully synthesized with Suzuki-Miyaura coupling reaction as a key step. Their in vitro anti-cancer potential was evaluated by trypan blue exclusion assay and WST-1 cell proliferation assay against a panel of four human cancer cell lines. The acquired data suggest i) that the C-5 and C-7 hydroxyl groups in genistein are very important for the cytotoxicity and anti-proliferative activity; and ii) that 1-alkyl-1H-pyrazol-4-yl and pyridine-3-yl might act as good bioisosteres for the 4'-hydroxyphenyl moiety in genistein.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiao-Hong Chen
- Department of Chemistry, California State University Fresno, 2555 E. San Ramon Avenue M/S SB 70.
| |
Collapse
|
21
|
Magolski JD, Shappell NW, Vonnahme KA, Anderson GM, Newman DJ, Berg EP. Consumption of ground beef obtained from cattle that had received steroidal growth promotants does not trigger early onset of estrus in prepubertal pigs. J Nutr 2014; 144:1718-24. [PMID: 25332471 DOI: 10.3945/jn.114.198127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The earlier onset of puberty seen in young American girls has led researchers to question if a causal relation exists between dietary sources of estrogenic compounds and precocious puberty. OBJECTIVE Using the prepubertal gilt (young female pig) as an animal model, our hypothesis is that feeding beef obtained from cattle receiving growth-promoting steroidal implants postweaning does not alter the onset of puberty or the peripubertal body composition of gilts compared with contemporaries fed nonimplanted "natural" beef or a common meat alternative, tofu. METHOD The base diet was formulated using canola meal replacing soybean meal to reduce diet estrogenicity. Feed intake was monitored and controlled to ensure similar intake. Gilts were assigned to treatments based on dam and initial body weight (mean: 24.5 ± 3.20 kg) at 61 d of age. The negative control base diet was supplemented with daily feedings of a cooked patty from nonimplanted steers (natural), from steers that had been treated with growth promotants [100 mg trenbolone acetate and 14 mg estradiol (E2) benzoate; implanted], or cooked tofu patty. RESULTS E2 equivalents (nanogram per kilogram, as fed as analyzed by E-Screen) of the tofu (a soy-based product) supplement were ∼570 times the natural and ∼170 times the implanted supplements. There were no observed differences across treatments in live weight gain (P = 0.90), longissimus muscle area developed at the 10th and 11th rib interface (P = 0.46), and subcutaneous fat deposition (P = 0.41) at the same location over time or in the number of days to reach estrus (P = 0.55). CONCLUSIONS Consumption of beef from growth implanted or natural steers or tofu at levels similar to those typically consumed by humans did not impact growth or onset of estrus in these prepubertal gilts.
Collapse
Affiliation(s)
- James D Magolski
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Nancy W Shappell
- USDA, Agricultural Research Service, Biosciences Research Laboratory, Fargo, ND
| | | | | | - David J Newman
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Eric P Berg
- Department of Animal Sciences, North Dakota State University, Fargo, ND;
| |
Collapse
|
22
|
van Die MD, Bone KM, Williams SG, Pirotta MV. Soy and soy isoflavones in prostate cancer: a systematic review and meta-analysis of randomized controlled trials. BJU Int 2014; 113:E119-30. [PMID: 24053483 DOI: 10.1111/bju.12435] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To evaluate the evidence from randomized controlled trials (RCTs) on the efficacy and safety of soy/isoflavones in men with prostate cancer (PCa) or with a clinically identified risk of PCa. PATIENTS AND METHODS MEDLINE, EMBASE, the Allied and Complementary Medicine (AMED), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) and the Cochrane Library databases were searched. We identified RCTs investigating soy/soy isoflavones as dietary supplements or dietary components for the secondary prevention or treatment of PCa in men with PCa or with a clinically identified risk of developing PCa. Studies of multi-component formulations were excluded. Six authors were contacted for further information for the meta-analyses. Methodological quality was assessed using the Cochrane Collaboration's risk-of- bias tool. The PRISMA statement for reporting systematic reviews was followed. RESULTS Of the eight RCTs that met the inclusion criteria, six restricted recruitment to men diagnosed with PCa, while two included men with clinically identified risk of PCa. A large degree of heterogeneity was found with respect to dosages and preparations of soy/isoflavones administered. Most studies had small sample sizes and were of short duration. The risk of bias was assessed as low in all assessed studies except for one, for which the risk of bias was unclear. Meta-analyses of the two studies including men with identified risk of PCa found a significant reduction in PCa diagnosis after administration of soy/soy isoflavones (risk ratio = 0.49, 95% CI 0.26, 0.95). Meta-analyses indicated no significant differences between groups for prostate-specific antigen (PSA) levels or sex steroid endpoints (sex hormone-binding globulin [SHBG], testosterone, free testosterone, oestradiol and dihydrotestosterone). CONCLUSIONS The results of a meta-analysis of two studies suggest there may be support for epidemiological findings of a potential role for soy/soy isoflavones in PCa risk reduction; however, a clear understanding of the impact of soy/isoflavones on PSA, total testosterone, free testosterone and SHBG levels in men with, or at identified risk of, PCa could not be derived from these data, given the limitations of sample size and study duration in individual trials. A good safety profile is shown by this meta-analysis for soy/soy isoflavones supplementation.
Collapse
Affiliation(s)
- M Diana van Die
- Department of General Practice, University of Melbourne, Parkville, Vic
| | | | | | | |
Collapse
|
23
|
Mahmoud AM, Yang W, Bosland MC. Soy isoflavones and prostate cancer: a review of molecular mechanisms. J Steroid Biochem Mol Biol 2014; 140:116-32. [PMID: 24373791 PMCID: PMC3962012 DOI: 10.1016/j.jsbmb.2013.12.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 02/08/2023]
Abstract
Soy isoflavones are dietary components for which an association has been demonstrated with reduced risk of prostate cancer (PCa) in Asian populations. However, the exact mechanism by which these isoflavones may prevent the development or progression of PCa is not completely understood. There are a growing number of animal and in vitro studies that have attempted to elucidate these mechanisms. The predominant and most biologically active isoflavones in soy products, genistein, daidzein, equol, and glycetin, inhibit prostate carcinogenesis in some animal models. Cell-based studies show that soy isoflavones regulate genes that control cell cycle and apoptosis. In this review, we discuss the literature relevant to the molecular events that may account for the benefit of soy isoflavones in PCa prevention or treatment. These reports show that although soy isoflavone-induced growth arrest and apoptosis of PCa cells are plausible mechanisms, other chemo protective mechanisms are also worthy of consideration. These possible mechanisms include antioxidant defense, DNA repair, inhibition of angiogenesis and metastasis, potentiation of radio- and chemotherapeutic agents, and antagonism of estrogen- and androgen-mediated signaling pathways. Moreover, other cells in the cancer milieu, such as the fibroblastic stromal cells, endothelial cells, and immune cells, may be targeted by soy isoflavones, which may contribute to soy-mediated prostate cancer prevention. In this review, these mechanisms are discussed along with considerations about the doses and the preclinical models that have been used.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Wancai Yang
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Saffarini CM, McDonnell EV, Amin A, Spade DJ, Huse SM, Kostadinov S, Hall SJ, Boekelheide K. Maturation of the developing human fetal prostate in a rodent xenograft model. Prostate 2013; 73:1761-75. [PMID: 24038131 PMCID: PMC4306740 DOI: 10.1002/pros.22713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/27/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prostate cancer is the most commonly diagnosed nonskin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. METHODS We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate-specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. RESULTS Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture microdissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30- and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. CONCLUSION This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease.
Collapse
Affiliation(s)
- Camelia M. Saffarini
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Elizabeth V. McDonnell
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island, USA 02903
| | - Daniel J. Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Susan M. Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Stefan Kostadinov
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital, Providence, Rhode Island, USA 02903
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA 02912
| |
Collapse
|
25
|
Hamilton-Reeves JM, Banerjee S, Banerjee SK, Holzbeierlein JM, Thrasher JB, Kambhampati S, Keighley J, Van Veldhuizen P. Short-term soy isoflavone intervention in patients with localized prostate cancer: a randomized, double-blind, placebo-controlled trial. PLoS One 2013; 8:e68331. [PMID: 23874588 PMCID: PMC3710024 DOI: 10.1371/journal.pone.0068331] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/28/2013] [Indexed: 12/27/2022] Open
Abstract
PURPOSE We describe the effects of soy isoflavone consumption on prostate specific antigen (PSA), hormone levels, total cholesterol, and apoptosis in men with localized prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS We conducted a double-blinded, randomized, placebo-controlled trial to examine the effect of soy isoflavone capsules (80 mg/d of total isoflavones, 51 mg/d aglucon units) on serum and tissue biomarkers in patients with localized prostate cancer. Eighty-six men were randomized to treatment with isoflavones (n=42) or placebo (n=44) for up to six weeks prior to scheduled prostatectomy. We performed microarray analysis using a targeted cell cycle regulation and apoptosis gene chip (GEArrayTM). Changes in serum total testosterone, free testosterone, total estrogen, estradiol, PSA, and total cholesterol were analyzed at baseline, mid-point, and at the time of radical prostatectomy. In this preliminary analysis, 12 genes involved in cell cycle control and 9 genes involved in apoptosis were down-regulated in the treatment tumor tissues versus the placebo control. Changes in serum total testosterone, free testosterone, total estrogen, estradiol, PSA, and total cholesterol in the isoflavone-treated group compared to men receiving placebo were not statistically significant. CONCLUSIONS/SIGNIFICANCE These data suggest that short-term intake of soy isoflavones did not affect serum hormone levels, total cholesterol, or PSA. TRIAL REGISTRATION ClinicalTrials.gov NCT00255125.
Collapse
Affiliation(s)
- Jill M. Hamilton-Reeves
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Snigdha Banerjee
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Cancer Research Unit, V.A. Medical Center, Kansas City, Missouri, United States of America
| | - Sushanta K. Banerjee
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Cancer Research Unit, V.A. Medical Center, Kansas City, Missouri, United States of America
| | - Jeffrey M. Holzbeierlein
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - J. Brantley Thrasher
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Suman Kambhampati
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Cancer Research Unit, V.A. Medical Center, Kansas City, Missouri, United States of America
| | - John Keighley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Peter Van Veldhuizen
- Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Cancer Research Unit, V.A. Medical Center, Kansas City, Missouri, United States of America
| |
Collapse
|
26
|
Žilić S, Akıllıoğlu HG, Serpen A, Perić V, Gökmen V. Comparisons of phenolic compounds, isoflavones, antioxidant capacity and oxidative enzymes in yellow and black soybeans seed coat and dehulled bean. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2005-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Kraemer WJ, Solomon-Hill G, Volk BM, Kupchak BR, Looney DP, Dunn-Lewis C, Comstock BA, Szivak TK, Hooper DR, Flanagan SD, Maresh CM, Volek JS. The effects of soy and whey protein supplementation on acute hormonal reponses to resistance exercise in men. J Am Coll Nutr 2013; 32:66-74. [PMID: 24015701 DOI: 10.1080/07315724.2013.770648] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE For many resistance-trained men concerns exist regarding the production of estrogen with the consumption of soy protein when training for muscle strength and size. Thus, the purpose of this investigation was to examine the effects of soy and whey protein supplementation on sex hormones following an acute bout of heavy resistance exercise in resistance trained men. METHODS Ten resistance-trained men (age 21.7 ± 2.8 [SD] years; height 175.0 ± 5.4 cm; weight 84.2 ± 9.1 kg) volunteered to participate in an investigation. Utilizing a within subject randomized crossover balanced placebo design, all subjects completed 3 experimental treatment conditions supplementing with whey protein isolate (WPI), soy protein isolate (SPI), and maltodextrin placebo control for 14 days with participants ingesting 20 g of their assigned supplement each morning at approximately the same time each day. Following supplementation, subjects performed an acute heavy resistance exercise test consisting of 6 sets of 10 repetitions in the squat exercise at 80% of the subject's one repetition maximum. RESULTS This investigation observed lower testosterone responses following supplementation with soy protein in addition to a positive blunted cortisol response with the use of whey protein at some recovery time points. Although sex hormone binding globulin (SHBG) was proposed as a possible mechanism for understanding changes in androgen content, SHBG did not differ between experimental treatments. Importantly, there were no significant differences between groups in changes in estradiol concentrations. CONCLUSION Our main findings demonstrate that 14 days of supplementation with soy protein does appear to partially blunt serum testosterone. In addition, whey influences the response of cortisol following an acute bout of resistance exercise by blunting its increase during recovery. Protein supplementation alters the physiological responses to a commonly used exercise modality with some differences due to the type of protein utilized.
Collapse
Affiliation(s)
- William J Kraemer
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Does equol production determine soy endocrine effects? Eur J Nutr 2012; 51:389-98. [PMID: 22366740 DOI: 10.1007/s00394-012-0331-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/10/2012] [Indexed: 12/12/2022]
Abstract
Isoflavones, a group of phytoestrogens, are selective oestrogen receptor (ER) modulators. They may positively impact endocrine-related conditions but the current evidence is sparse. Equol, a non-steroidal oestrogen, is produced by the metabolism of the isoflavone daidzein by intestinal bacteria. In Western countries, 30-50% of individuals metabolize daidzein into equol and are known as equol producers. Equol production may be the source of benefit from isoflavones in endocrine disease.
Collapse
|
29
|
Jackson RL, Greiwe JS, Schwen RJ. Emerging evidence of the health benefits of S-equol, an estrogen receptor β agonist. Nutr Rev 2011; 69:432-48. [PMID: 21790611 DOI: 10.1111/j.1753-4887.2011.00400.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many clinical studies have been carried out to determine the health benefits of soy protein and the isoflavones contained in soy. S-equol is not present in soybeans but is produced naturally in the gut of certain individuals, particularly Asians, by the bacterial biotransformation of daidzein, a soy isoflavone. In those intervention studies in which plasma S-equol levels were determined, a concentration of >5-10 ng/mL has been associated with a positive outcome for vasomotor symptoms, osteoporosis (as measured by an increase in bone mineral density), prostate cancer, and the cardiovascular risk biomarkers low-density lipoprotein cholesterol and C-reactive protein. These studies suggest that S-equol may provide therapeutic benefits for a number of medical needs.
Collapse
|
30
|
Ozten-Kandaş N, Bosland MC. Chemoprevention of prostate cancer: Natural compounds, antiandrogens, and antioxidants - In vivo evidence. J Carcinog 2011; 10:27. [PMID: 22190869 PMCID: PMC3243088 DOI: 10.4103/1477-3163.90438] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/20/2011] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is the leading non-skin malignancy detected in US males and the second cause of death due to male cancer, in the US. Interventions with drugs or diet supplements that slow down the growth and progression of prostate cancer are potentially very effective in reducing the burden of prostate cancer, particularly if these treatments also prevent the de novo development of new prostatic malignancies. Challenges to identify efficacious agents and develop them for chemopreventive application in men at risk for prostate cancer have included uncertainty about which preclinical models have the ability to predict efficacy in men and lack of consensus about which early phase clinical trial designs are the most appropriate and cost-effective to test promising agents. Efficacy studies in animal models have identified several agents with potential chemopreventive activity against prostate cancer, but few of these findings have been translated into clinical trials. This article identifies some of the major issues associated with prostate cancer chemoprevention research and summarizes the most significant current results from animal efficacy studies and human clinical prevention trials. This summary focuses on: (1) Naturally occurring agents and compounds derived from such agents, including green tea and its constituents, silibinin and milk thistle, and genistein and soy, (2) chemoprevention drugs including agents interfering with androgen action, and (3) antioxidants such as selenium, vitamin E, and lycopene. The general lack of activity of antioxidants is discussed, followed by considerations about translation of preclinical chemoprevention efficacy data, focusing on dose, form, bioavailability, and timing of administration of the agent, as well as discussion of study design of clinical trials and the predictive ability of preclinical models.
Collapse
Affiliation(s)
- Nur Ozten-Kandaş
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
31
|
Ho E, Beaver LM, Williams DE, Dashwood RH. Dietary factors and epigenetic regulation for prostate cancer prevention. Adv Nutr 2011; 2:497-510. [PMID: 22332092 PMCID: PMC3226387 DOI: 10.3945/an.111.001032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.
Collapse
Affiliation(s)
- Emily Ho
- Linus Pauling Institute, Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR, USA.
| | - Laura M. Beaver
- Linus Pauling Institute,Department of Nutrition and Exercise Sciences, and
| | - David E. Williams
- Linus Pauling Institute,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Roderick H. Dashwood
- Linus Pauling Institute,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| |
Collapse
|
32
|
Effects of commercially available soy products on PSA in androgen-deprivation-naïve and castration-resistant prostate cancer. South Med J 2011; 104:736-40. [PMID: 22024780 DOI: 10.1097/smj.0b013e3182335151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE No standard therapeutic option exists for men with prostate cancer who have failed local therapy, have no gross metastatic disease, and whose only manifestation of disease is a rising prostate-specific antigen (PSA) level. Soy products are able to affect PSA kinetics in some men with prostate cancer, and this effect has been attributed to the decreased expression of the androgen receptor and other mechanisms. METHODS We treated 10 men with rising PSA levels after radical prostatectomy and salvage radiotherapy with commercially available soy products. Scans revealed no gross metastatic disease. Three men also had been receiving androgen-deprivation therapy (ADT) and had rising PSA levels that were consistent with castration-resistant (CR) disease. We reported the results of this modality on PSA levels, PSA kinetics, and the duration of PSA response. RESULTS Responses occurred in 4 of 7 (57%) patients with ADT-naïve disease and 1 of 3 (33%) patients with CR disease. The median duration of treatment response was 24 months. The overall clinical benefit, therefore, was noted in 5 of 10 (50%) patients. Therapy was well tolerated. CONCLUSIONS Our findings are fairly congruent with what has been described in the literature on the use of this modality in prostate cancer. We used commercially available soy products. We also show that soy can provide benefit in CR prostate cancer. Our clinical experience suggests that soy supplementation using commercially available soy products can have durable beneficial effects on PSA levels and PSA kinetics in some men with prostate cancer.
Collapse
|
33
|
Abstract
A high intake of fruits and vegetables is associated with a lower risk of cancer. In this context, considerable attention is paid to Asian populations who consume high amounts of soy and soy-derived isoflavones, and have a lower risk for several cancer types such as breast and prostate cancers than populations in Western countries. Hence, interest focuses on soyfoods, soy products, and soy ingredients such as isoflavones with regard to their possible beneficial effects that were observed in numerous experiments and studies. The outcomes of the studies are not always conclusive, are often contradictory depending on the experimental conditions, and are, therefore, difficult to interpret. Isoflavone research revealed not only beneficial but also adverse effects, for instance, on the reproductive system. This is also the case with tumor-promoting effects on, for example, breast tissue. Isoflavone extracts and supplements are often used for the treatment of menopausal symptoms and for the prevention of age-associated conditions such as cardiovascular diseases and osteoporosis in postmenopausal women. In relation to this, questions about the effectiveness and safety of isoflavones have to be clarified. Moreover, there are concerns about the maternal consumption of isoflavones due to the development of leukemia in infants. In contrast, men may benefit from the intake of isoflavones with regard to reducing the risk of prostate cancer. Therefore, this review examines the risks but also the benefits of isoflavones with regard to various kinds of cancer, which can be derived from animal and human studies as well as from in vitro experiments.
Collapse
Affiliation(s)
- Susanne Andres
- Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | |
Collapse
|
34
|
de Souza PL, Russell PJ, Kearsley JH, Howes LG. Clinical pharmacology of isoflavones and its relevance for potential prevention of prostate cancer. Nutr Rev 2010; 68:542-55. [PMID: 20796219 DOI: 10.1111/j.1753-4887.2010.00314.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Isoflavones are phytoestrogens that have pleiotropic effects in a wide variety of cancer cell lines. Many of these biological effects involve key components of signal transduction pathways within cancer cells, including prostate cancer cells. Epidemiological studies have raised the hypothesis that isoflavones may play an important role in the prevention and modulation of prostate cancer growth. Since randomized phase III trials of isoflavones in prostate cancer prevention are currently lacking, the best evidence for this concept is presently provided by case control studies. However, in vitro data are much more convincing in regard to the activity of a number of isoflavones, and have led to the development of genistein and phenoxodiol in the clinic as potential treatments for cancer. In addition, the potential activity of isoflavones in combination with cytotoxics or radiotherapy warrants further investigation. This review focuses on the clinical pharmacology of isoflavones and its relevance to their development for use in the prevention of prostate cancer, and it evaluates some of the conflicting data in the literature.
Collapse
Affiliation(s)
- Paul L de Souza
- St. George Hospital Clinical School, UNSW, Kogarah, New South Wales, Australia.
| | | | | | | |
Collapse
|
35
|
Sherrill JD, Sparks M, Dennis J, Mansour M, Kemppainen BW, Bartol FF, Morrison EE, Akingbemi BT. Developmental exposures of male rats to soy isoflavones impact Leydig cell differentiation. Biol Reprod 2010; 83:488-501. [PMID: 20554919 PMCID: PMC6366397 DOI: 10.1095/biolreprod.109.082685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/20/2010] [Accepted: 05/16/2010] [Indexed: 01/03/2023] Open
Abstract
Testicular Leydig cells, which are the predominant source of the male sex steroid hormone testosterone, express estrogen receptors (ESRs) and are subject to regulation by estrogen. Following ingestion, the two major isoflavones in soybeans, genistin and daidzin, are hydrolyzed by gut microflora to form genistein and daidzein, which have the capacity to bind ESRs and affect gene expression. Thus, the increasing use of soy-based products as nondairy sources of protein has raised concerns about the potential of these products to cause reproductive toxicity. In the present study, perinatal exposure of male rats to isoflavones induced proliferative activity in Leydig cells. Isoflavones have the capacity to act directly as mitogens in Leydig cells, because genistein treatment induced Leydig cell division in vitro. Genistein action regulating Leydig cell division involved ESRs, acting in concert with signaling molecules in the transduction pathway mediated by protein kinase B (AKT) and mitogen-activated protein kinase (MAPK). Enhanced proliferative activity in the prepubertal period increased Leydig cell numbers, which alleviated deficits in androgen biosynthesis and/or augmented serum and testicular testosterone concentrations in adulthood. Together, these observations indicate that the perinatal exposures of male rats to isoflavones affected Leydig cell differentiation, and they imply that including soy products in the diets of neonates has potential implications for testis function.
Collapse
Affiliation(s)
- Jessica D Sherrill
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hsu A, Bray TM, Ho E. Anti-inflammatory activity of soy and tea in prostate cancer prevention. Exp Biol Med (Maywood) 2010; 235:659-67. [PMID: 20511670 PMCID: PMC4125123 DOI: 10.1258/ebm.2010.009335] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the leading cancer-related cause of death for men in the USA. Prostate cancer risk is significantly lower in Asian countries compared with the USA, which has prompted interest in the potential chemo-preventive action of soy and green tea that are more predominant in Asian diets. It has been proposed that chronic inflammation is a major risk factor of prostate cancer, acting as both an initiator and promoter. Specifically, the nuclear factor-kappa B (NF-kappaB) pathway has been implicated as an important mediator between chronic inflammation, cell proliferation and prostate cancer. Dietary factors that inhibit inflammation and NF-kappaB may serve as effective chemo-preventive agents. Recent studies have demonstrated that soy and green tea have anti-inflammatory properties, and may have the potential to block the inflammatory response during cancer progression. This minireview discusses the relationship between chronic inflammation and prostate cancer, emphasizing on the significance of NF-kappaB, and further explores the anti-inflammatory effects of soy and green tea. Finally, we propose that dietary strategies that incorporate these bioactive food components as whole foods may be a more effective means to target pathways that contribute to prostate cancer development.
Collapse
Affiliation(s)
- Anna Hsu
- Department of Nutrition and Exercise Sciences, 103 Milam Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Tammy M Bray
- Department of Nutrition and Exercise Sciences, 103 Milam Hall, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Emily Ho
- Department of Nutrition and Exercise Sciences, 103 Milam Hall, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
37
|
Messina M. Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil Steril 2010; 93:2095-104. [PMID: 20378106 DOI: 10.1016/j.fertnstert.2010.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 03/03/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To critically evaluate the clinical evidence, and when not available, the animal data, most relevant to concerns that isoflavone exposure in the form of supplements or soy foods has feminizing effects on men. DESIGN Medline literature review and cross-reference of published data. RESULT(S) In contrast to the results of some rodent studies, findings from a recently published metaanalysis and subsequently published studies show that neither isoflavone supplements nor isoflavone-rich soy affect total or free testosterone (T) levels. Similarly, there is essentially no evidence from the nine identified clinical studies that isoflavone exposure affects circulating estrogen levels in men. Clinical evidence also indicates that isoflavones have no effect on sperm or semen parameters, although only three intervention studies were identified and none were longer than 3 months in duration. Finally, findings from animal studies suggesting that isoflavones increase the risk of erectile dysfunction are not applicable to men, because of differences in isoflavone metabolism between rodents and humans and the excessively high amount of isoflavones to which the animals were exposed. CONCLUSION(S) The intervention data indicate that isoflavones do not exert feminizing effects on men at intake levels equal to and even considerably higher than are typical for Asian males.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, School of Public Health, Loma Linda University, Loma Linda, California 92350,USA.
| |
Collapse
|
38
|
deVere White RW, Tsodikov A, Stapp EC, Soares SE, Fujii H, Hackman RM. Effects of a high dose, aglycone-rich soy extract on prostate-specific antigen and serum isoflavone concentrations in men with localized prostate cancer. Nutr Cancer 2010; 62:1036-43. [PMID: 21058191 PMCID: PMC2993162 DOI: 10.1080/01635581.2010.492085] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficacy and safety of consuming high-dose isoflavone supplements for prostate cancer is not clear. A double-blind, placebo controlled, randomized trial was conducted in 53 men with prostate cancer enrolled in an active surveillance program. The treatment group consumed a supplement containing 450 mg genistein, 300 mg daidzein, and other isoflavones daily for 6 mo. Prostate-specific antigen (PSA) was measured in both groups at baseline, 3 mo, and 6 mo, and serum concentrations of genistein, daidzein, and equol were assessed at baseline and 6 mo in the treatment group. Following the completion of the 6-mo double-blind study, men were enrolled in a 6-mo open label trial with the same isoflavone-rich supplement, and PSA was measured at 3 and 6 mo. PSA concentrations did not change in either group after 6 mo or after 12 mo when the open-label study was included. The 6 mo serum concentrations of genistein and daidzein (39.85 and 45.59 μmol/l, respectively) were significantly greater than baseline values and substantially higher than levels previously reported in other studies. Equol levels did not change. Although high amounts of aglycone isoflavones may result in significantly elevated serum concentrations of genistein and daidzein, these dietary supplements alone did not lower PSA levels in men with low-volume prostate cancer.
Collapse
|
39
|
Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat Rev 2009; 35:597-607. [PMID: 19660870 DOI: 10.1016/j.ctrv.2009.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 01/03/2023]
Abstract
Cancer cells exhibit deregulation in multiple cellular signaling pathways. Therefore, treatments using specific agents that target only one pathway usually fail in cancer therapy. The combination treatments using chemotherapeutic agents with distinct molecular mechanisms are considered more promising for higher efficacy; however, using multiple agents contributes to added toxicity. Emerging evidence has shown that some "natural products" such as isoflavones, indole-3-carbinol (I3C) and its in vivo dimeric product 3,3'-diindolylmethane (DIM), and curcumin among many others, have growth inhibitory and apoptosis inducing effects on human and animal cancer cells mediated by targeting multiple cellular signaling pathways in vitro without causing unwanted toxicity in normal cells. Therefore, these non-toxic "natural products" from natural resources could be useful in combination with conventional chemotherapeutic agents for the treatment of human malignancies with lower toxicity and higher efficacy. In fact, recently increasing evidence from pre-clinical in vivo studies and clinical trials have shown some success in support of the use of rational design of multi-targeted therapies for the treatment of cancers using conventional chemotherapeutic agents in combination with "natural products". These studies have provided promising results and further opened-up newer avenues for cancer therapy. In this review article, we have succinctly summarized the known effects of "natural products" especially by focusing on isoflavones, indole-3-carbinol (I3C) and its in vivo dimeric product 3,3'-diindolylmethane (DIM), and curcumin, and provided a comprehensive view on the molecular mechanisms underlying the principle of cancer therapy using combination of "natural products" with conventional therapeutics.
Collapse
|
40
|
Hamilton-Reeves JM, Vazquez G, Duval SJ, Phipps WR, Kurzer MS, Messina MJ. Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis. Fertil Steril 2009; 94:997-1007. [PMID: 19524224 DOI: 10.1016/j.fertnstert.2009.04.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether isoflavones exert estrogen-like effects in men by lowering bioavailable T through evaluation of the effects of soy protein or isoflavone intake on T, sex hormone-binding globulin (SHBG), free T, and free androgen index (FAI) in men. DESIGN PubMed and CAB Abstracts databases were searched through July 1, 2008, with use of controlled vocabulary specific to the databases, such as soy, isoflavones, genistein, phytoestrogens, red clover, androgen, testosterone, and SHBG. Peer-reviewed studies published in English were selected if [1] adult men consumed soy foods, isolated soy protein, or isoflavone extracts (from soy or red clover) and [2] circulating T, SHBG, free T, or calculated FAI was assessed. Data were extracted by two independent reviewers. Isoflavone exposure was abstracted directly from studies. MAIN OUTCOME MEASURE(S) Fifteen placebo-controlled treatment groups with baseline and ending measures were analyzed. In addition, 32 reports involving 36 treatment groups were assessed in simpler models to ascertain the results. RESULT(S) No significant effects of soy protein or isoflavone intake on T, SHBG, free T, or FAI were detected regardless of statistical model. CONCLUSION(S) The results of this meta-analysis suggest that neither soy foods nor isoflavone supplements alter measures of bioavailable T concentrations in men.
Collapse
Affiliation(s)
- Jill M Hamilton-Reeves
- Department of Family, Consumer, and Nutrition Science, St. Catherine University, St. Paul, Minnesota 55105, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Ma RWL, Chapman K. A systematic review of the effect of diet in prostate cancer prevention and treatment. J Hum Nutr Diet 2009; 22:187-99; quiz 200-2. [PMID: 19344379 DOI: 10.1111/j.1365-277x.2009.00946.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary therapy has been proposed as a cost effective and noninvasive means of reducing the risk of prostate cancer (PC) and its progression. There is a large volume of published studies describing the role of diet in the prevention and treatment of PC. This article systematically reviews the data for dietary-based therapy in the prevention of PC, as well as in the management of patients with PC, aiming to provide clarity surrounding the role of diet in preventing and treating PC. Although conclusive evidence is limited, the current data are indicative that a diet low in fat, high in vegetables and fruits, and avoiding high energy intake, excessive meat, excessive dairy products and calcium intake, is possibly effective in preventing PC. However, caution must be taken to ensure that members of the public do not take excessive amounts of dietary supplements because there may be adverse affects associated with their over consumption. The dietary recommendations for patients diagnosed with PC are similar to those aiming to reduce their risk of PC.
Collapse
Affiliation(s)
- R W-L Ma
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | | |
Collapse
|
42
|
Abstract
Prostate cancer has marked geographic variations between countries. Genetic, epigenetic, and environmental factors co-contribute to the development of the cancer. The association between dietary factors and prostate cancer has been investigated and one explanation for the low incidence of the cancer in Asia might be high consumption of fresh vegetables including soybean and its products. Soybean is a species of legume contain high amount of isoflavones including genistein, daidzein, glycitein, and equol, which have a prophylactic effect on prostate cancer. In this article, epidemiological and laboratory studies on the relationship between soybeans, isoflavones and prostate cancer are reviewed and large scale multiethnic epidemiological studies are recommended.
Collapse
Affiliation(s)
- Le Jian
- School of Public Health, Health Innovation Research Institute, Curtin University of Technology, Kent Street, Bentley 6102, Perth, Australia.
| |
Collapse
|
43
|
Isoflavones and the prevention of breast and prostate cancer: new perspectives opened by nutrigenomics. Br J Nutr 2009; 99 E Suppl 1:ES78-108. [PMID: 18503737 DOI: 10.1017/s0007114508965788] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epidemiological evidence together with preclinical data from animal and in vitro studies strongly support a correlation between soy isoflavone consumption and protection towards breast and prostate cancers. The biological processes modulated by isoflavones, and especially by genistein, have been extensively studied, yet without leading to a clear understanding of the cellular and molecular mechanisms of action involved. This review discusses the existing gaps in our knowledge and evaluates the potential of the new nutrigenomic approaches to improve the study of the molecular effects of isoflavones. Several issues need to be taken into account for the proper interpretation of the results already published for isoflavones. Too often knowledge on isoflavone bioavailability is not taken into account; supra-physiological doses are frequently used. Characterization of the individual variability as defined by the gut microflora composition and gene polymorphisms may also help to explain the discrepancies observed so far in the clinical studies. Finally, the complex inter-relations existing between tissues and cell types as well as cross-talks between metabolic and signalling pathways have been insufficiently considered. By appraising critically the abundant literature with these considerations in mind, the mechanisms of action that are the more likely to play a role in the preventive effects of isoflavones towards breast and prostate cancers are reviewed. Furthermore, the new perspectives opened by the use of genetic, transcriptomic, proteomic and metabolomic approaches are highlighted.
Collapse
|
44
|
Developmental and Reproductive Effects of SE5-OH: An Equol-Rich Soy-Based Ingredient. J Toxicol 2008; 2009:307618. [PMID: 20107584 PMCID: PMC2809433 DOI: 10.1155/2009/307618] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/07/2008] [Accepted: 10/07/2008] [Indexed: 11/17/2022] Open
Abstract
Consumption of the isoflavones daidzein, genistein, glycitein, and their structural analogues is generally considered beneficial to human health. Equol is not found in soy, but is converted from daidzein by human gut bacterial flora. Research indicates that between 30-50% of the population is capable of converting daidzein to equol; therefore, there has been recent development of a new equol-rich functional food that relies on bacterial conversion of daidzein to equol under strictly controlled conditions. Therefore, a new equol-rich soy product (SE5-OH) has been developed, based on the bacterial conversion of daidzein; and its reproductive and developmental toxicity has been evaluated in a two-generation study and a developmental toxicity study with Sprague-Dawley rats at dose levels of 200, 1000, and 2000 mg/kg/day by gavage. SE5-OH contains approximately 0.65% equol, 0.024% daidzein, 0.022% genistein, and 0.30% glycitein. From the reproductive study, the no-observed-adverse-effect-level (NOAEL) for SE5-OH determined for both male and female rats is 1000 mg/kg/day (6.5 mg equol/kg/day). In the developmental toxicity phase of the study, no effects by SE5-OH were found in the embryo-fetus at any of the doses tested. The NOAEL for developmental effects of SE5-OH is 2000 mg/kg/day (13 mg equol/kg/day).
Collapse
|
45
|
Abstract
Increasing evidence suggests that diet influences the initiation and progression of prostate cancer. Herein, we review associations of specific foods and nutrients with prostate cancer, summarizing important and clinically relevant emerging data on this complex topic. Foods and nutrients associated with a decreased risk of prostate cancer include lycopene, soy, cruciferous vegetables, vitamin E and selenium. Although prospective clinical trials of dietary supplements and dietary modification to prevent or control prostate cancer are underway, definitive clinical evidence is currently lacking.
Collapse
Affiliation(s)
- Jonathan Silberstein
- University of California, San Diego Medical Center, Division of Urology, 200 West Arbor Drive, # 8897, San Diego, CA 92103-8897, USA
| | - J Kellogg Parsons
- University of California, San Diego Medical Center, Division of Urology and, Moores UCSD Comprehensive Cancer Center, and, Veterans Affairs Medical Center, San Diego, CA, USA
| |
Collapse
|
46
|
Affiliation(s)
- Eric Yarnell
- President of the Botanical Medicine Academy, a specialty board for using medicinal herbs, and is a faculty member at Bastyr University in Kenmore, Washington
| | - Kathy Abascal
- Executive director of the Botanical Medicine Academy in Vashon, Washington
| |
Collapse
|
47
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Abstract
Epidemiological investigations suggest that soy consumption may be associated with a lower incidence of certain chronic diseases. Clinical studies also show that ingestion of soy proteins reduces the risk factors for cardiovascular disease. This led to the approval of the food-labeling health claim for soy proteins in the prevention of coronary heart disease by the U.S. FDA in 1999. Similar health petitions for soy proteins have also been approved thereafter in the United Kingdom, Brazil, South Africa, the Philippines, Indonesia, Korea, and Malaysia. However, the purported health benefits are quite variable in different studies. The Nutrition Committee of the American Heart Association has assessed 22 randomized trials conducted since 1999 and found that isolated soy protein with isoflavones (ISF) slightly decreased LDL cholesterol but had no effect on HDL cholesterol, triglycerides, lipoprotein(a), or blood pressure. The other effects of soy consumption were not evident. Although the contributing factors to these discrepancies are not fully understood, the source of soybeans and processing procedures of the protein or ISF are believed to be important because of their effects on the content and intactness of certain bioactive protein subunits. Some studies have documented potential safety concerns on increased consumption of soy products. Impacts of soy products on thyroid and reproductive functions as well as on certain types of carcinogenesis require further study in this context. Overall, existing data are inconsistent or inadequate in supporting most of the suggested health benefits of consuming soy protein or ISF.
Collapse
Affiliation(s)
- Chao Wu Xiao
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, 2203E Banting Research Centre, Ottawa, Canada.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This review provides a description of recent insights into the role of androgens in prostate cancer prevention. RECENT FINDINGS Many studies have elucidated a variety of molecular mechanisms involved in the initiation and progression of prostate cancer with many directly or indirectly related to the androgen signaling pathway. Both well known and novel agents for targeting the androgen pathway are under investigation, though very few are in clinical trials. After a review of recent papers describing these mechanisms, their results and implications were summarized. SUMMARY Finasteride remains the only agent proven to reduce the risk of prostate cancer, though there are currently two other ongoing phase III trials with vitamin E, selenium, and dutasteride. An enhanced understanding of complex interactions with the androgen pathways is leading to the exploration of additional promising approaches to mitigating the risk of prostate cancer.
Collapse
Affiliation(s)
- Jamey A Sarvis
- University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
50
|
Hamilton-Reeves JM, Rebello SA, Thomas W, Kurzer MS, Slaton JW. Effects of soy protein isolate consumption on prostate cancer biomarkers in men with HGPIN, ASAP, and low-grade prostate cancer. Nutr Cancer 2008; 60:7-13. [PMID: 18444130 DOI: 10.1080/01635580701586770] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fifty-eight men at high risk of prostate cancer or with low-grade prostate cancer were randomly assigned to consume 1 of 3 protein isolates containing 40 g protein: 1) soy protein (SPI+, 107 mg isoflavones/d); 2) alcohol-washed soy protein (SPI-, <6 mg isoflavones/d); or 3) milk protein (MPI). Proliferating cell nuclear antigen (PCNA), epidermal growth factor receptor, B-cell non-Hodgkin lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) were assessed in baseline and ending prostate biopsy cores. Serum collected at 0, 3, and 6 mo was analyzed for total and free prostate specific antigen (PSA). Consumption of SPI+ did not alter any of the prostate cancer tumor markers. Bax expression decreased from baseline in the SPI- group, resulting in lower Bax expression than the MPI group. PCNA expression also decreased from baseline in the SPI- group, but this was not different from the other 2 groups. PSA did not differ among the groups at 3 or 6 mo. Interestingly, a lower rate of prostate cancer developed in the soy groups compared to the milk group (P = 0.01). These data suggest that 6-mo SPI+ consumption does not alter prostate tissue biomarkers, SPI- consumption exerts mixed effects, and less prostate cancer is detected after 6 mo of soy consumption regardless of isoflavone content.
Collapse
Affiliation(s)
- Jill M Hamilton-Reeves
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55455, USA
| | | | | | | | | |
Collapse
|