1
|
Wang Q, Du J, Ma R. White adipocyte-derived exosomal miR-23b inhibits thermogenesis by targeting Elf4 to regulate GLP-1R transcription. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5847-5860. [PMID: 38334823 DOI: 10.1007/s00210-024-02984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Promoting non-trembling thermogenesis of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) helps prevent obesity. MiR-23b is highly expressed in adipose tissue-derived exosomes obtained from obese people, but the role of exosomal miR-23b in regulating thermogenesis and obesity progression remains to be further explored. Here, a mouse obesity model was established through high-fat diet (HFD), and inguinal WAT (iWAT)-derived exosomes and miR-23b antagomir were administered by intraperitoneal injection. The results showed that WAT-derived exosomal miR-23b upregulated body weight and adipocyte hypertrophy and enhanced insulin resistance. Moreover, exosomal miR-23b restrained mtDNA copy number and the expression of genes related to thermogenesis and mitochondrial biogenesis in BAT, and suppressed the expression of WAT browning-related genes under cold stimulation, indicating that exosomal miR-23b hindered non-trembling thermogenesis of BAT and WAT browning. Mechanism studies found that miR-23b targeted Elf4 to inhibit its expression. And Elf4 bound to the GLP-1R promoter region to promote GLP-1R transcription. In addition, silencing miR-23b effectively abolished the inhibitory effect of WAT-derived exosomes on thermogenic gene expression and mitochondrial respiration in adipocytes isolated from BAT and iWAT, which was reversed by GLP-1R knockdown. In conclusion, WAT-derived exosomal miR-23b suppressed thermogenesis by targeting Elf4 to regulate GLP-1R transcription, which contributed to the progression of obesity.
Collapse
Affiliation(s)
- Qian Wang
- Functional Experiment Center, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Junkai Du
- Department of Emergency, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruili Ma
- Functional Experiment Center, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| |
Collapse
|
2
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Xue L, Sun J, Sun Y, Wang Y, Zhang K, Fan M, Qian H, Li Y, Wang L. Maternal Brown Rice Diet during Pregnancy Promotes Adipose Tissue Browning in Offspring via Reprogramming PKA Signaling and DNA Methylation. Mol Nutr Food Res 2024:e2300861. [PMID: 38566521 DOI: 10.1002/mnfr.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
SCOPE Brown rice, the most consumed food worldwide, has been shown to possess beneficial effects on the prevention of metabolic diseases. However, the way in which maternal brown rice diet improves metabolism in offspring and the regulatory mechanisms remains unclear. The study explores the epigenetic regulation of offspring energy metabolic homeostasis by maternal brown rice diet during pregnancy. METHODS AND RESULTS Female mice are fed brown rice during pregnancy, and then body phenotypes, the histopathological analysis, and adipose tissues biochemistry assay of offspring mice are detected. It is found that maternal brown rice diet significantly reduces body weight and fat mass, increases energy expenditure and heat production in offspring. Maternal brown rice diet increases uncoupling protein 1 (UCP1) protein level and upregulates the mRNA expression of thermogenic genes in adipose tissues. Mechanistically, protein kinase A (PKA) signaling is likely responsible in the induced thermogenic program in offspring adipocytes, and the progeny adipocytes browning program is altered due to decreased level of DNA methyltransferase 1 protein and hypomethylation of the transcriptional coregulator positive regulatory domain containing 16 (PRDM16). CONCLUSIONS These findings demonstrate that maternal brown rice during pregnancy improves offspring mice metabolic homeostasis via promoting adipose browning, and its mechanisms may be mediated by DNA methylation reprogramming.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Juan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Shareef SM, Khaleel RA, Maryoosh TM. Nephroprotective effect of cranberry ( Vaccinium oxycoccos) in streptozocin-induced diabetic nephropathy in mice. Drug Metab Pers Ther 2024; 39:35-45. [PMID: 38469711 DOI: 10.1515/dmpt-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES Diabetic nephropathy is a chief reason of mortality particularly in individuals with renal dysfunction. The current research was aimed to assess the nephroprotective portion of Vaccinium oxycoccos toward mice diabetic nephropathy induced by streptozotocin (STZ). V. oxycoccos was purchased and used for hydroalcoholic extraction. METHODS Sixty male mice were subjected to STZ-intraperitoneal injection (45 mg/kg). After diabetes induction, mice were divided into five groups of diabetic control (received only STZ), non-diabetic control (received only citrate buffer), two V. oxycoccos treatment (received V. oxycoccos extract (200 and 400 mg/kg) oral daily by gavage), and metformin treatment (received metformin (500 mg/kg) oral daily by gavage). Glucose and weight of mice were checked weekly. RESULTS After 28 days, the effect of V. oxycoccos extract on serum and urine parameters were assessed. STZ caused significant decreased in the mice body weight. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest weight loss at day 28 (70.2±1.38 g). STZ caused significant increase in the mice FBS. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest FBS at day 28 (189.2±1.20 mg/dL). Treatment of mice with V. oxycoccos (400 mg/kg) caused the lowest increase in the levels of cholesterol, HbA1c and triglycerides compared to the diabetic control mice. Compared to the diabetic control group, mice treated with V. oxycoccos (400 mg/kg) had the highest HDL, insulin, SOD, and GSH (p<0.05). The lowest serum BUN, CR, and UR were found in mice treated with V. oxycoccos (400 mg/kg). Anti-inflammatory effects of V. oxycoccos (400 mg/kg) was shown by the lowest TNF-α, IL-6, and TGF-β1 concentration in mice treated with V. oxycoccos (400 mg/kg). CONCLUSIONS The current study disclosed that treatment with V. oxycoccos resulted in substantial development in the serum and urine parameters and also antioxidant and anti-inflammatory response of STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Saja Majeed Shareef
- Department of Pharmacology and Toxicology, Collage of Pharmacy, 554706 Al-Esraa University , Baghdad, Iraq
| | | | - Taif M Maryoosh
- Department of Pharmacy, Al-Kut University Collage, Wasit, Iraq
| |
Collapse
|
5
|
Jabri MA, Hajaji S, Omrani A, Ben Youssef M, Sebai H. Myrtle Berries Seeds Prevent Dyslipidemia, Inflammation, and Excessive Cardiac Reactive Oxygen Species Production in Response to High-Fat Diet-Induced Obesity. J Med Food 2023; 26:631-640. [PMID: 37566463 DOI: 10.1089/jmf.2021.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Anthocyanins are the major polyphenols in myrtle berries seeds aqueous extract (MBSAE). This study investigates the protective potentials of MBSAE against obesity lipotoxicity and inflammation induced by a high-fat diet (HFD). It also describes the underlying mechanisms involved in its protective effects, with special attention to myocardial reactive oxygen species (ROS) production. Male Wistar rats were fed HFD for 6 weeks to induce obesity. MBSAE (100 mg/kg, b.w., p.o.) was orally administered to HFD-fed rats. Anti-obesity effects were triggered by the inhibitory action of the MBSAE against the weights of the body, its relative heart and the total abdominal fat. Treatment with MBSAE also restored the lipid profile to baseline compared with the HFD rats and lowered also the white blood cells count, including neutrophils, lymphocytes, and basophils number as well as cytokines (tumor necrosis factor-α, interleukin [IL]-6, and IL-1β) levels in the rats serum, thus improving the tissue inflammatory status associated with obesity. Exposure of rats to HFD during 6 weeks induces a myocardial oxidative stress as assessed by deleterious effects on lipoperoxidation state, antioxidant enzyme (SOD, CAT, and GPx) activities as well as sulfhydryl groups and GSH rates. Of importance, our study shows also that HFD provokes a heart ROS (H2O2, OH•, and O2•-) overload. Of interest, all these oxidative heart disturbances were clearly ended by MBSAE treatment. Therefore, consumption of MBSAE as a natural extract may be a potential therapeutic strategy to treat obesity-associated diseases.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Soumaya Hajaji
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Ameni Omrani
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Meriam Ben Youssef
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Hichem Sebai
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
6
|
Huang H, Luo Y, Wang Q, Zhang Y, Li Z, He R, Chen X, Dong Z. Vaccinium as Potential Therapy for Diabetes and Microvascular Complications. Nutrients 2023; 15:2031. [PMID: 37432140 DOI: 10.3390/nu15092031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus is one of the most critical global health concerns, with a fast-growing prevalence. The incidence of diabetic vascular complications is also rapidly increasing, exacerbating the burden on individuals with diabetes and the consumption of public medical resources. Despite the overall improvements in the prevention, diagnosis, and treatment of diabetic microvascular complications in recent years, safe and effective alternative or adjunctive therapies are urgently needed. The mechanisms underlying diabetic vascular complications are complex, with hyperglycemia-induced oxidative stress and inflammation being the leading causes. Therefore, glycemic control, antioxidation, and anti-inflammation are considered the main targets for the treatment of diabetes and its vascular comorbidities. Vaccinium L. (Ericaceae) is a genus of plants enriched with polyphenolic compounds in their leaves and fruits. Vaccinium and its extracts have demonstrated good bioactivity in reducing blood glucose, oxidative stress, and inflammation, making them excellent candidates for the management of diabetes and diabetic vascular complications. Here, we review recent preclinical and clinical studies on the potential effect of Vaccinium on ameliorating diabetes and diabetic complications, particularly diabetic kidney disease and diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Huang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yayong Luo
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Wang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| | - Yihan Zhang
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Xiangmei Chen
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyi Dong
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| |
Collapse
|
7
|
Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel) 2023; 12:antiox12020416. [PMID: 36829976 PMCID: PMC9952395 DOI: 10.3390/antiox12020416] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is a condition that leads to increased health problems associated with metabolic disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of plant origin that can be incorporated as functional food ingredients. This review presents recent developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential application of food-derived polyphenols as agents against obesity has been summarized. Literature evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes, modulate neurohormones/peptides involved in food intake, and their ability to improve the growth of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of polyphenols by gut microbes produces different metabolites with enhanced biological properties. Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional foods for treating obesity. Upcoming investigations need to explore novel techniques, such as nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at the target sites in the body.
Collapse
|
8
|
Guardiola-Márquez CE, Jacobo-Velázquez DA. Potential of enhancing anti-obesogenic agriceuticals by applying sustainable fertilizers during plant cultivation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1034521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Overweight and obesity are two of the world's biggest health problems. They are associated with excessive fat accumulation resulting from an imbalance between energy consumed and energy expended. Conventional therapies for obesity commonly include synthetic drugs and surgical procedures that can lead to serious side effects. Therefore, developing effective, safe, and readily available new treatments to prevent and treat obesity is highly relevant. Many plant extracts have shown anti-obesogenic potential. These plant extracts are composed of different agriceuticals such as fibers, phenolic acids, flavonoids, anthocyanins, alkaloids, lignans, and proteins that can manage obesity by suppressing appetite, inhibiting digestive enzymes, reducing adipogenesis and lipogenesis, promoting lipolysis and thermogenesis, modulating gut microbiota and suppressing obesity-induced inflammation. These anti-obesogenic agriceuticals can be enhanced in plants during their cultivation by applying sustainable fertilization strategies, improving their capacity to fight the obesity pandemic. Biofertilization and nanofertilization are considered efficient, eco-friendly, and cost-effective strategies to enhance plant growth and development and increase the content of nutrients and bioactive compounds, representing an alternative to overproducing the anti-obesogenic agriceuticals of interest. However, further research is required to study the impact of anti-obesogenic plant species grown using these agricultural practices. This review presents the current scenario of overweight and obesity; recent research work describing different plant species with significant effects against obesity; and several reports exhibiting the potential of the biofertilization and nanofertilization practices to enhance the concentrations of bioactive molecules of anti-obesogenic plant species.
Collapse
|
9
|
Liu T, Wu F, Chen K, Pan B, Yin X, You Y, Song Z, Li D, Huang D. Sweet potato extract alleviates high-fat-diet-induced obesity in C57BL/6J mice, but not by inhibiting pancreatic lipases. Front Nutr 2022; 9:1016020. [PMID: 36505243 PMCID: PMC9731405 DOI: 10.3389/fnut.2022.1016020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Scope and aim Sweet potato is widely consumed as a healthy and nutritive vegetable containing bioactive constituents for health promotion. This study investigated the beneficial impact of white-fleshed sweet potato extract (SPE) on high fat diet (HFD)-induced obese mice. Methods and results First, SPE, in which resin glycoside was found as the dominant constituent, was suggested as a potential anti-obesity agent, because 20-70% pancreatic lipase (PL) inhibition was measured with SPE by in vitro turbidity assay and pNPP assay. Hence, next, the effect of SPE on obese mice was detected by oral administration of HFD supplemented with 6% SPE on C57BL/6J mice for 9 weeks. Surprisingly, being the opposite of what was typically observed from a lipase inhibitor such as orlistat, the fecal fat content in SPE-fed obese mice was decreased (p < 0.01). Meanwhile, 6% SPE supplement indeed significantly ameliorated HFD-induced obesity in mice, including body weight gain, fat accumulation, adipocyte enlargement, insulin resistance, and hepatic steatosis (p < 0.05). The improved liver steatosis was found associated with a down-regulating action of SPE on nuclear factor kappa B activation in HFD-fed mice. The anti-obesity influence of SPE was also confirmed on the HepG2 cell model for non-alcoholic fatty liver disease (NAFLD). Conclusion These results indicate that SPE, as a dietary supplement, has the great potential for weight control and treating hepatic steatosis, possibly through a different action mechanism from that of orlistat.
Collapse
Affiliation(s)
- Tiange Liu
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Fan Wu
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Kejing Chen
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bingna Pan
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Xifeng Yin
- Suzhou Kosmode Biotechnology Company, Suzhou, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Zhixuan Song
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Dan Li
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Xie X, Zhang M, Sun L, Wang T, Zhu Z, Shu R, Wu F, Li Z. Crocin-I Protects Against High-Fat Diet-Induced Obesity via Modulation of Gut Microbiota and Intestinal Inflammation in Mice. Front Pharmacol 2022; 13:894089. [PMID: 36034852 PMCID: PMC9403484 DOI: 10.3389/fphar.2022.894089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022] Open
Abstract
Crocin-I can regulate physiological changes in the human body by altering inflammation and microbial composition. Gut microbiota are also involved in modulating the pathophysiology of obesity. However, crocin-I’s effect on obesity and the mechanism underlying its effects on gut microbiota and inflammation remain poorly understood. Here, high-fat diet (HFD) -induced obese mice were administrated crocin-I (20 mg/kg/day) for 10 weeks using an oral gavage (HFD-C20 group). HFD-C20, HFD, and Normal chow (NC) groups were compared. The fat content, colon tissue inflammatory cytokine levels, gut microbiota, and short-chain fatty acids (SCFAs) levels were measured. We show that crocin-I reduced body weight and liver weight and improved glucose resistance in HFD-induced mice, and reduced the lipid accumulation in the liver. Strikingly, crocin-I alleviated intestinal microbial disorders and decreased the F/B ratio and the abundance of Proteobacteria in HFD-induced obese mice. Crocin-I also rescued the decrease in the levels of SCFAs and repaired altered intestinal barrier functioning and intestinal inflammation in HFD-induced obese mice. These findings indicate that crocin-I may inhibit obesity by modulating the composition of gut microbiota and intestinal inflammation.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mengya Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ting Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengyan Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Fengchun Wu, ; Zezhi Li,
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Fengchun Wu, ; Zezhi Li,
| |
Collapse
|
11
|
Wang Z, Zeng M, Wang Z, Qin F, Wang Y, Chen J, Christian M, He Z. Food phenolics stimulate adipocyte browning via regulating gut microecology. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34738509 DOI: 10.1080/10408398.2021.1997905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fat browning has piqued the interest of researchers as a potential target for treating obesity and related metabolic disorders. Recruitment of brown adipocytes leads to enhanced energy dissipation and reduced adiposity, thus facilitating the maintenance of metabolic homeostasis. Evidence is increasing to support the crucial roles of polyphenols and gut microecology in turning fat "brown". However, it is not clear whether the intestinal microecology is involved in polyphenol-mediated regulation of adipose browning, so this concept is worthy of exploration. In this review, we summarize the current knowledge, mostly from studies with murine models, supporting the concept that the effects of food phenolics on brown fat activation and white fat browning can be attributed to their regulatory actions on gut microecology, including microbial community profile, gut metabolites, and gut-derived hormones. Furthermore, the potential underlying pathways involved are also discussed. Basically, understanding gut microecology paves the way to determine the underlying roles and mechanisms of food phenolics in adipose browning.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yongzhi Wang
- Food and Beverage Department of Damin Food (Zhangzhou) Co., Ltd, Zhangzhou, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Gao Y, Tian R, Liu H, Xue H, Zhang R, Han S, Ji L, Huang W, Zhan J, You Y. Research progress on intervention effect and mechanism of protocatechuic acid on nonalcoholic fatty liver disease. Crit Rev Food Sci Nutr 2021; 62:9053-9075. [PMID: 34142875 DOI: 10.1080/10408398.2021.1939265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a surge burden worldwide due to its high prevalence, with complicated deterioration symptoms such as liver fibrosis and cancer. No effective drugs are available for NALFD so far. The rapid growth of clinical demand has prompted the treatment of NAFLD to become a research hotspot. Protocatechuic acid (PCA) is a natural secondary metabolite commonly found in fruits, vegetables, grains, and herbal medicine. It is also the major internal metabolites of anthocyanins and other polyphenols. In the present manuscript, food sources, metabolic absorption, and efficacy of PCA were summarized while analyzing its role in improving NAFLD, as well as the mechanism involved. The results indicated that PCA could ameliorate NAFLD by regulating glucose and lipid metabolism, oxidative stress and inflammation, gut microbiota and metabolites. It was proposed for the first time that PCA might reduce NAFLD by enhancing the energy consumption of brown adipose tissue (BAT). However, the PCA administration mode and dose for NAFLD remain inconclusive. Fresh insights into the specific molecular mechanisms are required, while clinical trials are essential in the future. This review provides new targets and reasoning for the clinical application of PCA in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Rongrong Tian
- Department of Biomedicine, Beijing City University, Beijing, China
| | - Haiyue Liu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Ruizhe Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Suping Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Han X, Guo J, Gao Y, Zhan J, You Y, Huang W. Gentisic acid prevents diet-induced obesity in mice by accelerating the thermogenesis of brown adipose tissue. Food Funct 2021; 12:1262-1270. [DOI: 10.1039/d0fo02474k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gentisic acid prevents diet-induced obesity in mice by accelerating the thermogenesis of brown adipose tissue.
Collapse
Affiliation(s)
- Xue Han
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Jielong Guo
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Yilin You
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| |
Collapse
|
14
|
Yang H, Zhang Y, Zhou F, Guo J, Tang J, Han Y, Li Z, Fu C. Preparation, Bioactivities and Applications in Food Industry of Chitosan-Based Maillard Products: A Review. Molecules 2020; 26:molecules26010166. [PMID: 33396532 PMCID: PMC7795806 DOI: 10.3390/molecules26010166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a biopolymer possessing numerous interesting bioactivities and excellent technological properties, has received great attention from scientists in different fields including the food industry, pharmacy, medicine, and environmental fields. A series of recent studies have reported exciting results about improvement of the properties of chitosan using the Maillard reaction. However, there is a lack of a systemic review about the preparation, bioactivities and applications in food industry of chitosan-based Maillard reaction products (CMRPs). The presence of free amino groups in chitosan allows it to acquire some stronger or new functional properties via the Maillard reaction. The present review aims to focus on the current research status of synthesis, optimization and structural identification of CMRPs. The applications of CMRPs in the food industry are also discussed according to their biological and technological properties such as antioxidant, antimicrobial activities and inducing conformational changes of allergens in food. Some promising directions for future research are proposed in this review, aiming to provide theoretical guidance for the further development of chitosan and its derivatives.
Collapse
Affiliation(s)
- Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, China;
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China;
- Correspondence: ; Tel.: +86-150-0134-9082
| | - Fang Zhou
- Fujian University Key Laboratory of Biotechnology for Offshore Resources, Quanzhou Normal University, Quanzhou 362000, China; (F.Z.); (J.G.)
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| | - Juanjuan Guo
- Fujian University Key Laboratory of Biotechnology for Offshore Resources, Quanzhou Normal University, Quanzhou 362000, China; (F.Z.); (J.G.)
| | - Jiajie Tang
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| | - Yanqing Han
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| | - Zhanming Li
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| | - Caili Fu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China;
- Fujian University Key Laboratory of Biotechnology for Offshore Resources, Quanzhou Normal University, Quanzhou 362000, China; (F.Z.); (J.G.)
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| |
Collapse
|
15
|
Yu T, Guo J, Zhu S, Li M, Zhu Z, Cheng S, Wang S, Sun Y, Cong X. Protective effects of selenium-enriched peptides from Cardamine violifolia against high-fat diet induced obesity and its associated metabolic disorders in mice. RSC Adv 2020; 10:31411-31424. [PMID: 35520651 PMCID: PMC9056391 DOI: 10.1039/d0ra04209a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Selenium-enriched peptides from Cardamine violifolia (CSP) have excellent antioxidant functions but little is known about their effects on obesity and associated metabolic disorders in mice fed with a high-fat diet (HFD). In this study, C57BL/6 mice were fed a HFD with or without CSP supplementation (CSPL: 26 μg Se per kg bw per d; CSPH: 104 μg per kg bw per d) for 10 weeks. The results showed that both CSPL and CSPH could ameliorate overweight gain, excess fat accumulation, serum lipid metabolism, and insulin resistance. The potential mechanism might be associated with the increase in thermogenesis, reduced oxidative stress, and inflammation, which regulated the gene expression in lipid and cholesterol metabolism. In addition, CSPL and CSPH also maintained the intestinal integrity and modulated the gut microbiota. Increased Blautia in CSP may be involved in the protective effect against obesity. Furthermore, a distinct increase in Lactobacillus was exclusively found in CSPH, suggesting that a more effective function of CSPH on metabolic disorders might be through the synergism of Blautia and Lactobacillus. Spearman's correlation analysis revealed that these specific genera were significantly correlated with the metabolic improvements. Taken together, CSP supplementation prevented HFD-induced obesity and metabolic disorders, probably by ameliorating oxidative stress and inflammation, regulating metabolic genes, and modulating the gut microbiota compositions.
Collapse
Affiliation(s)
- Tian Yu
- Enshi Se-Run Health Tech Development Co., Ltd. Enshi 445000 China
- National R&D Center for Se-rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University Changzhou 213164 China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi 214122 China
| | - Meng Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University Beijing 100048 China
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University Xi'an 710069 China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University Xi'an 710069 China
| | - Xin Cong
- Enshi Se-Run Health Tech Development Co., Ltd. Enshi 445000 China
- National R&D Center for Se-rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|