1
|
Porras C, Olliviere H, Bradley SP, Graham AM, Chudasama Y, Rouault TA. Ablation of Iron Regulatory Protein 2 produces a neurological disorder characterized by motor, somatosensory, and executive dysfunction in mice. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 7:100136. [PMID: 39239479 PMCID: PMC11372806 DOI: 10.1016/j.crneur.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Iron is an important cofactor for many proteins and is used to create Fe-S clusters and heme prosthetic groups that enzymes use to catalyze enzymatic reactions. Proteins involved in the import, export, and sequestration of iron are regulated by Iron Regulatory Proteins (IRPs). Recently, a patient with bi-allelic loss of function mutations in IREB2 leading to the absence of IRP2 protein was discovered. The patient failed to achieve developmental milestones and was diagnosed with dystonic cerebral palsy, epilepsy, microcytic hypochromic anemia, and frontal lobe atrophy. Several more IREB2 deficient patients subsequently identified manifested similar neurological problems. To better understand the manifestations of this novel neurological disease, we subjected an Irp2-null mouse model to extensive behavioral testing. Irp2-null mice had a significant motor deficit demonstrated by reduced performance on rotarod and hanging wire tests. Somatosensory function was also compromised in hot and cold plate assays. Their spatial search strategy was impaired in the Barnes maze and they exhibited a difficulty in flexibly adapting their response in the operant touchscreen reversal learning task. The latter is a cognitive behavior known to require an intact prefrontal cortex. These results suggest that loss of Irp2 in mice causes motor and behavioral deficits that faithfully reflect the IREB2 patient's neurodegenerative disorder.
Collapse
Affiliation(s)
- Christina Porras
- National Institute of Child Health and Development, Section on Human Iron Metabolism, USA
| | - Hayden Olliviere
- National Institute of Child Health and Development, Section on Human Iron Metabolism, USA
| | - Sean P Bradley
- National Institute of Mental Health, Rodent Behavioral Core, USA
| | - Alice M Graham
- National Institute of Mental Health, Rodent Behavioral Core, USA
| | - Yogita Chudasama
- National Institute of Mental Health, Rodent Behavioral Core, USA
- National Institute of Mental Health, Section on Behavioral Neuroscience, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- National Institute of Child Health and Development, Section on Human Iron Metabolism, USA
| |
Collapse
|
2
|
Baj J, Kowalska B, Barbachowska A, Forma A, Flieger M, Majerek D, Teresiński G, Flieger W, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Linking Metallic Micronutrients and Toxic Xenobiotics to Atherosclerosis and Fatty Liver Disease-Postmortem ICP-MS Analysis of Selected Human Tissues. Nutrients 2023; 15:3458. [PMID: 37571395 PMCID: PMC10420647 DOI: 10.3390/nu15153458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Dyslipidaemia is a disorder of the lipid metabolism, caused mainly by poor eating habits. The most severe consequence of an inappropriate diet is the development of atherosclerosis and hepatic steatosis. It is generally believed that a change in nutrition, and increased physical activity can eliminate these health problems. The contemporary research and therapies used to treat dyslipidemia mainly focus on lowering the triglyceride and cholesterol levels. However, disturbances in trace element homeostasis or the accumulation of toxic elements can also affect physiological processes, and be involved in the development of metabolically mediated diseases. The present study aimed to determine the mineral profiles of liver and brain tissues collected at autopsy (n = 39) in groups of people with hepatic steatosis (n = 5), atherosclerosis (n = 9), hepatic steatosis, and atherosclerosis (n = 16), and others without the selected disorders (n = 9). Concentrations of 51 elements were analysed via inductively coupled plasma mass spectrometry (ICP-MS) after the initial wet mineralisation of the samples with nitric acid. The results obtained allow us to conclude that the hepatic steatosis group suffers from a deficiency of important trace elements, such as copper, zinc, and molybdenum (p < 0.05), whereas the group with atherosclerosis is characterised by elevated levels of cadmium in the liver tissue (p = 0.01). Analysing the mean values of the element concentrations measured in 11 brain areas, statistically significant higher levels of calcium and copper (p < 0.001) were found in the atherosclerosis group, compared to the hepatic steatosis group, confirming the involvement of these elements in the pathogenesis of atherosclerosis. In addition, an accumulation of cadmium, lead, titanium, and strontium in the brain tissue was observed in the atherosclerosis group. While the accumulation of individual elements differs in different parts of the brain, the differences in the cadmium content (p < 0.05) between the study groups apply to the whole brain, except for the nucleus accumbens septi area, where a statistically significant titanium accumulation occurs in the atherosclerosis and steatosis groups, compared to the others (p < 0.05). In addition, the disruption of elemental homeostasis in the brain of a single case with bipolar disorder, and a case with hip replacement was observed. Our results confirm the involvement of chemical elements in the pathogenesis of selected metabolic diseases, and the need for further studies in larger populations.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (W.F.)
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, ul. Krasnystawska, 21-010 Łęczna, Poland;
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (W.F.)
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Dariusz Majerek
- Department of Applied Mathematics, University of Technology, 20-618 Lublin, Poland;
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (W.F.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Meical School, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Yauch LM, Ennis-Czerniak K, Frey WH, Tkac I, Rao RB. Intranasal Insulin Attenuates the Long-Term Adverse Effects of Neonatal Hyperglycemia on the Hippocampus in Rats. Dev Neurosci 2022; 44:590-602. [PMID: 36041414 PMCID: PMC9928603 DOI: 10.1159/000526627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Hyperglycemia due to relative hypoinsulinism is common in extremely preterm infants and is associated with hippocampus-mediated long-term cognitive impairment. In neonatal rats, hypoinsulinemic hyperglycemia leads to oxidative stress, altered neurochemistry, microgliosis, and abnormal synaptogenesis in the hippocampus. Intranasal insulin (INS) bypasses the blood-brain barrier, targets the brain, and improves synaptogenesis in rodent models, and memory in adult humans with Alzheimer's disease or type 2 diabetes, without altering the blood levels of insulin or glucose. To test whether INS improves hippocampal development in neonatal hyperglycemia, rat pups were subjected to hypoinsulinemic hyperglycemia by injecting streptozotocin (STZ) at a dose of 80 mg/kg i.p. on postnatal day (P) 2 and randomized to INS, 0.3U twice daily from P3-P6 (STZ + INS group), or no treatment (STZ group). The acute effects on hippocampal neurochemical profile and transcript mRNA expression of insulin receptor (Insr), glucose transporters (Glut1, Glut4, and Glut8), and poly(ADP-ribose) polymerase-1 (Parp1, a marker of oxidative stress) were determined on P7 using in vivo 1H MR spectroscopy (MRS) and qPCR. The long-term effects on the neurochemical profile, microgliosis, and synaptogenesis were determined at adulthood using 1H MRS and histochemical analysis. Relative to the control (CONT) group, mean blood glucose concentration was higher from P3 to P6 in the STZ and STZ + INS groups. On P7, MRS showed 10% higher taurine concentration in both STZ groups. qPCR showed 3-folds higher Insr and 5-folds higher Glut8 expression in the two STZ groups. Parp1 expression was 18% higher in the STZ group and normal in the STZ + INS group. At adulthood, blood glucose concentration in the fed state was higher in the STZ and STZ + INS groups. MRS showed 59% higher brain glucose concentration and histochemistry showed microgliosis in the hippocampal subareas in the STZ group. Brain glucose was normal in the STZ + INS group. Compared with the STZ group, phosphocreatine and phosphocreatine/creatine ratio were higher, and microglia in the hippocampal subareas fewer in the STZ + INS group (p < 0.05 for all). Neonatal hyperglycemia was associated with abnormal glucose metabolism and microgliosis in the adult hippocampus. INS administration during hyperglycemia attenuated these adverse effects and improved energy metabolism in the hippocampus.
Collapse
Affiliation(s)
- Lauren McClure Yauch
- Division of Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - William H. Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, MN, 55130, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ivan Tkac
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Raghavendra B. Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
4
|
An Association between Insulin Resistance and Neurodegeneration in Zebrafish Larval Model ( Danio rerio). Int J Mol Sci 2022; 23:ijms23158290. [PMID: 35955446 PMCID: PMC9368350 DOI: 10.3390/ijms23158290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Type 2 diabetes mellitus has recently been identified as a mediator of neurodegeneration. However, the molecular mechanisms have not been clearly elucidated. We aimed to investigate insulin resistance associated with neurodegenerative events in zebrafish larvae. Methods: Larvae aged 72 h-post-fertilization (hpf) were induced to insulin resistance by immersion in 250 nM insulin and were then reinduced with 100 nM insulin at 96 hpf. This model was validated by a glucose levels assay, qPCR analysis of selected genes (akt, pepck, zglut3 and claudin-5a) and Oil Red-O (ORO) staining of the yolk sac for lipid distribution. The association of insulin resistance and neurodegeneration was validated by malondialdehyde (MDA), glutathione (GSH) assays, and by integrating next-generation sequencing with database for annotation, visualization and integrated discovery (DAVID). Results: There was a significant increase in glucose levels at 180 min in the insulin-resistant group. However, it decreased at 400 min after the re-challenge. Insulin-signaling mediators, akt and pepck, were showed significantly downregulated up to 400 min after insulin immersion (p < 0.05). Meanwhile, claudin-5a assessed blood−brain barrier (BBB) integrity and showed significant deterioration after 400 min of post-insulin immersion. ORO staining remarked the increase in yolk sac size in the insulin-resistant group. After the confirmation of insulin resistance, MDA levels increased significantly in the insulin-resistant group compared to the control group in the following parameters. Furthermore, dysregulated MAPK- and Wnt/Ca2+-signaling pathways were observed in the insulin-resistant group, disrupting energy metabolism and causing BBB injury. Conclusions: We conclude that the insulin-resistant zebrafish larvae alter the metabolic physiology associated with neurodegeneration.
Collapse
|
5
|
Porras CA, Rouault TA. Iron Homeostasis in the CNS: An Overview of the Pathological Consequences of Iron Metabolism Disruption. Int J Mol Sci 2022; 23:ijms23094490. [PMID: 35562883 PMCID: PMC9104368 DOI: 10.3390/ijms23094490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/21/2022] Open
Abstract
Iron homeostasis disruption has increasingly been implicated in various neurological disorders. In this review, we present an overview of our current understanding of iron metabolism in the central nervous system. We examine the consequences of both iron accumulation and deficiency in various disease contexts including neurodegenerative, neurodevelopmental, and neuropsychological disorders. The history of animal models of iron metabolism misregulation is also discussed followed by a comparison of three patients with a newly discovered neurodegenerative disorder caused by mutations in iron regulatory protein 2.
Collapse
|
6
|
Isasi E, Figares M, Abudara V, Olivera-Bravo S. Gestational and Lactational Iron Deficiency Anemia Impairs Myelination and the Neurovascular Unit in Infant Rats. Mol Neurobiol 2022; 59:3738-3754. [PMID: 35381889 DOI: 10.1007/s12035-022-02798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Iron deficiency anemia is a prevalent health problem among pregnant women and infants, particularly in the developing countries that causes brain development deficits and poor cognitive outcomes. Since tissue iron depletion may impair myelination and trigger cellular hypoxic signaling affecting blood vessels, we studied myelination and the neurovascular unit (NVU) in infant rats born to mothers fed with an iron deficient (ID) or control diet from embryonic day 5 till weaning. Blood samples and brains of rat pups at postnatal day (PND) 14 and 30 were analyzed. PND 14 ID rats had severe microcytic hypochromic anemia that was almost reversed at PND 30 although hypomyelination and astrocyte immature phenotype in the corpus callosum were significant at that age. In CA1 hippocampal region, PND 14 and PND 30 ID rats showed significant reduced expression of the receptor β of the platelet-derived growth factor localized in pericytes and associated to aquaporin 4 (AQP4) immunopositive capillaries. Shorter AQP4 + capillaries and reduced AQP4 expression were also evidenced in PND 14 and PND 30 ID rats. In addition, pericyte membrane permeability through large-pore channels was transiently increased in ID rats at PND 14 but not at PND 30, while the blood-brain barrier permeability was not affected. Remarkably, transient increased pericyte permeability found in PND 14 ID rats was not directly related to iron depletion, suggesting the involvement of other iron deficiency anemia-induced mechanisms. In summary, severe ID during gestation and lactation produces persistent hypomyelination and significantly affects hippocampal pericytes and astrocytes in the NVU which may trigger impaired neurovascular function.
Collapse
Affiliation(s)
- Eugenia Isasi
- Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 3318, Italia Av., 11600, Montevideo, Uruguay
- Neurobiología Celular y Molecular, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martin Figares
- Neurobiología Celular y Molecular, Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 3318, Italia Av., 11600, Montevideo, Uruguay.
| |
Collapse
|
7
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
8
|
Carter RC, Georgieff MK, Ennis KM, Dodge NC, Wainwright H, Meintjes EM, Duggan CP, Molteno CD, Jacobson JL, Jacobson SW. Prenatal alcohol-related alterations in maternal, placental, neonatal, and infant iron homeostasis. Am J Clin Nutr 2021; 114:1107-1122. [PMID: 34091657 PMCID: PMC8408869 DOI: 10.1093/ajcn/nqab165] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is associated with postnatal iron deficiency (ID), which has been shown to exacerbate deficits in growth, cognition, and behavior seen in fetal alcohol spectrum disorders. However, the mechanisms underlying PAE-related ID remain unknown. OBJECTIVES We aimed to examine biochemical measures of iron homeostasis in the mother, placenta, neonate, and 6.5-month-old infant. METHODS In a prenatally recruited, prospective longitudinal birth cohort in South Africa, 206 gravidas (126 heavy drinkers and 80 controls) were interviewed regarding alcohol, cigarette, and drug use and diet at 3 prenatal visits. Hemoglobin, ferritin, and soluble transferrin receptor (sTfR) were assayed twice during pregnancy and urinary hepcidin:creatinine was assayed once. Infant ferritin and hemoglobin were measured at 2 weeks and 6.5 months and sTfR was measured at 6.5 months. Histopathological examinations were conducted on 125 placentas and iron transport assays (iron regulatory protein-2, transferrin receptor-1, divalent metal transporter-1, ferroportin-1, and iron concentrations) were conducted on 63. RESULTS In multivariable regression models, prenatal drinking frequency (days/week) was related to higher maternal hepcidin and to sequestration of iron into storage at the expense of erythropoiesis in mothers and neonates, as evidenced by a lower hemoglobin (g/dL)-to-log(ferritin) (ug/L) ratio [mothers: raw regression coefficient (β) = -0.21 (95% CI: -0.35 to -0.07); neonates: β = -0.15 (95% CI: -0.24 to -0.06)]. Drinking frequency was also related to decreased placental ferroportin-1:transferrin receptor-1 (β = -0.57 for logged values; 95% CI: -1.03 to -0.10), indicating iron-restricted placental iron transport. At 6.5 months, drinking frequency was associated with lower hemoglobin (β = -0.18; 95% CI: -0.33 to -0.02), and increased prevalences of ID (β = 0.09; 95% CI: 0.02-0.17) and ID anemia (IDA) (β = 0.13; 95% CI: 0.04-0.23). In causal inference analyses, the PAE-related increase in IDA was partially mediated by decreased neonatal hemoglobin:log(ferritin), and the decrease in neonatal hemoglobin:log(ferritin) was partially mediated by decreased maternal hemoglobin:log(ferritin). CONCLUSIONS In this study, greater PAE was associated with an unfavorable profile of maternal-fetal iron homeostasis, which may play mechanistic roles in PAE-related ID later in infancy.
Collapse
Affiliation(s)
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kathleen M Ennis
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Helen Wainwright
- National Health Laboratory Service, Department of Pathology, Groote Schuur Hospital, Cape Town, South Africa
| | - Ernesta M Meintjes
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Christopher P Duggan
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA,Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA,Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| |
Collapse
|
9
|
Bastian TW, Rao R, Tran PV, Georgieff MK. The Effects of Early-Life Iron Deficiency on Brain Energy Metabolism. Neurosci Insights 2020; 15:2633105520935104. [PMID: 32637938 PMCID: PMC7324901 DOI: 10.1177/2633105520935104] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Iron deficiency (ID) is one of the most prevalent nutritional deficiencies in the world. Iron deficiency in the late fetal and newborn period causes abnormal cognitive performance and emotional regulation, which can persist into adulthood despite iron repletion. Potential mechanisms contributing to these impairments include deficits in brain energy metabolism, neurotransmission, and myelination. Here, we comprehensively review the existing data that demonstrate diminished brain energetic capacity as a mechanistic driver of impaired neurobehavioral development due to early-life (fetal-neonatal) ID. We further discuss a novel hypothesis that permanent metabolic reprogramming, which occurs during the period of ID, leads to chronically impaired neuronal energetics and mitochondrial capacity in adulthood, thus limiting adult neuroplasticity and neurobehavioral function. We conclude that early-life ID impairs energy metabolism in a brain region- and age-dependent manner, with particularly strong evidence for hippocampal neurons. Additional studies, focusing on other brain regions and cell types, are needed.
Collapse
Affiliation(s)
- Thomas W Bastian
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Phu V Tran
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Michael K Georgieff
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Pino JMV, Nishiduka ES, da Luz MHM, Silva VF, Antunes HKM, Tashima AK, Guedes PLR, de Souza AAL, Lee KS. Iron-deficient diet induces distinct protein profile related to energy metabolism in the striatum and hippocampus of adult rats. Nutr Neurosci 2020; 25:207-218. [PMID: 32183604 DOI: 10.1080/1028415x.2020.1740862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Iron deficiency is a public health problem that affects all age groups. Its main consequence is anemia, but it can also affect cognitive functions. Although the negative effects of iron deficiency on cognitive function have been extensively described, the underlying mechanism has not been fully investigated. Thus, to gain an unbiased insight into the effects of iron deficiency (ID) on discrete brain regions, we performed a proteomic analysis of the striatum and hippocampus of adult rats subjected to an iron restricted (IR) diets for 30 days. We found that an IR diet caused major alterations in proteins related to glycolysis and lipid catabolism in the striatum. In the hippocampus, a larger portion of proteins related to oxidative phosphorylation and neurodegenerative diseases were altered. These alterations in the striatum and hippocampus occurred without a reduction in local iron levels, although there was a drastic reduction in liver iron and ferritin. Moreover, the IR group showed higher fasting glycaemia than the control group. These results suggest that brain iron content is preserved during acute iron deficiency, but the alterations of other systemic metabolites such as glucose may trigger distinct metabolic adaptations in each brain region. Abnormal energy metabolism precedes and persists in many neurological disorders. Thus, altered energy metabolism can be one of the mechanisms by which iron deficiency affects cognitive functions.
Collapse
Affiliation(s)
- Jessica M V Pino
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Erika S Nishiduka
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Márcio H M da Luz
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vitória F Silva
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hanna K M Antunes
- Departamento de Biociência, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre K Tashima
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro L R Guedes
- Departamento de Biociência, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Altay A L de Souza
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kil S Lee
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Valentine CJ. Nutrition and the developing brain. Pediatr Res 2020; 87:190-191. [PMID: 31673115 DOI: 10.1038/s41390-019-0650-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Christina J Valentine
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Medical Sciences Building, Room 4407 231 Albert Sabin Way, Cincinnati, OH, 45267 0526, USA.
| |
Collapse
|