1
|
Satrom KM, Wang J, Lock EF, Snook K, Lund TC, Rao RB. Phototherapy Alters the Plasma Metabolite Profile in Infants Born Preterm with Hyperbilirubinemia. J Pediatr 2024; 274:114175. [PMID: 38945444 DOI: 10.1016/j.jpeds.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE To investigate the effects of gestational age (GA) and phototherapy on the plasma metabolite profile of preterm infants with neonatal hyperbilirubinemia (NHB). STUDY DESIGN From a cohort of prospectively enrolled infants born preterm (n = 92), plasma samples of very preterm (VPT; GA, 28 + 0 to 31 + 6 weeks, n = 27) and moderate/late preterm (M/LPT; GA, 32 + 0 to 35 + 6 weeks, n = 33) infants requiring phototherapy for NHB were collected prior to the initiation of phototherapy and 24 hours after starting phototherapy. An additional sample was collected 48 hours after starting phototherapy in a randomly selected subset (n = 30; VPT n = 15; M/LPT n = 15). Metabolite profiles were determined using ultraperformance liquid chromatography tandem mass spectroscopy. Two-way ANCOVA was used to identify metabolites that differed between GA groups and timepoints after adjusting for total serum bilirubin levels (false discovery rate q-value < 0.05). Top impacted pathways were identified using pathway over-representation analysis. RESULTS Phototherapy was initiated at lower total serum bilirubin (mean ± SD mg/dL) levels in VPT compared with M/LPT infants (7.3 ± 1.4 vs 9.9 ± 1.9, P < .01). We identified 664 metabolites that were significant for a phototherapy effect, 191 metabolites significant for GA, and 46 metabolites significant for GA × phototherapy interaction (false discovery rate q-value < 0.05). Longer duration phototherapy had a larger mean effect size (24 hours postphototherapy: d = 0.36; 48 hours postphototherapy: d = 0.43). Top pathways affected by phototherapy included membrane lipid metabolism, one-carbon metabolism, creatine biosynthesis, and oligodendrocyte differentiation. CONCLUSION Phototherapy alters the plasma metabolite profile more than GA in preterm infants with NHB, affecting pathways related to lipid and one-carbon metabolism, energy biosynthesis, and oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Katherine M Satrom
- Division of Neonatology, Department of Pediatrics, University of Minnesota; Minneapolis.
| | - Jiuzhou Wang
- Division of Biostatistics, School of Public Health, University of Minnesota; Minneapolis
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota; Minneapolis
| | - Kirsten Snook
- Division of Neonatology, Department of Pediatrics, University of Minnesota; Minneapolis
| | - Troy C Lund
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota; Minneapolis
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota; Minneapolis
| |
Collapse
|
2
|
Rao RB. Biomarkers of Brain Dysfunction in Perinatal Iron Deficiency. Nutrients 2024; 16:1092. [PMID: 38613125 PMCID: PMC11013337 DOI: 10.3390/nu16071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Iron deficiency in the fetal and neonatal period (perinatal iron deficiency) bodes poorly for neurodevelopment. Given its common occurrence and the negative impact on brain development, a screening and treatment strategy that is focused on optimizing brain development in perinatal iron deficiency is necessary. Pediatric societies currently recommend a universal iron supplementation strategy for full-term and preterm infants that does not consider individual variation in body iron status and thus could lead to undertreatment or overtreatment. Moreover, the focus is on hematological normalcy and not optimal brain development. Several serum iron indices and hematological parameters in the perinatal period are associated with a risk of abnormal neurodevelopment, suggesting their potential use as biomarkers for screening and monitoring treatment in infants at risk for perinatal iron deficiency. A biomarker-based screening and treatment strategy that is focused on optimizing brain development will likely improve outcomes in perinatal iron deficiency.
Collapse
Affiliation(s)
- Raghavendra B. Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
- Masonic Institute for the Developing Brain, Minneapolis, MN 55414, USA
| |
Collapse
|
3
|
Sandri BJ, Kim J, Lubach GR, Lock EF, Ennis-Czerniak K, Kling PJ, Georgieff MK, Coe CL, Rao RB. Prognostic Performance of Hematological and Serum Iron and Metabolite Indices for Detection of Early Iron Deficiency Induced Metabolic Brain Dysfunction in Infant Rhesus Monkeys. J Nutr 2024; 154:875-885. [PMID: 38072152 PMCID: PMC10942850 DOI: 10.1016/j.tjnut.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND The current pediatric practice of monitoring for infantile iron deficiency (ID) via hemoglobin (Hgb) screening at one y of age does not identify preanemic ID nor protect against later neurocognitive deficits. OBJECTIVES To identify biomarkers of iron-related metabolic alterations in the serum and brain and determine the sensitivity of conventional iron and heme indices for predicting risk of brain metabolic dysfunction using a nonhuman primate model of infantile ID. METHODS Simultaneous serum iron and RBC indices, and serum and cerebrospinal fluid (CSF) metabolomic profiles were determined in 20 rhesus infants, comparing iron sufficient (IS; N = 10) and ID (N = 10) infants at 2 and 4 mo of age. RESULTS Reticulocyte hemoglobin (RET-He) was lower at 2 wk in the ID group. Significant IS compared with ID differences in serum iron indices were present at 2 mo, but Hgb and RBC indices differed only at 4 mo (P < 0.05). Serum and CSF metabolomic profiles of the ID and IS groups differed at 2 and 4 mo (P < 0.05). Key metabolites, including homostachydrine and stachydrine (4-5-fold lower at 4 mo in ID group, P < 0.05), were altered in both serum and CSF. Iron indices and RET-He at 2 mo, but not Hgb or other RBC indices, were correlated with altered CSF metabolic profile at 4 mo and had comparable predictive accuracy (area under the receiver operating characteristic curve scores, 0.75-0.80). CONCLUSIONS Preanemic ID at 2 mo was associated with metabolic alterations in serum and CSF in infant monkeys. Among the RBC indices, only RET-He predicted the future risk of abnormal CSF metabolic profile with a predictive accuracy comparable to serum iron indices. The concordance of homostachydrine and stachydrine changes in serum and CSF indicates their potential use as early biomarkers of brain metabolic dysfunction in infantile ID.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Jonathan Kim
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, United States
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Kathleen Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Pamela J Kling
- Division of Neonatology, Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, United States
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
4
|
Kim J, Sandri BJ, Rao RB, Lock EF. Bayesian predictive modeling of multi-source multi-way data. Comput Stat Data Anal 2023; 186:107783. [PMID: 37274461 PMCID: PMC10237362 DOI: 10.1016/j.csda.2023.107783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A Bayesian approach to predict a continuous or binary outcome from data that are collected from multiple sources with a multi-way (i.e., multidimensional tensor) structure is described. As a motivating example, molecular data from multiple 'omics sources, each measured over multiple developmental time points, as predictors of early-life iron deficiency (ID) in a rhesus monkey model are considered. The method uses a linear model with a low-rank structure on the coefficients to capture multi-way dependence and model the variance of the coefficients separately across each source to infer their relative contributions. Conjugate priors facilitate an efficient Gibbs sampling algorithm for posterior inference, assuming a continuous outcome with normal errors or a binary outcome with a probit link. Simulations demonstrate that the model performs as expected in terms of misclassification rates and correlation of estimated coefficients with true coefficients, with large gains in performance by incorporating multi-way structure and modest gains when accounting for differing signal sizes across the different sources. Moreover, it provides robust classification of ID monkeys for the motivating application.
Collapse
Affiliation(s)
- Jonathan Kim
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| | - Brian J. Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra B. Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric F. Lock
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| |
Collapse
|
5
|
Sandri BJ, Ennis-Czerniak K, Kanajam P, Frey WH, Lock EF, Rao RB. Intranasal insulin treatment partially corrects the altered gene expression profile in the hippocampus of developing rats with perinatal iron deficiency. Am J Physiol Regul Integr Comp Physiol 2023; 325:R423-R432. [PMID: 37602386 PMCID: PMC10639019 DOI: 10.1152/ajpregu.00311.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Perinatal iron deficiency (FeD) targets the hippocampus and leads to long-term cognitive deficits. Intranasal insulin administration improves cognitive deficits in adult humans with Alzheimer's disease and type 2 diabetes and could provide benefits in FeD-induced hippocampal dysfunction. To objective was to assess the effects of intranasal insulin administration intranasal insulin administration on the hippocampal transcriptome in a developing rat model of perinatal FeD. Perinatal FeD was induced using low-iron diet from gestational day 3 until postnatal day (P) 7, followed by an iron sufficient (FeS) diet through P21. Intranasal insulin was administered at a dose of 0.3 IU twice daily from P8 to P21. Hippocampi were removed on P21 from FeS control, FeD control, FeS insulin, and FeD insulin groups. Total RNA was isolated and profiled using next-generation sequencing. Gene expression profiles were characterized using custom workflows and expression patterns examined using ingenuity pathways analysis (n = 7-9 per group). Select RNAseq results were confirmed via qPCR. Transcriptomic profiling revealed that mitochondrial biogenesis and flux, oxidative phosphorylation, quantity of neurons, CREB signaling in neurons, and RICTOR-based mTOR signaling were disrupted with FeD and positively affected by intranasal insulin treatment with the most benefit observed in the FeD insulin group. Both perinatal FeD and intranasal insulin administration altered gene expression profile in the developing hippocampus. Intranasal insulin treatment reversed the adverse effects of FeD on many molecular pathways and could be explored as an adjunct therapy in perinatal FeD.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kathleen Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Priya Kanajam
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, Minnesota, United States
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
6
|
McClorry S, Ji P, Parenti MG, Slupsky CM. Antibiotics augment the impact of iron deficiency on metabolism in a piglet model. J Nutr Biochem 2023:109405. [PMID: 37311489 DOI: 10.1016/j.jnutbio.2023.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Infancy and childhood represent a high-risk period for developing iron deficiency (ID) and is a period of increased susceptibility to infectious disease. Antibiotic use is high in children from low-, middle-, and high-income countries, and thus we sought to determine the impact of antibiotics in the context of ID. In this study, a piglet model was used to assess the impact of ID and antibiotics on systemic metabolism. ID was induced by withholding a ferrous sulfate injection after birth to piglets in the ID group and providing an iron deficient diet upon weaning on postnatal day (PD) 25. Antibiotics (gentamicin and spectinomycin) were administered on PD34-36 to a set of control (Con*+Abx) and ID piglets (ID+Abx) after weaning. Blood was analyzed on PD30 (before antibiotic administration) and PD43 (7 days after antibiotic administration). All ID piglets exhibited growth faltering and had lower hemoglobin and hematocrit compared to control (Con) and Con*+Abx throughout. The metabolome of ID piglets at weaning and sacrifice exhibited elevated markers of oxidative stress, ketosis, and ureagenesis compared to Con. The impact of antibiotics on Con*+Abx piglets did not result in significant changes to the serum metabolome 7-days after treatment; however, the impact of antibiotics on ID+Abx piglets resulted in the same metabolic changes observed in ID piglets, but with a greater magnitude when compared to Con. These results suggest that antibiotic administration in the context of ID exacerbates the negative metabolic impacts of ID and may have long lasting impacts on development.
Collapse
Affiliation(s)
- Shannon McClorry
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Peng Ji
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mariana G Parenti
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA; Department of Food Science and Technology, UC Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Rao RB, Lubach GR, Ennis-Czerniak KM, Lock EF, Kling PJ, Georgieff MK, Coe CL. Reticulocyte Hemoglobin Equivalent has Comparable Predictive Accuracy as Conventional Serum Iron Indices for Predicting Iron Deficiency and Anemia in a Nonhuman Primate model of Infantile Iron Deficiency. J Nutr 2023; 153:148-157. [PMID: 36913448 PMCID: PMC10196609 DOI: 10.1016/j.tjnut.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Infantile iron deficiency (ID) causes anemia and compromises neurodevelopment. Current screening relies on hemoglobin (Hgb) determination at 1 year of age, which lacks sensitivity and specificity for timely detection of infantile ID. Low reticulocyte Hgb equivalent (RET-He) indicates ID, but its predictive accuracy relative to conventional serum iron indices is unknown. OBJECTIVES The objective was to compare diagnostic accuracies of iron indices, red blood cell (RBC) indices, and RET-He for predicting the risk of ID and IDA in a nonhuman primate model of infantile ID. METHODS Serum iron, total iron binding capacity, unsaturated iron binding capacity, transferrin saturation (TSAT), Hgb, RET-He, and other RBC indices were determined at 2 wk and 2, 4, and 6 mo in breastfed male and female rhesus infants (N = 54). The diagnostic accuracies of RET-He, iron, and RBC indices for predicting the development of ID (TSAT < 20%) and IDA (Hgb < 10 g/dL + TSAT < 20%) were determined using t tests, area under the receiver operating characteristic curve (AUC) analysis, and multiple regression models. RESULTS Twenty-three (42.6%) infants developed ID and 16 (29.6%) progressed to IDA. All 4 iron indices and RET-He, but not Hgb or RBC indices, predicted future risk of ID and IDA (P < 0.001). The predictive accuracy of RET-He (AUC = 0.78, SE = 0.07; P = 0.003) for IDA was comparable to that of the iron indices (AUC = 0.77-0.83, SE = 0.07; P ≤ 0.002). A RET-He threshold of 25.5 pg strongly correlated with TSAT < 20% and correctly predicted IDA in 10 of 16 infants (sensitivity: 62.5%) and falsely predicted possibility of IDA in only 4 of 38 unaffected infants (specificity: 89.5%). CONCLUSIONS RET-He is a biomarker of impending ID/IDA in rhesus infants and can be used as a hematological parameter to screen for infantile ID.
Collapse
Affiliation(s)
- Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| | | | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamela J Kling
- Division of Neonatology, Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
8
|
Abstract
Growing evidence indicates that a suboptimal intrauterine environment confers risk for schizophrenia. The developmental model of schizophrenia posits that aberrant brain growth during early brain development and adolescence may interact to contribute to this psychiatric disease in adulthood. Although a variety of factors may perturb the environment of the developing fetus and predispose for schizophrenia later, a common mechanism has yet to be elucidated. Micronutrient deficiencies during the perinatal period are known to induce potent effects on brain development by altering neurodevelopmental processes. Iron is an important candidate nutrient to consider because of its role in energy metabolism, monoamine synthesis, synaptogenesis, myelination, and the high prevalence of iron deficiency (ID) in the mother-infant dyad. Understanding the current state of science regarding perinatal ID as an early risk factor for schizophrenia is imperative to inform empirical work investigating the etiology of schizophrenia and develop prevention and intervention programs. In this narrative review, we focus on perinatal ID as a common mechanism underlying the fetal programming of schizophrenia. First, we review the neural aberrations associated with perinatal ID that indicate risk for schizophrenia in adulthood, including disruptions in dopaminergic neurotransmission, hippocampal-dependent learning and memory, and sensorimotor gating. Second, we review the pathophysiology of perinatal ID as a function of maternal ID during pregnancy and use epidemiological and cohort studies to link perinatal ID with risk of schizophrenia. Finally, we review potential confounding phenotypes, including nonanemic causes of perinatal brain ID and future risk of schizophrenia.
Collapse
Affiliation(s)
- Andrea M. Maxwell
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Raghavendra B. Rao
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455 (USA)
- Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455 (USA)
| |
Collapse
|
9
|
Sandri BJ, Kim J, Lubach GR, Lock EF, Guerrero C, Higgins L, Markowski TW, Kling PJ, Georgieff MK, Coe CL, Rao RB. Multiomic profiling of iron-deficient infant monkeys reveals alterations in neurologically important biochemicals in serum and cerebrospinal fluid before the onset of anemia. Am J Physiol Regul Integr Comp Physiol 2022; 322:R486-R500. [PMID: 35271351 PMCID: PMC9054343 DOI: 10.1152/ajpregu.00235.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022]
Abstract
The effects of iron deficiency (ID) during infancy extend beyond the hematologic compartment and include short- and long-term adverse effects on many tissues including the brain. However, sensitive biomarkers of iron-dependent brain health are lacking in humans. To determine whether serum and cerebrospinal fluid (CSF) biomarkers of ID-induced metabolic dysfunction are concordant in the pre/early anemic stage of ID before anemia in a nonhuman primate model of infantile iron deficiency anemia (IDA). ID (n = 7), rhesus infants at 4 mo (pre-anemic period) and 6 mo of age (anemic) were examined. Hematological, metabolomic, and proteomic profiles were generated via HPLC/MS at both time points to discriminate serum biomarkers of ID-induced brain metabolic dysfunction. We identified 227 metabolites and 205 proteins in serum. Abnormalities indicating altered liver function, lipid dysregulation, and increased acute phase reactants were present in ID. In CSF, we measured 210 metabolites and 1,560 proteins with changes in ID infants indicative of metabolomic and proteomic differences indexing disrupted synaptogenesis. Systemic and CSF proteomic and metabolomic changes were present and concurrent in the pre-anemic and anemic periods. Multiomic serum and CSF profiling uncovered pathways disrupted by ID in both the pre-anemic and anemic stages of infantile IDA, including evidence for hepatic dysfunction and activation of acute phase response. Parallel changes observed in serum and CSF potentially provide measurable serum biomarkers of ID that reflect at-risk brain processes prior to progression to clinical anemia.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Jonathan Kim
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Candace Guerrero
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Pamela J Kling
- Division of Neonatology, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Iron deficiency is the most common micronutrient deficiency and infants are at particular risk. The purpose of this review is to summarize recent studies that explored the metabolism of iron in infants as well as the risks and benefits of iron supplementation in different populations. RECENT FINDINGS The ability of infants to regulate iron homeostasis is not fully known but most likely different from adults. Reducing iron deficiency has beneficial effects on neurodevelopment but iron overload may have adverse functional effects including diarrhea and even poor neurodevelopment. Recent studies have confirmed benefits of delayed cord clamping and supplementation of infants in risk groups while iron supplementation to pregnant women has shown limited effect in the offspring with regard to iron status and neurodevelopment. Further support is given to the recommendation that exclusive breast feeding, without supplementation, is safe for normal birth weight infants until 6 months whereafter an iron-rich diet should be given. SUMMARY Iron deficiency negatively impacts global health but efforts to identify optimal interventions are progressing. Yet, questions remain, particularly regarding long-term risks, benefits and optimal interventions for low birth weight infants as well as the level of iron fortification in infant formula.
Collapse
Affiliation(s)
- Staffan K Berglund
- Department of Clinical Sciences, Pediatrics
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | | |
Collapse
|
11
|
Mayneris-Perxachs J, Amaral W, Lubach GR, Lyte M, Phillips GJ, Posma JM, Coe CL, Swann JR. Gut Microbial and Metabolic Profiling Reveal the Lingering Effects of Infantile Iron Deficiency Unless Treated with Iron. Mol Nutr Food Res 2021; 65:e2001018. [PMID: 33599094 DOI: 10.1002/mnfr.202001018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Iron deficiency (ID) compromises the health of infants worldwide. Although readily treated with iron, concerns remain about the persistence of some effects. Metabolic and gut microbial consequences of infantile ID were investigated in juvenile monkeys after natural recovery (pID) from iron deficiency or post-treatment with iron dextran and B vitamins (pID+Fe). METHODS AND RESULTS Metabolomic profiling of urine and plasma is conducted with 1 H nuclear magnetic resonance (NMR) spectroscopy. Gut microbiota are characterized from rectal swabs by amplicon sequencing of the 16S rRNA gene. Urinary metabolic profiles of pID monkeys significantly differed from pID+Fe and continuously iron-sufficient controls (IS) with higher maltose and lower amounts of microbial-derived metabolites. Persistent differences in energy metabolism are apparent from the plasma metabolic phenotypes with greater reliance on anaerobic glycolysis in pID monkeys. Microbial profiling indicated higher abundances of Methanobrevibacter, Lachnobacterium, and Ruminococcus in pID monkeys and any history of ID resulted in a lower Prevotella abundance compared to the IS controls. CONCLUSIONS Lingering metabolic and microbial effects are found after natural recovery from ID. These long-term biochemical derangements are not present in the pID+Fe animals emphasizing the importance of the early detection and treatment of early-life ID to ameliorate its chronic metabolic effects.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Josep Trueta University Hospital, Girona, Spain.,Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.,Obesity and Nutrition, Madrid, Spain
| | - Wellington Amaral
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| | - Mark Lyte
- College of Veterinary Medicine, Iowa State University
| | | | - Joram M Posma
- Department of Metabolism, DigCIBER in Physiopathology of estion and Reproduction, Imperial College London, UK
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| | - Jonathan R Swann
- Department of Metabolism, DigCIBER in Physiopathology of estion and Reproduction, Imperial College London, UK.,School of Human Development and Health, Faculty of Medicine, University of Southampton, UK.,Department of Neuroscience, Karolinska Institute, Sweden
| |
Collapse
|
12
|
Vlasova RM, Wang Q, Willette A, Styner MA, Lubach GR, Kling PJ, Georgieff MK, Rao RB, Coe CL. Infantile Iron Deficiency Affects Brain Development in Monkeys Even After Treatment of Anemia. Front Hum Neurosci 2021; 15:624107. [PMID: 33716694 PMCID: PMC7947927 DOI: 10.3389/fnhum.2021.624107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
A high percent of oxidative energy metabolism is needed to support brain growth during infancy. Unhealthy diets and limited nutrition, as well as other environmental insults, can compromise these essential developmental processes. In particular, iron deficiency anemia (IDA) has been found to undermine both normal brain growth and neurobehavioral development. Even moderate ID may affect neural maturation because when iron is limited, it is prioritized first to red blood cells over the brain. A primate model was used to investigate the neural effects of a transient ID and if deficits would persist after iron treatment. The large size and postnatal growth of the monkey brain makes the findings relevant to the metabolic and iron needs of human infants, and initiating treatment upon diagnosis of anemia reflects clinical practice. Specifically, this analysis determined whether brain maturation would still be compromised at 1 year of age if an anemic infant was treated promptly once diagnosed. The hematology and iron status of 41 infant rhesus monkeys was screened at 2-month intervals. Fifteen became ID; 12 met clinical criteria for anemia and were administered iron dextran and B vitamins for 1-2 months. MRI scans were acquired at 1 year. The volumetric and diffusion tensor imaging (DTI) measures from the ID infants were compared with monkeys who remained continuously iron sufficient (IS). A prior history of ID was associated with smaller total brain volumes, driven primarily by significantly less total gray matter (GM) and smaller GM volumes in several cortical regions. At the macrostructual level, the effect on white matter volumes (WM) was not as overt. However, DTI analyses of WM microstructure indicated two later-maturating anterior tracts were negatively affected. The findings reaffirm the importance of iron for normal brain development. Given that brain differences were still evident even after iron treatment and following recovery of iron-dependent hematological indices, the results highlight the importance of early detection and preemptive supplementation to limit the neural consequences of ID.
Collapse
Affiliation(s)
- Roza M. Vlasova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Auriel Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Martin A. Styner
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gabriele R. Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Pamela J. Kling
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Raghavendra B. Rao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Effects of Iron Deficiency on Serum Metabolome, Hepatic Histology, and Function in Neonatal Piglets. Animals (Basel) 2020; 10:ani10081353. [PMID: 32764239 PMCID: PMC7460156 DOI: 10.3390/ani10081353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Iron deficiency is a serious nutrient deficiency in neonatal pigs during the suckling period in modern intensive farming systems and leads to impaired immune response, infection risks, and retardation of growth. The objective was to determine how iron deficiency in neonatal pigs alters the serum metabolomic profile using quantitative and qualitative analysis by ultra-performance liquid chromatography-tandem mass spectrometer (UPLCMS/MS). The current results revealed that iron deficiency led to a series of metabolic changes involved in tyrosine metabolism, phenylalanine metabolism, bile secretion, primary bile acid biosynthesis, steroid biosynthesis, and upregulated activities of the urea cycle enzymes in the liver of neonatal piglets. Abstract Few studies focused on the effects of iron on characterizing alterations of metabolic processes in neonatal piglets. In the present study, 16 neonatal piglets were randomly assigned to two groups. In the first group piglets were given an intramuscularly injection of iron dextran at 150 mg as a positive control (CON) and the second group were not supplemented with iron as a negative control for iron deficiency (ID). At day 8, iron status, serum biochemical parameters, serum metabolome, hepatic histology, and hepatic expression of genes for the metabolism were analyzed. Results indicated that piglets without iron supplementation had significantly reduced iron values and increased blood urea nitrogen concentrations at day 8 (p < 0.05). Analysis of serum metabolome revealed that concentrations of serum lysine, leucine, tyrosine, methionine, and cholesterol were significantly decreased while concentrations of 3-Methyldioxyindole, chenodeoxycholate acid, indoleacetic acid, icosadienoic acid, phenylpyruvic acid, pantothenic acid, ursocholic acid, and cholic acid were significantly increased in iron deficient piglets (p < 0.05). Furthermore, expressions of cyp7a1 and the urea cycle enzyme (ornithinetranscarbamoylase and argininosuccinate synthetase) were significantly increased in iron deficient pigs (p < 0.05). The present experimental results indicated that neonatal piglets without iron supplementation drop to borderline anemia within 8 days after birth. Iron deficiency led to a series of metabolic changes involved in tyrosine metabolism, phenylalanine metabolism, bile secretion, primary bile acid biosynthesis, steroid biosynthesis, and upregulated activities of the urea cycle enzymes in the liver of neonatal piglets, suggesting early effects on metabolic health of neonatal piglets.
Collapse
|