1
|
Yamazaki M, Yamada H, Munetsuna E, Ando Y, Mizuno G, Teshigawara A, Ichikawa H, Nouchi Y, Kageyama I, Wakasugi T, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Approaches to nutritional research using organoids; fructose treatment induces epigenetic changes in liver organoids. J Nutr Biochem 2024; 131:109671. [PMID: 38768870 DOI: 10.1016/j.jnutbio.2024.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Nutritional researches have successfully used animal models to gain new insights into nutrient action. However, comprehensive descriptions of their molecular mechanisms of action remain elusive as appropriate in vitro evaluation systems are lacking. Organoid models can mimic physiological structures and reproduce in vivo functions, making them increasingly utilized in biomedical research for a better understand physiological and pathological phenomena. Therefore, organoid modeling can be a powerful approach for to understand the molecular mechanisms of nutrient action. The present study aims to demonstrate the utility of organoids in nutritional research by further investigating the molecular mechanisms responsible for the negative effects of fructose intake using liver organoids. Here, we treated liver organoids with fructose and analyzed their gene expression profiles and DNA methylation levels. Microarray analysis demonstrated that fructose-treated organoids exhibited increased selenoprotein p (Sepp1) gene expression, whereas pyrosequencing assays revealed reduced DNA methylation levels in the Sepp1 region. These results were consistent with observations using hepatic tissues from fructose-fed rats. Conversely, no differences in Sepp1 mRNA and DNA methylation levels were observed in two-dimensional cells. These results suggest that organoids serve as an ideal in vitro model to recapitulate in vivo tissue responses and help to validate the molecular mechanisms of nutrient action compared to conventional cellular models.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan; Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Ota, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hayato Ichikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
2
|
Lund C, Ranea-Robles P, Falk S, Rausch DM, Skovbjerg G, Vibe-Petersen VK, Krauth N, Skytte JL, Vana V, Roostalu U, Pers TH, Lund J, Clemmensen C. Protection against overfeeding-induced weight gain is preserved in obesity but does not require FGF21 or MC4R. Nat Commun 2024; 15:1192. [PMID: 38331907 PMCID: PMC10853283 DOI: 10.1038/s41467-024-45223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.
Collapse
Affiliation(s)
- Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dylan M Rausch
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Gubra ApS, Hørsholm, Denmark
| | | | - Nathalie Krauth
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Vasiliki Vana
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Richards LS, Flores MD, Zink S, Schibrowsky NA, Sawaya MR, Rodriguez JA. Cryo-EM structure of a human LECT2 amyloid fibril reveals a network of polar ladders at its core. Structure 2023; 31:1386-1393.e3. [PMID: 37657439 PMCID: PMC11456264 DOI: 10.1016/j.str.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
ALECT2 systemic amyloidosis is associated with deposition of the leukocyte cell-derived chemotaxin-2 (LECT2) protein in the form of fibrils. In ALECT2 amyloidosis, ALECT2 fibrils deposit in the glomerulus, resulting in renal failure. Patients lack effective treatment options outside of renal transplant or dialysis. The structure of globular LECT2 has been determined but structures of ALECT2 amyloid fibrils remain unknown. Using single-particle cryo-EM, we find that recombinant human LECT2 forms robust twisting fibrils with canonical amyloid features. ALECT2 fibrils contain two mating protofilaments spanning residues 55-75 of the LECT2 sequence. The geometry of the ALECT2 fibril displays features in line with other pathogenic amyloids. Its core is tightly packed and stabilized by both hydrophobic contacts and hydrogen-bonded uncharged polar residues. The robustness of ALECT2 fibril cores is illustrated by their resistance to denaturants and proteases. This ALECT2 fibril structure presents a potential new target for treatments against ALECT2 systemic amyloidosis.
Collapse
Affiliation(s)
- Logan S Richards
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Maria D Flores
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Samantha Zink
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Natalie A Schibrowsky
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Lund J, Clemmensen C. Physiological protection against weight gain: evidence from overfeeding studies and future directions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220229. [PMID: 37482786 PMCID: PMC10363696 DOI: 10.1098/rstb.2022.0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 07/25/2023] Open
Abstract
Body weight is under physiological regulation. When body fat mass decreases, a series of responses are triggered to promote weight regain by increasing food intake and decreasing energy expenditure. Analogous, in response to experimental overfeeding, excessive weight gain is counteracted by a reduction in food intake and possibly by an increase in energy expenditure. While low blood leptin and other hormones defend against weight loss, the signals that oppose overfeeding-induced fat mass expansion are still unknown. In this article, we discuss insights gained from overfeeding interventions in humans and intragastric overfeeding studies in rodents. We summarize the knowledge on the relative contributions of energy intake, energy expenditure and energy excretion to the physiological defence against overfeeding-induced weight gain. Furthermore, we explore literature supporting the existence of unidentified endocrine and non-endocrine pathways that defend against weight gain. Finally, we discuss the physiological drivers of constitutional thinness and suggest that overfeeding of individuals with constitutional thinness represents a gateway to understand the physiology of weight gain resistance in humans. Experimental overfeeding, combined with modern multi-omics techniques, has the potential to unveil the long-sought signalling pathways that protect against weight gain. Discovering these mechanisms could give rise to new treatments for obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research. Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research. Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
7
|
Garruti G, Baj J, Cignarelli A, Perrini S, Giorgino F. Hepatokines, bile acids and ketone bodies are novel Hormones regulating energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1154561. [PMID: 37274345 PMCID: PMC10236950 DOI: 10.3389/fendo.2023.1154561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Current views show that an impaired balance partly explains the fat accumulation leading to obesity. Fetal malnutrition and early exposure to endocrine-disrupting compounds also contribute to obesity and impaired insulin secretion and/or sensitivity. The liver plays a major role in systemic glucose homeostasis through hepatokines secreted by hepatocytes. Hepatokines influence metabolism through autocrine, paracrine, and endocrine signaling and mediate the crosstalk between the liver, non-hepatic target tissues, and the brain. The liver also synthetizes bile acids (BAs) from cholesterol and secretes them into the bile. After food consumption, BAs mediate the digestion and absorption of fat-soluble vitamins and lipids in the duodenum. In recent studies, BAs act not simply as fat emulsifiers but represent endocrine molecules regulating key metabolic pathways. The liver is also the main site of the production of ketone bodies (KBs). In prolonged fasting, the brain utilizes KBs as an alternative to CHO. In the last few years, the ketogenic diet (KD) became a promising dietary intervention. Studies on subjects undergoing KD show that KBs are important mediators of inflammation and oxidative stress. The present review will focus on the role played by hepatokines, BAs, and KBs in obesity, and diabetes prevention and management and analyze the positive effects of BAs, KD, and hepatokine receptor analogs, which might justify their use as new therapeutic approaches for metabolic and aging-related diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Angelo Cignarelli
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Zhu MH, Liu YJ, Li CY, Tao F, Yang GJ, Chen J. The emerging roles of leukocyte cell-derived chemotaxin-2 in immune diseases: From mechanisms to therapeutic potential. Front Immunol 2023; 14:1158083. [PMID: 36969200 PMCID: PMC10034042 DOI: 10.3389/fimmu.2023.1158083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially identified as a chemokine mediating neutrophil migration, is a multifunctional secreted factor involved in diverse physiological and pathological processes. The high sequence similarity of LECT2 among different vertebrates makes it possible to explore its functions by using comparative biology. LECT2 is associated with many immune processes and immune-related diseases via its binding to cell surface receptors such as CD209a, Tie1, and Met in various cell types. In addition, the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney, liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the mechanisms of LECT2-mediated diverse immune pathogenic conditions in various tissues remain to be fully elucidated due to the functional and signaling heterogeneity. Here, we provide a comprehensive summary of the structure, the “double-edged sword” function, and the extensive signaling pathways of LECT2 in immune diseases, as well as the potential applications of LECT2 in therapeutic interventions in preclinical or clinical trials. This review provides an integrated perspective on the current understanding of how LECT2 is associated with immune diseases, with the aim of facilitating the development of drugs or probes against LECT2 for the theranostics of immune-related diseases.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| |
Collapse
|
9
|
Richards LS, Flores MD, Zink S, Schibrowsky NA, Sawaya MR, Rodriguez JA. Cryo-EM Structure of a Human LECT2 Amyloid Fibril Reveals a Network of Polar Ladders at its Core. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527771. [PMID: 36798409 PMCID: PMC9934627 DOI: 10.1101/2023.02.08.527771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
ALECT2 is a type of systemic amyloidosis caused by deposition of the leukocyte cell-derived chemotaxin-2 (LECT2) protein in the form of fibrils. In ALECT2, LECT2 fibril deposits can be found in the glomerulus, resulting in renal failure. Affected patients lack effective treatment options outside of renal transplant or dialysis. While the structure of LECT2 in its globular form has been determined by X-ray crystallography, structures of LECT2 amyloid fibrils remain unknown. Using single particle cryo-EM, we now find that human LECT2 forms robust twisting fibrils with canonical amyloid features. At their core, LECT2 fibrils contain two mating protofilaments, the ordered core of each protofilament spans residues 55-75 of the LECT2 sequence. The overall geometry of the LECT2 fibril displays features in line with other pathogenic amyloids. Its core is tightly packed and stabilized by a network of hydrophobic contacts and hydrogen-bonded uncharged polar residues, while its outer surface displays several charged residues. The robustness of LECT2 fibril cores is illustrated by their limited dissolution in 3M urea and their persistence after treatment with proteinase K. As such, the LECT2 fibril structure presents a potential new target for treatments against ALECT2.
Collapse
Affiliation(s)
- Logan S. Richards
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Maria D. Flores
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Samantha Zink
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Natalie A. Schibrowsky
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Jafarirad S, Goodarzi R, Mohammadtaghvaei N, Dastoorpoor M, Alavinejad P. Effectiveness of the pomegranate extract in improving hepatokines and serum biomarkers of non-alcoholic fatty liver disease: A randomized double blind clinical trial. Diabetes Metab Syndr 2023; 17:102693. [PMID: 36535123 DOI: 10.1016/j.dsx.2022.102693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Pomegranate as a functional food has various properties and effects on health. The aim of the study was to evaluate the effect of pomegranate extract on serum levels of liver enzymes, hepatokines, interleukin-6 (IL-6), and total antioxidant capacity in non-alcoholic fatty liver disease (NAFLD). METHODS In this double-blind randomized clinical trial, 44 patients with NAFLD were divided into two groups: pomegranate extract tablets and placebo. The intervention period was 12 weeks. At the beginning and end of the study, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), fetuin-A, fibroblast growth factor 21 (FGF-21), interleukin-6 (IL-6), and total antioxidant capacity were assessed in both groups. RESULTS Pomegranate extract reduced the level of ALT (P < 0.001), AST (P < 0.001), GGT (P < 0.001), fetuin-A (P < 0.001), FGF-21(P < 0.001) and IL-6 (P = 0.04) compared to the placebo. Pomegranate extract also led to an increase in total antioxidant capacity (P˂0.001) but had no effect on ALP. CONCLUSION It seems that the pomegranate extract improves several markers of NAFLD, and can be useful as a treatment supplement. The clinical trial approved by Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences (grant No. NRC-9811). TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT), IRCT20140107016123N14, https://www.irct.ir/trial/42739.
Collapse
Affiliation(s)
- Sima Jafarirad
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Goodarzi
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Narges Mohammadtaghvaei
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dastoorpoor
- Department of Biostatistics and Epidemiology, Menopause Andropause Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pejman Alavinejad
- Research Institute for Infectious Disease of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Lanthier N, Lebrun V, Molendi-Coste O, van Rooijen N, Leclercq IA. Liver Fetuin-A at Initiation of Insulin Resistance. Metabolites 2022; 12:1023. [PMID: 36355106 PMCID: PMC9693222 DOI: 10.3390/metabo12111023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2023] Open
Abstract
Hepatokines (liver secreted proteins with possible distant action) are emerging potential players in insulin resistance in type 2 diabetic patients. Here, we explored the effect of a high-fat diet on the expression of fetuin-A, one of those candidate liver proteins, and its relationship with liver macrophage activation. Mice were fed a normal diet or a high-fat diet for 3 days, known to initiate steatosis and liver insulin resistance. A preventive liver macrophage depletion was obtained by intravenous injection of clodronate-loaded liposomes. The mRNA and protein expression of fetuin-A was evaluated by qPCR, Western blot and immunofluorescence on different insulin-sensitive tissues (liver, adipose tissue, and muscle). Short-term high-fat diet-induced steatosis, liver macrophage activation, and hepatic insulin resistance together with a significantly increased expression of liver AHSG (α2-HS glycoprotein/fetuin-A) mRNA and serum fetuin-A concentration. On immunofluorescence, fetuin-A was mostly expressed in centrilobular hepatocytes. This increase in fetuin-A under high-fat diet was not evidenced in other peripheral insulin-sensitive tissues (skeletal muscle and adipose tissue). The mRNA expression of α2-HS glycoprotein was 800 times higher within the liver compared with the adipose tissue or the muscle. Liver macrophage depletion that significantly ameliorated insulin sensitivity was associated with a significant decrease in α2-HS glycoprotein mRNA expression. In conclusion, this study demonstrated liver fetuin-A overexpression at the initiation of high-fat diet feeding, concurrent with hepatic steatosis and insulin resistance. Targeting liver macrophages in this setting reduced liver α2-HS glycoprotein expression suggesting that fetuin-A acts as an hepatokine with proinsulin resistance effects.
Collapse
Affiliation(s)
- Nicolas Lanthier
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
| | - Valérie Lebrun
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
| | - Olivier Molendi-Coste
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, 1081 Amsterdam, The Netherlands
| | - Isabelle A. Leclercq
- Laboratory of Gastroenterology and Hepatology, Institut de Recherche Expérimentale et Clinique, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
12
|
Ranea-Robles P, Lund J, Clemmensen C. The physiology of experimental overfeeding in animals. Mol Metab 2022; 64:101573. [PMID: 35970448 PMCID: PMC9440064 DOI: 10.1016/j.molmet.2022.101573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Body weight is defended by strong homeostatic forces. Several of the key biological mechanisms that counteract weight loss have been unraveled over the last decades. In contrast, the mechanisms that protect body weight and fat mass from becoming too high remain largely unknown. Understanding this aspect of energy balance regulation holds great promise for curbing the obesity epidemic. Decoding the physiological and molecular pathways that defend against weight gain can be achieved by an intervention referred to as 'experimental overfeeding'. SCOPE OF THE REVIEW In this review, we define experimental overfeeding and summarize the studies that have been conducted on animals. This field of research shows that experimental overfeeding induces a potent and prolonged hypophagic response that seems to be conserved across species and mediated by unidentified endocrine factors. In addition, the literature shows that experimental overfeeding can be used to model the development of non-alcoholic steatohepatitis and that forced intragastric infusion of surplus calories lowers survival from infections. Finally, we highlight studies indicating that experimental overfeeding can be employed to study the transgenerational effects of a positive energy balance and how dietary composition and macronutrient content might impact energy homeostasis and obesity development in animals. MAJOR CONCLUSIONS Experimental overfeeding of animals is a powerful yet underappreciated method to investigate the defense mechanisms against weight gain. This intervention also represents an alternative approach for studying the pathophysiology of metabolic liver diseases and the links between energy balance and infection biology. Future research in this field could help uncover why humans respond differently to an obesogenic environment and reveal novel pathways with therapeutic potential against obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Qian Z, Zhang Y, Yang N, Nie H, Yang Z, Luo P, Wei X, Guan Y, Huang Y, Yan J, Ruan L, Zhang C, Zhang L. Close association between lifestyle and circulating FGF21 levels: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:984828. [PMID: 36093108 PMCID: PMC9453313 DOI: 10.3389/fendo.2022.984828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background The impact of lifestyle factors on circulating fibroblast growth factor 21 (cFGF21) remains unclear. We conducted this systematic review and meta-analysis to evaluate the association between lifestyle factors and cFGF21 levels. Methods We included studies that evaluated the effects of different lifestyles on cFGF21 concentration in adults, which included smoking, exercise, diets, alcohol consumption and weight loss. Random effects models or fixed effects models were used for meta-analysis to calculate the standardized mean difference (SMD) and 95% confidence interval according to the heterogeneity among studies. Study quality was assessed using the Newcastle-Ottawa Scale for cohort studies, the Joanna Briggs Institution Checklist for cross-sectional studies, and the PEDro scale for experimental studies. Results A total of 50 studies with 1438 individuals were included. Overall, smoking, a hypercaloric carbohydrate-rich diet, a hypercaloric fat-rich diet, amino acid or protein restriction, excessive fructose intake and alcohol consumption significantly upregulated cFGF21 levels (p<0.05), whereas fish oil intake and calorie restriction with sufficient protein intake significantly decreased cFGF21 (p<0.05). Compared to the preexercise cFGF21 level, the cFGF21 level significantly increased within 3 hours postexercise (p<0.0001), while it significantly decreased in the blood sampled >6 h postexercise (p=0.01). Moreover, higher exercise intensity resulted in higher upregulation of cFGF21 at 1-hour post exercise (p=0.0006). Conclusion FGF21 could serve as a potential biomarker for the assessment of different lifestyle interventions. When it is used for this purpose, a standard study protocol needs to be established, especially taking into consideration the intervention types and the sampling time post-intervention. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021254758, identifier CRD42021254758.
Collapse
Affiliation(s)
- Zonghao Qian
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yucong Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Ni Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Hao Nie
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Zhen Yang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Pengcheng Luo
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Xiuxian Wei
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yuqi Guan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Yi Huang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Jinhua Yan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Lei Ruan
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Cuntai Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| | - Le Zhang
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Gerontology Center of Hubei Province, Wuhan, China
| |
Collapse
|
14
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Segrestin B, Delage P, Nemeth A, Seyssel K, Disse E, Nazare JA, Lambert-Porcheron S, Meiller L, Sauvinet V, Chanon S, Simon C, Ratiney H, Beuf O, Pralong F, Yassin NAH, Boizot A, Gachet M, Burton-Pimentel KJ, Vidal H, Meugnier E, Vionnet N, Laville M. Polyphenol Supplementation Did Not Affect Insulin Sensitivity and Fat Deposition During One-Month Overfeeding in Randomized Placebo-Controlled Trials in Men and in Women. Front Nutr 2022; 9:854255. [PMID: 35614978 PMCID: PMC9125251 DOI: 10.3389/fnut.2022.854255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
Two randomized placebo-controlled double-blind paralleled trials (42 men in Lyon, 19 women in Lausanne) were designed to test 2 g/day of a grape polyphenol extract during 31 days of high calorie-high fructose overfeeding. Hyperinsulinemic-euglycemic clamps and test meals with [1,1,1-13C3]-triolein were performed before and at the end of the intervention. Changes in body composition were assessed by dual-energy X-ray absorptiometry (DEXA). Fat volumes of the abdominal region and liver fat content were determined in men only, using 3D-magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) at 3T. Adipocyte's size was measured in subcutaneous fat biopsies. Bodyweight and fat mass increased during overfeeding, in men and in women. While whole body insulin sensitivity did not change, homeostasis model assessment of insulin resistance (HOMA-IR) and the hepatic insulin resistance index (HIR) increased during overfeeding. Liver fat increased in men. However, grape polyphenol supplementation did not modify the metabolic and anthropometric parameters or counteract the changes during overfeeding, neither in men nor in women. Polyphenol intake was associated with a reduction in adipocyte size in women femoral fat. Grape polyphenol supplementation did not counteract the moderated metabolic alterations induced by one month of high calorie-high fructose overfeeding in men and women. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov and available at https://clinicaltrials.gov/ct2/show/NCT02145780 and https://clinicaltrials.gov/ct2/show/NCT02225457.
Collapse
Affiliation(s)
- Bérénice Segrestin
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| | - Pauline Delage
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Angéline Nemeth
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - Kevin Seyssel
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuel Disse
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| | - Julie-Anne Nazare
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | | | - Laure Meiller
- CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Valerie Sauvinet
- CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Stéphanie Chanon
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Chantal Simon
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Hélène Ratiney
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - Olivier Beuf
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - François Pralong
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Naba-Al-Huda Yassin
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexia Boizot
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Mélanie Gachet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Kathryn J Burton-Pimentel
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Hubert Vidal
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuelle Meugnier
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Nathalie Vionnet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Martine Laville
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
16
|
One week of high-fat overfeeding alters bone metabolism in healthy males: A pilot study. Nutrition 2022; 96:111589. [DOI: 10.1016/j.nut.2022.111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 11/19/2022]
|
17
|
Sak JJ, Prystupa A, Kiciński P, Luchowska-Kocot D, Kurys-Denis E, Bis-Wencel H. Leukocyte cell-derived chemotaxin-2 and fibroblast growth factor 21 in alcohol-induced liver cirrhosis. World J Hepatol 2021; 13:2071-2080. [PMID: 35070009 PMCID: PMC8727211 DOI: 10.4254/wjh.v13.i12.2071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/22/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The importance of early diagnosis of alcoholic liver disease underscores the need to seek better and especially non-invasive diagnostic procedures. Leukocyte cell-derived chemotaxin-2 (LECT2) has been widely studied to determine its usefulness in monitoring the course of non-alcoholic fatty liver disease but not for alcoholic liver cirrhosis (ALC).
AIM To determine the concentration of LECT2 in the blood serum of patients in relation to progressive stages of ALC, its relation to fibroblast growth factor 1 (FGF-1) and FGF-21, and to examine the possible wider use of LECT2 in diagnosing ALC.
METHODS A retrospective case-control study was conducted with 69 ALC cases and 17 controls with no ALC. Subjects were recruited from the region of Lublin (eastern Poland). Liver cirrhosis was diagnosed based on clinical features, history of heavy alcohol consumption, laboratory tests, and abdominal ultrasonography. The degree of ALC was evaluated according to Pugh-Child criteria (the Pugh-Child score). Blood was drawn and, after centrifugation, serum was collected for analysis. LECT2, FGF-1, and FGF-21 were determined using enzyme-linked immunosorbent assay kits.
RESULTS The LECT2 Levels in the control group were 18.99 ± 5.36 ng/mL. In the study groups, they declined with the progression of cirrhosis to 11.06 ± 6.47 ng/mL in one group and to 8.06 ± 5.74 ng/mL in the other (P < 0.0001). Multiple comparison tests confirmed the statistically significant differences in LECT2 Levels between the control group and both test groups (P = 0.006 and P < 0.0001). FGF-21 Levels were 44.27 ± 64.19 pg/mL in the first test group, 45.4 ± 51.69 pg/mL in the second (P = 0.008), and 13.52 ± 7.51 pg/mL in the control group. The difference between the control group and the second test group was statistically significant (P = 0.007).
CONCLUSION We suggest that LECT2 may be a non-invasive diagnostic factor for alcohol-induced liver cirrhosis. The usefulness of LECT2 for non-invasive monitoring of alcohol-induced liver cirrhosis was indirectly confirmed by the multiple regression model developed on the basis of our statistical analysis.
Collapse
Affiliation(s)
- Jarosław Jerzy Sak
- Chair and Department of Humanities and Social Medicine, Medical University of Lublin, Lublin 20-093, Poland
| | - Andrzej Prystupa
- Department of Internal Medicine, Medical University of Lublin, Lublin 20-081, Poland
| | - Paweł Kiciński
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin 20-080, Poland
| | | | - Ewa Kurys-Denis
- The Second Department of Radiology, Medical University of Lublin, Lublin 20-081, Poland
| | - Hanna Bis-Wencel
- Department of Microbiology and Reproductive Biology, University of Life Sciences in Lublin, Lublin 20-950, Poland
| |
Collapse
|
18
|
Piquet M, Martínez MC, Romacho T. Inter-Organ Crosstalk in the Development of Obesity-Associated Insulin Resistance. Handb Exp Pharmacol 2021; 274:205-226. [PMID: 34853949 DOI: 10.1007/164_2021_564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidemics of obesity and type 2 diabetes have led to intensive investigation of the underlying mechanisms of these diseases and their main complications such as cardiovascular diseases and non-alcoholic fatty liver disease. This search has contributed to better understand how organs and tissues communicate with each other in the so-called inter-organ crosstalk. Adipose tissue, the liver, or skeletal muscle can actively release secreted factors termed "organokines" which can interact with other distant targets in complex networks. More recently, other novel mediators of inter-organ crosstalk such as extracellular vesicles and their non-traditional cargoes as miRNAs and lncRNAs are gaining importance and represent potential therapeutic targets. In the present chapter we summarize some of the current knowledge on inter-organ communication with a focus on adipose tissue-released factors and their modulation on other organs and tissues like pancreas, liver, skeletal muscle, the cardiovascular system, and the gut in the context of obesity and its progression to insulin resistance. We also provide a perspective on mediators of inter-organ crosstalk as potential therapeutic targets.
Collapse
Affiliation(s)
- Megan Piquet
- SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, Angers, France
| | | | - Tania Romacho
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
19
|
Zhu S, Bennett S, Li Y, Liu M, Xu J. The molecular structure and role of LECT2 or CHM-II in arthritis, cancer, and other diseases. J Cell Physiol 2021; 237:480-488. [PMID: 34550600 DOI: 10.1002/jcp.30593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2 or LECT-2), also called chondromodulin II (ChM-II or CHM2) plays a versatile role in various tissues. It was first identified as a chemotactic factor to promote the migration of neutrophils. It was also reported as a hepatokine to regulate glucose metabolism, obesity, and nonalcoholic fatty liver disease. As a secreted factor, LECT2 binds to several cell surface receptors CD209a, Tie1, and Met to regulate inflammatory reaction, fibrogenesis, vascular invasion, and tumor metastasis in various cell types. As an intracellular molecule, it is associated with LECT2-mediated amyloidosis, in which LECT2 misfolding results in insoluble fibrils in multiple tissues such as the kidney, liver, and lung. Recently, LECT2 was found to be associated with the development of rheumatoid arthritis and osteoarthritis, involving the dysregulation of osteoclasts, mesenchymal stem cells, osteoblasts, chondrocytes, and endothelial cells in the bone microenvironment. LECT2 is implicated in the development of cancers, such as hepatocellular carcinoma via MET-mediated PTP1B/Raf1/ERK signaling pathways and is proposed as a biomarker. The mechanisms by which LECT2 regulates diverse pathogenic conditions in various tissues remain to be fully elucidated. Further research to understand the role of LECT2 in a tissue tropism-dependent manner would facilitate the development of LECT2 as a biomarker for diagnosis and therapeutic target.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yihe Li
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mei Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|
21
|
Jensen-Cody SO, Potthoff MJ. Hepatokines and metabolism: Deciphering communication from the liver. Mol Metab 2020; 44:101138. [PMID: 33285302 PMCID: PMC7788242 DOI: 10.1016/j.molmet.2020.101138] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 02/09/2023] Open
Abstract
Background The liver is a key regulator of systemic energy homeostasis and can sense and respond to nutrient excess and deficiency through crosstalk with multiple tissues. Regulation of systemic energy homeostasis by the liver is mediated in part through regulation of glucose and lipid metabolism. Dysregulation of either process may result in metabolic dysfunction and contribute to the development of insulin resistance or fatty liver disease. Scope of review The liver has recently been recognized as an endocrine organ that secretes hepatokines, which are liver-derived factors that can signal to and communicate with distant tissues. Dysregulation of liver-centered inter-organ pathways may contribute to improper regulation of energy homeostasis and ultimately metabolic dysfunction. Deciphering the mechanisms that regulate hepatokine expression and communication with distant tissues is essential for understanding inter-organ communication and for the development of therapeutic strategies to treat metabolic dysfunction. Major conclusions In this review, we discuss liver-centric regulation of energy homeostasis through hepatokine secretion. We highlight key hepatokines and their roles in metabolic control, examine the molecular mechanisms of each hepatokine, and discuss their potential as therapeutic targets for metabolic disease. We also discuss important areas of future studies that may contribute to understanding hepatokine signaling under healthy and pathophysiological conditions.
Collapse
Affiliation(s)
- Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
22
|
Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother 2020; 131:110785. [PMID: 33152943 DOI: 10.1016/j.biopha.2020.110785] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide, as it affects up to 30 % of adults in Western countries. Moreover, NAFLD is also considered an independent risk factor for cardiovascular diseases. Insulin resistance and inflammation have been identified as key factors in the pathophysiology of NAFLD. Although the mechanisms associated with the development of NAFLD remain to be fully elucidated, a complex interaction between adipokines and cytokines appear to play a crucial role in the development of this condition. Adiponectin is the most common adipokine known to be inversely linked with insulin resistance, lipid accumulation, inflammation and NAFLD. Consequently, the focus has been on the use of new therapies that may enhance hepatic expression of adiponectin downstream targets or increase the serum levels of adiponectin in the treatment NAFLD. While currently used therapies show limited efficacy in this aspect, accumulating evidence suggest that various dietary polyphenols may stimulate adiponectin levels, offering potential protection against the development of insulin resistance, inflammation and NAFLD as well as associated conditions of metabolic syndrome. As such, this review provides a better understanding of the role polyphenols play in modulating adiponectin signaling to protect against NAFLD. A brief discussion on the regulation of adiponectin during disease pathophysiology is also covered to underscore the potential protective effects of polyphenols against NAFLD. Some of the prominent polyphenols described in the manuscript include aspalathin, berberine, catechins, chlorogenic acid, curcumin, genistein, piperine, quercetin, and resveratrol.
Collapse
Affiliation(s)
- Samukelisiwe C Shabalala
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
23
|
Thackray AE, Willis SA, Clayton DJ, Broom DR, Finlayson G, Goltz FR, Sargeant JA, Woods RM, Stensel DJ, King JA. Influence of Short-Term Hyperenergetic, High-Fat Feeding on Appetite, Appetite-Related Hormones, and Food Reward in Healthy Men. Nutrients 2020; 12:nu12092635. [PMID: 32872401 PMCID: PMC7551053 DOI: 10.3390/nu12092635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Short-term overfeeding may provoke compensatory appetite responses to correct the energy surplus. However, the initial time-course of appetite, appetite-related hormone, and reward-related responses to hyperenergetic, high-fat diets (HE-HFD) are poorly characterised. Twelve young healthy men consumed a HE-HFD (+50% energy, 65% fat) or control diet (36% fat) for seven days in a randomised crossover design. Mean appetite perceptions were determined during an oral glucose tolerance test (OGTT) before and after each diet. Fasted appetite perceptions, appetite-related hormones, and reward parameters were measured pre-diet and after 1-, 3- and 7-days of each diet. The HE-HFD induced a pre-to-post diet suppression in mean appetite during the OGTT (all ratings p ≤ 0.058, effect size (d) ≥ 0.31), and reduced the preference for high-fat vs. low-fat foods (main effect diet p = 0.036, d = 0.32). Fasted leptin was higher in the HE-HFD than control diet (main effect diet p < 0.001, d = 0.30), whilst a diet-by-time interaction (p = 0.036) revealed fasted acylated ghrelin was reduced after 1-, 3- and 7-days of the HE-HFD (all p ≤ 0.040, d ≥ 0.50 vs. pre-diet). Appetite perceptions and total peptide YY in the fasted state exhibited similar temporal patterns between the diets (diet-by-time interaction p ≥ 0.077). Seven days of high-fat overfeeding provokes modest compensatory changes in subjective, hormonal, and reward-related appetite parameters.
Collapse
Affiliation(s)
- Alice E. Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
| | - Scott A. Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
| | - David J. Clayton
- School of Science and Technology, Nottingham Trent University, Nottingham NG1 8NS, UK;
| | - David R. Broom
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 2DS, UK;
| | - Graham Finlayson
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK;
| | - Fernanda R. Goltz
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
| | - Jack A. Sargeant
- Diabetes Research Centre, University of Leicester, Leicester LE5 4PW, UK;
| | | | - David J. Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE1 3TU, UK; (A.E.T.); (S.A.W.); (F.R.G.); (D.J.S.)
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester LE5 4PW, UK
- Correspondence: ; Tel.: +44-(0)-1509-228457
| |
Collapse
|
24
|
Gonzalez JT. Early Hepatic Signals of Fat Overload. J Nutr 2020; 150:977-978. [PMID: 31953545 DOI: 10.1093/jn/nxaa012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 11/12/2022] Open
|