1
|
Yalçın SS, Okman E, Kuşkonmaz BB, Yalçın S, Aykut O, Çeti Nkaya DU. Engraftment after pediatric hematopoietic stem cell transplantation and its association with recipient and donor phthalate and bisphenol A exposure levels: A cohort study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 114:104625. [PMID: 39734026 DOI: 10.1016/j.etap.2024.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Phthalates and bisphenols, ubiquitous compounds found in various everyday products, have garnered attention due to their potential health-disrupting effects. This study aimed to (1) investigate urinary phthalate metabolites and bisphenol A (BPA) levels in donors and recipients prior to allogeneic hematopoietic stem cell transplantation (HSCT) and monitor changes in these compounds in pediatric recipients at different time points (day-9, day 0, day+7, day+28, day+90), and (2) assess their association with engraftment success. Urine samples from pediatric recipients and donors were collected for analysis of phthalate metabolites and BPA in 34 donor-recipient pairs. Monomethyl phthalate metabolite was not detectable in any of the urine samples. A notable increase in phthalate metabolites and BPA levels was observed in recipients starting from day+28. Granulocyte engraftment time showed a positive correlation with donor urinary levels of mono-n-butyl phthalate (MBP), mono-2-ethylhexyl phthalate (MEHP), and monobenzyl phthalate metabolites with recipient MBP levels measured on day-9. Moreover, donor urinary MBP and MEHP levels were also linked to delayed platelet engraftment. No relationship was observed between engraftment timing and the urine levels of monoethyl phthalate metabolite or BPA in donor-recipient pairs. In cases of mucositis, MEHP and MEP levels on day 0 were higher compared to the non-mucositis group. No relationship was identified between hemorrhagic cystitis and the levels of urine phthalate metabolites or BPA. These findings highlight the potential role of plasticizer exposure in influencing engraftment outcomes, although no significant associations were found between MEP or BPA levels and engraftment.
Collapse
Affiliation(s)
- Sıddika Songül Yalçın
- Department of Social Pediatrics, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Esin Okman
- Department of Social Pediatrics, Institute of Child Health, Hacettepe University, Ankara, Turkey; Bilkent City Hospital, Ankara, Turkey
| | - Bülent Barış Kuşkonmaz
- Pediatric Bone Marrow Transplantation Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suzan Yalçın
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | | | - Duygu Uçkan Çeti Nkaya
- Pediatric Bone Marrow Transplantation Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Niu Z, Chen T, Duan Z, Han S, Shi Y, Yu W, Du S, Tang H, Shao W, Sun J, Chen H, Cai Y, Xu Y, Zhao Z. Associations of exposure to phthalate with serum uric acid and hyperuricemia risk, and the mediating role of systemic immune inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117269. [PMID: 39515203 DOI: 10.1016/j.ecoenv.2024.117269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Previous studies found that urinary phthalates (PAEs) metabolites may be associated with increased serum uric acid concentration and hyperuricemia risk. However, no population-based study has investigated the underlying biological mechanisms. METHODS This nationwide cross-sectional study analyzed the data from the National Health and Nutrition Examination Survey (NHANES) 2003-2018. Urinary PAEs metabolites were measured and 8 PAEs metabolites (MCPP, MECPP, MEHHP, MEOHP, MBzP, MiBP, MBP, and MEP) were incorporated into the analysis. Serum uric acid was determined and hyperuricemia cases were identified. Multi-variable generalized linear model, exposure-response (E-R) function and weighted quantile sum (WQS) regression were utilized to investigate the relationships of PAEs metabolites with serum uric acid concentration and hyperuricemia risk. Systemic immune inflammation (SII) was assessed using the SII index and its mediation effects were explored using causal mediation effect model. RESULTS Data from 10,633 US adults in the NHANES 2003-2018 was analyzed. Except for MEP, individual PAEs metabolite and total PAEs metabolites were associated with increased serum uric acid concentration and hyperuricemia risk. E-R function of PAEs metabolites with serum uric acid concentration and the risk of hyperuricemia showed significantly positive associations with most curves in a nearly linear relationship. WQS regression showed that the mixture of PAEs metabolites was related to elevated serum uric acid and hyperuricemia risk, and MBzP was identified as the most contributing PAEs metabolite. The causal mediation effect model found that SII significantly mediated the relationships of PAEs metabolites with serum uric acid and hyperuricemia risk. CONCLUSION Individual and mixture of urinary PAEs metabolites were associated with increased serum uric acid concentration and the risk of hyperuricemia. MBzP exhibited the highest contribution to the overall effects. SII alteration may be an important biological mechanism underlining the impact of PAEs metabolites on serum uric acid concentration and hyperuricemia risk.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Tianyi Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Shichao Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yifan Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wenyuan Yu
- School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuang Du
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Hao Tang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Wenpu Shao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Han Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yunfei Cai
- Section of General Management, Shanghai Environment Monitoring Center, Shanghai, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Hu Z, Wu N, An S, Deng M, Tao L, Liao D, Yu R, Yang J, Xiao Y, Zheng X, Zeng R, Liu Y, Xiong S, Xie Y, Liu X, Shen X, Shang X, Li Q, Zhou Y. Effect of combined exposure to phthalates and polycyclic aromatic hydrocarbons during early pregnancy on gestational age and neonatal size: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116868. [PMID: 39146592 DOI: 10.1016/j.ecoenv.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Many studies have indicated that individual exposure to phthalates (PAEs) or polycyclic aromatic hydrocarbons (PAHs) affects pregnancy outcomes. However, combined exposure to PAEs and PAHs presents a more realistic situation, and research on the combined effects of PAEs and PAHs on gestational age and newborn size is still limited. This study aimed to assess the effects of combined exposure to PAEs and PAHs on neonatal gestational age and birth size. Levels of 9 PAE and 10 PAH metabolites were measured from the urine samples of 1030 women during early pregnancy from the Zunyi Birth Cohort in China. Various statistical models, including linear regression, restricted cubic spline, Bayesian kernel machine regression, and quantile g-computation, were used to study the individual effects, dose-response relationships, and combined effects, respectively. The results of this prospective study revealed that each ten-fold increase in the concentration of monoethyl phthalate (MEP), 2-hydroxynaphthalene (2-OHNap), 2-hydroxyphenanthrene (2-OHPhe), and 1-hydroxypyrene (1-OHPyr) decreased gestational age by 1.033 days (95 % CI: -1.748, -0.319), 0.647 days (95 % CI: -1.076, -0.219), 0.845 days (95 % CI: -1.430, -0.260), and 0.888 days (95 % CI: -1.398, -0.378), respectively. Moreover, when the concentrations of MEP, 2-OHNap, 2-OHPhe, and 1-OHPyr exceeded 0.528, 0.039, 0.012, and 0.002 µg/g Cr, respectively, gestational age decreased in a dose-response manner. Upon analyzing the selected PAE and PAH metabolites as a mixture, we found that they were significantly negatively associated with gestational age, birth weight, and the ponderal index, with 1-OHPyr being the most important contributor. These findings highlight the adverse effects of single and combined exposure to PAEs and PAHs on gestational age. Therefore, future longitudinal cohort studies with larger sample sizes should be conducted across different geographic regions and ethnic groups to confirm the impact of combined exposure to PAEs and PAHs on birth outcomes.
Collapse
Affiliation(s)
- Zhongmei Hu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mingyu Deng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Rui Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jing Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yanling Xiao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xingting Zheng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Rong Zeng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing 210002, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China.
| |
Collapse
|
4
|
Uber M, Morgan MAP, Schneider MC, Gomes IRR, Imoto RR, Carvalho VO, Abagge KT. Frequency of perfume in 398 children's cosmetics. J Pediatr (Rio J) 2024; 100:263-266. [PMID: 38012955 PMCID: PMC11065650 DOI: 10.1016/j.jped.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE Perfume (Parfum) or fragrance is a natural or synthetic cosmetic ingredient added to emit a pleasant aroma or to improve the odor of a cosmetic formula. It is a mixture of substances, not revealed by the manufacturer, which may contain ingredients with allergenic potential, endocrine disruptors, and other possible harmful effects on human health. This study aims to analyze children's cosmetics labels to assess the presence of Perfume. METHODS The researchers randomly visited points of sale in Curitiba, the capital of a southern Brazilian state; in order to catalog the largest possible number of children's cosmetics items. RESULTS 398 children's cosmetics were analyzed and found Parfum on 295 (74.1 %) of the labels, including 90.4 and 79,1 % of the shampoos and wet wipes, respectively. CONCLUSION Exposure of children's skin to fragrances can lead to local side effects such as allergies, but also to systemic effects, and the lack of knowledge of the general population and health professionals about its possible deleterious effects emphasizes the importance of changes in the regulation of cosmetics aiming to reduce the use of this ingredient.
Collapse
Affiliation(s)
- Marjorie Uber
- Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Divisão de Dermatologia Pediátrica, Curitiba, PR, Brazil.
| | - Mariana A P Morgan
- Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Divisão de Dermatologia Pediátrica, Curitiba, PR, Brazil
| | - Maria Carolina Schneider
- Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Divisão de Dermatologia Pediátrica, Curitiba, PR, Brazil
| | - Izabella R R Gomes
- Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Divisão de Dermatologia Pediátrica, Curitiba, PR, Brazil
| | - Renata R Imoto
- Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Divisão de Dermatologia Pediátrica, Curitiba, PR, Brazil
| | - Vânia O Carvalho
- Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Divisão de Dermatologia Pediátrica, Curitiba, PR, Brazil
| | - Kerstin T Abagge
- Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Divisão de Dermatologia Pediátrica, Curitiba, PR, Brazil
| |
Collapse
|
5
|
Lin RR, Lin DA, Maderal AD. Toxic Ingredients in Personal Care Products: A Dermatological Perspective. Dermatitis 2024; 35:121-131. [PMID: 38109205 DOI: 10.1089/derm.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Environmental dermatology is the study of how environmental factors affect the integumentary system. The environment includes natural and built habitats, encompassing ambient exposure, occupational exposures, and lifestyle exposures secondary to dietary and personal care choices. This review explores common toxins found in personal care products and packaging, such as bisphenols, parabens, phthalates, per- and poly-fluoroalkyl substances, p-phenylenediamine, and formaldehyde. Exposure to these toxins has been associated with carcinogenic, obesogenic, or proinflammatory effects that can potentiate disease. In addition, these compounds have been implicated as endocrine-disrupting chemicals that can worsen dermatological conditions such as acne vulgaris, or dermatitis. Certain pollutants found in personal care products are not biodegradable and have the potential to bioaccumulate in humans. Therefore, even short-term exposure can cause long-lasting issues for communities. The skin is often the first point of contact for environmental exposures and serves as the conduit between environmental toxins and the human body. Therefore, it is important for dermatologists to understand common pollutants and their acute, subacute, and chronic impact on dermatological conditions to better diagnose and manage disease.
Collapse
Affiliation(s)
- Rachel R Lin
- From the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Deborah A Lin
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Phillip Frost Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Chang CJ, O'Brien KM, Keil AP, Goldberg M, Taylor KW, Sandler DP, White AJ. Use of personal care product mixtures and incident hormone-sensitive cancers in the Sister Study: A U.S.-wide prospective cohort. ENVIRONMENT INTERNATIONAL 2024; 183:108298. [PMID: 38043324 PMCID: PMC10841676 DOI: 10.1016/j.envint.2023.108298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Personal care products (PCPs), a source of endocrine-disrupting chemical exposure, may be associated with the risk of hormone-sensitive cancers. Few studies have investigated associations for PCP use with the incidence of hormone-sensitive cancers or considered the joint effect of multiple correlated PCPs. We examined associations between frequently used, or "everyday", PCPs and incident cancers of the breast, ovary, and uterus with a fucus on the joint effect of multiple product exposure. METHODS Sister Study participants (n=49 899) self-reported frequency of use in the year before enrollment (2003-2009) for 41 PCPs. Using five-level frequency categories based on questionnaire options, hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated for the associations between multiple PCP use and incident breast, ovarian, and uterine cancer using quantile-based g-computation with Cox proportional hazards regression as the underlying model. Multiple PCP use was examined using groupings (beauty, hygiene, and skincare products) determined by both a priori knowledge and Spearman correlation coefficients for co-occurring product use. Associations between individual PCPs and the three cancers were also examined using Cox proportional hazards models coupling with Benjamini-Hochberg procedure for multiple comparisons. RESULTS Over an average of 11.6 years, 4 226 breast, 277 ovarian, and 403 uterine cancer cases were identified. Positive associations were observed between the hygiene mixture and ovarian cancer (HR=1.35, 95%CI=1.00, 1.83) and the beauty mixture with postmenopausal breast cancer (HR=1.08, 95%CI=1.01, 1.16). Additionally, we observed an inverse association between the skincare mixture and breast cancer (HR=0.91, 95%CI=0.83, 0.99). No significant associations were observed for individual products after corrected for multiple comparison. CONCLUSIONS Findings from this multi-product, joint-effect approach contribute to the growing body of evidence for associations between PCPs and breast cancer and provides novel information on ovarian and uterine cancer.
Collapse
Affiliation(s)
- Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alexander P Keil
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kyla W Taylor
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
7
|
Wu CL, Fang YW, Hou YC, Lu KC, Tsai WH, Lu PH, Lee TS, Kuo KL. Association of mono-2-ethylhexyl phthalate with adverse outcomes in chronic hemodialysis patients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120366-120374. [PMID: 37936044 DOI: 10.1007/s11356-023-30814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Phthalate exposure is widespread and has a global impact. Growing evidence shows that mono-2-ethylhexyl phthalate (MEHP) exposure has a negative impact on human health. However, whether MEHP exposure is associated with mortality and other adverse outcomes in hemodialysis patients remains unknown. This study prospectively enrolled 217 patients on maintenance hemodialysis from June 30, 2021, to August 16, 2022. Baseline serum MEHP, di-2-ethylhexyl phthalate (DEHP), and indoxyl sulfate (IS) concentrations were measured. Primary endpoints were all-cause mortality or composite adverse outcomes, including all-cause death plus hospitalization due to cardiovascular disease, heart failure, stroke, infection, or cancer. Serum MEHP concentrations were positively associated with DEHP but not indoxyl sulfate concentrations in hemodialysis patients. Additionally, serum MEHP concentrations were significantly and independently associated with all-cause mortality and composite adverse outcomes (adjusted hazard ratios [HRs], 1.04 and 1.03 per ng/mL, 95% confidence intervals [CIs], 1.01-1.07 and 1.00-1.05; p = 0.016 and 0.015, respectively). We found a cutoff value of MEHP for predicting both endpoints. Patients with serum MEHP concentrations of ≥ 41.8 ng/mL had much higher risks for all-cause mortality and composite adverse outcomes (adjusted HRs, 39.2 and 13; 95% CIs, 2.44-65.7 and 2.74-61.4; p = 0.011 and 0.001, respectively). MEHP exposure is significantly associated with higher risks for all-cause mortality and composite adverse outcomes. Hemodialysis patients with serum MEHP concentrations above 41.8 ng/mL had much poorer prognoses regarding both outcomes.
Collapse
Affiliation(s)
- Chia-Lin Wu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, 111045, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
| | - Yi-Chou Hou
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, New Taipei City, 23148, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei City, 24352, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 23142, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, 97004, Taiwan
| | - Wen-Hsin Tsai
- School of Medicine, Buddhist Tzu Chi University, Hualien, 97004, Taiwan
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 23142, Taiwan
| | - Ping-Hsun Lu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 23142, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, 106319, Taiwan
| | - Ko-Lin Kuo
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 23142, Taiwan.
- School of Medicine, Buddhist Tzu Chi University, Hualien, 97004, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
8
|
León-Letelier RA, Dou R, Vykoukal J, Sater AHA, Ostrin E, Hanash S, Fahrmann JF. The kynurenine pathway presents multi-faceted metabolic vulnerabilities in cancer. Front Oncol 2023; 13:1256769. [PMID: 37876966 PMCID: PMC10591110 DOI: 10.3389/fonc.2023.1256769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The kynurenine pathway (KP) and associated catabolites play key roles in promoting tumor progression and modulating the host anti-tumor immune response. To date, considerable focus has been on the role of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite, kynurenine (Kyn). However, increasing evidence has demonstrated that downstream KP enzymes and their associated metabolite products can also elicit tumor-microenvironment immune suppression. These advancements in our understanding of the tumor promotive role of the KP have led to the conception of novel therapeutic strategies to target the KP pathway for anti-cancer effects and reversal of immune escape. This review aims to 1) highlight the known biological functions of key enzymes in the KP, and 2) provide a comprehensive overview of existing and emerging therapies aimed at targeting discrete enzymes in the KP for anti-cancer treatment.
Collapse
Affiliation(s)
- Ricardo A. León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Hussein Abdel Sater
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Chen Y, Shen J, Wu Y, Fang L, Xu S, Peng Y, Pan F. Associations between urinary phthalate metabolite concentrations and rheumatoid arthritis in the U.S. adult population. CHEMOSPHERE 2023:139382. [PMID: 37394194 DOI: 10.1016/j.chemosphere.2023.139382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Phthalates are ubiquitous environmental contaminants. Nevertheless, limited data is available about the impacts of phthalates on rheumatoid arthritis (RA). The purpose of this study was to use National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2018 to assess the individual and combined effects of exposure to phthalate mixtures on RA in adults. A total of 8240 participants with complete data participated in the study, of whom 645 had RA. The levels of ten phthalate metabolites were detected in urine samples. In the single-pollutant models, independent associations were identified between urinary mono-(carboxyoctyl) phthalate (MCOP), mono-(3-carboxylpropyl) phthalate (MCPP), mono-isobutyl phthalate (MiBP) and mono-benzyl phthalate (MBzP) with the incidence of RA. The results of multi-pollutant models, including weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR) approaches consistently revealed that co-exposure to phthalates was positively associated with RA incidence. Such association was more pronounced in adults over 60 years of age, where MCOP was identified as the dominant positive driver. Overall, our findings add novel evidence that co-exposures to phthalates might be positively associated with RA incidence. Given the limitations of the NHANES study, well-designed longitudinal studies are required to verify or disprove these results.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiran Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yongzhen Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
10
|
Dan A, Zhang S, Chen Z, Dong J, Zheng W, Tu Y, Lin Z, Cai Z. Facile synthesis of Cu 2+-immobilized magnetic covalent organic frameworks for highly efficient enrichment and sensitive determination of five phthalate monoesters from mouse plasma with HPLC-MS/MS. Talanta 2023; 253:123923. [PMID: 36108515 DOI: 10.1016/j.talanta.2022.123923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Development of a simple, highly selective, and sensitive analytical method for phthalate monoesters (mPAEs) remains a challenge due to the complexity of biological samples. To address this issue, Cu2+ immobilized magnetic covalent organic frameworks (Fe3O4@TtDt@Cu2+ composites) with core-shell structures were prepared to enhance the enrichment efficiency of mPAEs by a facile approach synthesis of COFs shells with inherent bifunctional groups on Fe3O4 NPs and further Cu2+ immobilization. The composites exhibit high specific surface area (348.1 m2 g-1), outstanding saturation magnetization (34.94 emu g-1), ordered mesoporous structure, Cu2+ immobilization, and excellent thermal stability. Accordingly, a magnetic solid-phase extraction (MSPE) pretreatment technique based on Cu2+ immobilized COF composites combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established, and key parameters including the adsorbent amount, adsorption time, elution solvent, etc. were examined in detail. The developed analytical method showed wide linear ranges (10-8000 ng L-1), low limit of detections (LODs, 2-10 ng L-1), and good correlation coefficients (R2 ≥ 0.9904) for the five mPAEs. Furthermore, the analytical method was also successfully applied to the highly sensitive detection of metabolite mPAEs in mouse plasma samples, indicating the promising application of the Fe3O4@TtDt@Cu2+ composites as a quick and efficient adsorbent in the sample pretreatment.
Collapse
Affiliation(s)
- Akang Dan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhongliang Chen
- Fujian Inspection and Research Institute for Product Quality, Fuzhou, Fujian, 350002, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wenjun Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, PR China.
| |
Collapse
|