1
|
Kim SY, Woo J, Lee S, Hong H. Predicting progression in triple-negative breast cancer patients undergoing neoadjuvant chemotherapy: Insights from peritumoral radiomics. Magn Reson Imaging 2025; 116:110292. [PMID: 39631160 DOI: 10.1016/j.mri.2024.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE To investigate whether radiomic features obtained from the intratumoral and peritumoral regions of pretreatment magnetic resonance imaging (MRI) can predict progression in patients with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC) in comparison with the previously determined clinical score. METHODS This single-center retrospective study evaluated 224 women with TNBC who underwent NAC between 2010 and 2019. Women were randomly allocated to the training set (n = 169) for model development and the test set (n = 55) for model validation. The clinical score consisted of the histologic type, Ki-67 index, and degree of edema on T2-weighted imaging. Intratumoral and peritumoral radiomic features were extracted from T2-weighted images and the first- and last-phase images of dynamic contrast-enhanced MRI. The radiomics model was built using only radiomic features, whereas the combined model incorporated the clinical score along with radiomic features. The area under the receiver operating characteristic curve (AUC) was used to assess performance. RESULTS Progression occurred in 18 and five patients in the training and test sets, respectively. The radiomics model selected three radiomic features (two peritumoral and one intratumoral), while the combined model selected the clinical score and five radiomic features (four peritumoral and one intratumoral). Among the total radiomic features, Inverse Difference Normalized of the peritumoral region of the T2-weighted images, reflective of peritumoral heterogeneity, demonstrated the highest level of association with tumor progression. In the test set, the AUC values of the radiomics-only model, the combined model, and the clinical score were 0.592, 0.764, and 0.720, respectively. Compared to the clinical score, the radiomics-only model (0.720 vs. 0.592, p = 0.468) and the combined model (0.720 vs. 0.764, p = 0.553) did not show superior performance. CONCLUSION The radiomics features were not superior in predicting the progression of TNBC compared to the clinical score, although the peritumoral heterogeneity on T2-weighted images showed a potential.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jungwoo Woo
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sewon Lee
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunsook Hong
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Wang H, Chu D, Zhang M, Huang X, Shi Y, Zhao Y, Qu H, Li D, Xu Z, Gao L, Zhang X, Wang W. Manganese-doped carbon dots with catalase-like activity enable MRI-guided enhanced photodynamic therapy. Colloids Surf B Biointerfaces 2025; 246:114398. [PMID: 39608308 DOI: 10.1016/j.colsurfb.2024.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The tumor microenvironment (TME) exhibits characteristics such as hypoxia, weak acidity, and enrichment of glutathione and hydrogen peroxide (H2O2), which greatly limits the effectiveness of tumor magnetic resonance imaging (MRI) and photodynamic therapy (PDT). Carbon dots (CDs) nanozymes are excellent candidate materials with both diagnostic and therapeutic potential. However, CDs nanozymes with both ultra-high relaxation rate and good therapeutic effect are still to be developed. Herein, novel carbon dots (MPC-CDs) were synthesized from polyethyleneimine (PEI), the photosensitizer hexahydroporphyrin (Ce6) and manganese. The Ce6 enabled the MPC-CDs to exhibit excellent PDT therapeutic ability, with a singlet oxygen yield as high as 1.52. The doping of the metal manganese gave the complexes CAT-like activity, and the singlet oxygen rate was further increased in the presence of H2O2, up to 1.97. In addition, manganese endowed the CDs with better MRI capabilities, and the r1 and r2 relaxation rates were significantly improved by 7.8-fold and 4.6-fold under acidic and H2O2 conditions. The in vitro and in vivo results showed that MPC-CDs could achieve TME-responsive MR imaging and synergistic anti-tumor effects, providing an effective strategy to further enhance the effectiveness of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Dongchuan Chu
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Maolin Zhang
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Xueping Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yu Shi
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yi Zhao
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Hang Qu
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xing Zhang
- Department of spinal surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Wei Wang
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
3
|
Zhu S, Jin G, He X, Li Y, Xu F, Guo H. Mechano-assisted strategies to improve cancer chemotherapy. Life Sci 2024; 359:123178. [PMID: 39471901 DOI: 10.1016/j.lfs.2024.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Chemotherapy remains a cornerstone in cancer treatment; however, its effectiveness is frequently undermined by the development of drug resistance. Recent studies underscores the pivotal role of the tumor mechanical microenvironment (TMME) and the emerging field of mechanical nanomedicine in tackling chemo-resistance. This review offers an in-depth analysis of mechano-assisted strategies aimed at mitigating chemo-resistance through the modification of the TMME and the refinement of mechanical nanomedicine delivery systems. We explore the potential of targeting abnormal tumor mechanical properties as a promising avenue for enhancing the efficacy of cancer chemotherapy, which offers novel directions for advancing future cancer therapies, especially from the mechanomedicine perspective.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
4
|
Shaik R, Malik MS, Basavaraju S, Qurban J, Al-Subhi FMM, Badampudi S, Peddapaka J, Shaik A, Abd-El-Aziz A, Moussa Z, Ahmed SA. Cellular and molecular aspects of drug resistance in cancers. Daru 2024; 33:4. [PMID: 39652186 PMCID: PMC11628481 DOI: 10.1007/s40199-024-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Cancer drug resistance is a multifaceted phenomenon. The present review article aims to comprehensively analyze the cellular and molecular aspects of drug resistance in cancer and the strategies employed to overcome it. EVIDENCE ACQUISITION A systematic search of relevant literature was conducted using electronic databases such as PubMed, Scopus, and Web of Science using appropriate key words. Original research articles and secondary literature were taken into consideration in reviewing the development in the field. RESULTS AND CONCLUSIONS Cancer drug resistance is a pervasive challenge that causes many treatments to fail therapeutically. Despite notable advances in cancer treatment, resistance to traditional chemotherapeutic agents and novel targeted medications remains a formidable hurdle in cancer therapy leading to cancer relapse and mortality. Indeed, a majority of patients with metastatic cancer experience are compromised on treatment efficacy because of drug resistance. The multifaceted nature of drug resistance encompasses various factors, such as tumor heterogeneity, growth kinetics, immune system, microenvironment, physical barriers, and the emergence of undruggable cancer drivers. Additionally, alterations in drug influx/efflux transporters, DNA repair mechanisms, and apoptotic pathways further contribute to resistance, which may manifest as either innate or acquired traits, occurring prior to or following therapeutic intervention. Several strategies such as combination therapy, targeted therapy, development of P-gp inhibitors, PROTACs and epigenetic modulators are developed to overcome cancer drug resistance. The management of drug resistance is compounded by the patient and tumor heterogeneity coupled with cancer's ability to evade treatment. Gaining further insight into the mechanisms underlying medication resistance is imperative for the development of effective therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | | | - Jihan Qurban
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah M M Al-Subhi
- Department of Environmental and Occupational Health, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Sathvika Badampudi
- Department of Pharmacology, St.Pauls College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Jagruthi Peddapaka
- Department of Pharmaceutical Chemistry, St.Paul's College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Azeeza Shaik
- Research&Development Department, KVB Asta Life sciences, Hyderabad, India
| | - Ahmad Abd-El-Aziz
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
5
|
Close DA, Johnston PA. Miniaturization and characterization of patient derived hepatocellular carcinoma tumor organoid cultures for cancer drug discovery applications. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 30:100201. [PMID: 39662672 DOI: 10.1016/j.slasd.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Patient derived tumor organoid (PDTO) models retain the structural, morphological, genetic, and clonal heterogeneity of the original tumors. The ability to efficiently generate, expand, and biobank PDTOs has the potential to make the clinical diversity of cancer accessible for personalized medicine assay guided therapeutic drug selection and drug discovery. We describe the miniaturization and growth in 96- and 384-well formats of a single non-tumor liver and two Hepatocellular carcinoma (HCC) organoids derived from cryopreserved PDTO cells and the application of high content imaging (HCI) to characterize the models and enhance drug sensitivity testing. Non-invasive sequentially acquired transmitted light images showed that seeding cryopreserved cells from non-tumoral and HCC PDTOs into 96- or 384-well plates in reduced growth factor Matrigel (rgf-MG) that were fed with growth medium every 3 days supported organoid growth up to 15 days. The number and sizes of organoids increased with longer times in culture. HCC PDTO's had more heterogeneous morphologies than non-tumor organoids with respect to size, shape, and optical density. Organoids cultured in rgf-MG could be stained in situ with HCI reagents without mechanical, chemical or enzymatic disruption of the hydrogel matrices and quantitative data extracted by image analysis. Hoechst and live/dead reagents provided organoid numbers and viability comparisons. HCC PDTO's stained with phalloidin or immuno-stained with α-tubulin antibodies revealed F-actin and microtubule cytoskeleton organization. HCC PDTO's stained with antibodies to signaling pathway proteins and their phosphorylation status allowed comparisons of relative expression levels and inference of pathway activation. Images of HCC PDTO's exposed to ellipticine showed that drugs penetrate Matrigel hydrogels and accumulate in organoid cells. 9-day 384-well HCC organoid cultures exhibited robust and reproducible growth signals suitable for cancer drug testing. Complimenting cell viability readouts with multiple HCI parameters including morphological features and dead cell staining improved the analysis of drug impact and enhanced the value that could be extracted from these more physiologically relevant three-dimensional HCC organoid cultures.
Collapse
Affiliation(s)
- David A Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
6
|
Jiang F, Yu M, Wang Y. Design, synthesis and biological evaluation of novel diaryl-substituted fused nitrogen heterocycles as tubulin polymerization inhibitors to overcome multidrug resistance in vitro and in vivo. Eur J Med Chem 2024; 283:117130. [PMID: 39662283 DOI: 10.1016/j.ejmech.2024.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Microtubule-targeting agents (MTAs) are considered as one of the most successful chemotherapy drugs for lung adenocarcinoma (LUAD). However, the clinical application of MTAs is often significantly plagued by multidrug resistance (MDR). To overcome this limitation in the quest of more effective MTAs for tumor therapy, a series of novel diaryl-substituted nitrogenous fused heterocycles were designed, synthesized and evaluated. Through four rounds of structure-activity relationship studies, the benzoimidazole derivative 37 was identified as a potent cytotoxic agent against both paclitaxel-sensitive and -resistant A549 (A549/T) cells, effectively overcoming multidrug resistance of A549/T cells against various MTAs. Mechanistic investigations revealed that 37 could disrupt microtubule assembly and induce cell cycle arrest at the G2/M phase, and hence trigger the cell apoptosis. Furthermore, 37 was found to be a poor substrate for P-glycoprotein (P-gp), a major contributor to multidrug resistance, and could reduce the level of P-gp in resistant cells, thereby effectively overcoming P-gp-mediated multidrug resistance. Notably, 37 exhibited higher liver microsomal stability and better water solubility than those of the reference combretastatin A-4 (CA-4). In vivo studies using an A549/T xenograft model demonstrated that 37 significantly inhibited tumor growth without obvious toxicity, outperforming the positive controls CA-4 and paclitaxel. As a novel tubulin polymerization inhibitor, compound 37 is marked by potent anticancer activity and remarkable anti-MDR properties. These salient features, coupled with the low toxicity of 37, would render it quite promising as a lead for further drug development towards clinical treatment of multidrug-resistant LUAD.
Collapse
Affiliation(s)
- Fuhao Jiang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
7
|
Zaman A, Ghosh A, Ghosh AK, Das PK. DON encapsulated carbon dot-vesicle conjugate in therapeutic intervention of lung adenocarcinoma by dual targeting of CD44 and SLC1A5. NANOSCALE 2024; 16:21817-21836. [PMID: 39513401 DOI: 10.1039/d4nr00426d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Lung adenocarcinoma, recognized as one of the most formidable malignancies with a dismal prognosis and low survival rates, poses a significant challenge in its treatment. This article delineates the design and development of a carbon dot-vesicle conjugate (HACD-TMAV) for efficient cytotoxicity towards lung cancer cells by target selective delivery of the glutamine inhibitor 6-diazo-5-oxo-L-norleucine (DON) within CD44-enriched A549 cancer cells. HACD-TMAV is composed of hyaluronic acid-based carbon dots (HACDs) and trimesic acid-based vesicles (TMAV), which are bound via electrostatic interactions. TMAVs are formed by positively charged trimesic acid-based amphiphiles through H-type aggregation in water. HACDs were synthesized through a one-step hydrothermal route. The blue-emitting HACD-TMAV conjugate demonstrated selective bioimaging in CD44-overexpressed A549 lung cancer cells due to specific ligand-receptor interactions between HA and CD44. HACD-TMAV exhibited notably improved DON loading efficiency compared to individual nano-vehicles. HACD-TMAV-DON exhibited remarkable (∼6.0-fold higher) cytotoxicity against CD44-overexpressing A549 cells compared to CD44- HepG2 cells and HEK 293 normal cells. Also, DON-loaded HACD-TMAV showed ∼2.0-fold higher cytotoxicity against A549 cells compared to individual carriers and ∼4.5-fold higher cytotoxicity than by DON. Furthermore, HACD-TMAV-DON induced a ∼3.5-fold reduction in the size of 3D tumor spheroids of A549 cells. The enhanced anticancer effectiveness was attributed to starvation of the A549 cells of glutamine by dual targeting of glutamine metabolism and solute linked carrier family 1 member A5 (SLC1A5) through HA-linked CD44-mediated targeted delivery of DON. This led to over-production of reactive oxygen species (ROS) that induced apoptosis of cancer cells through downregulation of the PI3K/AKT/mTOR signaling cascade.
Collapse
Affiliation(s)
- Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Aparajita Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| |
Collapse
|
8
|
Wang X, Ma T, Liu H, Zhang S, Yang G, Zhao Y, Kong L, Gao R, Chen X. Heterogeneous immune landscapes and macrophage dynamics in primary and lung metastatic adenoid cystic carcinoma of the head and neck. Front Immunol 2024; 15:1483887. [PMID: 39697346 PMCID: PMC11653016 DOI: 10.3389/fimmu.2024.1483887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Recurrent or metastatic adenoid cystic carcinoma (ACC) of the head and neck is rare and highly aggressive. Due to the ineffectiveness of immune checkpoint therapies, this study aims to investigate the tumor immune microenvironment of primary tumor tissues and lung metastatic tissues and to comprehend the challenges of immunotherapy. Methods We analyzed RNA sequencing data and constructed immune landscapes from 25 primary tumors and 34 lung metastases. The data were then validated by immunohistochemistry and single-cell sequencing analysis. Results Compared to adjacent normal tissues, both primary and lung metastatic ACC showed low immune infiltration. Lung metastases had higher immune infiltration levels and antigen presentation scores but also higher T cell exclusion and dysfunction scores. Single-cell sequencing data and immunohistochemistry revealed abundant immunosuppressive tumor-associated macrophages in lung metastases. Patients with high M2 macrophage infiltration had shorter lung metastasis-free survival. Discussion Primary and lung metastatic ACC exhibit heterogeneous tumor immune microenvironments. Higher immune cell infiltration in lung metastases is countered by the presence of suppressive tumor-associated macrophages, which may limit effective anti-tumor responses.
Collapse
Affiliation(s)
- Xuelian Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- National Human Diseases Animal Model Resource Center; State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Tingyao Ma
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongfei Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shujing Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guoliang Yang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center; State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Xiaohong Chen
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Patel T, Jain N. Multicellular tumor spheroids: A convenient in vitro model for translational cancer research. Life Sci 2024; 358:123184. [PMID: 39490437 DOI: 10.1016/j.lfs.2024.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
In the attempts to mitigate uncertainties in the results of monolayer culture for the identification of cancer therapeutic targets and compounds, there has been a growing interest in using 3D cancer spheroid models, which include tumorospheres (TSs), tissue-derived tumor spheres (TDTSs), organotypic multicellular tumor spheroids (OMSs), and multicellular tumor spheroids (MCTSs). The MCTSs, either Mono-MCTSs or Hetero-MCTSs, with or without scaffold, in particular, offer numerous advantages over other spheroid models, including easy cultivation, high reproducibility, accessibility, high throughput, controllable size, well-rounded shape, simplicity of genetic manipulation, economical and availability of various biological methods for their development. In this review, we have attempted to discuss the role of MCTSs concerning various aspects of translational cancer research, such as drug response and penetration, cell-cell interaction, and invasion and metastasis. However, the Mono-MCTSs, either scaffold-free or scaffold-based, may not adequately represent the cellular heterogeneity and complexity of clinical tumors, limiting their utility in translational cancer research. Conversely, Hetero-MCTS models, both scaffold-free and scaffold-based, show better suitability due to the presence of a similar in vivo type tumor microenvironment. Nonetheless, scaffold-based Hetero-MCTS models show batch variability and challenges in performing quantitative assays due to difficulties extracting spheroids and cells from scaffolds. Further, incorporating stromal cells with cancer cells in a more precise ratio to develop Hetero-MCTSs can enhance the model's relevance, yielding more clinically reliable outcomes for drug candidates and improving insights into tumor biology.
Collapse
Affiliation(s)
- Tushar Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India
| | - Neeraj Jain
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India.
| |
Collapse
|
10
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
11
|
Safi R, Mohsen-Kanson T, Kouzi F, El-Saghir J, Dermesrobian V, Zugasti I, Zibara K, Menéndez P, El Hajj H, El-Sabban M. Direct Interaction Between CD34 + Hematopoietic Stem Cells and Mesenchymal Stem Cells Reciprocally Preserves Stemness. Cancers (Basel) 2024; 16:3972. [PMID: 39682159 DOI: 10.3390/cancers16233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES A specialized microenvironment in the bone marrow, composed of stromal cells including mesenchymal stem cells (MSCs), supports hematopoietic stem cell (HSC) self-renewal, and differentiation bands play an important role in leukemia development and progression. The reciprocal direct interaction between MSCs and CD34+ HSCs under physiological and pathological conditions is yet to be fully characterized. METHODS Here, we established a direct co-culture model between MSCs and CD34+ HSCs or MSCs and acute myeloid leukemia cells (THP-1, Molm-13, and primary cells from patients) to study heterocellular communication. RESULTS Following MSCs-CD34+ HSCs co-culture, the expression of adhesion markers N-Cadherin and connexin 43 increased in both cell types, forming gap junction channels. Moreover, the clonogenic potential of CD34+ HSCs was increased. However, direct contact of acute myeloid leukemia cells with MSCs reduced the expression levels of connexin 43 and N-Cadherin in MSCs. The impairment in gap junction formation may potentially be due to a defect in the acute myeloid leukemia-derived MSCs. Interestingly, CD34+ HSCs and acute myeloid leukemia cell lines attenuated MSC osteoblastic differentiation upon prolonged direct cell-cell contact. CONCLUSIONS In conclusion, under physiological conditions, connexin 43 and N-Cadherin interaction preserves stemness of both CD34+ HSCs and MSCs, a process that is compromised in acute myeloid leukemia, pointing to the possible role of gap junctions in modulating stemness.
Collapse
Affiliation(s)
- Rémi Safi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Tala Mohsen-Kanson
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Farah Kouzi
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Jamal El-Saghir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vera Dermesrobian
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Inés Zugasti
- Department of Hematology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Kazem Zibara
- Faculty of Science, Lebanese University, Zahle 1801, Lebanon
- Faculty of Science, Lebanese University, Hadath 40016, Lebanon
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, 28029 Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), 08028 Barcelona, Spain
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
12
|
Yıldırım M, Acet Ö, Önal Acet B, Karakoç V, Odabaşı M. Innovative approach against cancer: Thymoquinone-loaded PHEMA-based magnetic nanoparticles and their effects on MCF-7 breast cancer. Biochem Biophys Res Commun 2024; 734:150464. [PMID: 39083970 DOI: 10.1016/j.bbrc.2024.150464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Breast cancer is most common cancer among women in the World. Thymoquinone (TQ) exhibits a wide range of biological activities such as anticancer, antidiabetic, antimicrobial, analgesic, antioxidant, and anti-inflammatory effects. However, its effectiveness in cancer treatment is hindered by its poor bioavailability, attributed to its limited solubility in water. Hence, novel strategies are required to enhance the bioavailability of TQ, which possesses remarkable anticancer characteristics. The aim of this study is to prepare pHEMA-based magnetic nanoparticles carrying TQ (TQ-MNPs) to improve bioavailability, and therapeutic efficacy against breast cancer. For this purpose, TQ-MNPs were synthesized and characterized with Fourier transform infrared spectrophotometer (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), magnetic field using a vibrating sample magnetometer (VSM). The loading capabilities of synthesized magentic nanostructures were evaluated, and release investigations were conducted under experimental conditions that mimic the cellular environment. The findings of the studies indicated that the TQ carrying capacity of MNPs was deemed satisfactory, and the release efficiency was adequate. MNPs and TQ-MNPs showed biocompatibility against HDFa cells. TQ-MNPs showed stronger anti-proliferative activity against MCF-7 breast cancer cells compared to free TQ (p < 0.05). TQ-MNPs induced apoptosis in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Metin Yıldırım
- Faculty of Pharmacy, Department of Biochemistry, Harran University, Şanlıurfa, Turkey.
| | - Ömür Acet
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin, Turkey.
| | - Burcu Önal Acet
- Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey
| | - Veyis Karakoç
- Eldivan Vocational School of Health Services, Çankırı Karatekin University, Çankırı, Turkey
| | - Mehmet Odabaşı
- Department of Chemistry, Arts and Science Faculty, Aksaray University, Aksaray, Turkey
| |
Collapse
|
13
|
Verma A, Patel K, Kumar A. Targeting drug resistance in breast cancer: the potential of miRNA and nanotechnology-driven delivery systems. NANOSCALE ADVANCES 2024:d4na00660g. [PMID: 39569336 PMCID: PMC11575621 DOI: 10.1039/d4na00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Breast cancer is the second leading cause of cancer-related deaths in females worldwide. Despite significant advancements in treatment, drug resistance remains a major challenge, limiting the effectiveness of therapies and leading to dismal outcomes. Approximately 50% of HER2+ breast cancer patients develop resistance to trastuzumab, and patients with triple-negative breast cancer often experience resistance to first-line therapies. The drug resistance mechanisms involve altered drug uptake, enhanced DNA repair, and dysregulated apoptosis pathways. MicroRNAs are essential in regulating cellular processes involved in both homeostasis and disease. Recent data suggest that microRNAs can overcome drug resistance by regulating the pathways that confer drug resistance. Combining different conventional anticancer agents with microRNA therapies holds promise for enhancing treatment effectiveness against drug resistant breast cancer. Advancements in nano-drug delivery systems have facilitated the effective delivery of microRNAs by improving their stability, targeting specific cells, and enhancing cellular uptake. This review elucidates the recent advancements in microRNA-based therapies, their effects on gene expression, and their clinical efficacy in overcoming drug resistance in breast cancer.
Collapse
Affiliation(s)
- Aditi Verma
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University Central Campus, Navrangpura Ahmedabad 380009 Gujarat India
| | - Krunal Patel
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University Central Campus, Navrangpura Ahmedabad 380009 Gujarat India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University Central Campus, Navrangpura Ahmedabad 380009 Gujarat India
| |
Collapse
|
14
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
15
|
Li Y, Zhu R, He X, Song Y, Fan T, Ma J, Xiang G, Ma X. Discovery of potent hypoxia-inducible factor-1α (HIF-1α) degraders by proteolysis targeting chimera (PROTAC). Bioorg Chem 2024; 153:107943. [PMID: 39536629 DOI: 10.1016/j.bioorg.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Under hypoxic conditions in tumor cells, HIF-1α is unable to bind to VHL E3 ligase due to the blocked hydroxylation reaction, resulting in impaired degradation and intracellular accumulation. Mounting evidences show a close association between HIF-1α overexpression and drug resistance, treatment failure, and increased mortality. To address HIF-1α overexpression, we innovatively introduced an E3 ligase ligand to the HIF-1α inhibitor IDF-11774 using the PROTACs strategy, aiming to reactivate the degradative pathway impeded under hypoxia, and thereby achieve the degradation of HIF-1α protein under hypoxia. Western blotting analyses demonstrated that most of our designed PROTACs effectively degraded HIF-1α. Among these, compounds C3 and V2 exhibited excellent anti-proliferation activity on MDA-MB-231 cells with IC50 values of 48.98 μM and 7.54 μM, respectively. Both compounds induced protein degradation in a concentration-dependent manner, achieving degradation rates up to 80 %. Additionally, this degradation was inhibited by the proteasome inhibitor MG132. As a part of the ongoing effort to develop HIF-1 inhibitors, targeting the degradation of HIF-1α may offer an effective treatment strategy against solid tumors.
Collapse
Affiliation(s)
- Yuying Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruixue Zhu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuelian He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjia Song
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Fan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junhui Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren Guizhou 554300, China.
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Pharmacy, Tongren Polytechnic College, Tongren Guizhou 554300, China.
| |
Collapse
|
16
|
Osaki J, Noguchi R, Ono T, Adachi Y, Iwata S, Toda Y, Funada T, Iwata S, Kojima N, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-SS6-C1: a novel patient-derived cell line of synovial sarcoma. Hum Cell 2024; 37:1734-1741. [PMID: 39174825 DOI: 10.1007/s13577-024-01122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Synovial sarcoma (SS) is identified as a sarcoma with monomorphic blue spindle cells that display variable epithelial differentiation and is characterized by the SS18::SSX fusion gene. SS accounts for approximately 5-10% of all soft tissue sarcomas, making it a relatively common type within this group of tumors. Since SS is generally sensitive to chemotherapy, the standard treatment for SS includes extensive surgical resection, complemented by neoadjuvant chemotherapy with several approved anticancer drugs. However, in advanced and metastatic cases, the efficacy of these drugs is limited, resulting in poor prognoses. This underscores the need for innovative therapeutic strategies. Patient-derived cancer cell lines are essential tools for basic and preclinical research, yet only four SS cell lines are publicly available. To facilitate the studies of SS, we have developed a novel SS cell line, named NCC-SS6-C1, derived from surgically excised tumor tissue of an SS patient. NCC-SS6-C1 cells preserve the SS18::SSX1 fusion gene, consistent with the genetic characteristics of the original tumor. The cells exhibit continuous proliferation, invasiveness, and the ability to form spheroids. Additionally, we confirmed that this cell line was useful for evaluating the efficacy of anticancer drugs. Our results suggest that NCC-SS6-C1 is a useful tool for basic and pre-clinical studies of SS.
Collapse
Affiliation(s)
- Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu Toda
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takaya Funada
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
17
|
Lee DJ, Cao Y, Juvekar V, Sauraj, Noh CK, Shin SJ, Liu Z, Kim HM. Development of a small molecule-based two-photon photosensitizer for targeting cancer cells. J Mater Chem B 2024. [PMID: 39469993 DOI: 10.1039/d4tb01706d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Photodynamic therapy (PDT) employing two-photon (TP) excitation is increasingly recognized to induce cell damage selectively in targeted areas, underscoring the importance of developing TP photosensitizers (TP-PSs). In this study, we developed BSe-B, a novel PS that combines a selenium containing dye with biotin, a cancer-selective ligand, and is optimized for TP excitation. BSe-B demonstrated enhanced cancer selectivity, efficient generation of type-I based reactive oxygen species (ROS), low dark toxicity, and excellent cell-staining capability. Evaluation across diverse cell lines (HeLa, A549, OVCAR-3, WI-38, and L-929) demonstrated that BSe-B differentiated and targeted cancer cells while sparing normal cells. BSe-B displayed excellent in vivo biocompatibility. In cancer models such as three-dimensional spheroids and actual colon cancer tissues, BSe-B selectively induced ROS production and cell death under TP irradiation, demonstrating precise spatial control. These findings highlight the potential of BSe-B for imaging-guided PDT and its capability for micro treatment within tissues. Thus, BSe-B demonstrates robust TP-PDT capabilities, making it a promising dual-purpose tool for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dong Joon Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
| | - Yu Cao
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Vinayak Juvekar
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
| | - Sauraj
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
| | - Choong-Kyun Noh
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Sung Jae Shin
- Department of Gastroenterology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Zhihong Liu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
18
|
Liu S. Self-assembled lipid-based nanoparticles for chemotherapy against breast cancer. Front Bioeng Biotechnol 2024; 12:1482637. [PMID: 39534673 PMCID: PMC11555772 DOI: 10.3389/fbioe.2024.1482637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Self-assembled lipid-based nanoparticles have been shown to have improved therapeutic efficacy and lower toxic side effects. Breast cancer is a common type of malignant tumor in women. Conventional drugs such as doxorubicin (DOX) have shown low therapeutic efficacy and high drug toxicity in antitumor therapy. This paper surveys research on self-assembled lipid-based nanoparticles by categorizing them under three groups: self-assembled liposomal nanostructures, self-assembled niosomes, and self-assembled lipid-polymer hybrid nanoparticles. Subsequently, the structural features and operating mechanisms of each group are summarized individually along with examples of representative drugs from each group.
Collapse
Affiliation(s)
- Shan Liu
- Department of Oncology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Pérez-Lloret M, Reidy E, Lozano-Pérez AA, Marchal JA, Lens PNL, Ryan AE, Erxleben A. Auranofin loaded silk fibroin nanoparticles for colorectal cancer treatment. Drug Deliv Transl Res 2024:10.1007/s13346-024-01719-2. [PMID: 39382824 DOI: 10.1007/s13346-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer related deaths worldwide and the prevalence in young people especially is increasing annually. In the search for innovative approaches to treat the disease, drug delivery systems (DDS) are promising owing to their unique properties, which allow improved therapeutic results with lower drug concentrations, overcoming drug resistance and at the same time potentially reducing side effects. Silk fibroin is a biopolymer that can be processed to obtain biocompatible and biodegradable nanoparticles that can be efficiently loaded by surface adsorption with small-molecule therapeutics and allow their transport and sustained release by modulating their pharmacokinetics. Auranofin (AF) has recently been repurposed for its strong anticancer activity and is currently in clinical trials. Its mechanism of action is through the inhibition of thioredoxin reductase enzymes, which play an essential role in several intracellular processes and are overexpressed in some tumours. Taking into account that AF has a low solubility in water, we propose silk fibroin nanoparticles (SFN) as AF carrier in order to improve its bioavailability, increasing cellular absorption and preventing its degradation or avoiding some resistance mechanisms. Here we report the preparation and characterization of a new formulation of AF-loaded silk fibroin nanoparticles (SFN-AF), its functionalization with FITC for the analysis of cellular uptake, as well as its cytotoxic activity against cell lines of human colorectal cancer (HT29 and HCT116) in both 2D and 3D cell cultures. 3D spheroid models provide a 3D environment which mimics the 3D aspects of CRC observed in vivo and represents an effective 3D environment to screen therapeutics for the treatment of CRC. The loaded nanoparticles showed a spherical morphology with a hydrodynamic diameter of ~ 160 nm and good stability in aqueous solution due to their negative surface charges. FESEM-EDX analysis revealed a homogeneous distribution of Au clusters with high electron density on the surface of the nanoparticles. SFN-AF incubated in phosphate buffer at 37 °C released 77% of the loaded AF over 10 days, showing an initial burst and then sustained release. Flow cytometry analysis showed that FITC-SFN-AF was efficiently internalized by both cell lines, which was confirmed by confocal microscopy imaging. SFN enhanced the cytotoxicity of AF in 2D cultures in both CRC lines. Promising results were also obtained in 3D culture paving the way for future application of this strategy as a therapy for CRC.
Collapse
Affiliation(s)
- Marta Pérez-Lloret
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, Galway, Ireland
| | - Antonio Abel Lozano-Pérez
- Departamento de Biotecnología Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, Murcia, 30150, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, 30120, Spain
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, 18012, Spain
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Granada, 18016, Spain
- BioFab i3D-Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, Granada, 18100, Spain
| | - Piet N L Lens
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Andrea Erxleben
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
| |
Collapse
|
20
|
Bakhtiar H, Sharifi MN, Helzer KT, Shi Y, Bootsma ML, Shang TA, Chrostek MR, Berg TJ, Carson Callahan S, Carreno V, Blitzer GC, West MT, O'Regan RM, Wisinski KB, Sjöström M, Zhao SG. A phenocopy signature of TP53 loss predicts response to chemotherapy. NPJ Precis Oncol 2024; 8:220. [PMID: 39358429 PMCID: PMC11447220 DOI: 10.1038/s41698-024-00722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
In preclinical studies, p53 loss of function impacts chemotherapy response, but this has not been consistently validated clinically. We trained a TP53-loss phenocopy gene expression signature from pan-cancer clinical samples in the TCGA. In vitro, the TP53-loss phenocopy signature predicted chemotherapy response across cancer types. In a clinical dataset of 3003 breast cancer samples treated with neoadjuvant chemotherapy, the TP53-loss phenocopy samples were 56% more likely to have a pathologic complete response (pCR), with a significant association between TP53-loss phenocopy and pCR in both ER positive and ER negative tumors. In an independent clinical validation in the I-SPY2 trial (N = 987), we confirmed the association with neoadjuvant chemotherapy pCR and found higher rates of chemoimmunotherapy response in TP53-loss phenocopy tumors compared to non-TP53-loss phenocopy tumors (64% vs. 28%). The TP53-loss phenocopy signature predicts chemotherapy response across cancer types in vitro, and in a proof-of-concept clinical validation is associated with neoadjuvant chemotherapy response across multiple clinical breast cancer cohorts.
Collapse
Affiliation(s)
- Hamza Bakhtiar
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Marina N Sharifi
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Matthew L Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Tianfu A Shang
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - S Carson Callahan
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Viridiana Carreno
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
| | - Grace C Blitzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Malinda T West
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
| | - Ruth M O'Regan
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Kari B Wisinski
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
21
|
Mo CK, Liu J, Chen S, Storrs E, Targino da Costa ALN, Houston A, Wendl MC, Jayasinghe RG, Iglesia MD, Ma C, Herndon JM, Southard-Smith AN, Liu X, Mudd J, Karpova A, Shinkle A, Goedegebuure SP, Abdelzaher ATMA, Bo P, Fulghum L, Livingston S, Balaban M, Hill A, Ippolito JE, Thorsson V, Held JM, Hagemann IS, Kim EH, Bayguinov PO, Kim AH, Mullen MM, Shoghi KI, Ju T, Reimers MA, Weimholt C, Kang LI, Puram SV, Veis DJ, Pachynski R, Fuh KC, Chheda MG, Gillanders WE, Fields RC, Raphael BJ, Chen F, Ding L. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature 2024; 634:1178-1186. [PMID: 39478210 PMCID: PMC11525187 DOI: 10.1038/s41586-024-08087-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
To study the spatial interactions among cancer and non-cancer cells1, we here examined a cohort of 131 tumour sections from 78 cases across 6 cancer types by Visium spatial transcriptomics (ST). This was combined with 48 matched single-nucleus RNA sequencing samples and 22 matched co-detection by indexing (CODEX) samples. To describe tumour structures and habitats, we defined 'tumour microregions' as spatially distinct cancer cell clusters separated by stromal components. They varied in size and density among cancer types, with the largest microregions observed in metastatic samples. We further grouped microregions with shared genetic alterations into 'spatial subclones'. Thirty five tumour sections exhibited subclonal structures. Spatial subclones with distinct copy number variations and mutations displayed differential oncogenic activities. We identified increased metabolic activity at the centre and increased antigen presentation along the leading edges of microregions. We also observed variable T cell infiltrations within microregions and macrophages predominantly residing at tumour boundaries. We reconstructed 3D tumour structures by co-registering 48 serial ST sections from 16 samples, which provided insights into the spatial organization and heterogeneity of tumours. Additionally, using an unsupervised deep-learning algorithm and integrating ST and CODEX data, we identified both immune hot and cold neighbourhoods and enhanced immune exhaustion markers surrounding the 3D subclones. These findings contribute to the understanding of spatial tumour evolution through interactions with the local microenvironment in 2D and 3D space, providing valuable insights into tumour biology.
Collapse
Affiliation(s)
- Chia-Kuei Mo
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Jingxian Liu
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Andre Luiz N Targino da Costa
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Michael C Wendl
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Michael D Iglesia
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Cong Ma
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - John M Herndon
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Xinhao Liu
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Andrew Shinkle
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Abdurrahman Taha Mousa Ali Abdelzaher
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Peng Bo
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Lauren Fulghum
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Samantha Livingston
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Metin Balaban
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Angela Hill
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Joseph E Ippolito
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | | | - Jason M Held
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St Louis, St Louis, MO, USA
| | - Eric H Kim
- Division of Urological Surgery, Department of Surgery, Washington University, St Louis, MO, USA
| | - Peter O Bayguinov
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Albert H Kim
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
| | - Mary M Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, MO, USA
| | - Kooresh I Shoghi
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Tao Ju
- Department of Computer Science and Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Melissa A Reimers
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Sidharth V Puram
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Genetics, Washington University in St Louis, St Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Deborah J Veis
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Russell Pachynski
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Washington University in St Louis, St Louis, MO, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
| | - Ryan C Fields
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Feng Chen
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
| | - Li Ding
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
- Department of Genetics, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
22
|
Ghosh S, Tanbir SE, Mitra T, Roy SS. Unveiling stem-like traits and chemoresistance mechanisms in ovarian cancer cells through the TGFβ1-PITX2A/B signaling axis. Biochem Cell Biol 2024; 102:394-409. [PMID: 38976906 DOI: 10.1139/bcb-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy, having a high mortality rate due to its asymptomatic nature, chemoresistance, and recurrence. However, the proper mechanistic knowledge behind these phenomena is still inadequate. Cancer recurrence is commonly observed due to cancer stem cells which also show chemoresistance. We aimed to decipher the molecular mechanism behind chemoresistance and stemness in OC. Earlier studies suggested that PITX2, a homeobox transcription factor and, its different isoforms are associated with OC progression upon regulating different signaling pathways. Moreover, they regulate the expression of drug efflux transporters in kidney and colon cancer, rendering chemoresistance properties in the tumor cell. Considering these backgrounds, we decided to look for the role of PITX2 isoforms in promoting stemness and chemoresistance in OC cells. In this study, PITX2A/B has been shown to promote stemness and to enhance the transcription of ABCB1. PITX2 has been discovered to augment ABCB1 gene expression by directly binding to its promoter. To further investigate the regulatory mechanism of PITX2 gene expression, we found that TGFβ signaling could augment the PITX2A/B expression through both SMAD and non-SMAD signaling pathways. Collectively, we conclude that TGFβ1-activated PITX2A/B induces stem-like features and chemoresistance properties in the OC cells.
Collapse
Affiliation(s)
- Sampurna Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sk Eashayan Tanbir
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Tulika Mitra
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Tolue Ghasaban F, Taghehchian N, Zangouei AS, Keivany MR, Moghbeli M. MicroRNA-135b mainly functions as an oncogene during tumor progression. Pathol Res Pract 2024; 262:155547. [PMID: 39151250 DOI: 10.1016/j.prp.2024.155547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keivany
- Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Sacco JL, Gomez EW. Epithelial-Mesenchymal Plasticity and Epigenetic Heterogeneity in Cancer. Cancers (Basel) 2024; 16:3289. [PMID: 39409910 PMCID: PMC11475326 DOI: 10.3390/cancers16193289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment comprises various cell types and experiences dynamic alterations in physical and mechanical properties as cancer progresses. Intratumoral heterogeneity is associated with poor prognosis and poses therapeutic challenges, and recent studies have begun to identify the cellular mechanisms that contribute to phenotypic diversity within tumors. This review will describe epithelial-mesenchymal (E/M) plasticity and its contribution to phenotypic heterogeneity in tumors as well as how epigenetic factors, such as histone modifications, histone modifying enzymes, DNA methylation, and chromatin remodeling, regulate and maintain E/M phenotypes. This review will also report how mechanical properties vary across tumors and regulate epigenetic modifications and E/M plasticity. Finally, it highlights how intratumoral heterogeneity impacts therapeutic efficacy and provides potential therapeutic targets to improve cancer treatments.
Collapse
Affiliation(s)
- Jessica L. Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
Zhang J, Fang H, Dai Y, Li Y, Li L, Zuo S, Liu T, Sun Y, Shi X, He Z, Sun J, Sun B. Cholesterol sulfate-mediated ion-pairing facilitates the self-nanoassembly of hydrophilic cationic mitoxantrone. J Colloid Interface Sci 2024; 669:731-739. [PMID: 38735255 DOI: 10.1016/j.jcis.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
HYPOTHESIS Hydrophilic cationic drugs such as mitoxantrone hydrochloride (MTO) pose a significant delivery challenge to the development of nanodrug systems. Herein, we report the use of a hydrophobic ion-pairing strategy to enhance the nano-assembly of MTO. EXPERIMENTS We employed biocompatible sodium cholesteryl sulfate (SCS) as a modification module to form stable ion pairs with MTO, which balanced the intermolecular forces and facilitated nano-assembly. PEGylated MTO-SCS nanoassemblies (pMS NAs) were prepared via nanoprecipitation. We systematically evaluated the effect of the ratio of the drug module (MTO) to the modification module (SCS) on the nanoassemblies. FINDINGS The increased lipophilicity of MTO-SCS ion pair could significantly improve the encapsulation efficiency (∼97 %) and cellular uptake efficiency of MTO. The pMS NAs showed prolonged blood circulation, maintained the same level of tumor antiproliferative activity, and exhibited reduced toxicity compared with the free MTO solution. It is noteworthy that the stability, cellular uptake, cytotoxicity, and in vivo pharmacokinetic behavior of the pMS NAs increased in proportion to the molar ratio of SCS to MTO. This study presents a self-assembly strategy mediated by ion pairing to overcome the challenges commonly associated with the poor assembly ability of hydrophilic cationic drugs.
Collapse
Affiliation(s)
- Jingxuan Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongkai Fang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuebin Dai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiyi Zuo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
26
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi-Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Ai QYH, King AD, Tsang YM, Yu Z, Mao K, Mo FKF, Wong LM, Leung HS, So TY, Hui EP, Ma BBY, Chen W. Predictive markers for head and neck cancer treatment response: T1rho imaging in nasopharyngeal carcinoma. Eur Radiol 2024:10.1007/s00330-024-10948-5. [PMID: 39191996 DOI: 10.1007/s00330-024-10948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES To investigate the potential of T1rho, a new quantitative imaging sequence for cancer, for pre and early intra-treatment prediction of treatment response in nasopharyngeal carcinoma (NPC) and compare the results with those of diffusion-weighted imaging (DWI). MATERIALS AND METHODS T1rho and DWI imaging of primary NPCs were performed pre- and early intra-treatment in 41 prospectively recruited patients. The mean preT1rho, preADC, intraT1rho, intraADC, and % changes in T1rho (ΔT1rho%) and ADC (ΔADC%) were compared between residual and non-residual groups based on biopsy in all patients after chemoradiotherapy (CRT) with (n = 29) or without (n = 12) induction chemotherapy (IC), and between responders and non-responders to IC in the subgroup who received IC, using Mann-Whitney U-test. A p-value of < 0.05 indicated statistical significance. RESULTS Significant early intra-treatment changes in mean T1rho (p = 0.049) and mean ADC (p < 0.01) were detected (using paired t-test), most showing a decrease in T1rho (63.4%) and an increase in ADC (95.1%). Responders to IC (n = 17), compared to non-responders (n = 12), showed higher preT1rho (64.0 ms vs 66.5 ms) and a greater decrease in ΔT1rho% (- 7.5% vs 1.3%) (p < 0.05). The non-residual group after CRT (n = 35), compared to the residual group (n = 6), showed higher intraADC (0.96 vs 1.09 × 10-3 mm2/s) and greater increase in ΔADC% (11.7% vs 27.0%) (p = 0.02). CONCLUSION Early intra-treatment changes are detectable on T1rho and show potential to predict tumour shrinkage after IC. T1rho may be complementary to DWI, which, unlike T1rho, did not predict response to IC but did predict non-residual disease after CRT. CLINICAL RELEVANCE STATEMENT T1rho has the potential to complement DWI in the prediction of treatment response. Unlike DWI, it predicted shrinkage of the primary NPC after IC but not residual disease after CRT. KEY POINTS Changes in T1rho were detected early during cancer treatment for NPC. Pre-treatment and early intra-treatment change in T1rho predicted response to IC, but not residual disease after CRT. T1rho can be used to complement DWI with DWI predicting residual disease after CRT.
Collapse
Affiliation(s)
- Qi Yong H Ai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong S.A.R., P.R. China
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ann D King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China.
| | - Yip Man Tsang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ziqiang Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Kaijing Mao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong S.A.R., P.R. China
| | - Frankie K F Mo
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Lun M Wong
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ho Sang Leung
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Edwin P Hui
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Brigette B Y Ma
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| |
Collapse
|
28
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
29
|
Valente LC, Bacil GP, Riechelmann-Casarin L, Barbosa GC, Barbisan LF, Romualdo GR. Exploring in vitro modeling in hepatocarcinogenesis research: morphological and molecular features and similarities to the corresponding human disease. Life Sci 2024; 351:122781. [PMID: 38848937 DOI: 10.1016/j.lfs.2024.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The hepatocellular carcinoma (HCC) features a remarkable epidemiological burden, ranking as the third most lethal cancer worldwide. As the HCC-related molecular and cellular complexity unfolds as the disease progresses, the use of a myriad of in vitro models available is mandatory in translational preclinical research setups. In this review paper, we will compile cutting-edge information on the in vitro bioassays for HCC research, (A) emphasizing their morphological and molecular parallels with human HCC; (B) delineating the advantages and limitations of their application; and (C) offering perspectives on their prospective applications. While bidimensional (2D) (co) culture setups provide a rapid low-cost strategy for metabolism and drug screening investigations, tridimensional (3D) (co) culture bioassays - including patient-derived protocols as organoids and precision cut slices - surpass some of the 2D strategies limitations, mimicking the complex microarchitecture and cellular and non-cellular microenvironment observed in human HCC. 3D models have become invaluable tools to unveil HCC pathophysiology and targeted therapy. In both setups, the recapitulation of HCC in different etiologies/backgrounds (i.e., viral, fibrosis, and fatty liver) may be considered as a fundamental guide for obtaining translational findings. Therefore, a "multimodel" approach - encompassing the advantages of different in vitro bioassays - is encouraged to circumvent "model-biased" outcomes in preclinical HCC research.
Collapse
Affiliation(s)
- Leticia Cardoso Valente
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Luana Riechelmann-Casarin
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | | | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil.
| |
Collapse
|
30
|
Aydin H, Ozcelikkale A, Acar A. Exploiting Matrix Stiffness to Overcome Drug Resistance. ACS Biomater Sci Eng 2024; 10:4682-4700. [PMID: 38967485 PMCID: PMC11322920 DOI: 10.1021/acsbiomaterials.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Drug resistance is arguably one of the biggest challenges facing cancer research today. Understanding the underlying mechanisms of drug resistance in tumor progression and metastasis are essential in developing better treatment modalities. Given the matrix stiffness affecting the mechanotransduction capabilities of cancer cells, characterization of the related signal transduction pathways can provide a better understanding for developing novel therapeutic strategies. In this review, we aimed to summarize the recent advancements in tumor matrix biology in parallel to therapeutic approaches targeting matrix stiffness and its consequences in cellular processes in tumor progression and metastasis. The cellular processes governed by signal transduction pathways and their aberrant activation may result in activating the epithelial-to-mesenchymal transition, cancer stemness, and autophagy, which can be attributed to drug resistance. Developing therapeutic strategies to target these cellular processes in cancer biology will offer novel therapeutic approaches to tailor better personalized treatment modalities for clinical studies.
Collapse
Affiliation(s)
- Hakan
Berk Aydin
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| | - Altug Ozcelikkale
- Department
of Mechanical Engineering, Middle East Technical
University, 06800, Ankara, Turkey
- Graduate
Program of Biomedical Engineering, Middle
East Technical University, 06800, Ankara, Turkey
| | - Ahmet Acar
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| |
Collapse
|
31
|
Gurung SK, Shevde LA, Rao SS. Laminin I mediates resistance to lapatinib in HER2-positive brain metastatic breast cancer cells in vitro. Biochem Biophys Res Commun 2024; 720:150142. [PMID: 38788545 DOI: 10.1016/j.bbrc.2024.150142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The role of extracellular matrix (ECM) prevalent in the brain metastatic breast cancer (BMBC) niche in mediating cancer cell growth, survival, and response to therapeutic agents is not well understood. Emerging evidence suggests a vital role of ECM of the primary breast tumor microenvironment (TME) in tumor progression and survival. Possibly, the BMBC cells are also similarly influenced by the ECM of the metastatic niche; therefore, understanding the effect of the metastatic ECM on BMBC cells is imperative. Herein, we assessed the impact of various ECM components (i.e., Tenascin C, Laminin I, Collagen I, Collagen IV, and Fibronectin) on brain metastatic human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) cell lines in vitro. The highly aggressive TNBC cell line was minimally affected by ECM components exhibiting no remarkable changes in viability and morphology. On the contrary, amongst various ECM components tested, the HER2-positive cell line was significantly affected by Laminin I with higher viability and demonstrated a distinct spread morphology. In addition, HER2-positive BMBC cells exhibited resistance to Lapatinib in presence of Laminin I. Mechanistically, Laminin I-induced resistance to Lapatinib was mediated in part by phosphorylation of Erk 1/2 and elevated levels of Vimentin. Laminin I also significantly enhanced the migratory potential and replicative viability of HER2-positive BMBC cells. In sum, our findings show that presence of Laminin I in the TME of BMBC cells imparts resistance to targeted therapeutic agent Lapatinib, while increasing the possibility of its dispersal and clonogenic survival.
Collapse
Affiliation(s)
- Sumiran Kumar Gurung
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
32
|
De K, Tanbir SKE, Sinha S, Mukhopadhyay S. Lipid-Based Nanocarrier by Targeting with LHRH Peptide: A Promising Approach for Prostate Cancer Radio-Imaging and Therapy. Mol Pharm 2024; 21:4128-4146. [PMID: 38920398 DOI: 10.1021/acs.molpharmaceut.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Prostate cancer is a prevalently detected malignancy with a dismal prognosis. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in such cancer cells, to which the LHRH-decapeptide can specifically bind. A lipid-polyethylene glycol-conjugated new LHRH-decapeptide analogue (D-P-HLH) was synthesized and characterized. D-P-HLH-coated and anticancer drug doxorubicin (DX)-loaded solid lipid nanoparticles (F-DX-SLN) were formulated by the cold homogenization technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry, dynamic light scattering, electron microscopy, entrapment efficiency, and drug-release profile studies. F-DX-SLN allows site-specific DX delivery by reducing the side effects of chemotherapy. Cancer cells could precisely take up F-DX-SLN by targeting specific receptors, boosting the cytotoxicity at the tumor site. The efficacy of F-DX-SLN on PC3/SKBR3 cells by the MTT assay revealed that F-DX-SLN was more cytotoxic than DX and/or DX-SLN. Flow cytometry and confocal microscopic studies further support F-DX-SLNs' increased intracellular absorption capability in targeting LHRH overexpressed cancer cells. F-DX-SLN ensured high apoptotic potential, noticeably larger mitochondrial transmembrane depolarization action, as well as the activation of caspases, a longer half-life, and greater plasma concentration. F-DX-SLN/DX-SLN was radiolabeled with technetium-99m; scintigraphic imaging studies established its tumor selectivity in PC3 tumor-bearing nude mice. The efficacy of the formulations in cancer treatment, in vivo therapeutic efficacy tests, and histopathological studies were also conducted. Results clearly indicate that F-DX-SLN exhibits sustained and superior targeted administration of anticancer drugs, thus opening up the possibility of a drug delivery system with precise control and targeting effects. F-DX-SLN could also provide a nanotheranostic approach with improved efficacy for prostate cancer therapy.
Collapse
Affiliation(s)
- Kakali De
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - S K Eashayan Tanbir
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samarendu Sinha
- Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India
| |
Collapse
|
33
|
Shannon AE, Boos CE, Searle BC, Hummon AB. Gas-Phase Fractionation Data-Independent Acquisition Analysis of 3D Cocultured Spheroid Tumor Model Reveals Altered Translational Processes and Signaling Using Proteomics. J Proteome Res 2024; 23:3188-3199. [PMID: 38412258 PMCID: PMC11296903 DOI: 10.1021/acs.jproteome.3c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Colorectal cancer (CRC) contains considerable heterogeneity; therefore, models of the disease must also reflect the multifarious components. Compared to traditional 2D models, 3D cellular models, such as tumor spheroids, have the utility to determine the drug efficacy of potential therapeutics. Monoculture spheroids are well-known to recapitulate gene expression, cell signaling, and pathophysiological gradients of avascularized tumors. However, they fail to mimic the stromal cell influence present in CRC, which is known to perturb drug efficacy and is associated with metastatic, late-stage colorectal cancer. This study seeks to develop a cocultured spheroid model using carcinoma and noncancerous fibroblast cells. We characterized the proteomic profile of cocultured spheroids in comparison to monocultured spheroids using data-independent acquisition with gas-phase fractionation. Specifically, we determined that proteomic differences related to translation and mTOR signaling are significantly increased in cocultured spheroids compared to monocultured spheroids. Proteins related to fibroblast function, such as exocytosis of coated vesicles and secretion of growth factors, were significantly differentially expressed in the cocultured spheroids. Finally, we compared the proteomic profiles of both the monocultured and cocultured spheroids against a publicly available data set derived from solid CRC tumors. We found that the proteome of the cocultured spheroids more closely resembles that of the patient samples, indicating their potential as tumor mimics.
Collapse
Affiliation(s)
- Ariana E Shannon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claire E Boos
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brian C Searle
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
35
|
Valente K, Boice GN, Polglase C, Belli RG, Bourque E, Suleman A, Brolo A. Synthesis of Gelatin Methacryloyl Analogs and Their Use in the Fabrication of pH-Responsive Microspheres. Pharmaceutics 2024; 16:1016. [PMID: 39204361 PMCID: PMC11360800 DOI: 10.3390/pharmaceutics16081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
pH-responsive hydrogels have numerous applications in tissue engineering, drug delivery systems, and diagnostics. Gelatin methacryloyl (GelMA) is a biocompatible, semi-synthetic polymer prepared from gelatin. When combined with aqueous solvents, GelMA forms hydrogels that have extensive applications in biomedical engineering. GelMA can be produced with different degrees of methacryloyl substitution; however, the synthesis of this polymer has not been tuned towards producing selectively modified materials for single-component pH-responsive hydrogels. In this work, we have explored two different synthetic routes targeting different gelatin functional groups (amine, hydroxyl, and/or carboxyl) to produce two GelMA analogs: gelatin A methacryloyl glycerylester (polymer A) and gelatin B methacrylamide (polymer B). Polymers A and B were used to fabricate pH-responsive hydrogel microspheres in a flow-focusing microfluidic device. At neutral pH, polymer A and B microspheres displayed an average diameter of ~40 µm. At pH 6, microspheres from polymer A showed a swelling ratio of 159.1 ± 11.5%, while at pH 10, a 288.6 ± 11.6% swelling ratio was recorded for polymer B particles.
Collapse
Affiliation(s)
- Karolina Valente
- VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada; (K.V.); (G.N.B.); (C.P.)
| | - Geneviève N. Boice
- VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada; (K.V.); (G.N.B.); (C.P.)
| | - Cameron Polglase
- VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada; (K.V.); (G.N.B.); (C.P.)
| | - Roman G. Belli
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada; (R.G.B.); (E.B.)
| | - Elaina Bourque
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada; (R.G.B.); (E.B.)
| | - Afzal Suleman
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada; (R.G.B.); (E.B.)
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
36
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
37
|
Stigliani A, Ialchina R, Yao J, Czaplinska D, Dai Y, Andersen HB, Rennie S, Andersson R, Pedersen SF, Sandelin A. Adaptation to an acid microenvironment promotes pancreatic cancer organoid growth and drug resistance. Cell Rep 2024; 43:114409. [PMID: 38944837 DOI: 10.1016/j.celrep.2024.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Harsh environments in poorly perfused tumor regions may select for traits driving cancer aggressiveness. Here, we investigated whether tumor acidosis interacts with driver mutations to exacerbate cancer hallmarks. We adapted mouse organoids from normal pancreatic duct (mN10) and early pancreatic cancer (mP4, KRAS-G12D mutation, ± p53 knockout) from extracellular pH 7.4 to 6.7, representing acidic niches. Viability was increased by acid adaptation, a pattern most apparent in wild-type (WT) p53 organoids, and exacerbated upon return to pH 7.4. This led to increased survival of acid-adapted organoids treated with gemcitabine and/or erlotinib, and, in WT p53 organoids, acid-induced attenuation of drug effects. New genetic variants became dominant during adaptation, yet they were unlikely to be its main drivers. Transcriptional changes induced by acid and drug adaptation differed overall, but acid adaptation increased the expression of gemcitabine resistance genes. Thus, adaptation to acidosis increases cancer cell viability after chemotherapy.
Collapse
Affiliation(s)
- Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Jiayi Yao
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Yifan Dai
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Robin Andersson
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, DK2100 Copenhagen Ø, Denmark.
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, DK2200 Copenhagen N, Denmark.
| |
Collapse
|
38
|
Malla S, Nyinawabera A, Neupane R, Pathak R, Lee D, Abou-Dahech M, Kumari S, Sinha S, Tang Y, Ray A, Ashby CR, Yang MQ, Babu RJ, Tiwari AK. Novel Thienopyrimidine-Hydrazinyl Compounds Induce DRP1-Mediated Non-Apoptotic Cell Death in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2024; 16:2621. [PMID: 39123351 PMCID: PMC11311031 DOI: 10.3390/cancers16152621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
Apoptosis induction with taxanes or anthracyclines is the primary therapy for TNBC. Cancer cells can develop resistance to anticancer drugs, causing them to recur and metastasize. Therefore, non-apoptotic cell death inducers could be a potential treatment to circumvent apoptotic drug resistance. In this study, we discovered two novel compounds, TPH104c and TPH104m, which induced non-apoptotic cell death in TNBC cells. These lead compounds were 15- to 30-fold more selective in TNBC cell lines and significantly decreased the proliferation of TNBC cells compared to that of normal mammary epithelial cell lines. TPH104c and TPH104m induced a unique type of non-apoptotic cell death, characterized by the absence of cellular shrinkage and the absence of nuclear fragmentation and apoptotic blebs. Although TPH104c and TPH104m induced the loss of the mitochondrial membrane potential, TPH104c- and TPH104m-induced cell death did not increase the levels of cytochrome c and intracellular reactive oxygen species (ROS) and caspase activation, and cell death was not rescued by incubating cells with the pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). Furthermore, TPH104c and TPH104m significantly downregulated the expression of the mitochondrial fission protein, DRP1, and their levels determined their cytotoxic efficacy. Overall, TPH104c and TPH104m induced non-apoptotic cell death, and further determination of their cell death mechanisms will aid in the development of new potent and efficacious anticancer drugs to treat TNBC.
Collapse
Affiliation(s)
- Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Angelique Nyinawabera
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Rajiv Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Donghyun Lee
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Mariam Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India;
| | - Yuan Tang
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
| | - Aniruddha Ray
- Department of Physics, College of Math’s and Natural Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY 11439, USA;
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program of University of Arkansas at Little Rock, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA;
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
39
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00969-z. [PMID: 39023664 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
40
|
Corsetti G, Romano C, Codenotti S, Giugno L, Pasini E, Fanzani A, Scarabelli T, Dioguardi FS. Intake of Special Amino Acids Mixture Leads to Blunted Murine Colon Cancer Growth In Vitro and In Vivo. Cells 2024; 13:1210. [PMID: 39056792 PMCID: PMC11274386 DOI: 10.3390/cells13141210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer cells require substantial amounts of energy and substrates for their metabolic hyperactivity, enabling the synthesis of new cells at the expense of healthy ones. Preliminary in vitro data suggest that a mix of free essential amino acids (EAA-mix) can promote cancer cell apoptosis by enhancing autophagy. This study aimed to confirm, both in vitro and in vivo, whether EAA intake could influence the development of colon cancer in mice. We investigated changes in cancer proliferation in CT26 cells treated with EAA-mix and in mice fed with EAA-rich modified diets (EAARD) as compared to those on a standard laboratory diet (StD). CT26 cells were injected subcutaneously (s.c.) or intraperitoneally (i.p.). After 21 days, tumors were removed and measured. In vitro data corroborated that EAA-mix impairs cancer growth by inducing apoptosis. In vivo data revealed that mice on StD developed significantly larger (s.c.) and more numerous (i.p.) cancers than those on EAARD. EAA administration appears to influence cancer cell survival with notable antiproliferative properties.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Claudia Romano
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (A.F.)
| | - Lorena Giugno
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Evasio Pasini
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
- Italian Association of Functional Medicine, 20855 Lesmo, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (A.F.)
| | | | | |
Collapse
|
41
|
Famta P, Shah S, Vambhurkar G, Pandey G, Bagasariya D, Kumar KC, Prasad SB, Shinde A, Wagh S, Srinivasarao DA, Kumar R, Khatri DK, Asthana A, Srivastava S. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation. Drug Deliv Transl Res 2024:10.1007/s13346-024-01669-9. [PMID: 39009931 DOI: 10.1007/s13346-024-01669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will provide greater tumor-targeting insights to the formulation scientists.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Molecular and Cellular Biology Laboratory, Department of Pharmacology, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
42
|
Adachi M, Sugimoto H, Morita K, Maruyama T, Fujii M. Scattering/Fluorescence Dual-Mode Imaging in MnO 2-Coated Silicon Nanospheres for Cancer Cell Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33963-33970. [PMID: 38910448 DOI: 10.1021/acsami.4c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A tumor microenvironment (TME)-responsive nanoprobe composed of a fluorescent dye-decorated silicon (Si) nanosphere core and a thin MnO2 shell is proposed for simple and intelligent detection of cancer cells. The Si nanosphere core with diameters of 100-200 nm provides environment-independent Mie scattering imaging, while, simultaneously, the MnO2 shell provides the capability to switch the on/off state of the dye fluorescence reacted to the glutathione (GSH) and/or H2O2 levels in a cancer cell. Si-MnO2 core-shell nanosphere probes are fabricated in a solution-based process from crystalline Si nanosphere cores. The fluorescence switching under exposure to GSH is demonstrated, and the mechanism is discussed based on detailed optical characterizations including single-particle spectroscopy. Different types of human cells are incubated with the nanoprobes, and a proof of concept experiment is performed. From the combination of the robust scattering images and GSH- and H2O2-sensitive fluorescence images, the feasibility of cancer cell detection by the multimodal nanoprobes is demonstrated.
Collapse
Affiliation(s)
- Masato Adachi
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
43
|
Luo B, Song L, Chen L, Cai Y, Zhang M, Wang S. Ganoderic acid D attenuates gemcitabine resistance of triple-negative breast cancer cells by inhibiting glycolysis via HIF-1α destabilization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155675. [PMID: 38678954 DOI: 10.1016/j.phymed.2024.155675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Gemcitabine (GEM) resistance is the primary reason why combination chemotherapy is limited in triple-negative breast cancer (TNBC). Ganoderic acid D (GAD), a natural triterpenoid compound obtained from Ganoderma lucidum, has been shown to have antitumor activities. However, whether GAD can reverse GEM resistance in TNBC requires further investigation. PURPOSE This study investigated whether and how GAD could reverse GEM resistance in TNBC as an antitumor adjuvant. METHODS The effects of GAD on cell proliferation, cell cycle, and glycolysis were studied in vitro using a GEM-resistant (GEM-R) TNBC cell model. We enriched key pathways affected by GAD using proteomics techniques. Western blotting and qPCR were used to detect the expression of glycolysis-related genes after GAD treatment. A mouse resistance model was established using GEM-R TNBC cells, and hematoxylin-eosin staining and immunohistochemistry were used to assess the role of GAD in reversing resistance in vivo. RESULTS Cellular functional assays showed that GAD significantly inhibited proliferation and glucose uptake in GEM-R TNBC cells. GAD reduces HIF-1α accumulation in TNBC cells under hypoxic conditions through the ubiquitinated protease degradation pathway. Mechanistically, GAD activates the p53/MDM2 pathway, promoting HIF-1α ubiquitination and proteasomal degradation and downregulating HIF-1α-dependent glycolysis genes like GLUT1, HK2, and PKM2. Notably, GAD combined with gemcitabine significantly reduced the growth of GEM-R TNBC cells in a subcutaneous tumor model. CONCLUSIONS This study reveals a novel antitumor function of GAD, which inhibits glycolysis by promoting HIF-1α degradation in GEM-R TNBC cells, offering a promising therapeutic strategy for TNBC patients with GEM resistance.
Collapse
Affiliation(s)
- Binbin Luo
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Department of Science and Education, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, China.
| | - Linyi Song
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Department of Science and Education, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, China
| | - Limiao Chen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yue Cai
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Mingwei Zhang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Shenyi Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.
| |
Collapse
|
44
|
Manchanda AS, Rai HK, Kaur M, Arora P. Cancer stem cells targeted therapy: A changing concept in head and neck squamous cell carcinoma. J Oral Maxillofac Pathol 2024; 28:455-463. [PMID: 39670113 PMCID: PMC11633930 DOI: 10.4103/jomfp.jomfp_248_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 12/14/2024] Open
Abstract
Identification of cancer stem cells (CSCs), their multilineage potential, and their ability of self-renewal have revolutionised the current concepts of cancer treatment. The suspected role of CSCs in cancer initiation, progression and relapse with the observed resistance to conventional cancer treatments has led to the development of more specific and targeted therapies. Identification of the properties of stem cells (SCs) and their potential for localisation in cancer has made targeted anti-cancer treatment possible by incorporating some modifications into these SCs. The same concept has been applied to the treatment strategy for head and neck squamous cell carcinoma (HNSCC) to control the relapse and improve the mortality rates in patients. This review aims to discuss the role of CSCs in the course and relapse of HNSCC, various surface markers for their identification and SC-targeted therapy options for the treatment of HNSCC, with a highlight on the advantages, shortcomings, opportunities and challenges to SC therapy in head and neck squamous cell carcinoma, treatment and scope for future research.
Collapse
Affiliation(s)
- Adesh S. Manchanda
- Department of Oral and Maxillofacial Pathology, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Harmandeep K. Rai
- Department of Dentistry, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Manvir Kaur
- Department of Dentistry, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Paras Arora
- Department of Dentistry, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| |
Collapse
|
45
|
Jiang Z, Fu Y, Shen H. Development of Intratumoral Drug Delivery Based Strategies for Antitumor Therapy. Drug Des Devel Ther 2024; 18:2189-2202. [PMID: 38882051 PMCID: PMC11179649 DOI: 10.2147/dddt.s467835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Research for tumor treatment with significant therapy effects and minimal side-effects has been widely carried over the past few decades. Different drug forms have received a lot of attention. However, systemic biodistribution induces efficacy and safety issues. Intratumoral delivery of agents might overcome these problems because of its abundant tumor accumulation and retention, thereby reducing side effects. Delivering hydrogels, nanoparticles, microneedles, and microspheres drug carriers directly to tumors can realize not only targeted tumor therapy but also low side-effects. Furthermore, intratumoral administration has been integrated with treatment strategies such as chemotherapy, enhancing radiotherapy, immunotherapy, phototherapy, magnetic fluid hyperthermia, and multimodal therapy. Some of these strategies are ongoing clinical trials or applied clinically. However, many barriers hinder it from being an ideal and widely used option, such as decreased drug penetration impeded by collagen fibers of a tumor, drug squeezed out by high density and high pressure, mature intratumoral injection technique. In this review, we systematically discuss intratumoral delivery of different drug carriers and current development of intratumoral therapy strategies.
Collapse
Affiliation(s)
- Zhimei Jiang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Yuzhi Fu
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Hongxin Shen
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| |
Collapse
|
46
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
47
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
48
|
Zhang Y, Lee RY, Tan CW, Guo X, Yim WWY, Lim JC, Wee FY, Yang WU, Kharbanda M, Lee JYJ, Ngo NT, Leow WQ, Loo LH, Lim TK, Sobota RM, Lau MC, Davis MJ, Yeong J. Spatial omics techniques and data analysis for cancer immunotherapy applications. Curr Opin Biotechnol 2024; 87:103111. [PMID: 38520821 DOI: 10.1016/j.copbio.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge. As a result, a potential revolution in cancer diagnosis, prognosis, and treatment is on the horizon. In this review, we discuss the technological advances in spatial profiling of cancer around and beyond the central dogma to harness the full benefits of immunotherapy. We also discuss the promise and challenges of spatial data analysis and interpretation and provide an outlook for the future.
Collapse
Affiliation(s)
- Yue Zhang
- Duke-NUS Medical School, Singapore 169856, Singapore
| | - Ren Yuan Lee
- Yong Loo Lin School of Medicine, National University of Singapore, 169856 Singapore; Singapore Thong Chai Medical Institution, Singapore 169874, Singapore
| | - Chin Wee Tan
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Xue Guo
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Willa W-Y Yim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Jeffrey Ct Lim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Felicia Yt Wee
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - W U Yang
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Malvika Kharbanda
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jia-Ying J Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore
| | - Nye Thane Ngo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore
| | - Tony Kh Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Mai Chan Lau
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), Singapore 138648, Singapore
| | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia; immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joe Yeong
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore.
| |
Collapse
|
49
|
Folz J, Jo J, Gonzalez ME, Eido A, Zhai T, Caruso R, Kleer CG, Wang X, Kopelman R. Photoacoustic lifetime oxygen imaging of radiotherapy-induced tumor reoxygenation In Vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2024; 21:100241. [PMID: 39005728 PMCID: PMC11243757 DOI: 10.1016/j.jpap.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Purpose Early detection and diagnosis of cancer is critical for achieving positive therapeutic outcomes. Biomarkers that can provide clinicians with clues to the outcome of a given therapeutic course are highly desired. Oxygen is a small molecule that is nearly universally present in biological tissues and plays a critical role in the effectiveness of radiotherapies by reacting with DNA radicals and subsequently impairing cellular repair of double strand breaks.Techniques for measuring oxygen in biological tissues often use blood oxygen saturation to approximate the oxygen partial pressure in surrounding tissues despite the complex, nonlinear, and dynamic relationship between these two separate oxygen populations. Methods and materials We combined a directly oxygen-sensitive, tumor-targeted, chemical contrast nanoelement with the photoacoustic lifetime-based (PALT) oxygen imaging technique to obtain image maps of oxygen in breast cancer tumors in vivo. The oxygen levels of patient-derived xenografts in a mouse model were characterized before and after a course of radiotherapy. Results We show that, independent of tumor size, radiotherapy induced an increase in the overall oxygenation levels of the tumor. Further, this increase in the oxygenation of the tumor significantly correlated with a positive response to radiotherapy, as demonstrated by a reduction in tumor volume over the twenty-day monitoring period following therapy and histological staining. Conclusion Our PALT imaging presented here is simple, fast, and non-invasive. Facilized by the PALT approach, imaging of tumor reoxygenation may be utilized as a simple, early indicator for evaluating cancer response to radiotherapy. Further characterization of the reoxygenation degree, temporal onset, and possible theragnostic implications are warranted.
Collapse
Affiliation(s)
- Jeff Folz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria E. Gonzalez
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ahmad Eido
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Tianqu Zhai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roberta Caruso
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Li J, Cao D, Jiang L, Zheng Y, Shao S, Zhuang A, Xiang D. ITGB2-ICAM1 axis promotes liver metastasis in BAP1-mutated uveal melanoma with retained hypoxia and ECM signatures. Cell Oncol (Dordr) 2024; 47:951-965. [PMID: 38150154 DOI: 10.1007/s13402-023-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
PURPOSE Uveal melanoma (UM) with BAP1 inactivating mutations has a high risk of metastasis, but the mechanism behind BAP1 deficiency driving UM metastasis is unknown. METHODS We analyzed the single-cell RNA sequencing (scRNA-Seq) data comprised primary and metastatic UM with or without BAP1 mutations (MUTs) to reveal inter- and intra-tumor heterogeneity among different groups. Then, an immune-competent mouse liver metastatic model was used to explore the role of ITGB2-ICAM1 in BAP1-associated UM metastasis. RESULTS Cluster 1 tumor cells expressed high levels of genes linked to tumor metastasis, such as GDF15, ATF3, and CDKN1A, all of which are associated with poor prognosis. The strength of communication between terminally exhausted CD8+ T cells and GDF15hiATF3hiCDKN1Ahi tumor cells was enhanced in BAP1-mutated UM, with CellChat analysis predicting strong ITGB2-ICAM1 signaling between them. High expression of either ITGB2 or ICAM1 was a worse prognostic indicator. Using an immune-competent mouse liver metastatic model, we indicated that inhibiting either ICAM1 or ITGB2 prevented liver metastasis in the BAP1-mutated group in vivo. The inhibitors primarily inhibited hypoxia- and ECM-related pathways indicated by changes in the expression of genes such as ADAM8, CAV2, ENO1, PGK1, LOXL2, ITGA5, and VCAN. etc. CONCLUSION: This study suggested that the ITGB2-ICAM1 axis may play a crucial role for BAP1-associated UM metastasis by preserving hypoxia- and ECM- related signatures, which provide a potential strategy for preventing UM metastasis in patients with BAP1 mutation.
Collapse
Affiliation(s)
- Jiaoduan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
- Department of Biliary-Pancreatic Surgery, the Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongyan Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
- Department of Biliary-Pancreatic Surgery, the Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lixin Jiang
- Department of Ultrasound, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwen Zheng
- Department of Ultrasound, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Siyuan Shao
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China.
- Department of Biliary-Pancreatic Surgery, the Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China.
| |
Collapse
|