1
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
2
|
Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W, Sun F. The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. Pharm Res 2024; 41:2143-2159. [PMID: 39455505 DOI: 10.1007/s11095-024-03783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits. METHODS This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors. RESULTS This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways. CONCLUSION In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
3
|
Wu Q, Li Y, Wang Q, Zhao X, Sun D, Liu B. Identification of DNA motif pairs on paired sequences based on composite heterogeneous graph. Front Genet 2024; 15:1424085. [PMID: 38952710 PMCID: PMC11215013 DOI: 10.3389/fgene.2024.1424085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/22/2024] [Indexed: 07/03/2024] Open
Abstract
Motivation The interaction between DNA motifs (DNA motif pairs) influences gene expression through partnership or competition in the process of gene regulation. Potential chromatin interactions between different DNA motifs have been implicated in various diseases. However, current methods for identifying DNA motif pairs rely on the recognition of single DNA motifs or probabilities, which may result in local optimal solutions and can be sensitive to the choice of initial values. A method for precisely identifying DNA motif pairs is still lacking. Results Here, we propose a novel computational method for predicting DNA Motif Pairs based on Composite Heterogeneous Graph (MPCHG). This approach leverages a composite heterogeneous graph model to identify DNA motif pairs on paired sequences. Compared with the existing methods, MPCHG has greatly improved the accuracy of motifs prediction. Furthermore, the predicted DNA motifs demonstrate heightened DNase accessibility than the background sequences. Notably, the two DNA motifs forming a pair exhibit functional consistency. Importantly, the interacting TF pairs obtained by predicted DNA motif pairs were significantly enriched with known interacting TF pairs, suggesting their potential contribution to chromatin interactions. Collectively, we believe that these identified DNA motif pairs held substantial implications for revealing gene transcriptional regulation under long-range chromatin interactions.
Collapse
Affiliation(s)
- Qiuqin Wu
- School of Mathematics, Shandong University, Jinan, China
| | - Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Qi Wang
- School of Mathematics, Shandong University, Jinan, China
| | - Xiaoyu Zhao
- School of Mathematics, Shandong University, Jinan, China
| | - Duanchen Sun
- School of Mathematics, Shandong University, Jinan, China
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, China
| |
Collapse
|
4
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Minisini M, Cricchi E, Brancolini C. Acetylation and Phosphorylation in the Regulation of Hypoxia-Inducible Factor Activities: Additional Options to Modulate Adaptations to Changes in Oxygen Levels. Life (Basel) 2023; 14:20. [PMID: 38276269 PMCID: PMC10821055 DOI: 10.3390/life14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
O2 is essential for the life of eukaryotic cells. The ability to sense oxygen availability and initiate a response to adapt the cell to changes in O2 levels is a fundamental achievement of evolution. The key switch for adaptation consists of the transcription factors HIF1A, HIF2A and HIF3A. Their levels are tightly controlled by O2 through the involvement of the oxygen-dependent prolyl hydroxylase domain-containing enzymes (PHDs/EGNLs), the von Hippel-Lindau tumour suppressor protein (pVHL) and the ubiquitin-proteasome system. Furthermore, HIF1A and HIF2A are also under the control of additional post-translational modifications (PTMs) that positively or negatively regulate the activities of these transcription factors. This review focuses mainly on two PTMs of HIF1A and HIF2A: phosphorylation and acetylation.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Lab of Epigenomics, Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy; (M.M.); (E.C.)
| |
Collapse
|
6
|
Zheng X, Wang L, Zhang Z, Tang H. The emerging roles of SUMOylation in pulmonary diseases. Mol Med 2023; 29:119. [PMID: 37670258 PMCID: PMC10478458 DOI: 10.1186/s10020-023-00719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Small ubiquitin-like modifier mediated modification (SUMOylation) is a critical post-translational modification that has a broad spectrum of biological functions, including genome replication and repair, transcriptional regulation, protein stability, and cell cycle progression. Perturbation or deregulation of a SUMOylation and deSUMOylation status has emerged as a new pathophysiological feature of lung diseases. In this review, we highlighted the link between SUMO pathway and lung diseases, especially the sumoylated substrate such as C/EBPα in bronchopulmonary dysplasia (BDP), PPARγ in pneumonia, TFII-I in asthma, HDAC2 in chronic obstructive pulmonary disease (COPD), KLF15 in hypoxic pulmonary hypertension (HPH), SMAD3 in idiopathic pulmonary fibrosis (IPF), and YTHDF2 in cancer. By exploring the impact of SUMOylation in pulmonary diseases, we intend to shed light on its potential to inspire the development of innovative diagnostic and therapeutic strategies, holding promise for improving patient outcomes and overall respiratory health.
Collapse
Affiliation(s)
- Xuyang Zheng
- Department of pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, P.R. China.
| | - Lingqiao Wang
- Department of pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, P.R. China
| | - Zhen Zhang
- Department of Orthopedics Surgery, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, P.R. China
| | - Huifang Tang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medicial Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China.
| |
Collapse
|
7
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Gulhane P, Singh S. Unraveling the Post-Translational Modifications and therapeutical approach in NSCLC pathogenesis. Transl Oncol 2023; 33:101673. [PMID: 37062237 PMCID: PMC10133877 DOI: 10.1016/j.tranon.2023.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is the most prevalent kind of lung cancer with around 85% of total lung cancer cases. Despite vast therapies being available, the survival rate is low (5 year survival rate is 15%) making it essential to comprehend the mechanism for NSCLC cell survival and progression. The plethora of evidences suggests that the Post Translational Modification (PTM) such as phosphorylation, methylation, acetylation, glycosylation, ubiquitination and SUMOylation are involved in various types of cancer progression and metastasis including NSCLC. Indeed, an in-depth understanding of PTM associated with NSCLC biology will provide novel therapeutic targets and insight into the current sophisticated therapeutic paradigm. Herein, we reviewed the key PTMs, epigenetic modulation, PTMs crosstalk along with proteogenomics to analyze PTMs in NSCLC and also, highlighted how epi‑miRNA, miRNA and PTM inhibitors are key modulators and serve as promising therapeutics.
Collapse
Affiliation(s)
- Pooja Gulhane
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India.
| |
Collapse
|
9
|
Zhou S, Yang K, Chen S, Lian G, Huang Y, Yao H, Zhao Y, Huang K, Yin D, Lin H, Li Y. CCL3 secreted by hepatocytes promotes the metastasis of intrahepatic cholangiocarcinoma by VIRMA-mediated N6-methyladenosine (m 6A) modification. J Transl Med 2023; 21:43. [PMID: 36691046 PMCID: PMC9869516 DOI: 10.1186/s12967-023-03897-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant disease characterized by onset occult, rapid progression, high relapse rate, and high mortality. However, data on how the tumor microenvironment (TME) regulates ICC metastasis at the transcriptomic level remains unclear. This study aimed to explore the mechanisms and interactions between hepatocytes and ICC cells. METHODS We analyzed the interplay between ICC and liver microenvironment through cytokine antibody array analysis. Then we investigated the role of N6-methyladenosine (m6A) modification and the downstream target in vitro, in vivo experiments, and in clinical specimens. RESULTS Our study demonstrated that cytokine CCL3, which is secreted by hepatocytes, promotes tumor metastasis by regulating m6A modification via vir-like m6A methyltransferase associated (VIRMA) in ICC cells. Moreover, immunohistochemical analyses showed that VIRMA correlated with poor outcomes in ICC patients. Finally, we confirmed both in vitro and in vivo that CCL3 could activate VIRMA and its critical downstream target SIRT1, which fuels tumor metastasis in ICC. CONCLUSIONS In conclusion, our results enhanced our understanding of the interaction between hepatocytes and ICC cells, and revealed the molecular mechanism of the CCL3/VIRMA/SIRT1 pathway via m6A-mediated regulation in ICC metastasis. These studies highlight potential targets for the diagnosis, treatment, and prognosis of ICC.
Collapse
Affiliation(s)
- Shurui Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kege Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuzhou Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hanming Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Haoming Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Pancreato-Biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
10
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Sriramkumar S, Metcalfe TX, Lai T, Zong X, Fang F, O’Hagan HM, Nephew KP. Single-cell analysis of a high-grade serous ovarian cancer cell line reveals transcriptomic changes and cell subpopulations sensitive to epigenetic combination treatment. PLoS One 2022; 17:e0271584. [PMID: 35921335 PMCID: PMC9348737 DOI: 10.1371/journal.pone.0271584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer (OC) is a lethal gynecological malignancy with a five-year survival rate of only 46%. Development of resistance to platinum-based chemotherapy is a common cause of high mortality rates among OC patients. Tumor and transcriptomic heterogeneity are drivers of platinum resistance in OC. Platinum-based chemotherapy enriches for ovarian cancer stem cells (OCSCs) that are chemoresistant and contribute to disease recurrence and relapse. Studies examining the effect of different treatments on subpopulations of HGSOC cell lines are limited. Having previously demonstrated that combined treatment with an enhancer of zeste homolog 2 inhibitor (EZH2i) and a RAC1 GTPase inhibitor (RAC1i) inhibited survival of OCSCs, we investigated EZH2i and RAC1i combination effects on HGSOC heterogeneity using single cell RNA sequencing. We demonstrated that RAC1i reduced expression of stemness and early secretory marker genes, increased expression of an intermediate secretory marker gene and induced inflammatory gene expression. Importantly, RAC1i alone and in combination with EZH2i significantly reduced oxidative phosphorylation and upregulated Sirtuin signaling pathways. Altogether, we demonstrated that combining a RAC1i with an EZH2i promoted differentiation of subpopulations of HGSOC cells, supporting the future development of epigenetic drug combinations as therapeutic approaches in OC.
Collapse
Affiliation(s)
- Shruthi Sriramkumar
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Tara X. Metcalfe
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Tim Lai
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, United States of America
- Department of Mathematics, Indiana University, Bloomington, Indiana, United States of America
| | - Xingyue Zong
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Fang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Heather M. O’Hagan
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States of America
- * E-mail: (KPN); (HMO)
| | - Kenneth P. Nephew
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States of America
- Department of Anatomy, Cell Biology and Physiology; Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (KPN); (HMO)
| |
Collapse
|
12
|
Resveratrol and Its Analogue 4,4′-Dihydroxy-trans-stilbene Inhibit Lewis Lung Carcinoma Growth In Vivo through Apoptosis, Autophagy and Modulation of the Tumour Microenvironment in a Murine Model. Biomedicines 2022; 10:biomedicines10081784. [PMID: 35892684 PMCID: PMC9332680 DOI: 10.3390/biomedicines10081784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most prevalent cancer worldwide. Despite advances in surgery and immune-chemotherapy, the therapeutic outcome remains poor. In recent years, the anticancer properties of natural compounds, along with their low toxic side effects, have attracted the interest of researchers. Resveratrol (RSV) and many of its derivatives received particular attention for their beneficial bioactivity. Here we studied the activity of RSV and of its analogue 4,4′-dihydroxystilbene (DHS) in C57BL/6J mice bearing cancers resulting from Lung Lewis Carcinoma (LLC) cell implantation, considering tumour mass weight, angiogenesis, cell proliferation and death, autophagy, as well as characterization of their immune microenvironment, including infiltrating cancer-associated fibroblasts (CAFs). C57BL/6J mice started treatment with RSV or DHS, solubilised in drinking water, one week before LLC implantation, and continued for 21 days, at the end of which they were sacrificed, and the tumour masses collected. Histology was performed according to standard procedures; angiogenesis, cell proliferation and death, autophagy, infiltrating-immune cells, macrophages and fibroblasts were assessed by immunodetection assays. Both stilbenic compounds were able to contrast the tumour growth by increasing apoptosis and autophagy in LLC tumour masses. Additionally, they contrasted the tumour-permissive microenvironment by limiting the infiltration of tumour-associated immune-cells and, more importantly, by counteracting CAF maturation. Therefore, both stilbenes could be employed to synergise with conventional oncotherapies to limit the contribution of stromal cells in tumour growth.
Collapse
|
13
|
Huang M, Li J, Bai J, Du X, Guo H, Wang B, Xu J. NRIP1 aggravates lung injury caused by Pseudomonas aeruginosa in mice by increasing PIAS1 ubiquitination. Aging (Albany NY) 2022; 14:3529-3539. [PMID: 35460552 PMCID: PMC9085225 DOI: 10.18632/aging.204027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Recently, evidence has shown that nuclear receptor interacting protein 1 (NRIP1) is involved in acute lung injury (ALI) progression, but the specific mechanism remains unclear. Pseudomonas aeruginosa (PA)-treated TC-1 cells were transfected with pcDNA-NRIP1 or si-NRIP1, and we found that overexpression of NRIP1 inhibited cell viability and promoted cell apoptosis and secretion of inflammatory factors, and transfection of si-NRIP1 reversed these effects. Furthermore, online bioinformatics analysis and co-immunoprecipitation assay results indicated that NRIP1 could bind to Ubiquitin Conjugating Enzyme E2I (UBE2I), and promoted UBE2I expression. Next, the PA-treated TC-1 cells were transfected with si-NRIP1 alone or together with pcDNA-UBE2I, and we observed that transfection with si-NRIP1 inhibited UBE2I expression, promoted cell viability, and reduced cell apoptosis and inflammatory factor secretion, which could be reversed by UBE2I overexpression. Moreover, UBE2I could bind to protein inhibitor of activated signal transducer and activators of transcription 1 (PIAS1). Overexpression of NRIP1 promoted UBE2I expression and inhibited PIAS1 expression, and NRIP1 promoted PIAS1 ubiquitination and degradation by UBE2I. The PA-treated TC-1 cells were transfected with si-UBE2I alone or together with si-PIAS1, and the results indicated that transfection of si-UBE2I had the same effect as transfection of si-NRIP1. Finally, our in vivo findings indicated that the expression of NRIP1 and UBE2I was decreased, and PIAS1 expression was increased, in the lung tissues of mice with NRIP1 knocked-down, and the inflammatory infiltration in the lung tissue was reduced. In conclusion, our study demonstrates that NRIP1 aggravates PA-induced lung injury in mice by promoting PIAS1 ubiquitination.
Collapse
Affiliation(s)
- Miaoyi Huang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Jianying Li
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Jie Bai
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Xusheng Du
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Hua Guo
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Bo Wang
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
14
|
Jiang S, Yu J, Zhu M, Zhang X, Zhang Y, Zhang Q, Hu Q, Lv M. Gambogic acid inhibits epithelial–mesenchymal transition in breast cancer cells through upregulation of
SIRT1
expression in vitro. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shi‐ye Jiang
- Center of Digestive Endoscopy The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Jiangsu Province China
| | - Jun Yu
- Department of Scientific Research The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Jiangsu Province China
| | - Ming Zhu
- Department of Scientific Research The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Jiangsu Province China
| | - Xiao‐mei Zhang
- Department of Scientific Research The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Jiangsu Province China
| | - Yuan‐ying Zhang
- Department of Scientific Research The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Jiangsu Province China
| | - Qin Zhang
- Department of Surgery The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Jiangsu Province China
| | - Qing Hu
- Department of Surgery The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Jiangsu Province China
| | - Min Lv
- Department of Scientific Research The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing Jiangsu Province China
| |
Collapse
|
15
|
Wu H, Ma H, Wang L, Zhang H, Lu L, Xiao T, Cheng C, Wang P, Yang Y, Wu M, Wang S, Zhang J, Liu Q. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int J Biol Sci 2022; 18:661-674. [PMID: 35002516 PMCID: PMC8741857 DOI: 10.7150/ijbs.65861] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects the health of more than 300 million people worldwide; at present, there is no effective drug to treat COPD. Smoking is the most important risk factor, but the molecular mechanism by which smoking causes the disease is unclear. The senescence of lung epithelial cells is related to development of COPD. Regulation of miRNAs is the main epigenetic mechanism related to aging. β-Galactose staining showed that the lung tissues of smokers have a higher degree of cellular senescence, and the expression of miR-125a-5p is high. This effect is obvious for smokers with COPD/emphysema, and there is a negative correlation between miR-125a-5p levels and values for forced expiratory volume in one second (FEV1)/forced vital capacity (FVC). After Balb/c mice were chronically exposed to various concentrations of cigarette smoke (CS), plethysmography showed that lung function was impaired, lung tissue senescence was increased, and the senescence-associated secretory phenotype (SASP) in bronchoalveolar lavage fluid was increased. For mouse lung epithelial (MLE)-12 cells treated with cigarette smoke extract (CSE), Sp1 and SIRT1 levels were low, HIF-1α acetylation levels were high, and cell senescence and secretion of SASP factors were elevated. Down-regulation of miR-125a-5p or up-regulation of Sp1 reversed these effects. In addition, compared with mice exposed to CS, knockdown of miR-125a-5p reduced lung epithelial cell senescence and COPD/emphysema. Therefore, in smoking-induced COPD, elevated miR-125a-5p participates in the senescence of lung epithelial cells through Sp1/SIRT1/HIF-1α. These findings provide evidence related to the pathogenesis of COPD/emphysema caused by chronic smoking.
Collapse
Affiliation(s)
- Hao Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.,Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huimin Ma
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lumin Wang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huazhong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Suhua Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Begum MK, Konja D, Singh S, Chlopicki S, Wang Y. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges. J Cardiovasc Pharmacol 2021; 78:S63-S77. [PMID: 34840264 DOI: 10.1097/fjc.0000000000001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT SIRT1, a member of the sirtuin family of longevity regulators, possesses potent activities preventing vascular aging. The expression and function of SIRT1 in endothelial cells are downregulated with age, in turn causing early vascular aging and predisposing various vascular abnormalities. Overexpression of SIRT1 in the vascular endothelium prevents aging-associated endothelial dysfunction and senescence, thus the development of hypertension and atherosclerosis. Numerous efforts have been directed to increase SIRT1 signaling as a potential strategy for different aging-associated diseases. However, the complex mechanisms underlying the regulation of SIRT1 have posed a significant challenge toward the design of specific and effective therapeutics. This review aimed to provide a summary on the regulation and function of SIRT1 in the vascular endothelium and to discuss the different approaches targeting this molecule for the prevention and treatment of age-related cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Musammat Kulsuma Begum
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Sandeep Singh
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; and
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Yao J, Yang J, Yang Z, Wang XP, Yang T, Ji B, Zhang ZY. FBXW11 contributes to stem-cell-like features and liver metastasis through regulating HIC1-mediated SIRT1 transcription in colorectal cancer. Cell Death Dis 2021; 12:930. [PMID: 34642302 PMCID: PMC8511012 DOI: 10.1038/s41419-021-04185-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023]
Abstract
Colorectal tumorigenesis is a heterogeneous disease driven by multiple genetic and epigenetic alterations. F-box and WD repeat domain containing 11 (FBXW11) is a member of the F-box protein family that regulates the ubiquitination of key factors associated with tumor growth and aggressiveness. Our study aimed to explore the role of FBXW11 in the development and metastasis of colorectal cancer (CRC). FBXW11 was overexpressed in colorectal tumor tissues and its overexpression was associated with a poor prognosis of CRC patients. The upregulation of FBXW11 not only promoted cell proliferation, invasion, and migration, but also contributed to maintaining stem-cell features in colorectal tumor cells. Further analysis revealed that FBXW11 targeted hypermethylated in cancer 1 (HIC1) and reduced its stability in CRC cells through ubiquitination. Moreover, the expression of sirtuin 1 (SIRT1), a deacetylase in tumor cells was upregulated by FBXW11 via regulating HIC1 expression. The mouse xenograft models of CRC confirmed that FBXW11 knockdown impeded colorectal tumor growth and liver metastasis in vivo. In summary, our study identified FBXW11 as an oncogenic factor that contributed to stem-cell-like properties and liver metastasis in CRC via regulating HIC1-mediated SIRT1 expression. These results provide a rationale for the development of FBXW11-targeting drugs for CRC patients.
Collapse
Affiliation(s)
- Jing Yao
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai City, 200233, China
| | - Jun Yang
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai City, 200233, China
| | - Zhe Yang
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai City, 200233, China
| | - Xin-Ping Wang
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai City, 200233, China
| | - Tong Yang
- Department of Internal Medicine, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou City, Zhejiang Province, 313000, China
| | - Bing Ji
- Department of Internal Medicine, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou City, Zhejiang Province, 313000, China.
| | - Zheng-Yun Zhang
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai City, 200233, China.
| |
Collapse
|
18
|
Wan Z, Wang L, Yang D, Li P, Liu Q, Wang B. CKS2 Promotes the Growth in Non-Small-Cell Lung Cancer by Downregulating Cyclin-Dependent Kinase Inhibitor. Pathobiology 2021; 89:13-22. [PMID: 34333494 DOI: 10.1159/000517755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION/OBJECTIVE This study aimed to explore the expression of cyclin-dependent kinase subunit 2 (CKS2) in tissues and cells in non-small-cell lung cancer (NSCLC) and the function mechanism of CKS2 in NSCLC cell growth and tumorigensis. METHODS After transfecting NCI-H2170 cells with short-hair RNA (shRNA), an shCKS2 gene-silencing model was established. The cells were divided into a shRNA group and shNC group. For overexpression cell lines, we used the same method to establish the NCI-H2170-CKS2 cell lines. Cell Count Kit-8 assay and colony formation assay were used to determine cell viability and cell growth, respectively. Propidium iodide staining was used to determine cell cycle progression. The mRNA expression of CKS2 and protein expression of CKS2, p21, p53, and PTEN were determined by RT-qPCR and Western blotting, respectively. The expression of CKS2, p53, and Ki67 in tissues was determined by immunohistochemical stain. The in vivo tumorigenesis assays were used to determine the ability of CKS2 in tumor growth. RESULTS The results of RT-qPCR and Western blotting assay revealed that CKS2 upregulated expression in NSCLC tissues and cells. The results of the CCK-8 assay revealed that the shRNA group exhibited significantly lower cell viability and foci formation than the empty plasmid group, while CKS2 overexpression induces cell growth and cell cycle progression. The result of nude mice suggested that CKS2 knockdown expression suppressed tumorigenesis in the in vivo animal model. CONCLUSIONS Our study suggests that CKS2 could be a biomarker in the progression and prognosis of NSCLC.
Collapse
Affiliation(s)
- Zongren Wan
- Department of Pulmonary and Critical Care Medicine, Huai'an First People's Hospital, Huai'an, China
| | - Lixin Wang
- Department of Pulmonary and Critical Care Medicine, Huai'an First People's Hospital, Huai'an, China
| | - Dan Yang
- Department of Pulmonary and Critical Care Medicine, Huai'an First People's Hospital, Huai'an, China
| | - Pengling Li
- Department of Pulmonary and Critical Care Medicine, Huai'an First People's Hospital, Huai'an, China
| | - Qing Liu
- Department of Pulmonary and Critical Care Medicine, Huai'an First People's Hospital, Huai'an, China
| | - Baolan Wang
- Department of Pulmonary and Critical Care Medicine, Huai'an First People's Hospital, Huai'an, China
| |
Collapse
|
19
|
Tian Y, Tang B, Wang C, Wang Y, Mao J, Yao Y, Gao Z, Liang R, Ye M, Cai S, Wang L. Operative ubiquitin-specific protease 22 deubiquitination confers a more invasive phenotype to cholangiocarcinoma. Cell Death Dis 2021; 12:678. [PMID: 34226501 PMCID: PMC8257691 DOI: 10.1038/s41419-021-03940-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Oncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.
Collapse
Affiliation(s)
- Yu Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
- Division of Vascular Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
- National Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Bo Tang
- Department of Health Sciences, Hiroshima Shudo University, Hiroshima, Japan.
| | - Chengye Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
- National Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Yan Wang
- National Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Jiakai Mao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Yifan Yao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Rui Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Mingliang Ye
- National Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Shijie Cai
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, PR China.
| |
Collapse
|
20
|
Lin L, Zhang Q, Fan H, Zhao H, Yang Y. Myocardin-Related Transcription Factor A Mediates LPS-Induced iNOS Transactivation. Inflammation 2021; 43:1351-1361. [PMID: 32440986 DOI: 10.1007/s10753-020-01213-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macrophage-dependent inflammation plays a critical role in atherogenesis. Inducible nitric oxide synthase (iNOS) is one of key pro-inflammatory mediators produced in macrophages and its levels can be upregulated by lipopolysaccharide (LPS). The epigenetic mechanism whereby LPS induces iNOS transcription is incompletely understood. We show here myocardin-related transcription factor A (MRTF-A) potentiated iNOS promoter activity in macrophages. There was a decrease in LPS-induced iNOS expression in several cell models due to the lack of MRTF-A. LPS treatment promoted nuclear accumulation of MRTF-A and its interaction with NF-κB/p65 on the iNOS promoter. The absence of MRTF-A prevented the accumulation of active histone marks on the iNOS promoter in response to LPS treatment. Mechanistically, MRTF-A recruited ASH2, a key component of the mammalian histone H3K4 methyltransferase complex, to the iNOS promoter. Silencing of ASH2 attenuated iNOS expression following LPS treatment. Together, our data highlight a role for MRTF-A-dependent recruitment of H3K4 methyltransferase in iNOS induction and as such provide a novel target in the intervention of atherosclerosis.
Collapse
Affiliation(s)
- Lin Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Qiumei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongwei Fan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
21
|
Hosseninia S, Ameli A, Aslani MR, Pourfarzi F, Ghobadi H. Serum Levels of Sirtuin-1 in Patients with Lung Cancer and its Association with Karnofsky Performance Status. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021012. [PMID: 33988159 PMCID: PMC8182600 DOI: 10.23750/abm.v92i2.10712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/01/2022]
Abstract
Background: Lung cancer is a major cause of cancer-related deaths worldwide. There are conflicting results regarding the role of sirtuin-1 in cancer. This study aimed to evaluate the serum sirtuin-1 levels in patients with lung cancer and its relationship with the quality of life based on Karnofsky performance statue scale (KPS). Methods: Serum sirtuin-1 levels were measured in 30 male patients with lung cancer and 50 healthy men. The two groups were matched for age. The difference between the serum levels of sirtuin-1 between the two groups and its relationship with KPS and other clinical parameters were evaluated. Data were analyzed by independent t-test and Pearson correlation, and P < 0.05 was considered as significant. Results: Sirtuin-1 levels were significantly lower in the patients in comparison with healthy subjects (P < 0.001). There was also a significant relationship between the serum level of sirtuin-1 with KPS (P < 0.001, r = 0.634), arterial oxygen saturation (P < 0.01, r = 0.470), and smoking history (P < 0.01, r = -0.330). In addition, the serum sirtuin-1 levels were significantly lower in adenocarcinoma than that in squamous cell carcinoma or small cell lung cancer (p < 0.001 and P < 0.05, respectively). Conclusion: The serum levels of sirtuin-1 were lower in patients with lung cancer. In addition, there was a significant correlation between serum levels of sirtuin-1 and KPS, O2 saturation, and smoking history. Further serological and histological studies seem to be necessary due to the existence of conflicting reports regarding sirtuin-1.
Collapse
Affiliation(s)
- Saeed Hosseninia
- Internal Medicine Department (Pulmonary Division), Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Aslan Ameli
- Internal Medicine Department, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammad Reza Aslani
- 3Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Pourfarzi
- Digestive Disease Research Center, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hassan Ghobadi
- a:1:{s:5:"en_US";s:125:"Internal Medicine Department (Pulmonary Division), Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran";}.
| |
Collapse
|
22
|
Guo K, Feng Y, Zheng X, Sun L, Wasan HS, Ruan S, Shen M. Resveratrol and Its Analogs: Potent Agents to Reverse Epithelial-to-Mesenchymal Transition in Tumors. Front Oncol 2021; 11:644134. [PMID: 33937049 PMCID: PMC8085503 DOI: 10.3389/fonc.2021.644134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a complicated program through which polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor microenvironment. EMT is involved in tumor progression, invasion and metastasis via reconstructing the cytoskeleton and degrading the tumor basement membrane. Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can reverse EMT and inhibit invasion and migration of human tumors via diverse mechanisms and signaling pathways. In the present review, we will summarize the detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl resveratrol, 3,5,4'-Trimethoxystilbene) might regulate the EMT process in cancer cells to better understand their potential as novel anti-tumor agents. Resveratrol can also reverse chemoresistance via EMT inhibition and improvement of the antiproliferative effects of conventional treatments. Therefore, resveratrol and its analogs have the potential to become novel adjunctive agents to inhibit cancer metastasis, which might be partly related to their blocking of the EMT process.
Collapse
Affiliation(s)
- Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueer Zheng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Harpreet S. Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Shanming Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minhe Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Chen X, Wang Y, Tian J, Shao Y, Zhu B, Wang J, Hua Z. Quantitative Chemical Proteomics Reveals Resveratrol Inhibition of A549 Cell Migration Through Binding Multiple Targets to Regulate Cytoskeletal Remodeling and Suppress EMT. Front Pharmacol 2021; 12:636213. [PMID: 33867987 PMCID: PMC8044895 DOI: 10.3389/fphar.2021.636213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Resveratrol (RSV), a health-promoting natural product, has been shown to affect various cellular processes in tumor cells. However, the specific protein targets of RSV and the mechanism of action (MOA) of its anticancer effect remain elusive. In this study, the pharmacological activity of RSV was first evaluated in A549 cells, and the results showed that RSV significantly inhibited A549 cell migration but did not affect cell viability. To elucidate the underlying mechanism, a quantitative chemical proteomics approach was employed to identify the protein targets of RSV. A total of 38 target proteins were identified, and proteomic analysis showed that the targets were mainly involved in cytoskeletal remodeling and EMT, which were verified by subsequent in vitro and in vivo assays. In conclusion, RSV inhibits A549 cell migration by binding to multiple targets to regulate cytoskeletal remodeling and suppress EMT.
Collapse
Affiliation(s)
- Xiao Chen
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Yutong Wang
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Tian
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yurou Shao
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Zhu
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zichun Hua
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Wan R, Yuan P, Guo L, Shao J, Liu X, Lai W, Kong Q, Chen L, Ge J, Xu Z, Xie J, Shen Y, Hu J, Zhou Q, Yu J, Jiang Z, Jiang X, Hong K. Ubiquitin-like protein FAT10 suppresses SIRT1-mediated autophagy to protect against ischemic myocardial injury. J Mol Cell Cardiol 2020; 153:1-13. [PMID: 33307094 DOI: 10.1016/j.yjmcc.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Autophagy plays a deleterious role in ischemic myocardial injury. The deacetylase SIRT1 is a well-established regulator of autophagy that can be modified by the ubiquitin-like protein SUMO1. Our previous work demonstrated that another ubiquitin-like protein, FAT10, exerts cardioprotective effects against myocardial ischemia by stabilizing the caveolin-3 protein; however, the effects of FAT10 on autophagy through SIRT1 are unclear. Here, we constructed a Fat10-knockout rat model to evaluate the role of FAT10 in autophagy. In vivo and in vitro assays confirmed that FAT10 suppressed autophagy to protect the heart from ischemic myocardial injury. Mechanistically, FAT10 was mainly involved in the regulation of the autophagosome formation process. FAT10 affected autophagy through modulating SIRT1 degradation, which resulted in reduced SIRT1 nuclear translocation and inhibited SIRT1 activity via its C-terminal glycine residues. Notably, FAT10 competed with SUMO1 at the K734 modification site of SIRT1, which further reduced LC3 deacetylation and suppressed autophagy. Our findings suggest that FAT10 inhibits autophagy by antagonizing SIRT1 SUMOylation to protect the heart from ischemic myocardial injury. This is a novel mechanism through which FAT10 regulates autophagy as a cardiac protector.
Collapse
Affiliation(s)
- Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Ping Yuan
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Linjuan Guo
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianghua Shao
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University Nanchang of Jiangxi, 330006, China
| | - Xiao Liu
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Lai
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiling Kong
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Leifeng Chen
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University Nanchang of Jiangxi, 330006, China
| | - Jin Ge
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhenyan Xu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Genetics Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Genetics Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiongqiong Zhou
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xinghua Jiang
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kui Hong
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
25
|
Epigenetic activation of the small GTPase TCL contributes to colorectal cancer cell migration and invasion. Oncogenesis 2020; 9:86. [PMID: 32999272 PMCID: PMC7528090 DOI: 10.1038/s41389-020-00269-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023] Open
Abstract
TC10-like (TCL) is a small GTPase that has been implicated in carcinogenesis. Elevated TCL expression has been observed in many different types of cancers although the underlying epigenetic mechanism is poorly understood. Here we report that TCL up-regulation was associated with high malignancy in both human colorectal cancer biopsy specimens and in cultured colorectal cancer cells. Hypoxia, a pro-metastatic stimulus, up-regulated TCL expression in HT-29 cells. Further studies revealed that myocardin-related transcription factor A (MRTF-A) promoted migration and invasion of HT-29 cells in a TCL-dependent manner. MRTF-A directly bound to the proximal TCL promoter in response to hypoxia to activate TCL transcription. Chromatin immunoprecipitation (ChIP) assay showed that hypoxia stimulation specifically enhanced acetylation of histone H4K16 surrounding the TCL promoter, which was abolished by MRTF-A depletion or inhibition. Mechanistically, MRTF-A interacted with and recruited the H4K16 acetyltransferase hMOF to the TCL promoter to cooperatively regulate TCL transcription. hMOF depletion or inhibition attenuated hypoxia-induced TCL expression and migration/invasion of HT-29 cells. In conclusion, our data identify a novel MRTF-A-hMOF-TCL axis that contributes to colorectal cancer metastasis.
Collapse
|
26
|
Wu T, Wang H, Xin X, Yang J, Hou Y, Fang M, Lu X, Xu Y. An MRTF-A-Sp1-PDE5 Axis Mediates Angiotensin-II-Induced Cardiomyocyte Hypertrophy. Front Cell Dev Biol 2020; 8:839. [PMID: 33015041 PMCID: PMC7509415 DOI: 10.3389/fcell.2020.00839] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiac hypertrophy is a critical intermediate step in the pathogenesis of heart failure. A myriad of signaling networks converge on cardiomyocytes to elicit hypertrophic growth in response to various injurious stimuli. In the present study, we investigated the cardiomyocyte-specific role of myocardin-related transcription factor A (MRTF-A) in angiotensin-II (Ang-II)-induced cardiac hypertrophy and the underlying mechanism. We report that conditional MRTF-A deletion in cardiomyocytes attenuated Ang-II-induced cardiac hypertrophy in mice. Similarly, MRTF-A knockdown or inhibition suppressed Ang-II-induced prohypertrophic response in cultured cardiomyocytes. Of note, Ang II treatment upregulated expression of phosphodiesterase 5 (PDE5), a known mediator of cardiac hypertrophy and heart failure, in cardiomyocytes, which was blocked by MRTF-A depletion or inhibition. Mechanistically, MRTF-A activated expression of specificity protein 1 (Sp1), which in turn bound to the PDE5 promoter and upregulated PDE5 transcription to promote hypertrophy of cardiomyocytes in response to Ang II stimulation. Therefore, our data unveil a novel MRTF-A–Sp1–PDE5 axis that mediates Ang-II-induced hypertrophic response in cardiomyocytes. Targeting this newly identified MRTF-A–Sp1–PDE5 axis may yield novel interventional solutions against heart failure.
Collapse
Affiliation(s)
- Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huidi Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaojun Xin
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yannan Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Laboratory Center for Experimental Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
27
|
Li Z, Kong X, Zhang Y, Zhang Y, Yu L, Guo J, Xu Y. Dual roles of chromatin remodeling protein BRG1 in angiotensin II-induced endothelial-mesenchymal transition. Cell Death Dis 2020; 11:549. [PMID: 32683412 PMCID: PMC7368857 DOI: 10.1038/s41419-020-02744-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Endothelial–mesenchymal transition (EndMT) is considered one of the processes underlying tissue fibrosis by contributing to the pool of myofibroblasts. In the present study, we investigated the epigenetic mechanism whereby angiotensin II (Ang II) regulates EndMT to promote cardiac fibrosis focusing on the role of chromatin remodeling protein BRG1. BRG1 knockdown or inhibition attenuated Ang II-induced EndMT, as evidenced by down-regulation of CDH5, an endothelial marker, and up-regulation of COL1A2, a mesenchymal marker, in cultured vascular endothelial cells. On the one hand, BRG1 interacted with and was recruited by Sp1 to the SNAI2 (encoding SLUG) promoter to activate SNAI2 transcription in response to Ang II stimulation. Once activated, SLUG bound to the CDH5 promoter to repress CDH5 transcription. On the other hand, BRG1 interacted with and was recruited by SRF to the COL1A2 promoter to activate COL1A2 transcription. Mechanistically, BRG1 evicted histones from the target promoters to facilitate the bindings of Sp1 and SRF. Finally, endothelial conditional BRG1 knockout mice (CKO) exhibited a reduction in cardiac fibrosis, compared to the wild type (WT) littermates, in response to chronic Ang II infusion. In conclusion, our data demonstrate that BRG1 is a key transcriptional coordinator programming Ang II-induced EndMT to contribute to cardiac fibrosis.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xiaochen Kong
- Department of Endocrinology, Affiliated Nanjing Municipal Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yangxi Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
28
|
Lactate Increases Renal Cell Carcinoma Aggressiveness through Sirtuin 1-Dependent Epithelial Mesenchymal Transition Axis Regulation. Cells 2020; 9:cells9041053. [PMID: 32340156 PMCID: PMC7226526 DOI: 10.3390/cells9041053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) displays a glycolytic phenotype (Warburg effect). Increased lactate production, impacting on tumor biology and microenvironment modulation, has been implicated in epigenetic mechanisms' regulation, leading to histone deacetylases inhibition. Thus, in-depth knowledge of lactate's impact on epigenome regulation of highly glycolytic tumors might allow for new therapeutic strategies. Herein, we investigated how extracellular lactate affected sirtuin 1 activity, a class III histone deacetylase (sirtuins, SIRTs) in RCC. METHODS In vitro and in vivo interactions between lactate and SIRT1 in RCC were investigated in normal kidney and RCC cell lines. Finally, SIRT1 and N-cadherin immunoexpression was assessed in human RCC and normal renal tissues. RESULTS Lactate inhibited SIRT1 expression in normal kidney and RCC cells, increasing global H3 and H3K9 acetylation. Cells exposed to lactate showed increased cell migration and invasion entailing a mesenchymal phenotype. Treatment with a SIRT1 inhibitor, nicotinamide (NAM), paralleled lactate effects, promoting cell aggressiveness. In contrast, alpha-cyano-4-hydroxycinnamate (CHC), a lactate transporter inhibitor, reversed them by blocking lactate transport. In vivo (chick chorioallantoic membrane (CAM) assay), lactate and NAM exposure were associated with increased tumor size and blood vessel recruitment, whereas CHC displayed the opposite effect. Moreover, primary RCC revealed N-cadherin upregulation whereas SIRT1 expression levels were downregulated compared to normal tissues. CONCLUSIONS In RCC, lactate enhanced aggressiveness and modulated normal kidney cell phenotype, in part through downregulation of SIRT1, unveiling tumor metabolism as a promising therapeutic target.
Collapse
|
29
|
Deacetylation of MRTF-A by SIRT1 defies senescence induced down-regulation of collagen type I in fibroblast cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165723. [PMID: 32061777 DOI: 10.1016/j.bbadis.2020.165723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Aging provokes both morphological and functional changes in cells, which are accompanied by a fundamental shift in gene expression patterns. One of the characteristic alterations associated with senescence in fibroblast cells is the down-regulation of collagen type I genes. In the present study, we investigated the contribution of myocardin-related transcription factor A, or MRTF-A, in this process. In mouse embryonic fibroblast (MEF) cells and human foreskin fibroblast (HFF) cells, senescence, induced by either progressive passage or treatment with hydrogen peroxide (H2O2), led to augmented lysine acetylation of MRTF-A paralleling down-regulation of collagen type I and SIRT1, a lysine deacetylase. SIRT1 interacted with MRTF-A to promote MRTF-A deacetylation. SIRT1 over-expression or activation by selective agonists enhanced trans-activation of the collagen promoters by MRTF-A. On the contrary, SIRT1 depletion or inhibition by specific antagonists suppressed trans-activation of the collagen promoters by MRTF-A. Likewise, mutation of four lysine residues within MRTF-A rendered it more potent in terms of activating the collagen promoters but unresponsive to SIRT1. Importantly, SIRT1 activation in senescent fibroblasts mitigated repression of collagen type I expression whereas SIRT1 inhibition promoted the loss of collagen type I expression prematurely in young fibroblasts. Mechanistically, SIRT1 enhanced the affinity of MRTF-A for the collagen type I promoters. In conclusion, our data unveil a novel mechanism that underscores aging-associated loss of collagen type I in fibroblasts via SIRT1-mediated post-translational modification of MRTF-A.
Collapse
|
30
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
31
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 622] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Ginkgolic Acid, a SUMO-1 Inhibitor, Inhibits the Progression of Oral Squamous Cell Carcinoma by Alleviating SUMOylation of SMAD4. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:86-99. [PMID: 31970286 PMCID: PMC6965518 DOI: 10.1016/j.omto.2019.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/07/2019] [Indexed: 12/30/2022]
Abstract
Small ubiquitin-related modifiers (SUMO) represent a class of ubiquitin-like proteins that are conjugated, like ubiquitin, by a set of enzymes to form cellular regulatory proteins, and play key roles in the control of cell proliferation, differentiation, and apoptosis. We found that ginkgolic acid (GA) can significantly reduce cell vitality in a dose- and time-dependent manner and can also accelerate cyto-apoptosis in both Tca8113 and Cal-27 cells. Migration and wound-healing assays were executed to determine the anti-migration effect of GA in oral squamous cell carcinoma (OSCC) cell lines. GA represses transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) markers in OSCC cell lines. This investigation is the first evidence that GA suppresses TGF-β1-induced SUMOylation of SMAD4. We show that GA affects the phosphorylation of SMAD2/3 protein and the release of SMAD4. In the xenograft mouse model, the OSCC progression was reduced by GA, effectively suppressing the growth of tumors. In addition, siSMAD4 improved cell migration and viability, which was inhibited by GA in Tca8113 cells. GA suppresses tumorigenicity and tumor progression of OSCC through inhibition of TGF-β1-induced enhancement of SUMOylation of SMAD4. Thus, GA could be a promising therapeutic for OSCC.
Collapse
|
33
|
Abstract
Introduction: The HGF/MET axis is a key therapeutic pathway in cancer; it is aberrantly activated because of mutations, fusions, amplification or aberrant ligand production. Extensive efforts have been made to discover predictive factors of anti-MET therapeutic efficacy, but they have mostly unsuccessful. An understanding of the intrinsic and acquired mechanism of MET resistance will be fundamental for the development of new therapeutic interventions.Areas covered: This article provides a systematic review of phase II randomized and phase III clinical trials investigating the use of MET inhibitors in the treatment of cancer. We discuss preliminary findings on efficacy and methodologic design flaws in these trials.Expert opinion: MET inhibitors showed poor activity in unselected patients or patients selected by MET expression, p-MET or high HGF basal levels. The efficacy in advanced solid tumors is very modest and in phase III clinical trials, survival differences did not fulfill the stringent requirements of ESMO-Magnitude Clinical Benefit Score (MCBS). Prospective novel liquid biomarker-driven studies and novel trial designs such as Umbrella and Basket trials are necessary to progress MET inhibitor development.
Collapse
Affiliation(s)
- Helena Oliveres
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| | - Estela Pineda
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| | - Joan Maurel
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Li Z, Xia J, Fang M, Xu Y. Epigenetic regulation of lung cancer cell proliferation and migration by the chromatin remodeling protein BRG1. Oncogenesis 2019; 8:66. [PMID: 31695026 PMCID: PMC6834663 DOI: 10.1038/s41389-019-0174-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Malignant lung cancer cells are characterized by uncontrolled proliferation and migration. Aberrant lung cancer cell proliferation and migration are programmed by altered cancer transcriptome. The underlying epigenetic mechanism is unclear. Here we report that expression levels of BRG1, a chromatin remodeling protein, were significantly up-regulated in human lung cancer biopsy specimens of higher malignancy grades compared to those of lower grades. Small interfering RNA mediated depletion or pharmaceutical inhibition of BRG1 suppressed proliferation and migration of lung cancer cells. BRG1 depletion or inhibition was paralleled by down-regulation of cyclin B1 (CCNB1) and latent TGF-β binding protein 2 (LTBP2) in lung cancer cells. Further analysis revealed that BRG1 directly bound to the CCNB1 promoter to activate transcription in response to hypoxia stimulation by interacting with E2F1. On the other hand, BRG1 interacted with Sp1 to activate LTBP2 transcription. Mechanistically, BRG1 regulated CCNB1 and LTBP2 transcription by altering histone modifications on target promoters. Specifically, BRG1 recruited KDM3A, a histone H3K9 demethylase, to remove dimethyl H3K9 from target gene promoters thereby activating transcription. KDM3A knockdown achieved equivalent effects as BRG1 silencing by diminishing lung cancer proliferation and migration. Of interest, BRG1 directly activated KDM3A transcription by forming a complex with HIF-1α. In conclusion, our data unveil a novel epigenetic mechanism whereby malignant lung cancer cells acquired heightened ability to proliferate and migrate. Targeting BRG1 may yield effective interventional strategies against malignant lung cancers.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jun Xia
- Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China.
| | - Mingming Fang
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
35
|
Lu Y, Lv F, Kong M, Chen X, Duan Y, Chen X, Sun D, Fang M, Xu Y. A cAbl-MRTF-A Feedback Loop Contributes to Hepatic Stellate Cell Activation. Front Cell Dev Biol 2019; 7:243. [PMID: 31681772 PMCID: PMC6805704 DOI: 10.3389/fcell.2019.00243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Trans-differentiation of quiescent hepatic stellate cells (HSC) to myofibroblasts is a hallmark event in liver fibrosis. Previous studies have led to the discovery that myocardin-related transcription factor A (MRTF-A) is a key regulator of HSC trans-differentiation or, activation. In the present study we investigated the interplay between MRTF-A and c-Abl (encoded by Abl1), a tyrosine kinase, in this process. We report that hepatic expression levels of c-Abl were down-regulated in MRTF-A knockout (KO) mice compared to wild type (WT) littermates in several different models of liver fibrosis. MRTF-A deficiency also resulted in c-Abl down-regulation in freshly isolated HSCs from the fibrotic livers of mice. MRTF-A knockdown or inhibition repressed c-Abl in cultured HSCs in vitro. Further analyses revealed that MRTF-A directly bound to the Abl1 promoter to activate transcription by interacting with Sp1. Reciprocally, pharmaceutical inhibition of c-Abl suppressed MRTF-A activity. Mechanistically, c-Abl activated extracellular signal-regulated kinase (ERK), which in turn phosphorylated MRTF-A and promoted MRTF-A nuclear trans-localization. In conclusion, our data suggest that a c-Abl-MRTF-A positive feedback loop contributes to HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xuyang Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mingming Fang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Vocational College of Medicine, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
36
|
Yu L, Yang G, Zhang X, Wang P, Weng X, Yang Y, Li Z, Fang M, Xu Y, Sun A, Ge J. Megakaryocytic Leukemia 1 Bridges Epigenetic Activation of NADPH Oxidase in Macrophages to Cardiac Ischemia-Reperfusion Injury. Circulation 2019; 138:2820-2836. [PMID: 30018168 DOI: 10.1161/circulationaha.118.035377] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Excessive accumulation of reactive oxygen species (ROS), catalyzed by the NADPH oxidases (NOX), is involved in the pathogenesis of ischemia-reperfusion (IR) injury. The underlying epigenetic mechanism remains elusive. METHODS We evaluated the potential role of megakaryocytic leukemia 1 (MKL1), as a bridge linking epigenetic activation of NOX to ROS production and cardiac ischemia-reperfusion injury. RESULTS Following IR injury, MKL1-deficient (knockout) mice exhibited smaller myocardial infarction along with improved heart function compared with wild-type littermates. Similarly, pharmaceutical inhibition of MKL1 with CCG-1423 also attenuated myocardial infarction and improved heart function in mice. Amelioration of IR injury as a result of MKL1 deletion or inhibition was accompanied by reduced ROS in vivo and in vitro. In response to IR, MKL1 levels were specifically elevated in macrophages, but not in cardiomyocytes, in the heart. Of note, macrophage-specific deletion (MϕcKO), instead of cardiomyocyte-restricted ablation (CMcKO), of MKL1 in mice led to similar improvements of infarct size, heart function, and myocardial ROS generation. Reporter assay and chromatin immunoprecipitation assay revealed that MKL1 directly bound to the promoters of NOX genes to activate NOX transcription. Mechanistically, MKL1 recruited the histone acetyltransferase MOF (male absent on the first) to modify the chromatin structure surrounding the NOX promoters. Knockdown of MOF in macrophages blocked hypoxia/reoxygenation-induced NOX transactivation and ROS accumulation. Of importance, pharmaceutical inhibition of MOF with MG149 significantly downregulated NOX1/NOX4 expression, dampened ROS production, and normalized myocardial function in mice exposed to IR injury. Finally, administration of a specific NOX1/4 inhibitor GKT137831 dampened ROS generation and rescued heart function after IR in mice. CONCLUSIONS Our data delineate an MKL1-MOF-NOX axis in macrophages that contributes to IR injury, and as such we have provided novel therapeutic targets in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Guang Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Peng Wang
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Xinyu Weng
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Yuyu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (Y.Y.)
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| |
Collapse
|
37
|
ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9051542. [PMID: 31217841 PMCID: PMC6536988 DOI: 10.1155/2019/9051542] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) promote carcinogenesis by inducing genetic mutations, activating oncogenes, and raising oxidative stress, which all influence cell proliferation, survival, and apoptosis. Cancer cells display redox imbalance due to increased ROS level compared to normal cells. This unique feature in cancer cells may, therefore, be exploited for targeted therapy. Over the past few decades, natural compounds have attracted attention as potential cancer therapies because of their ability to maintain cellular redox homeostasis with minimal toxicity. Preclinical studies show that bioactive dietary polyphenols exert antitumor effects by inducing ROS-mediated cytotoxicity in cancer cells. These bioactive compounds also regulate cell proliferation, survival, and apoptotic and antiapoptotic signalling pathways. In this review, we discuss (i) how ROS is generated and (ii) regulated and (iii) the cell signalling pathways affected by ROS. We also discuss (iv) the various dietary phytochemicals that have been implicated to have cancer therapeutic effects through their ROS-related functions.
Collapse
|
38
|
Yang Y, Liu L, Fang M, Bai H, Xu Y. The chromatin remodeling protein BRM regulates the transcription of tight junction proteins: Implication in breast cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:547-556. [PMID: 30946989 DOI: 10.1016/j.bbagrm.2019.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Claudins are a group of cell tight junction proteins that play versatile roles in cancer biology. Recent studies have correlated down-regulation of Claudins with augmented breast cancer malignancy and poor prognosis. The mechanism underlying repression of Claudin transcription in breast cancer cells is not well understood. Here we report that expression levels of Brahma (BRM) were down-regulated in triple negative breast cancer cells (MDA-231) compared to the less malignant MCF-7 cells and in high-grade human breast cancer specimens compared to low-grade ones. TGF-β treatment in MCF-7 cells repressed BRM transcription likely through targeting C/EBPβ. BRM over-expression suppressed whereas BRM knockdown promoted TGF-β induced migration and invasion of MCF-7 cells. BRM down-regulation was accompanied by the loss of a panel of Claudins in breast cancer cells. BRM directly bound to the promoter region of Claudin genes via interacting with Sp1 and activated transcription by modulating histone modifications. Together, our data have identified a novel epigenetic pathway that links Claudin transcription to breast cancer metastasis.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Hui Bai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Yu S, Zhou R, Yang T, Liu S, Cui Z, Qiao Q, Zhang J. Hypoxia promotes colorectal cancer cell migration and invasion in a SIRT1-dependent manner. Cancer Cell Int 2019; 19:116. [PMID: 31068761 PMCID: PMC6492435 DOI: 10.1186/s12935-019-0819-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Hypoxic microenvironments play a significant role in the progression of colorectal cancer (CRC). Silencing information regulator 1 (SIRT1), a class III histone deacetylase, modulates the multiple biological behaviors of cancer. However, its role in CRC remains unclear. This study aims to explore the role of SIRT1 in CRC migration and invasion under hypoxia. Methods SIRT1 protein and mRNA levels were detected by Western blotting and real-time PCR in CRC cells exposed to hypoxia (1% O2). The migration and invasion abilities of SW480 and HCT116 cells with SIRT1 overexpression or knockdown were studied with transwell assays, and the results were confirmed by those of treatment with specific SIRT1 activator (SRT1720) and inhibitor (EX527). The dual-luciferase reporter systems with a series of SIRT1 promoter truncations were used to analyze their transcriptional activities, respectively. After a bioinformatic analysis of potential transcription factors, the direct interaction between the transcription factor and SIRT1 promoter was determined by chromatin immunoprecipitation (ChIP) assays. Western blot and real-time PCR assays were used to detect the activation and acetylation levels of the NF-κB pathway. Results The protein and mRNA levels of SIRT1 were significantly decreased under hypoxia, and these effects were replicated by cobalt chloride treatment. Hypoxia promoted cell migration and invasion, which were impeded by the overexpression or activation of SIRT1 and promoted by the knockdown or inhibition of SIRT1. The dual-luciferase reporter gene and ChIP analyses revealed that the core regulatory elements located 100 bp upstream of the SIRT1 promoter and early growth response factor 1 (EGR1) could interact with this DNA sequence. Subsequent rescue experiments suggested that EGR1 was essential for hypoxia-mediated SIRT1 transcriptional suppression. Western blot analyses demonstrated that SIRT1 overexpression eliminated the p65 acetylation induced by hypoxia along with the decreased MMP-2/-9, suggesting that NF-κB was a direct downstream target of SIRT1 and might regulate cell migration and invasion through MMP-2/-9. Conclusions Our results establish for the first time that EGR1 plays an important role in regulating SIRT1 expression under hypoxia. Hypoxia promotes CRC cell migration and invasion in a SIRT1-dependent manner. And a potential SIRT1/NF-κB/MMP-2/-9 axis modulates this process. Electronic supplementary material The online version of this article (10.1186/s12935-019-0819-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shentong Yu
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| | - Ru Zhou
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| | - Tong Yang
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| | - Shuang Liu
- 2School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032 China
| | - Zhuqing Cui
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| | - Qing Qiao
- 3Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038 Shaanxi China
| | - Jing Zhang
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| |
Collapse
|
40
|
Liu L, Hong W, Li M, Ren H, Wang J, Xu H, Shi X, Xu Y. A Cross Talk Between BRG1 and Males Absent on the First Contributes to Reactive Oxygen Species Production in a Mouse Model of Nonalcoholic Steatohepatitis. Antioxid Redox Signal 2019; 30:1539-1552. [PMID: 29963902 DOI: 10.1089/ars.2016.6822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: Accumulation of reactive oxygen species (ROS) in hepatocytes in response to excessive nutrients and the ensuing liver damages caused by ROS constitute a key pathophysiological event in nonalcoholic steatohepatitis (NASH). In the present study, we investigated the epigenetic mechanism underlying ROS production in NASH pathogenesis. Results: NASH was induced by feeding the mice with a methionine-and-choline-deficient (MCD) diet for 4 weeks. Compared with the control mice (wild type [WT]), mice with hepatocyte-specific deletion of Brg1 (HepcKO), a core component of the mammalian chromatin remodeling complex, developed a less severe form of NASH when fed on the MCD diet. Importantly, ROS levels were attenuated in HepcKO mice as opposed to WT mice. Brahma-related gene 1 (Brg1) deficiency downregulated the transcription of NADPH oxidases (NOX1, NOX2, and NOX4) both in vivo and in vitro. Mechanistically, Brg1 deletion rendered a more repressive chromatin structure surrounding the NOX promoters as characterized by reduced levels of acetylated histones. In addition, Brg1 interacted with the histone H4K16 acetyltransferase males absent on the first (MOF) to activate NOX transcription. MOF knockdown by small interfering RNA or pharmaceutical inhibition by MG149 suppressed NOX transcription and ameliorated ROS levels. Innovation: Our data highlight a novel epigenetic mechanism through which Brg1 and MOF cooperate to regulate ROS production in hepatocytes in response to pro-NASH stimuli. Conclusion: A cross talk between Brg1 and MOF epigenetically activates NOX transcription and elevates ROS synthesis contributing to NASH pathogenesis.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Salehi B, Varoni EM, Sharifi-Rad M, Rajabi S, Zucca P, Iriti M, Sharifi-Rad J. Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:125-136. [PMID: 30668422 DOI: 10.1016/j.phymed.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The plant kingdom represents an unlimited source of phytotherapeutics with promising perspectives in the field of anticancer drug discovery. PURPOSE In this view, epithelial-mesenchymal transition (EMT) represents a novel and major target in anticancer therapy. Therefore, this narrative review aims to provide an updated overview on the bioactive phytochemicals with anti-EMT activity. CONCLUSION Among the plant products reviewed, phenylpropanoids were the most investigated at preclinical phase, thus exhibiting a promising potential as anticancer drugs, though an evidence-based clinical efficacy is still lacking.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Italy.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
42
|
Carafa V, Altucci L, Nebbioso A. Dual Tumor Suppressor and Tumor Promoter Action of Sirtuins in Determining Malignant Phenotype. Front Pharmacol 2019; 10:38. [PMID: 30761005 PMCID: PMC6363704 DOI: 10.3389/fphar.2019.00038] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Sirtuins (SIRTs), class III histone deacetylases, are differentially expressed in several human cancers, where they display both oncogenic and tumor-suppressive properties depending on cellular context and experimental conditions. SIRTs are involved in many important biological processes and play a critical role in cancer initiation, promotion, and progression. A growing body of evidence indicates the involvement of SIRTs in regulating three important tumor processes: epithelial-to-mesenchymal transition (EMT), invasion, and metastasis. Many SIRTs are responsible for cellular metabolic reprogramming and drug resistance by inactivating cell death pathways and promoting uncontrolled proliferation. In this review, we summarize current knowledge on the role of SIRTs in cancer and discuss their puzzling dual function as tumor suppressors and tumor promoters, important for the future development of novel tailored SIRT-based cancer therapies.
Collapse
Affiliation(s)
- Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
43
|
Megakaryocytic leukemia 1 (MKL1) mediates high glucose induced epithelial-mesenchymal transition by activating LOX transcription. Biochem Biophys Res Commun 2018; 509:633-640. [PMID: 30553442 DOI: 10.1016/j.bbrc.2018.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
Diabetic retinopathy (DR) is one of the most devastating complications of diabetes mellitus. When exposed to high glucose (HG), retinal epithelial cells undergo profound alterations both morphologically and functionally in a well-conserved process known as epithelial-to-mesenchymal transition (EMT). The mechanism governing HG-induced EMT in retinal epithelial cells is not completely understood. Here we report that treatment with 25 mM glucose led to EMT in retinal pigmented epithelial cells (RPE) characterized by a simultaneous down-regulation of E-Cadherin (encoded by CDH1) and up-regulation of alpha smooth muscle actin (encoded by ACTA2). HG-induced EMT in RPEs was accompanied by augmented expression and enhanced nuclear enrichment of MKL1, a transcriptional modulator. In contrast, MKL1 knockdown by siRNA or inhibition by CCG-1423 abrogated HG-induced EMT in RPEs. Of interest, MKL1 mediated the transcriptional activation of LOX, a mesenchymal marker, in RPEs in response to HG stimulation. Mechanistically, MKL1 interacted with and was recruited by AP-1 to the proximal LOX promoter to promote LOX trans-activation likely through altering the chromatin structure. Finally, LOX depletion by siRNA or inhibition by aminopropionitrile in RPEs abolished HG-induced EMT. In conclusion, our data support a role for MKL1 in mediating HG-induced EMT in retinal epithelial cells via epigenetic activation of LOX transcription.
Collapse
|
44
|
Hypermethylated in cancer 1 (HIC1) mediates high glucose induced ROS accumulation in renal tubular epithelial cells by epigenetically repressing SIRT1 transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:917-927. [DOI: 10.1016/j.bbagrm.2018.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023]
|
45
|
Dong G, Wang B, An Y, Li J, Wang X, Jia J, Yang Q. SIRT1 suppresses the migration and invasion of gastric cancer by regulating ARHGAP5 expression. Cell Death Dis 2018; 9:977. [PMID: 30250020 PMCID: PMC6155157 DOI: 10.1038/s41419-018-1033-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
Abstract
Gastric cancer (GC) ranks among the top five malignant tumors worldwide by the incidence and mortality rate. However, the mechanisms underlying its progression are poorly understood. In this study, we investigated the role of SIRT1, a class III deacetylase, in the invasion and metastasis of GC. Here, we found that knockdown of SIRT1 promoted GC cell migration and invasion in vitro and metastasis in vivo. Forced expression of SIRT1 in GC cells had the opposite effects. Then, we used mRNA microarray to identify the target genes that are regulated by SIRT1 and found that ARHGAP5 was downregulated by SIRT1. The results of the mRNA microarray were confirmed in several GC cell lines. Furthermore, SIRT1 inhibited the expression of ARHGAP5 by physically associating with transcription factor c-JUN and deacetylating and inhibiting the transcriptional activity of c-JUN. Then the expression dynamics and clinical significance of ARHGAP5 were analyzed using clinical samples and database. The expression of ARHGAP5 was increased in GC, and positively correlated with tumor size, tumor infiltration, lymph node metastasis, and clinical stage. And multivariate analyses indicated that ARHGAP5 served as an independent prognostic marker of GC. In addition, the biological effects of ARHGAP5 in SIRT1-mediated inhibition of GC migration and invasion were investigated using both in vitro and in vivo models. Silencing of ARHGAP5 considerably inhibited the migration and invasion of GC, and ARHGAP5 was found to be involved in the SIRT1-mediated inhibition of GC migration and invasion. Our results indicate that SIRT1 suppresses migration and invasion of GC by downregulating ARHGAP5 through an interaction with c-JUN, and these phenomena represent a novel mechanism of the antitumor action of SIRT1.
Collapse
Affiliation(s)
- Guoying Dong
- Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Bo Wang
- Department of Traditional Medicine, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yifei An
- Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Juan Li
- Department of Clinical Laboratory, The People's Hospital of Huaiyin, Jinan, 250021, China
| | - Xin Wang
- Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jihui Jia
- Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Qing Yang
- Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
46
|
Li N, Li M, Hong W, Shao J, Xu H, Shimano H, Lu J, Xu Y. Brg1 regulates pro-lipogenic transcription by modulating SREBP activity in hepatocytes. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2881-2889. [DOI: 10.1016/j.bbadis.2018.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023]
|
47
|
Shen T, Cai LD, Liu YH, Li S, Gan WJ, Li XM, Wang JR, Guo PD, Zhou Q, Lu XX, Sun LN, Li JM. Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy. J Hematol Oncol 2018; 11:95. [PMID: 30016968 PMCID: PMC6050692 DOI: 10.1186/s13045-018-0638-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Ubiquitination is a basic post-translational modification for cellular homeostasis, and members of the conjugating enzyme (E2) family are the key components of the ubiquitin–proteasome system. However, the role of E2 family in colorectal cancer (CRC) is largely unknown. Our study aimed to investigate the role of Ube2v1, one of the ubiquitin-conjugating E2 enzyme variant proteins (Ube2v) but without the conserved cysteine residue required for the catalytic activity of E2s, in CRC. Methods Immunohistochemistry and real-time RT-PCR were used to study the expressions of Ube2v1 at protein and mRNA levels in CRC, respectively. Western blotting and immunofluorescence, transmission electron microscopy, and in vivo rescue experiments were used to study the functional effects of Ube2v1 on autophagy and EMT program. Quantitative mass spectrometry, immunoprecipitation, ubiquitination assay, western blotting, and real-time RT-PCR were used to analyze the effects of Ube2v1 on histone H4 lysine 16 acetylation, interaction with Sirt1, ubiquitination of Sirt1, and autophagy-related gene expression. Results Ube2v1 was elevated in CRC samples, and its increased expression was correlated with poorer survival of CRC patients. Ube2v1 promoted migration and invasion of CRC cells in vitro and tumor growth and metastasis of CRC cells in vivo. Interestingly, Ube2v1suppressed autophagy program and promoted epithelial mesenchymal transition (EMT) and metastasis of CRC cells in an autophagy-dependent pattern in vitro and in vivo. Moreover, both rapamycin and trehalose attenuated the enhanced Ube2v1-mediated lung metastasis by inducing the autophagy pathway in an orthotropic mouse xenograft model of lung metastasis. Mechanistically, Ube2v1 promoted Ubc13-mediated ubiquitination and degradation of Sirt1 and inhibited histone H4 lysine 16 acetylation, and finally epigenetically suppressed autophagy gene expression in CRC. Conclusions Our study functionally links Ube2v1, an E2 member in the ubiquitin–proteasome system, to autophagy program, thereby shedding light on developing Ube2v1 targeted therapy for CRC patients. Electronic supplementary material The online version of this article (10.1186/s13045-018-0638-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Shen
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Ling-Dong Cai
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Yu-Hong Liu
- Department of Pathology, Baoan Hospital, Southern Medical University, Shenzhen, 518101, People's Republic of China
| | - Shi Li
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Wen-Juan Gan
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Xiu-Ming Li
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Jing-Ru Wang
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Peng-Da Guo
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Qun Zhou
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Xing-Xing Lu
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Li-Na Sun
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China
| | - Jian-Ming Li
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
48
|
Hepatocyte-specific deletion of Brg1 alleviates methionine-and-choline-deficient diet (MCD) induced non-alcoholic steatohepatitis in mice. Biochem Biophys Res Commun 2018; 503:344-351. [PMID: 29890136 DOI: 10.1016/j.bbrc.2018.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022]
Abstract
Uncontrolled inflammatory response and augmented lipid accumulation represent two key pathophysiological events in the pathogenesis of non-alcoholic steatohepatitis (NASH). NF-κB and SREBP1c program transcriptional regulation of cellular inflammatory response and lipid metabolism, respectively. The epigenetic mechanism underlying NF-κB-dependent pro-inflammatory transcription and SREBP1c-dependent pro-lipogenic transcription remains incompletely understood. In the present study we investigated the involvement of Brg1, a chromatin remodeling protein, in NASH pathogenesis in a methionine-and-choline deficient diet (MCD) induced mouse model. Brg1 expression was up-regulated in the liver in mice fed on the MCD diet and in primary hepatocytes exposed to free fatty acids. Liver injury and hepatic inflammation attenuated in hepatocyte-specific Brg1 knockout (CKO) mice fed on the MCD diet compared to the wild type (WT) littermates. Likewise, synthesis of pro-inflammatory mediators was down-regulated in primary hepatocytes isolated from CKO mice compared to WT mice, which resulted in reduced macrophage chemotaxis. Brg1 contributed to the transcription of pro-inflammatory mediators possibly by regulating the interaction between NF-κB and its co-factor MRTF-A. On the other hand, accumulation of triglyceride and cholesterol was ameliorated in MCD-fed CKO mice with a concomitant reduction of SREBP1c target genes. Brg1 interacted with SREBP1c and modulated the transcription of SREB1c target genes in the liver in response to MCD feeding by influencing active histone modifications. In conclusion, targeting Brg1 may yield novel anti-NASH therapeutics by simultaneously normalizing hepatic inflammatory status and metabolic profile in NASH patients.
Collapse
|
49
|
Joseph NA, Chiou SH, Lung Z, Yang CL, Lin TY, Chang HW, Sun HS, Gupta SK, Yen L, Wang SD, Chow KC. The role of HGF-MET pathway and CCDC66 cirRNA expression in EGFR resistance and epithelial-to-mesenchymal transition of lung adenocarcinoma cells. J Hematol Oncol 2018; 11:74. [PMID: 29855336 PMCID: PMC5984410 DOI: 10.1186/s13045-018-0557-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) has, in recent years, emerged as an important tumor cell behavior associated with high metastatic potential and drug resistance. Interestingly, protein SUMOylation and hepatocyte growth factor could respectively reduce the effect of small molecule inhibitors on tyrosine kinase activity of mutated epidermal growth factor receptor of lung adenocarcinomas (LADC). The actual mechanism is yet to be resolved. Methods Immunohistochemistry was used to stain proteins in LADC specimens. Protein expression was confirmed by Western blotting. In vitro, expression of proteins was determined by Western blotting and immunocytochemistry. Levels of circular RNA were determined by reverse transcription-polymerase chain reaction. Results SAE2 and cirRNA CCDC66 were highly expressed in LADC. Expression of SAE2 was mainly regulated by EGFR; however, expression of cirRNA CCDC66 was positively regulated by FAK and c-Met but negatively modulated by nAchR7α. EGFR-resistant H1975 also highly expressed cirRNA CCDC66. Immediate response of hypoxia increased phosphorylated c-Met, SAE2, and epithelial-to-mesenchymal transition. Either activation of FAK or silencing of nAchR7α increased cirRNA CCDC66. Conclusions HGF/c-Met regulates expression of SAE2 and cirRNA CCDC66 to increase EMT and drug resistance of LADC cells. Multimodality drugs concurrently aiming at these targets would probably provide more benefits for cancer patients. Electronic supplementary material The online version of this article (10.1186/s13045-018-0557-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nithila A Joseph
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shiow-Her Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan.
| | - Zoe Lung
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Cheng-Lin Yang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tze-Yi Lin
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Wen Chang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, National Chung Kung University, Tainan, Taiwan.
| | - Sachin Kumar Gupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Laising Yen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Chih Chow
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
50
|
Chen B, Luo J, Zhou Y, Xin X, Cai R, Ling C. PIASy antagonizes Ras-driven NSCLC survival by promoting GATA2 SUMOylation. J Cancer 2018; 9:1689-1697. [PMID: 29760808 PMCID: PMC5950599 DOI: 10.7150/jca.24137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 11/05/2022] Open
Abstract
GATA2 regulated transcriptional network has been validated requisite for RAS oncogene-driven non-small cell lung cancer (NSCLC). GATA2 has been reported as a SUMOylated protein. In endothelial cells, its transcriptional activity is attenuated by SUMO-2 conjugation, which is specifically catalyzed by its E3 ligase PIASy. In this study, we found a decreased expression of PIASy in RAS mutant NSCLC cell lines and specimens with RAS mutations. Forced expression of PIASy in NSCLC cells inhibits their viability in vitro, as well as tumorigenesis and growth in vivo. Mechanistically, we demonstrated overexpression of PIASy in A549 cells altered the regulated transcriptional network of GATA2, including proteasome, IL-1-signaling, and Rho-signaling pathways. Forced expression of PIASy resulted in the accumulated SUMOylation of GATA2, attenuating its transcriptional activity in A549 cells. These results collectively suggest that PIASy plays an antagonistic role in RAS-driven NSCLC survival, by enhancing the SUMOylation of GATA2 and inhibiting its transcriptional activity.
Collapse
Affiliation(s)
- Bin Chen
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China.,Department of Respiratory Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jie Luo
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Yirui Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Xu Xin
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai 200433, China
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunhua Ling
- Department of Respiratory Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| |
Collapse
|