1
|
Roussel L, Bernier S, Perez A, Sun Y, Angers I, Laneuville P, Lawandi A, Vinh DC. Impaired apoptosis underlying lymphoproliferative disease in a patient with haploinsufficient NFKB1 deficiency. Br J Haematol 2024; 205:2089-2093. [PMID: 39364635 DOI: 10.1111/bjh.19814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Lucie Roussel
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Stephane Bernier
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Anna Perez
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Yichun Sun
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Isabelle Angers
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Laneuville
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alexander Lawandi
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Donald C Vinh
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Medical Microbiology, Division of Molecular Genetics-Immunology, Department of OptiLab, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Tuo P, Zhao R, Li N, Yan S, Yang G, Wang C, Sun J, Sun H, Wang M. Lycorine inhibits Ang II-induced heart remodeling and inflammation by suppressing the PI3K-AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155464. [PMID: 38484625 DOI: 10.1016/j.phymed.2024.155464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.
Collapse
Affiliation(s)
- Pingping Tuo
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Risheng Zhao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Ning Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin, Changchun, 130012, China
| | - Shuang Yan
- Department of Ultrasonography, Inteqrated Traditional Chinese and Western Medicine Hospital of Jilin city Jilin Province, Jilin, 132000, China
| | - Gege Yang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Haiming Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China.
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China.
| |
Collapse
|
3
|
Zhao Y, Chen C, Chen K, Sun Y, He N, Zhang X, Xu J, Shen A, Zhao S. Multi-omics analysis of macrophage-associated receptor and ligand reveals a strong prognostic signature and subtypes in hepatocellular carcinoma. Sci Rep 2024; 14:12163. [PMID: 38806553 PMCID: PMC11133315 DOI: 10.1038/s41598-024-62668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to morbidity and mortality worldwide. The interaction between receptors and ligands is the primary mode of intercellular signaling and plays a vital role in the progression of HCC. This study aimed to identify the macrophage-related receptor ligand marker genes associated with HCC and further explored the molecular immune mechanisms attributed to altered biomarkers. Single-cell RNA sequencing data containing primary and recurrent samples were downloaded from the China National GeneBank. Cell types were first identified to explore differences between immune cells from different sample sources. CellChat analysis was used to infer and analyze intercellular communication networks quantitatively. Three molecular subtypes were constructed based on the screened twenty macrophage-associated receptor ligand genes. Bulk RNA-Seq data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the screening, the minor absolute shrinkage and selection operator (LASSO) regression model was employed to identify key markers. After collecting peripheral blood and clinical information from patients, an enzyme-linked immunosorbent assay (ELISA) was used to detect the correlation between key markers and IL-10, one of the macrophage markers. After developing a new HCC risk adjustment model and conducting analysis, it was found that there were significant differences in immune status and gene mutations between the high-risk and low-risk groups of patients based on macrophage-associated receptor and ligand genes. This study identified SPP1, ANGPT2, and NCL as key biological targets for HCC. The drug-gene interaction network analysis identified wortmannin, ribavirin, and tarnafloxin as potential therapeutic drugs for the three key markers. In a clinical cohort study, patients with immune checkpoint inhibitor (ICI) resistance had significantly higher expression levels of OPN, ANGPT2, NCL, and IL-10 than patients with ICI-responsiveness. These three key markers were positively correlated with the expression level of IL-10. The signature based on macrophage-associated receptor and ligand genes can accurately predict the prognosis of patients with HCC and the sensitivity to immunotherapy. These results may help guide the development of targeted prevention and personalized treatment of HCC.
Collapse
Affiliation(s)
- Yulou Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School, Nantong University, Nantong, China
| | - Cong Chen
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Kang Chen
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanjun Sun
- The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Ning He
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiubing Zhang
- Department of Medical Oncology, Nantong Second People's Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Department of Medical Oncology, Nantong Second People's Affiliated Hospital of Nantong University, Nantong, China
| | - Aiguo Shen
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| | - Suming Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
4
|
Schmid P, Turner NC, Barrios CH, Isakoff SJ, Kim SB, Sablin MP, Saji S, Savas P, Vidal GA, Oliveira M, O'Shaughnessy J, Italiano A, Espinosa E, Boni V, White S, Rojas B, Freitas-Junior R, Chae Y, Bondarenko I, Lee J, Torres Mattos C, Martinez Rodriguez JL, Lam LH, Jones S, Reilly SJ, Huang X, Shah K, Dent R. First-Line Ipatasertib, Atezolizumab, and Taxane Triplet for Metastatic Triple-Negative Breast Cancer: Clinical and Biomarker Results. Clin Cancer Res 2024; 30:767-778. [PMID: 38060199 PMCID: PMC10870115 DOI: 10.1158/1078-0432.ccr-23-2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE To evaluate a triplet regimen combining immune checkpoint blockade, AKT pathway inhibition, and (nab-) paclitaxel as first-line therapy for locally advanced/metastatic triple-negative breast cancer (mTNBC). PATIENTS AND METHODS The single-arm CO40151 phase Ib study (NCT03800836), the single-arm signal-seeking cohort of IPATunity130 (NCT03337724), and the randomized phase III IPATunity170 trial (NCT04177108) enrolled patients with previously untreated mTNBC. Triplet therapy comprised intravenous atezolizumab 840 mg (days 1 and 15), oral ipatasertib 400 mg/day (days 1-21), and intravenous paclitaxel 80 mg/m2 (or nab-paclitaxel 100 mg/m2; days 1, 8, and 15) every 28 days. Exploratory translational research aimed to elucidate mechanisms and molecular markers of sensitivity and resistance. RESULTS Among 317 patients treated with the triplet, efficacy ranged across studies as follows: median progression-free survival (PFS) 5.4 to 7.4 months, objective response rate 44% to 63%, median duration of response 5.6 to 11.1 months, and median overall survival 15.7 to 28.3 months. The safety profile was consistent with the known toxicities of each agent. Grade ≥3 adverse events were more frequent with the triplet than with doublets or single-agent paclitaxel. Patients with PFS >10 months were characterized by NF1, CCND3, and PIK3CA alterations and increased immune pathway activity. PFS <5 months was associated with CDKN2A/CDKN2B/MTAP alterations and lower predicted phosphorylated AKT-S473 levels. CONCLUSIONS In patients with mTNBC receiving an ipatasertib/atezolizumab/taxane triplet regimen, molecular characteristics may identify those with particularly favorable or unfavorable outcomes, potentially guiding future research efforts.
Collapse
Affiliation(s)
- Peter Schmid
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas C. Turner
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Breast Cancer Now Research Centre, London, United Kingdom
| | - Carlos H. Barrios
- Centro de Pesquisa em Oncologia, Hospital São Lucas, PUCRS, Latin American Cooperative Oncology Group (LACOG), Brazil
| | | | - Sung-Bae Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Marie-Paule Sablin
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Shigehira Saji
- Department of Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Peter Savas
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Gregory A. Vidal
- West Cancer Center and Research Institute, Germantown, Tennessee
| | - Mafalda Oliveira
- Medical Oncology Department, Vall d'Hebron University Hospital and Breast Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas
| | | | | | - Valentina Boni
- Oncology Service, Hospital Universitario La Paz, Madrid – Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Beatriz Rojas
- Oncology Service, Centro Integral Oncologico Clara Campal, Madrid, Spain
| | - Ruffo Freitas-Junior
- Gynaecology and Breast Department, Hospital Araujo Jorge, Goias Anticancer Association, Goiânia, Brazil
| | - Yeesoo Chae
- Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | | | - Jieun Lee
- Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cesar Torres Mattos
- Clínica San Gabriel, Unidad de Investigación Oncológica de la Clínica San Gabriel, Lima, Perú
| | | | - Lisa H. Lam
- Product Development Oncology, Genentech, Inc., South San Francisco, California
| | - Surai Jones
- Data Sciences, Safety and Medical (DSSM), IQVIA Inc., Durham, North Carolina
| | | | - Xiayu Huang
- gRED Computational Science, Roche (China) Holding Ltd, Pudong, Shanghai, China
| | - Kalpit Shah
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | | |
Collapse
|
5
|
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1732. [PMID: 38139858 PMCID: PMC10747342 DOI: 10.3390/ph16121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland; (Ł.B.); (M.L.); (J.K.)
| | | | | | | |
Collapse
|
6
|
Wylaź M, Kaczmarska A, Pajor D, Hryniewicki M, Gil D, Dulińska-Litewka J. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer. Biomed Pharmacother 2023; 168:115676. [PMID: 37832401 DOI: 10.1016/j.biopha.2023.115676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) and prostate cancer (PC) are at the top of the list when it comes to the most common types of cancers worldwide. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is important, in that it strongly influences the development and progression of these tumors. Previous studies have emphasized the key role of inhibitors of the PIK3/AKT/mTOR signaling pathway in the treatment of BC and PC, and it remains to be a crucial method of treatment. In this review, the inhibitors of these signaling pathways are compared, as well as their effectiveness in therapy and potential as therapeutic agents. The use of these inhibitors as polytherapy is evaluated, especially with the use of hormonal therapy, which has shown promising results.
Collapse
Affiliation(s)
- Mateusz Wylaź
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Anna Kaczmarska
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dawid Pajor
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Matthew Hryniewicki
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland.
| |
Collapse
|
7
|
Tan X, Li Y, Hou Z, Zhang M, Li L, Wei J. Combination therapy with PD-1 inhibition plus rapamycin and metformin enhances anti-tumor efficacy in triple negative breast cancer. Exp Cell Res 2023:113647. [PMID: 37225011 DOI: 10.1016/j.yexcr.2023.113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
Immunotherapy using PD-1/PD-L1 inhibitors has been proved to be effective in triple negative breast cancer (TNBC), albeit only in a fraction of patients. Emerging evidences indicate mTOR blockade and metformin may re-orchestrate the immune system in tumors. Herein, in this study we aimed to evaluate the anti-tumor efficacy of PD-1 monoclonal antibody with mTOR inhibitor rapamycin or with the anti-diabetic drug metformin. The status of PD-1/PD-L1 and mTOR pathway was determined through analyzing the TCGA and CCLE data in TNBCs as well as by detection at mRNA and protein level. The inhibition of tumor growth and metastasis by anti-PD-1 combined with rapamycin or with metformin was evaluated in allograft mouse model of TNBC. The effects of combination therapy on the AMPK, mTOR and PD-1/PD-L1 pathways were also evaluated. The combination treatment with PD-1 McAb and rapamycin/metformin had additive effects on suppression of tumor growth and distant metastasis in mice. Compared with the control group and the monotherapy, combined PD-1 McAb with either rapamycin or metformin exhibited more obvious effects on induction of necrosis, CD8+ T lymphocytes infiltrating and inhibition of PD-L1 expression in TNBC homograft. In vitro study showed either rapamycin or metformin not only decreased PD-L1 expression, but increased p-AMPK expression and therefore led to down-regulation of p-S6. In summary, combination of PD-1 antagonist with either rapamycin or metformin led to more infiltrating TILs and decreased PD-L1 resulting in enhanced antitumor immunity and blockade of PD-1/PD-L1 pathway. Our results suggested such combination therapy may be a potential therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Yan Li
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, 440(#) Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Zhihui Hou
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Mingwei Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Li Li
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China; Department of Pathology, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| | - Junmin Wei
- Department of Oncology, Cancer Center, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
8
|
Liu JL, Yang M, Bai JG, Liu Z, Wang XS. “Cold” colorectal cancer faces a bottleneck in immunotherapy. World J Gastrointest Oncol 2023; 15:240-250. [PMID: 36908324 PMCID: PMC9994051 DOI: 10.4251/wjgo.v15.i2.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
The advent of immunotherapy and the development of immune checkpoint inhibitors (ICIs) are changing the way we think about cancer treatment. ICIs have shown clinical benefits in a variety of tumor types, and ICI-based immunotherapy has shown effective clinical outcomes in immunologically “hot” tumors. However, for immunologically “cold” tumors such as colorectal cancer (CRC), only a limited number of patients are currently benefiting from ICIs due to limitations such as individual differences and low response rates. In this review, we discuss the classification and differences between hot and cold CRC and the current status of research on cold CRC, and summarize the treatment strategies and challenges of immunotherapy for cold CRC. We also explain the mechanism, biology, and role of immunotherapy for cold CRC, which will help clarify the future development of immunotherapy for cold CRC and discovery of more emerging strategies for the treatment of cold CRC.
Collapse
Affiliation(s)
- Jia-Liang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Jun-Ge Bai
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Xi-Shan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
9
|
Tabakhiyan F, Mir A, Vahedian V. Potential tumor marker for hepatocellular carcinoma identification: PI3K and pro-inflammatory cytokines (TGF-β, IL-1, and IL-6). Horm Mol Biol Clin Investig 2022; 43:389-396. [PMID: 35709206 DOI: 10.1515/hmbci-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC), the most common form of liver cancer, is a leading cause of tumor-associated mortality worldwide. Diagnosis based upon non-invasive criteria is currently challenged by the need for molecular information that requires tissue or liquid biopsies. The progression of HCC is often associated with chronic inflammation, expression levels of inflammatory mediators, chemokine, and cytokines. In this study, we try to evaluate the PI3K and pro-inflammatory cytokines, TGF-β, IL-1, and IL-6 expression level in patients with liver cancer. MATERIALS AND METHODS The kupffer cells were isolated from patient's specimens. Real-time PCR was applied to evaluate the expression level of PI3K in cell lines or tumors. The concentrations of TGF-β, IL-1, and IL-6 were measured by the quantitative ELISA kit. RESULTS PI3K mRNA expression in cancer cells was increased markedly vs. normal cells. The ELISA results demonstrated over expression of TGF-β, IL-1, and IL-6 in patients and positive correlation between tumor size and stage. DISCUSSION This study suggests that targeting the expression level of PI3K and pro-inflammatory chemokine and cytokines, TGF-β, IL-1, and IL-6, may be a potential diagnostic strategy in HCC patients.
Collapse
Affiliation(s)
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Islamic Republic of Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Sao Paulo, Brazil
| |
Collapse
|
10
|
Tang K, Wang S, Gao W, Song Y, Yu B. Harnessing the cyclization strategy for new drug discovery. Acta Pharm Sin B 2022; 12:4309-4326. [PMID: 36562004 PMCID: PMC9764076 DOI: 10.1016/j.apsb.2022.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 12/25/2022] Open
Abstract
The design of new ligands with high affinity and specificity against the targets of interest has been a central focus in drug discovery. As one of the most commonly used methods in drug discovery, the cyclization represents a feasible strategy to identify new lead compounds by increasing structural novelty, scaffold diversity and complexity. Such strategy could also be potentially used for the follow-on drug discovery without patent infringement. In recent years, the cyclization strategy has witnessed great success in the discovery of new lead compounds against different targets for treating various diseases. Herein, we first briefly summarize the use of the cyclization strategy in the discovery of new small-molecule lead compounds, including the proteolysis targeting chimeras (PROTAC) molecules. Particularly, we focus on four main strategies including fused ring cyclization, chain cyclization, spirocyclization and macrocyclization and highlight the use of the cyclization strategy in lead generation. Finally, the challenges including the synthetic intractability, relatively poor pharmacokinetics (PK) profiles and the absence of the structural information for rational structure-based cyclization are also briefly discussed. We hope this review, not exhaustive, could provide a timely overview on the cyclization strategy for the discovery of new lead compounds.
Collapse
|
11
|
Wang J, Liu T, Huang T, Shang M, Wang X. The mechanisms on evasion of anti-tumor immune responses in gastric cancer. Front Oncol 2022; 12:943806. [PMID: 36439472 PMCID: PMC9686275 DOI: 10.3389/fonc.2022.943806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 10/22/2023] Open
Abstract
The immune system and the tumor have been at each other's throats for so long that the neoplasm has learned to avoid detection and avoid being attacked, which is called immune evasion. Malignant tumors, such as gastric cancer (GC), share the ability to evade the body's immune system as a defining feature. Immune evasion includes alterations to tumor-associated antigens (TAAs), antigen presentation mechanisms (APMs), and the tumor microenvironment (TME). While TAA and APM are simpler in nature, they both involve mutations or epigenetic regulation of genes. The TME is comprised of numerous cell types, cytokines, chemokines and extracellular matrix, any one of which might be altered to have an effect on the surrounding ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/β-catenin, Notch, Hippo and TGF-β/Smad signaling pathways are all associated with gastric cancer tumor immune evasion. In this review, we will delineate the functions of these pathways in immune evasion.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
A Noval Established Cuproptosis-Associated LncRNA Signature for Prognosis Prediction in Primary Hepatic Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2075638. [PMID: 36159561 PMCID: PMC9499762 DOI: 10.1155/2022/2075638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
The copper ion content in the body maintains homeostasis, and when dysregulated, it can produce cytotoxicity and induce cell death through a variety of pathways. Cuproptosis refers to copper ions combining directly with acylated molecules, leading to the accumulation of oligomerization of lipoylated protein and subsequent downregulation of iron-sulfur cluster proteins; this induces proteotoxic stress and cell death. This study on the relationship between cuproptosis-related lncRNAs (CRLns) and the prognosis of primary hepatic carcinoma (PHC) has important clinical guiding significance for the diagnosis and treatment of PHC. Prognosis-related CRLRs were identified via rank-sum tests, correlational analyses, and univariate Cox regression, and a CRLR risk-scoring model (CRLRSM) was constructed using LASSO Cox regression. Patients were divided into high-risk and low-risk groups based on the median CRLRSM scores. Variance analysis for cuproptosis-related genes, gene set enrichment analysis, and correlational analysis for risk and immunity were performed using boxplots. Quantitative polymerase chain reactions were used to verify the CRLR levels in PHC cell lines. The study results showed that patients in the CRLRSM high-risk group had worse survival rates than those in the low-risk group. The PHC stage and risk score were independent prognostic factors for hepatocellular carcinoma. There were 7 CRLRs (MIR210HG, AC099850.3, AL031985.3, AC012073.1, MKLN1-AS, KDM4A-AS1, and PLBD1-AS1) associated with PHC prognosis, primarily through cellular metabolism, growth, proliferation, apoptosis, and immunity. In conclusion, the overexpression of 7 CRLRs in patients with PHC indicates a poor prognosis.
Collapse
|
13
|
Soltanshahi M, Taghiloo S, Asgarian-Omran H. Expression Modulation of Immune Checkpoint Molecules by Ibrutinib and Everolimus Through STAT3 in MCF-7 Breast Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e127352. [PMID: 35873012 PMCID: PMC9293249 DOI: 10.5812/ijpr-127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022]
Abstract
Tumor-targeted therapy with small-molecule inhibitors (SMIs) has been demonstrated to be a highly effective therapeutic strategy for various cancers. However, their possible associations with immune evasion mechanisms remain unknown. This study examined the association of inhibitors of the protein kinase B (AKT), mammalian target of rapamycin (mTOR), and Bruton’s tyrosine kinase (BTK) signaling pathways with the expression of immune checkpoint ligands programmed death-ligand 1 (PD-L1), CD155, and galectin-9 (Gal-9) in a breast cancer cell line. MCF-7 cells were treated with everolimus, MK-2206, and ibrutinib. An MTT assay was used to determine the optimal dose for all drugs. A real-time polymerase chain reaction was utilized to measure the mRNA expression of PD-L1, CD155, and Gal-9. The western blot technique was also employed to evaluate the protein expression of the phosphorylated signal transducer and activator of transcription 3 (STAT3). The optimal doses of everolimus, MK-2206, and ibrutinib were observed to be 200, 320, and 2000 nM, respectively. The PD-L1 and CD155 mRNA expression was significantly decreased following the treatment with everolimus and ibrutinib, but not with MK-2206. There were no differences in Gal-9 expression between the single-treated and control groups; however, combined treatment with everolimus and ibrutinib increased its mRNA expression. Everolimus and ibrutinib both inhibited constitutive STAT3 phosphorylation in MCF-7, which was more pronounced in combination treatment. The findings regarding the modulation of PD-L1, CD155, and Gal-9 molecules by SMIs emphasize the crosstalk between the expression of these immune checkpoint molecules and AKT/mTOR/BTK signaling pathways through STAT3 as a critical transcription factor.
Collapse
Affiliation(s)
- Mohsen Soltanshahi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Noncommunicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Corresponding Author: Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Tel: +98-1133543081, Fax: +98-1133543249,
| |
Collapse
|
14
|
Ye S, Li Q, Wu Y, Jiang W, Zhou S, Zhou X, Yang W, Tu X, Shan B, Huang S, Yang H. Integrative genomic and transcriptomic analysis reveals immune subtypes and prognostic markers in ovarian clear cell carcinoma. Br J Cancer 2022; 126:1215-1223. [PMID: 35043008 PMCID: PMC9023449 DOI: 10.1038/s41416-022-01705-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We performed an integrative genomic and transcriptomic profiling to identify molecular subtypes and prognostic markers with special focus on immune-related pathways. METHODS Totally, 50 Chinese patients were subjected to targeted next-generation sequencing and transcriptomic sequencing. RESULTS Two distinct subgroups were identified as immune (22.0%) and non-immune (78.0%) based on the immune-pathway related hierarchical clustering. Surprisingly, patients with immune subtype had a significantly worse survival. The prognostic capacity was validated in external cohorts. The immune group had higher expression of genes involved in pro-inflammation and checkpoints. PD-1 signalling pathway was enriched in the immune subtype. Besides, the immune cluster presented enriched expression of genes involved in epithelial-mesenchymal transition, angiogenesis and PI3K-AKT-mTOR signalling, while the non-immune subtype had higher expression of metabolic pathways. The immune subtype had a higher mutation rate of PIK3CA though significance was not achieved. Lastly, we established a prognostic immune signature for overall survival. Interestingly, the immune signature could also be applied to renal clear cell carcinoma, but not to other histologic subtype of ovarian cancer. CONCLUSIONS An immune subtype of OCCC was identified with poor survival and enrichment of PD-1 and PI3K-AKT-mTOR signalling. We constructed and validated a robust prognostic immune signature of OCCC patients.
Collapse
Affiliation(s)
- Shuang Ye
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qin Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yutuan Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuling Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoyan Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wentao Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoyu Tu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Boer Shan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Huijuan Yang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Abdelnaby RM, Rateb HS, Ali O, Saad AS, Nadeem RI, Abou-Seri SM, Amin KM, Younis NS, Abdelhady R. Dual PI3K/Akt Inhibitors Bearing Coumarin-Thiazolidine Pharmacophores as Potential Apoptosis Inducers in MCF-7 Cells. Pharmaceuticals (Basel) 2022; 15:ph15040428. [PMID: 35455425 PMCID: PMC9027131 DOI: 10.3390/ph15040428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most common malignancy worldwide; therefore, the development of new anticancer agents is essential for improved tumor control. By adopting the pharmacophore hybridization approach, two series of 7-hydroxyl-4-methylcoumarin hybridized with thiosemicarbazone (V–VI) and thiazolidin-4-one moieties (VII–VIII) were prepared. The in vitro anticancer activity was assessed against MCF-7 cells adopting the MTT assay. Nine compounds showed significant cytotoxicity. The most promising compound, VIIb, induced remarkable cytotoxicity (IC50 of 1.03 + 0.05 µM). Further investigations were conducted to explore its pro-apoptotic activity demonstrating S-phase cell cycle arrest. Apoptosis rates following VIIb treatment revealed a 5-fold and 100-fold increase in early and late apoptotic cells, correspondingly. Moreover, our results showed caspase-9 dependent apoptosis induction as manifested by an 8-fold increase in caspase-9 level following VIIb treatment. Mechanistically, VIIb was found to target the PI3K-α/Akt-1 axis, as evidenced by enzyme inhibition assay results reporting significant inhibition of examined enzymes. These findings were confirmed by Western blot results indicating the ability of VIIb to repress levels of Cyclin D1, p-PI3K, and p-Akt. Furthermore, docking studies showed that VIIb has a binding affinity with the PI3K binding site higher than the original ligands X6K. Our results suggest that VIIb has pharmacological potential as a promising anti-cancer compound by the inhibition of the PI3K/Akt axis.
Collapse
Affiliation(s)
- Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Correspondence: ; Tel.: +20-1270551779
| | - Heba S. Rateb
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12585, Egypt;
| | - Omaima Ali
- Egyptian Drug Authority, Cairo 12618, Egypt;
| | - Ahmed S. Saad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt;
| | - Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Sahar M. Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.M.A.-S.); (K.M.A.)
| | - Kamilia M. Amin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.M.A.-S.); (K.M.A.)
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
16
|
Zheng X, Xiao J, Jiang Q, Zheng L, Liu C, Dong C, Zheng Y, Ni P, Zhang C, Zhang F, Zhong R, Ding H, Wang Q, Qiu Y, Gao M, Ding J, Shen N, Wei B, Wang H. AKT2 reduces IFNβ1 production to modulate antiviral responses and systemic lupus erythematosus. EMBO J 2022; 41:e108016. [PMID: 35191555 PMCID: PMC8922272 DOI: 10.15252/embj.2021108016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon regulatory factor 3 (IRF3)-induced type I interferon (I-IFN) production plays key roles in both antiviral and autoimmune responses. IRF3 phosphorylation, dimerization, and nuclear localization are needed for its activation and function, but the precise regulatory mechanisms remain to be explored. Here, we show that the serine/threonine kinase AKT2 interacts with IRF3 and phosphorylates it on Thr207, thereby attenuating IRF3 nuclear translocation in a 14-3-3ε-dependent manner and reducing I-IFN production. We further find that AKT2 expression is downregulated in viral-infected macrophages or in monocytes and tissue samples from systemic lupus erythematosus (SLE) patients and mouse models. Akt2-deficient mice exhibit increased I-IFN induction and reduced mortality in response to viral infection, but aggravated severity of SLE. Overexpression of AKT2 kinase-inactive or IRF3-T207A mutants in zebrafish supports that AKT2 negatively regulates I-IFN production and antiviral response in a kinase-dependent manner. This negative role of AKT2 in IRF3-induced I-IFN production suggests that AKT2 may be therapeutically targeted to differentially regulate antiviral infection and SLE.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Jiang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Lingming Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chang Liu
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuxiao Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Peili Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fang Zhang
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruiyue Zhong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Qiong Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minxia Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianping Ding
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Bin Wei
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
17
|
Abdel Ghany LMA, El-Dydamony NM, Helwa AA, Abdelraouf SM, Abdelnaby RM. Coumarin-acetohydrazide derivatives as novel antiproliferative agents via VEGFR-2/AKT axis inhibition and apoptosis triggering. NEW J CHEM 2022. [DOI: 10.1039/d2nj02436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The VEGFR-2/AKT pathway is a crucial axis in tumor survival where it is highly dysregulated in many cancer types.
Collapse
Affiliation(s)
- Lina M. A. Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Nehad M. El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Amira A. Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Sahar M. Abdelraouf
- Biochemistry Department, Faculty of pharmacy, Misr International University, Cairo, Egypt
| | - Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
18
|
Li JF, Tian GL, Pan H, Zhang WT, Li DC, Liu JD, Zhao L, Li HL. An Analysis of the Pathogenic Genes and Mutation Sites of Macrodactyly. Pharmgenomics Pers Med 2022; 15:55-64. [PMID: 35125881 PMCID: PMC8809672 DOI: 10.2147/pgpm.s346373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to explore the pathogenic genes and mutation sites of macrodactyly. Methods Whole-exome sequencing was performed on the pathological tissue and peripheral blood of 12 patients with macrodactyly who were operated in our hospital between June 2018 and May 2020. In order to conduct comprehensive bioinformatics analysis and screen the pathogenic genes of macrodactyly, the patients were divided into four groups: macrodactyly of finger group, macrodactyly of foot group, macrodactyly and syndactyly of finger group, and macrodactyly and syndactyly of foot group. The results of the whole-exome sequencing were verified using Sanger sequencing in order to clarify the pathogenic genes and mutation sites of macrodactyly, and immunohistochemical analysis of the protein signaling pathways encoded by the pathogenic genes was performed to observe the protein expression and further verify the mutant genes. Results In the comprehensive bioinformatics analysis and Sanger verification of the whole-exome sequencing, the PIK3CA gene mutation was screened as the pathogenic gene of macrodactyly. The mutation sites were identified as the p.E542K (c.G1624A) and p.E545K (c.G1633A) sites of exon10 and the p.H1047R (c.A3140G) and p.G1049R (c.G3145C) sites of exon21. Among these, the p.G1049R (c.G3145C) locus was found in macrodactyly for the first time. The mutation of the PIK3CA gene was also found to lead to increased expression of serine-threonine kinase (AKT) in adipocytes in the PI3K-AKT-mTOR signaling pathway. Conclusion Mutation of the PIK3CA gene leads to the enhancement of the PI3K-AKT-mTOR signaling pathway, which is the cause of macrodactyly. There is also some diversity in PIK3CA gene mutation sites.
Collapse
Affiliation(s)
- Jian-Feng Li
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
- Correspondence: Jian-Feng Li, Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, No. 3 Guangming South Street, Shunyi District, Beijing, 101300, People’s Republic of China, Tel +86 10 69423220, Email
| | - Guang-Lei Tian
- Department of Hand Surgery, Beijing Jishuitan Hospital; Peking University Fourth School of Clinical Medicine, Beijing, 100035, People’s Republic of China
| | - Hui Pan
- Department of Pathology, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Wen-Tong Zhang
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Da-Cun Li
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Jing-Da Liu
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Liang Zhao
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| | - Hai-Lei Li
- Department of Hand Surgery, Beijing Shunyi District Hospital; Shunyi Teaching Hospital of Capital Medical University, Beijing, 101300, People’s Republic of China
| |
Collapse
|
19
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 556] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
20
|
Ren Z, Yu Y, Chen C, Yang D, Ding T, Zhu L, Deng J, Xu Z. The Triangle Relationship Between Long Noncoding RNA, RIG-I-like Receptor Signaling Pathway, and Glycolysis. Front Microbiol 2021; 12:807737. [PMID: 34917069 PMCID: PMC8670088 DOI: 10.3389/fmicb.2021.807737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (LncRNA), a noncoding RNA over 200nt in length, can regulate glycolysis through metabolic pathways, glucose metabolizing enzymes, and epigenetic reprogramming. Upon viral infection, increased aerobic glycolysis providzes material and energy for viral replication. Mitochondrial antiviral signaling protein (MAVS) is the only protein-specified downstream of retinoic acid-inducible gene I (RIG-I) that bridges the gap between antiviral immunity and glycolysis. MAVS binding to RIG-I inhibits MAVS binding to Hexokinase (HK2), thereby impairing glycolysis, while excess lactate production inhibits MAVS and the downstream antiviral immune response, facilitating viral replication. LncRNAs can also regulate antiviral innate immunity by interacting with RIG-I and downstream signaling pathways and by regulating the expression of interferons and interferon-stimulated genes (ISGs). Altogether, we summarize the relationship between glycolysis, antiviral immunity, and lncRNAs and propose that lncRNAs interact with glycolysis and antiviral pathways, providing a new perspective for the future treatment against virus infection, including SARS-CoV-2.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueru Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chaoxi Chen
- College of Life Since and Technology, Southwest Minzu University, Chengdu, China
| | - Dingyong Yang
- College of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Hwang HS, Kim D, Choi J. Distinct mutational profile and immune microenvironment in microsatellite-unstable and POLE-mutated tumors. J Immunother Cancer 2021; 9:e002797. [PMID: 34607897 PMCID: PMC8491424 DOI: 10.1136/jitc-2021-002797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Mismatch repair (MMR)-deficient and DNA polymerase epsilon (POLE)-mutated tumors exhibit a high tumor mutation burden (TMB) and have been proven to be associated with good responses to immune checkpoint inhibitor treatments. However, the relationship between mutational characteristics of MMR-deficient and POLE-mutated tumors and the spatial architecture of tumor-infiltrating lymphocytes (TILs) has not been fully evaluated. METHODS We retrieved microsatellite instability-high (MSI-high, N=20) and POLE-mutated (N=47) cases from the clinical next-generation sequencing cohort at Asan Medical Center. Whole-slide immunostaining for CD3, CD4, CD8, FoxP3 and PD-1 were performed with tissue samples of colorectal and gastric cancer (N=24) and the tumor-positive TIL cell densities were correlated with the tumor's mutational features. The findings were compared with the results of similar analyses in The Cancer Genome Atlas-Colorectal Adenocarcinoma (TCGA-COADREAD) cohort (N=592). RESULTS The MSI-high group showed significantly higher overall TMBs with a number of insertion/deletion (indel) mutations relative to the POLE-mutated group (median TMB; 83.6 vs 12.5/Mb). Oncogenic/likely-oncogenic POLE mutations were identified with ultrahypermutations (≥100 mutations/Mb) (2/47, 4.3%). Concurrent POLE mutations of unknown significance and MSI-high cases were identified in eight cases (8/67, 11%), and two of these colorectal cancers had multiple POLE mutations, showing an ultramutated phenotype (378.1 and 484.4/Mb) and low indel mutation burdens with complete loss of MSH-6 or PMS-2, which was similar to the mutational profile of the POLE-inactivated tumors. Intratumoral CD3-positive, CD4-positive, CD8-positive, FoxP3-positive and PD-1-positive TIL cell densities were more strongly correlated with the indel mutation burden than with the total TMB (correlation coefficient, 0.61-0.73 vs 0.23-0.38). In addition, PI3K/AKT/mTOR pathway mutations were commonly found in MSI-high tumors (75%) but not in POLE-mutated tumors. CONCLUSIONS Indel mutation burden rather than total TMB could serve as a predictor of high TILs in both MSI-high and POLE-mutated tumors. Multiple uncharacterized/non-pathogenic POLE mutations occurring via MMR deficiency within MSI-high tumors may have combined pathogenic roles. A mutated PI3K/AKT/mTOR pathway may be a biomarker that can be used to stratify patients with advanced MSI-high tumors for immune therapy.
Collapse
Affiliation(s)
- Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Liu N, Shan F, Ma M. Strategic enhancement of immune checkpoint inhibition in refractory Colorectal Cancer: Trends and future prospective. Int Immunopharmacol 2021; 99:108017. [PMID: 34352568 DOI: 10.1016/j.intimp.2021.108017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC), known as a frequently fatal disease, ranking as the third most common malignancy, is the second leading cause of cancer related mortality worldwide. Metastases are common in CRC patients which account for approximately 25% of the patients at diagnosis, 50% of patients during treatment which is associated closely with CRC mortality. Conventional therapies such as surgery, chemotherapy, and radiotherapy are standards of care for the treatment of CRC patients. However, primary tumor recurrence and secondary disease in patients receiving standard of care treatment modalities occur in 50% of patients so that new treatment modalities are needed. Immune checkpoint inhibition (ICI) has transformed the management of patients suffered from metastatic CRC (mCRC) with mismatch repair deficiency (dMMR) and microsatellite instability (MSI) -high (MSI-H) while manifests ineffectiveness in preserved mismatch repair (pMMR) or microsatellite stable (MSS) "cold" tumors which makes up the majority (95%) of mCRC. In this review, we mainly lay emphasis on the development of combinations in therapy strategies with ICIs with other immune based treatment approaches to increase the intra-tumoral immune response and render tumors 'immune-reactive', thereby increasing the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
23
|
Hermanowicz JM, Pawlak K, Sieklucka B, Czarnomysy R, Kwiatkowska I, Kazberuk A, Surazynski A, Mojzych M, Pawlak D. MM-129 as a Novel Inhibitor Targeting PI3K/AKT/mTOR and PD-L1 in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133203. [PMID: 34206937 PMCID: PMC8268553 DOI: 10.3390/cancers13133203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary MM-129 (1,2,4-triazine derivative) is a novel promising drug candidate against colon cancer. It has the ability to inhibit intracellular pathways promoting tumorigenesis with a simultaneous reduction of PD-L1 expression, a key element of the cancer immune escape axis. MM-129 may also act as a chemosensitizer, overcoming chemoresistance against 5-FU, the first-line agent in the chemother-apy of colon cancer. Our results significantly expand knowledge and help better understand the process of tumorigenesis, the intracellular pathways involved, and the mutual interactions of in-dividual proteins, and create the possibility of their pharmacological blockade. There is a real chance that the obtained results and the conclusions drawn on their basis will help in the development of a new, effective therapy, which could be an attractive alternative to the already existing methods of colon cancer treatment. Abstract Background and aims: The purpose of the present study was to examine the pharmacodynamics features of MM-129 (1,2,4-triazine derivative) as a novel promising drug candidate against colon cancer. Methods: MM-129 was assessed for antitumor activity through an in vivo study on Cby.Cg-Foxn1nu/cmdb mice. The mechanistic studies investigated cellular affinity of a new 1,2,4-triazine derivative by measuring levels of intracellular/extracellular signal molecules participating in tumorigenesis. Results: The results revealed that MM-129 significantly reduced tumor growth in mice challenged with DLD-1 and HT-29 cells. It exerted the ability to inhibit intracellular molecules promoting tumorigenesis and inducing cell cycle arrest, like Akt, mTOR, and CDK2. Simultaneously, it was able to downregulate PD-L1 expression, which involves immunological self-tolerance. Combined administration of MM-129 and 5-fluorouracil (5-FU) additionally amplified these effects, which were manifest as an increase population of cells in the G0/G1 phase. Conclusions: A novel 1,2,4-triazine derivative with a dual mechanism of antitumor activity—MM-129, may act as a chemosensitizer, overcoming chemoresistance against 5-FU, the first-line agent in the chemotherapy of colon cancer.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.S.); (I.K.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
- Correspondence: ; Tel./Fax: +48-8574-856-01
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.S.); (I.K.); (D.P.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.S.); (I.K.); (D.P.)
| | - Adam Kazberuk
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (A.K.); (A.S.)
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (A.K.); (A.S.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.S.); (I.K.); (D.P.)
| |
Collapse
|
24
|
Junaid M, Akter Y, Afrose SS, Tania M, Khan MA. Biological Role of AKT and Regulation of AKT Signaling Pathway by Thymoquinone: Perspectives in Cancer Therapeutics. Mini Rev Med Chem 2021; 21:288-301. [PMID: 33019927 DOI: 10.2174/1389557520666201005143818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. OBJECTIVE In this review article, we have interpreted the role of AKT signaling pathway in cancer and the natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanisms. METHOD We have collected the updated information and data on AKT, its role in cancer and the inhibitory effect of TQ in AKT signaling pathway from Google Scholar, PubMed, Web of Science, Elsevier, Scopus, and many more. RESULTS Many drugs are already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. CONCLUSION This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ's future as a cancer therapeutic drug.
Collapse
Affiliation(s)
- Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | | | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The research center for preclinical medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|
26
|
Sadeghi F, Afkhami A, Madrakian T, Ghavami R. Computational study on subfamilies of piperidine derivatives: QSAR modelling, model external verification, the inter-subset similarity determination, and structure-based drug designing. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:433-462. [PMID: 33960256 DOI: 10.1080/1062936x.2021.1891568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
A new subset of furan-pyrazole piperidine derivatives was used for QSAR model development. These compounds exhibit good Akt1 inhibitory activity; moreover, antiproliferative activities in vitro against OVCAR-8 (Human ovarian carcinoma cells) and HCT116 (human colon cancer cells), were confirmed for them. Based on the relevant three-dimensional (3D) and 2D autocorrelation descriptors, selected by genetic algorithm (GA), multiple linear regression (MLR) was established on half maximal-inhibitory concentration (IC50), in Akt1 and cancer cell lines independently. Robustness, stability, and predictive ability of the models were evaluated using external and internal validation (r2: 0.742-0.832, Q2LOO: 0.684-0.796, RMSE: 0.247-0.299, F: 32.283-57.578, and r2y-random: 0.049-0.080). Furthermore, in the new strategy, each of the evaluated models was generalized to two other subfamilies of piperidines to simultaneously compare the activities and structural similarity of these three subsets. Probably, structural similarity can be more considered as a criterion of similarity in the mechanism of action. Also, external verification of suggested predictive models was performed by another subset. Finally, by focusing on M64 as the most potent in vivo antitumor compound, 15 new derivatives were designed and six potent candidates were proposed for further investigation.
Collapse
Affiliation(s)
- F Sadeghi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - A Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
- Department of Chemistry, D-8 International University, Hamedan, Iran
| | - T Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - R Ghavami
- Chemometrics Laboratory, Chemistry Department, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
27
|
Tam SY, Law HKW. JNK in Tumor Microenvironment: Present Findings and Challenges in Clinical Translation. Cancers (Basel) 2021; 13:cancers13092196. [PMID: 34063627 PMCID: PMC8124407 DOI: 10.3390/cancers13092196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Stress-activated c-Jun N-terminal kinases (JNKs) are members of mitogen-activated protein kinases (MAPKs). Apart from having both tumor promoting and tumor suppressing roles in cancers due to its impact on apoptosis and autophagy pathways, JNK also plays complex roles in the heterogeneous tumor microenvironment (TME) and is involved in different tumorigenesis pathways. The JNK pathway influences various stressful and chronic inflammatory conditions along with different cell populations in TME. In this review, we aim to present the current knowledge of JNK-mediated processes in TME and the challenges in clinical translation. Abstract The c-Jun N-terminal kinases (JNKs) are a group of mitogen-activated protein kinases (MAPKs). JNK is mainly activated under stressful conditions or by inflammatory cytokines and has multiple downstream targets for mediating cell proliferation, differentiation, survival, apoptosis, and immune responses. JNK has been demonstrated to have both tumor promoting and tumor suppressing roles in different cancers depending on the focused pathway in each study. JNK also plays complex roles in the heterogeneous tumor microenvironment (TME). JNK is involved in different tumorigenesis pathways. TME closely relates with tumor development and consists of various stressful and chronic inflammatory conditions along with different cell populations, in which the JNK pathway may have various mediating roles. In this review, we aim to summarize the present knowledge of JNK-mediated processes in TME, including hypoxia, reactive oxygen species, inflammation, immune responses, angiogenesis, as well as the regulation of various cell populations within TME. This review also suggests future research directions for translating JNK modulation in pre-clinical findings to clinical benefits.
Collapse
|
28
|
Guo Y, Jin Y, Qu B, Zhang Y, Che J, Dong X. An updated patent review of Akt inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:837-849. [PMID: 33834942 DOI: 10.1080/13543776.2021.1915291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Akt is a widely known serine threonine kinase involved in a series of critical cellular pathways like cell survival and proliferation. With the development of small-molecule Akt inhibitors, new strategies such as covalent, peptide-based, and PROTAC (Proteolysis Targeting Chimera) strategies have also been used the design of Akt inhibitors. On the other hand, due to the specificity of the Akt pathway, the use of Akt modulators in combination therapy and immunotherapy has been disclosed in the past 5 years.Areas covered: This review focuses on the patent literature covering small-molecule inhibitors of Akt kinase and their applications from 2016-present.Expert opinion: Although Akt inhibitors' progress has been somewhat slow over the past five years, new strategies still provide new opportunities for the development of Akt inhibitors. Combination with Akt pathway inhibitors for tumor therapy has also been widely disclosed in patents in the last 5 years. Notably, combination strategies of Akt inhibitors and immunotherapy have started to emerge in recent years. While the clinical indications of Akt modulators should not be limited to anti-cancer, it is still worth trying the treatment of other diseases. Within the next years, current drug development around Akt inhibitors should be fascinating.
Collapse
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yizhen Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Bingxue Qu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, P.R. China.,Cancer Center, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
29
|
Huang J, Feng W, Li S, Tang H, Qin S, Li W, Gong Y, Fang Y, Liu Y, Wang S, Guo Y, Xu Z, Shen Q. Berberine Exerts Anti-cancer Activity by Modulating Adenosine Monophosphate- Activated Protein Kinase (AMPK) and the Phosphatidylinositol 3-Kinase/ Protein Kinase B (PI3K/AKT) Signaling Pathways. Curr Pharm Des 2021; 27:565-574. [PMID: 32988344 DOI: 10.2174/1381612826666200928155728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Background The antagonistic relationship between adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling play a vital role in cancer development. The anti-cancer effects of berberine have been reported as a main component of the traditional Chinese medicine Rhizoma coptidis, although the roles of these signaling pathways in these effects have not been systematically reviewed. METHODS We searched the PubMed database for studies with keywords including ["berberine"] and ["tumor" or "cancer"] and ["AMPK"] or ["AKT"] published between January 2010 and July 2020, to elucidate the roles of the AMPK and PI3K/AKT pathways and their upstream and downstream targets in the anti-cancer effects of berberine. RESULTS The anti-cancer effects of berberine include inhibition of cancer cell proliferation, promotion of apoptosis and autophagy in cancer cells, and prevention of metastasis and angiogenesis. The mechanism of these effects involves multiple cell kinases and signaling pathways, including activation of AMPK and forkhead box transcription factor O3a (FOXO3a), accumulation of reactive oxygen species (ROS), and inhibition of the activity of PI3K/AKT, rapamycin (mTOR) and nuclear factor-κB (NF-κB). Most of these mechanisms converge on regulation of the balance of AMPK and PI3K/AKT signaling by berberine. CONCLUSION This evidence supports the possibility that berberine is a promising anti-cancer natural product, with pharmaceutical potential in inhibiting cancer growth, metastasis and angiogenesis via multiple pathways, particularly by regulating the balance of AMPK and PI3K/AKT signaling. However, systematic preclinical studies are still required to provide scientific evidence for further clinical studies.
Collapse
Affiliation(s)
- Jin Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Feng
- Emergercy Department, South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, China
| | - Shanshan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huiling Tang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Shen
- Department of Massage and Physiotherapy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
30
|
EPHA2 Promotes the Invasion and Migration of Human Tongue Squamous Cell Carcinoma Cal-27 Cells by Enhancing AKT/mTOR Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4219690. [PMID: 33834064 PMCID: PMC8016562 DOI: 10.1155/2021/4219690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
EPHA2 is a member of the ephrin receptor tyrosine kinase family and is closely related to the malignant tumor progression. The effect of EPHA2 on OSCC is not clear. This study explored the role of EPHA2 and AKT/mTOR signaling pathways in Cal-27 cell invasion and migration. The expression of EPHA2 and EPHA4 in human OSCC and normal oral tissue was detected by immunohistochemistry. EPHA2-overexpressing and EPHA2-knockdown Cal-27 cells were established, and the cells were treated with an AKT inhibitor (MK2206) and mTOR inhibitor (RAD001). The expression of EPHA2 was detected by qRT-PCR, cell proliferation was evaluated by MTT assay, cell migration and invasion were examined by scratch and Transwell assay, and cell morphology and apoptosis were assessed by Hoechst 33258 staining. Western blot was performed to detect the expression of proteins related to AKT/mTOR signaling, cell cycle, and pseudopod invasion. EPHA2 and EPHA4 were highly expressed in clinical human OSCC. Overexpression of EPHA2 promoted the proliferation, migration, and invasion of Cal-27 cells, inhibited cell cycle blockage and apoptosis, and enhanced the activity of the AKT/mTOR signaling pathway. MK2206 (AKT inhibitor) and RAD001 (mTOR inhibitor) reversed the effect of EPHA2 overexpression on the biological behavior of Cal-27 cells. EPHA2 promotes the invasion and migration of Cal-27 human OSCC cells by enhancing the AKT/mTOR signaling pathway.
Collapse
|
31
|
Pillai VB, Gupta MP. Is nuclear sirtuin SIRT6 a master regulator of immune function? Am J Physiol Endocrinol Metab 2021; 320:E399-E414. [PMID: 33308014 PMCID: PMC7988780 DOI: 10.1152/ajpendo.00483.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
The ability to ward off pathogens with minimal damage to the host determines the immune system's robustness. Multiple factors, including pathogen processing, identification, secretion of mediator and effector molecules, and immune cell proliferation and differentiation into various subsets, constitute the success of mounting an effective immune response. Cellular metabolism controls all of these intricate processes. Cells utilize diverse fuel sources and switch back and forth between different metabolic pathways depending on their energy needs. The three most critical metabolic pathways on which immune cells depend to meet their energy needs are oxidative metabolism, glycolysis, and glutaminolysis. Dynamic switching between these metabolic pathways is needed for optimal function of the immune cells. Moreover, switching between these metabolic pathways needs to be tightly regulated to achieve the best results. Immune cells depend on the Warburg effect for their growth, proliferation, secretory, and effector functions. Here, we hypothesize that the sirtuin, SIRT6, could be a negative regulator of the Warburg effect. We also postulate that SIRT6 could act as a master regulator of immune cell metabolism and function by regulating critical signaling pathways.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| | - Mahesh P Gupta
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Buschhaus JM, Humphries BA, Eckley SS, Robison TH, Cutter AC, Rajendran S, Haley HR, Bevoor AS, Luker KE, Luker GD. Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow. Oncogene 2020; 39:5649-5662. [PMID: 32678295 PMCID: PMC7442734 DOI: 10.1038/s41388-020-01391-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer can recur up to 20 years after initial diagnosis. Delayed recurrences arise from disseminated tumors cells (DTCs) in sites such as bone marrow that remain quiescent during endocrine therapy and subsequently proliferate to produce clinically detectable metastases. Identifying therapies that eliminate DTCs and/or effectively target cells transitioning to proliferation promises to reduce risk of recurrence. To tackle this problem, we utilized a 3D co-culture model incorporating ER+ breast cancer cells and bone marrow mesenchymal stem cells to represent DTCs in a bone marrow niche. 3D co-cultures maintained cancer cells in a quiescent, viable state as measured by both single-cell and population-scale imaging. Single-cell imaging methods for metabolism by fluorescence lifetime (FLIM) of NADH and signaling by kinases Akt and ERK revealed that breast cancer cells utilized oxidative phosphorylation and signaling by Akt to a greater extent both in 3D co-cultures and a mouse model of ER+ breast cancer cells in bone marrow. Using our 3D co-culture model, we discovered that combination therapies targeting oxidative phosphorylation via the thioredoxin reductase (TrxR) inhibitor, D9, and the Akt inhibitor, MK-2206, preferentially eliminated breast cancer cells without altering viability of bone marrow stromal cells. Treatment of mice with disseminated ER+ human breast cancer showed that D9 plus MK-2206 blocked formation of new metastases more effectively than tamoxifen. These data establish an integrated experimental system to investigate DTCs in bone marrow and identify combination therapy against metabolic and kinase targets as a promising approach to effectively target these cells and reduce risk of recurrence in breast cancer.
Collapse
Affiliation(s)
- Johanna M Buschhaus
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Brock A Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Samantha S Eckley
- Unit for Laboratory Animal Medicine, University of Michigan, 412 Victor Vaughan, Ann Arbor, MI, 48109-2200, USA
- Office of Animal Resources, University of Iowa, Iowa City, IA, USA
| | - Tanner H Robison
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Alyssa C Cutter
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Shrila Rajendran
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Henry R Haley
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Avinash S Bevoor
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA.
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
33
|
Zhu J, Liu Y, Ao H, Liu M, Zhao M, Ma J. Comprehensive Analysis of the Immune Implication of ACK1 Gene in Non-small Cell Lung Cancer. Front Oncol 2020; 10:1132. [PMID: 32793482 PMCID: PMC7390926 DOI: 10.3389/fonc.2020.01132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
Activated Cdc42-associated kinase1 (ACK1), a non-receptor tyrosine kinase, has been considered as an oncogene and therapeutic target in various cancers. However, its contribution to cancer immunity remains uncertain. Here we first compared the profiles of immune cells in cancerous and normal tissues in The Cancer Genome Atlas (TCGA) lung cancer cohorts. Next, we found that the immune cell infiltration levels were associated with the ACK1 gene copy numbers in lung cancer. Consistently, our RNA-seq data unveiled that the silencing of ACK1 upregulated several immune pathways in lung cancer cells, including the T cell receptor signaling pathway. The impacts of ACK1 on immune activity were validated by Gene Set Enrichment Analysis of RNA-seq data of 188 lung cancer cell lines from the public database. A pathway enrichment analysis of 35 ACK1-associated immunomodulators and 50 tightly correlated genes indicated the involvement of the PI3K-Akt and Ras signaling pathways. Based on ACK1-associated immunomodulators, we established multiple-gene risk prediction signatures using the Cox regression model. The resulting risk scores were an independent prognosis predictor in the TCGA lung cohorts. We also accessed the prognostic accuracy of the risk scores with a receiver operating characteristic methodology. Finally, a prognostic nomogram, accompanied by a calibration curve, was constructed to predict individuals' 3- and 5-year survival probabilities. Our findings provided evidence of ACK1's implication in tumor immunity, suggesting that ACK1 may be a potential immunotherapeutic target for non-small cell lung cancer (NSCLC). The nominated immune signature is a promising prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Liu
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haijiao Ao
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingdong Liu
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Zhao
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
34
|
Sex and Gender Influences on Cancer Immunotherapy Response. Biomedicines 2020; 8:biomedicines8070232. [PMID: 32708265 PMCID: PMC7400663 DOI: 10.3390/biomedicines8070232] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
The global burden of cancer is growing and a wide disparity in the incidence, malignancy and mortality of different types of cancer between each sex has been demonstrated. The sex specificity of cancer appears to be a relevant issue in the management of the disease, and studies investigating the role of sex and gender are becoming extremely urgent. Sex hormones are presumably the leading actors of sex differences in cancer, especially estrogens. They modulate gene expression, alter molecules and generate disparities in effectiveness and side effects of anticancer therapies. Recently immunotherapy aims to improve anticancer treatment strategies reducing off-target effects of chemotherapy and direct cancer cells killing. It is recognized as a fruitful strategy to treat and possible to cure cancer. Immunotherapeutic agents are used to activate or boost the activation of the immune system to fight cancer cells through physiological mechanisms often evaded in the offensive march of the disease. These therapeutic strategies have allowed new successes, but also have serious adverse effects including non-specific inflammation and autoimmunity. Sex and gender issues are of primary importance in this field, due to their recognized role in inflammation, immunity and cancer, and the clarification and understanding of these aspects is a necessary step to increase the responses and to diminish the adverse effects of immunotherapy. This review describes the available knowledge on the role of sex and gender in cancer immunotherapy, and will offer insights to stimulate the attention and practice of clinicians and researchers in a gender perspective of new cancer treatment strategies.
Collapse
|
35
|
Marks DK, Gartrell RD, El Asmar M, Boboila S, Hart T, Lu Y, Pan Q, Yu J, Hibshoosh H, Guo H, Andreopoulou E, Wiechmann L, Crew K, Sparano J, Hershman D, Connolly E, Saenger Y, Kalinsky K. Akt Inhibition Is Associated With Favorable Immune Profile Changes Within the Tumor Microenvironment of Hormone Receptor Positive, HER2 Negative Breast Cancer. Front Oncol 2020; 10:968. [PMID: 32612958 PMCID: PMC7308467 DOI: 10.3389/fonc.2020.00968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background: The PI3K/Akt/mTOR pathway in part impacts tumorigenesis through modulation of host immune activity. To assess the effects of Akt inhibition on the tumor micro-environment (TME), we analyzed tumor tissue from patients with operable hormone receptor positive, HER2 negative breast cancer (BC) treated on a presurgical trial with the Akt inhibitor MK-2206. Methods: Quantitative multiplex immunofluorescence (qmIF) was performed using CD3, CD8, CD4, FOXP3, CD68, and pancytokeratin on biopsy and surgical specimens of MK-2206 and untreated, control patients. nanoString was performed on surgical specimens to assess mRNA expression from MK-2206-treated vs. control patients. Results: Increased CD3+CD8+ density was observed in post vs. pre-treatment tissue in the MK-2206-treated vs. control patients (87 vs. 0.2%, p < 0.05). MK-2206 was associated with greater expression of interferon signaling genes (e.g., IFI6, p < 0.05) and lower expression of myeloid genes (CD163, p < 0.05) on differential expression and gene set enrichment analyses. Greater expression of pro-apoptotic genes (e.g., BAD) were associated with MK-2206 treatment (p < 0.05). Conclusion: Akt inhibition in operable BC was associated with a favorable immune profile in the TME, including increased CD3+CD8+ density and greater expression of interferon genes. Additional studies are warranted, as this may provide rationale for combining Akt inhibition with immunotherapy.
Collapse
Affiliation(s)
- Douglas K Marks
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| | - Robyn D Gartrell
- Department of Pediatrics, Pediatric Hematology/Oncology and Medicine, Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, United States
| | - Margueritta El Asmar
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shuobo Boboila
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Thomas Hart
- College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Yan Lu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Hua Guo
- Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Eleni Andreopoulou
- Department of Surgery, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Lisa Wiechmann
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Katherine Crew
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States.,Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States.,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Joseph Sparano
- Division of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States
| | - Dawn Hershman
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States.,Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States.,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Eileen Connolly
- Division of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States
| | - Yvonne Saenger
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States.,Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Kevin Kalinsky
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States.,Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
36
|
Jin J, Zhao Q. Emerging role of mTOR in tumor immune contexture: Impact on chemokine-related immune cells migration. Theranostics 2020; 10:6231-6244. [PMID: 32483450 PMCID: PMC7255024 DOI: 10.7150/thno.45219] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/17/2020] [Indexed: 12/27/2022] Open
Abstract
During the last few decades, cell-based anti-tumor immunotherapy emerged and it has provided us with a large amount of knowledge. Upon chemokines recognition, immune cells undergo rapid trafficking and activation in disease milieu, with immune cells chemotaxis being accompanied by activation of diverse intercellular signal transduction pathways. The outcome of chemokines-mediated immune cells chemotaxis interacts with the cue of mammalian target of rapamycin (mTOR) in the tumor microenvironment (TME). Indeed, the mTOR cascade in immune cells involves migration and infiltration. In this review, we summarize the available mTOR-related chemokines, as well as the characterized upstream regulators and downstream targets in immune cells chemotaxis and assign potential underlying mechanisms in each evaluated chemokine. Specifically, we focus on the involvement of mTOR in chemokine-mediated immune related cells in the balance between tumor immunity and malignancy.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
37
|
Liu Z, Cai C, Du J, Liu B, Cui L, Fan X, Wu Q, Fang J, Xie L. TCMIO: A Comprehensive Database of Traditional Chinese Medicine on Immuno-Oncology. Front Pharmacol 2020; 11:439. [PMID: 32351388 PMCID: PMC7174671 DOI: 10.3389/fphar.2020.00439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/20/2020] [Indexed: 01/13/2023] Open
Abstract
Advances in immuno-oncology (IO) are making immunotherapy a powerful tool for cancer treatment. With the discovery of an increasing number of IO targets, many herbs or ingredients from traditional Chinese medicine (TCM) have shown immunomodulatory function and antitumor effects via targeting the immune system. However, knowledge of underlying mechanisms is limited due to the complexity of TCM, which has multiple ingredients acting on multiple targets. To address this issue, we present TCMIO, a comprehensive database of Traditional Chinese Medicine on Immuno-Oncology, which can be used to explore the molecular mechanisms of TCM in modulating the cancer immune microenvironment. Over 120,000 small molecules against 400 IO targets were extracted from public databases and the literature. These ligands were further mapped to the chemical ingredients of TCM to identify herbs that interact with the IO targets. Furthermore, we applied a network inference-based approach to identify the potential IO targets of natural products in TCM. All of these data, along with cheminformatics and bioinformatics tools, were integrated into the publicly accessible database. Chemical structure mining tools are provided to explore the chemical ingredients and ligands against IO targets. Herb–ingredient–target networks can be generated online, and pathway enrichment analysis for TCM or prescription is available. This database is functional for chemical ingredient structure mining and network analysis for TCM. We believe that this database provides a comprehensive resource for further research on the exploration of the mechanisms of TCM in cancer immunity and TCM-inspired identification of novel drug leads for cancer immunotherapy. TCMIO can be publicly accessed at http://tcmio.xielab.net.
Collapse
Affiliation(s)
- Zhihong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chuipu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiewen Du
- Division of Algorithm, Beijing Jingpai Technology Co., Ltd., Beijing, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lu Cui
- Research and Development Center, Guangdong Institute of Traditional Chinese Medicine, Guangzhou, China
| | - Xiude Fan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Qihui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
38
|
Fujiwara Y, Kuchiba A, Koyama T, Machida R, Shimomura A, Kitano S, Shimizu T, Yamamoto N. Infection risk with PI3K-AKT-mTOR pathway inhibitors and immune checkpoint inhibitors in patients with advanced solid tumours in phase I clinical trials. ESMO Open 2020; 5:S2059-7029(20)30063-6. [PMID: 32276948 PMCID: PMC7174012 DOI: 10.1136/esmoopen-2019-000653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Patients undergoing chemotherapy are known to be at risk for infection from myelosuppression by cytotoxic agents (CTAs) or immunosuppressive effects from mTOR inhibitors. The infection risk of newly developed anticancer agents has not been fully evaluated. It remains unknown how T-cell activation induced by immune checkpoint inhibitors (ICIs) relates to infection. Methods We retrospectively examined infection risk in patients with cancer treated with investigational agents in a phase I study. The investigational agents were classified into four groups: CTA, phosphatidylinositol 3 kinase/Akt/mammalian target of rapamycin inhibitor (PAM), molecular targeted agent (MTA) and ICI. All infection-related adverse events (AEs) during treatment were recorded. We compared the CTA, PAM and ICI with MTA, because MTA are already considered low risk and were used in the largest number of patients. Results A total of 641 patients were enrolled: 35 CTAs (5.5%), 61 PAMs (9.5%), 445 MTAs (69.4%) and 100 ICIs (15.6%). Among all patients, 132 (20.6%) experienced infection-related AEs and 46 (7.2%) developed 50 ≥grade 3 infection-related AEs. In any infection-related AEs, the ORs compared with MTAs were 2.19 (95% CI 1.03 to 4.66) for CTAs, 3.55 (95% CI 2.02 to 6.24) for PAMs and 1.05 (95% CI 0.60 to 1.85) for ICIs, respectively. In time to the first infection-related AE analysis, the risks for any infection-related AE from CTAs and PAMs were higher than those from MTAs (HR 1.84 (95% CI 0.82 to 4.11); p=0.05 and 3.96 (95% CI 2.18 to 7.22); p<0.001). The risk from ICIs was not significantly different from that of MTAs (HR 0.71 (95% CI 0.46 to 1.10); p=0.19). Conclusion Our results validate that PAMs and CTAs carry a higher infection risk in patients with advanced solid tumours compared with MTAs. We suggest that the infection risk of ICIs is a similar infection risk to MTAs.
Collapse
Affiliation(s)
- Yutaka Fujiwara
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan .,Department of Respiratory Medicine, Mitsui Memorial Hospital, Chiyoda-ku, Tokyo, Japan
| | - Aya Kuchiba
- Biostatistics Division, Centre for Research Administration and Support, National Cancer Center Japan, Chuo-ku, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Ryunosuke Machida
- Biostatistics Division, Centre for Research Administration and Support, National Cancer Center Japan, Chuo-ku, Tokyo, Japan
| | - Akihiko Shimomura
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Toshio Shimizu
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Zhao C, Lin G, Wu D, Liu D, You L, Högger P, Simal‐Gandara J, Wang M, da Costa JGM, Marunaka Y, Daglia M, Khan H, Filosa R, Wang S, Xiao J. The algal polysaccharide ulvan suppresses growth of hepatoma cells. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
- Key Laboratory of Marine Biotechnology of Fujian Province Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| | - Guopeng Lin
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Desheng Wu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Dan Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Lijun You
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Petra Högger
- Institut für Pharmazie und Lebensmittelchemie Julius‐Maximilians‐Universität Würzburg Würzburg Germany
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense Spain
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong
| | | | | | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Haroon Khan
- Department of Pharmacy Abdul Wali Khan University Mardan Pakistan
| | - Rosanna Filosa
- Department of Experimental Medicine University of Campania Naples Italy
| | - Shaoyun Wang
- College of Biological Science and Technology Fuzhou University Fuzhou China
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| |
Collapse
|
40
|
Maurya SK, Shadab G, Siddique HR. Chemosensitization of Therapy Resistant Tumors: Targeting Multiple Cell Signaling Pathways by Lupeol, A Pentacyclic Triterpene. Curr Pharm Des 2020; 26:455-465. [DOI: 10.2174/1381612826666200122122804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
The resistance of cancer cells to different therapies is one of the major stumbling blocks
for successful cancer treatment. Various natural and pharmaceuticals drugs are unable to control drug-resistance
cancer cell's growth. Also, chemotherapy and radiotherapy have several side effects and cannot apply to the patient
in excess. In this context, chemosensitization to the therapy-resistant cells by non-toxic phytochemicals
could be an excellent alternative to combat therapy-resistant cancers.
Objective:
To review the currently available literature on chemosensitization of therapy resistance cancers by
Lupeol for clinically approved drugs through targeting different cell signaling pathways.
Methods:
We reviewed relevant published articles in PubMed and other search engines from 1999 to 2019 to
write this manuscript. The key words used for the search were “Lupeol and Cancer”, “Lupeol and Chemosensitization”,
“Lupeol and Cell Signaling Pathways”, “Cancer Stem Cells and Lupeol” etc. The published results on the
chemosensitization of Lupeol were compared and discussed.
Results:
Lupeol chemosensitizes drug-resistant cancer cells for clinically approved drugs. Lupeol alone or in
combination with approved drugs inhibits inflammation in different cancer cells through modulation of expression
of IL-6, TNF-α, and IFN-γ. Lupeol, through altering the expression levels of BCL-2, BAX, Survivin, FAS,
Caspases, and PI3K-AKT-mTOR signaling pathway, significantly induce cell deaths among therapy-resistant
cells. Lupeol also modulates the molecules involved in cell cycle regulation such as Cyclins, CDKs, P53, P21,
and PCNA in different cancer types.
Conclusion:
Lupeol chemosensitizes the therapy-resistant cancer cells for the treatment of various clinically
approved drugs via modulating different signaling pathways responsible for chemoresistance cancer. Thus, Lupeol
might be used as an adjuvant molecule along with clinically approved drugs to reduce the toxicity and increase
the effectiveness.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - G.G.H.A. Shadab
- Molecular Toxicology & Cytogenetics Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
41
|
Klarenbeek S, Doornebal CW, Kas SM, Bonzanni N, Bhin J, Braumuller TM, van der Heijden I, Opdam M, Schouten PC, Kersten K, de Bruijn R, Zingg D, Yemelyanenko J, Wessels LFA, de Visser KE, Jonkers J. Response of metastatic mouse invasive lobular carcinoma to mTOR inhibition is partly mediated by the adaptive immune system. Oncoimmunology 2020; 9:1724049. [PMID: 32117586 PMCID: PMC7028325 DOI: 10.1080/2162402x.2020.1724049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Effective treatment of invasive lobular carcinoma (ILC) of the breast is hampered by late detection, invasive growth, distant metastasis, and poor response to chemotherapy. Phosphoinositide 3-kinase (PI3K) signaling, one of the major druggable oncogenic signaling networks, is frequently activated in ILC. We investigated treatment response and resistance to AZD8055, an inhibitor of mammalian target of rapamycin (mTOR), in the K14-cre;Cdh1Flox/Flox;Trp53Flox/Flox (KEP) mouse model of metastatic ILC. Inhibition of mTOR signaling blocked the growth of primary KEP tumors as well as the progression of metastatic disease. However, primary tumors and distant metastases eventually acquired resistance after long-term AZD8055 treatment, despite continued effective suppression of mTOR signaling in cancer cells. Interestingly, therapeutic responses were associated with increased expression of genes related to antigen presentation. Consistent with this observation, increased numbers of tumor-infiltrating major histocompatibility complex class II-positive (MHCII+) immune cells were observed in treatment-responsive KEP tumors. Acquisition of treatment resistance was associated with loss of MHCII+ cells and reduced expression of genes related to the adaptive immune system. The therapeutic efficacy of mTOR inhibition was reduced in Rag1−/- mice lacking mature T and B lymphocytes, compared to immunocompetent mice. Furthermore, therapy responsiveness could be partially rescued by transplanting AZD8055-resistant KEP tumors into treatment-naïve immunocompetent hosts. Collectively, these data indicate that the PI3K signaling pathway is an attractive therapeutic target in invasive lobular carcinoma, and that part of the therapeutic effect of mTOR inhibition is mediated by the adaptive immune system.
Collapse
Affiliation(s)
- Sjoerd Klarenbeek
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Chris W Doornebal
- Oncode Institute, Utrecht, The Netherlands.,Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sjors M Kas
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Nicola Bonzanni
- Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,ENPICOM, 's-Hertogenbosch, The Netherlands
| | - Jinhyuk Bhin
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tanya M Braumuller
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Ingrid van der Heijden
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philip C Schouten
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kelly Kersten
- Oncode Institute, Utrecht, The Netherlands.,Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel Zingg
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Julia Yemelyanenko
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Utrecht, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Karin E de Visser
- Oncode Institute, Utrecht, The Netherlands.,Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
42
|
Huyghe N, Baldin P, Van den Eynde M. Immunotherapy with immune checkpoint inhibitors in colorectal cancer: what is the future beyond deficient mismatch-repair tumours? Gastroenterol Rep (Oxf) 2020; 8:11-24. [PMID: 32104582 PMCID: PMC7034232 DOI: 10.1093/gastro/goz061] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Following initial success in melanoma and lung tumours, immune checkpoint inhibitors (ICIs) are now well recognized as a major immunotherapy treatment modality for multiple types of solid cancers. In colorectal cancer (CRC), the small subset that is mismatch-repair-deficient and microsatellite-instability-high (dMMR/MSI-H) derive benefit from immunotherapy; however, the vast majority of patients with proficient MMR (pMMR) or with microsatellite stable (MSS) CRC do not. Immunoscore and the consensus molecular subtype classifications are promising biomarkers in predicting therapeutic efficacy in selected CRC. In pMRR/MSS CRC, biomarkers are also needed to understand the molecular mechanisms governing immune reactivity and to predict their relationship to treatment. The continuous development of such biomarkers would offer new perspectives and more personalized treatments by targeting oncological options, including ICIs, which modify the tumour-immune microenvironment. In this review, we focus on CRC and discuss the current status of ICIs, the role of biomarkers to predict response to immunotherapy, and the approaches being explored to render pMMR/MSS CRC more immunogenic through the use of combined therapies.
Collapse
Affiliation(s)
- Nicolas Huyghe
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium
| | - Paméla Baldin
- Department of Pathology, Cliniques Universitaires St-Luc, Institut Roi Albert II, Brussels, Belgium
| | - Marc Van den Eynde
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium
- Department of Medical Oncology, Cliniques Universitaires St-Luc, Institut Roi Albert II, Brussels, Belgium
| |
Collapse
|
43
|
Irelli A, Sirufo MM, Scipioni T, De Pietro F, Pancotti A, Ginaldi L, De Martinis M. mTOR Links Tumor Immunity and Bone Metabolism: What are the Clinical Implications? Int J Mol Sci 2019; 20:ijms20235841. [PMID: 31766386 PMCID: PMC6928935 DOI: 10.3390/ijms20235841] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) plays a crucial role in the control of cellular growth, proliferation, survival, metabolism, angiogenesis, transcription, and translation. In most human cancers, alterations to this pathway are common and cause activation of other downstream signaling pathways linked with oncogenesis. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both tumor immunity and angiogenesis. Inflammation is a hallmark of cancer, playing a central role in the tumor dynamics, and immune cells can exert antitumor functions or promote the growth of cancer cells. In this context, mTOR may regulate the activity of macrophages and T cells by regulating the expression of cytokines/chemokines, such as interleukin (IL)-10 and transforming growth factor (TGF-β), and/or membrane receptors, such as cytotoxic T-Lymphocyte protein 4 (CTLA-4) and Programmed Death 1 (PD-1). Furthermore, inhibitors of mammalian target of rapamycin are demonstrated to actively modulate osteoclastogenesis, exert antiapoptotic and pro-differentiative activities in osteoclasts, and reduce the number of lytic bone metastases, increasing bone mass in tumor-bearing mice. With regard to the many actions in which mTOR is involved, the aim of this review is to describe its role in the immune system and bone metabolism in an attempt to identify the best strategy for therapeutic opportunities in the metastatic phase of solid tumors.
Collapse
Affiliation(s)
- Azzurra Irelli
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Teresa Scipioni
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Amedeo Pancotti
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-08-6142-9548; Fax: +39-08-6121-1395
| |
Collapse
|
44
|
Caccuri F, Bugatti A, Corbellini S, Roversi S, Zani A, Mazzuca P, Marsico S, Caruso A, Giagulli C. The Synthetic Dipeptide Pidotimod Shows a Chemokine-Like Activity through CXC Chemokine Receptor 3 (CXCR3). Int J Mol Sci 2019; 20:ijms20215287. [PMID: 31653015 PMCID: PMC6862300 DOI: 10.3390/ijms20215287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years immunomodulators have gained a strong interest and represent nowadays an active expanding area of research for the control of microbial diseases and for their therapeutic potential in preventing, treating and reducing the morbidity and mortality of different diseases. Pidotimod (3-L-pyroglutamyl-L-thiaziolidine-4carboxylic acid, PDT) is a synthetic dipeptide, which possesses immunomodulatory properties and exerts a well-defined pharmacological activity against infections, but its real mechanism of action is still undefined. Here, we show that PDT is capable of activating tyrosine phosphorylation-based cell signaling in human primary monocytes and triggering rapid adhesion and chemotaxis. PDT-induced monocyte migration requires the activation of the PI3K/Akt signaling pathway and chemokine receptor CXCR3. Indeed, a mAb to CXCR3 and a specific receptor inhibitor suppressed significantly PDT-dependent chemotaxis, and CXCR3-silenced primary monocytes lost responsiveness to PDT chemoattraction. Moreover, our results highlighted that the PDT-induced migratory activity is sustained by the CXCR3A isoform, since CXCR3-transfected L1.2 cells acquired responsiveness to PDT stimulation. Finally, we show that PDT, as CXCR3 ligands, is also able to direct the migration of IL-2 activated T cells, which express the highest levels of CXCR3 among CXCR3-expressing cells. In conclusion, our study defines a chemokine-like activity for PDT through CXCR3A and points on the possible role that this synthetic dipeptide may play in leukocyte trafficking and function. Since recent studies have highlighted diverse therapeutic roles for molecules which activates CXCR3, our findings call for an exploration of using this dipeptide in different pathological processes.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Silvia Corbellini
- Laboratory of Microbiology and Virology, Azienda Socio Sanitaria Territoriale Spedali Civili, 25123 Brescia, Italy.
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
45
|
Li J, Van Valkenburgh J, Hong X, Conti PS, Zhang X, Chen K. Small molecules as theranostic agents in cancer immunology. Theranostics 2019; 9:7849-7871. [PMID: 31695804 PMCID: PMC6831453 DOI: 10.7150/thno.37218] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
With further research into the molecular mechanisms and roles linking immune suppression and restraint of (pre)malignancies, immunotherapies have revolutionized clinical strategies in the treatment of cancer. However, nearly 70% of patients who received immune checkpoint therapeutics showed no response. Complementary and/or synergistic effects may occur when extracellular checkpoint antibody blockades combine with small molecules targeting intracellular signal pathways up/downstream of immune checkpoints or regulating the innate and adaptive immune response. After radiolabeling with radionuclides, small molecules can also be used for estimating treatment efficacy of immune checkpoint blockades. This review not only highlights some significant intracellular pathways and immune-related targets such as the kynurenine pathway, purinergic signaling, the kinase signaling axis, chemokines, etc., but also summarizes some attractive and potentially immunosuppression-related small molecule agents, which may be synergistic with extracellular immune checkpoint blockade. In addition, opportunities for small molecule-based theranostics in cancer immunology will be discussed.
Collapse
Affiliation(s)
- Jindian Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| |
Collapse
|
46
|
Chan JJ, Tan TJY, Dent RA. Novel therapeutic avenues in triple-negative breast cancer: PI3K/AKT inhibition, androgen receptor blockade, and beyond. Ther Adv Med Oncol 2019; 11:1758835919880429. [PMID: 31636720 PMCID: PMC6785914 DOI: 10.1177/1758835919880429] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
Multiomic analyses have shed light upon the molecular heterogeneity and complexity of triple-negative breast cancers (TNBCs). With increasing recognition that TNBC is not a single disease entity but encompasses different disease subtypes, a one-size-fits-all treatment paradigm has become obsolete. In this context, the inhibition of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and androgen receptor (AR) signaling pathways have emerged as potential therapeutic strategies against selected tumors. In this paper, we reviewed the preclinical rationale, predictive biomarkers, efficacy, and safety data from early phase trials, and the future directions for these two biomarker-directed treatment approaches in TNBC.
Collapse
Affiliation(s)
- Jack J Chan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - Tira J Y Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - Rebecca A Dent
- Associate Professor, Division of Medical Oncology, National Cancer Center Singapore, 11 Hospital Drive, 169610, Singapore
| |
Collapse
|
47
|
Page DB, Bear H, Prabhakaran S, Gatti-Mays ME, Thomas A, Cobain E, McArthur H, Balko JM, Gameiro SR, Nanda R, Gulley JL, Kalinsky K, White J, Litton J, Chmura SJ, Polley MY, Vincent B, Cescon DW, Disis ML, Sparano JA, Mittendorf EA, Adams S. Two may be better than one: PD-1/PD-L1 blockade combination approaches in metastatic breast cancer. NPJ Breast Cancer 2019; 5:34. [PMID: 31602395 PMCID: PMC6783471 DOI: 10.1038/s41523-019-0130-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023] Open
Abstract
Antibodies blocking programmed death 1 (anti-PD-1) or its ligand (anti-PD-L1) are associated with modest response rates as monotherapy in metastatic breast cancer, but are generally well tolerated and capable of generating dramatic and durable benefit in a minority of patients. Anti-PD-1/L1 antibodies are also safe when administered in combination with a variety of systemic therapies (chemotherapy, targeted therapies), as well as with radiotherapy. We summarize preclinical, translational, and preliminary clinical data in support of combination approaches with anti-PD-1/L1 in metastatic breast cancer, focusing on potential mechanisms of synergy, and considerations for clinical practice and future investigation.
Collapse
Affiliation(s)
- David B. Page
- Providence Cancer Institute; Earle A. Chiles Research Institute, Portland, OR USA
| | - Harry Bear
- Division of Surgical Oncology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Sangeetha Prabhakaran
- Department of Surgery, Division of Surgery, University of New Mexico; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM USA
| | | | - Alexandra Thomas
- Wake Forest University School of Medicine, Winston-Salem, NC USA
| | | | | | - Justin M. Balko
- Department of Medicine and Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN USA
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, MD USA
| | - Rita Nanda
- The University of Chicago, Chicago, IL USA
| | - James L. Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | | | - Julia White
- Ohio State Wexner Medical Center, Columbus, OH USA
| | | | | | | | | | - David W. Cescon
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON Canada
| | | | - Joseph A. Sparano
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital; Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA USA
| | - Sylvia Adams
- Perlmutter Cancer Center, NYU School of Medicine, New York, NY USA
| |
Collapse
|
48
|
Zhan W, Che J, Xu L, Wu Y, Hu X, Zhou Y, Cheng G, Hu Y, Dong X, Li J. Discovery of pyrazole-thiophene derivatives as highly Potent, orally active Akt inhibitors. Eur J Med Chem 2019; 180:72-85. [DOI: 10.1016/j.ejmech.2019.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
|
49
|
Ren F, Zhao Q, Liu B, Sun X, Tang Y, Huang H, Mei L, Yu Y, Mo H, Dong H, Zheng P, Mi Y. Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. J Cell Physiol 2019; 235:2738-2752. [PMID: 31498430 DOI: 10.1002/jcp.29177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Gastric cancer has the fifth highest incidence of disease and is the third leading cause of cancer-associated mortality in the world. The etiology of gastric cancer is complex and needs to be fully elucidated. Thus, it is necessary to explore potential pathogenic genes and pathways that contribute to gastric cancer. Gene expression profiles of the GSE33335 and GSE54129 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were compared and identified using R software. The DEGs were then subjected to gene set enrichment analysis and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Survival analyses based on The Cancer Genome Atlas database were used to further screen the essential DEGs. A knockdown assay was performed to determine the function of the candidate gene in gastric cancer. Finally, the association between the candidate gene and immune-related genes was investigated. We found that GPNMB serves as an essential gene, with a high expression level, and predicts a worse outcome of gastric cancer. Knockdown of GPNMB inhibited gastric cancer cell proliferation and migration. In addition, GPNMB may augment the immunosuppressive ability of gastric cancer by recruiting immunosuppressive cells and promoting immune cell exhaustion through PI3K/AKT/CCL4 signaling axis. Collectively, these data suggest that GPNMB acts as an important positive mediator of tumor progression in gastric cancer, and GPNMB could exert multimodality modulation of gastric cancer-mediated immune suppression.
Collapse
Affiliation(s)
- Feifei Ren
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Liu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youcai Tang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Sciences and Education and Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huang Huang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Mei
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Yu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Mo
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haibin Dong
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
50
|
Shen L, Zhao K, Li H, Ning B, Wang W, Liu R, Zhang Y, Zhang A. Downregulation of UBE2T can enhance the radiosensitivity of osteosarcoma in vitro and in vivo. Epigenomics 2019; 11:1283-1305. [PMID: 31355678 DOI: 10.2217/epi-2019-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To investigate the effect of UBE2T gene on radiotherapy for osteosarcoma. Materials & methods: Gene Expression Omnibus database, RT-qPCR and immunohistochemical analysis were performed. Cell proliferation and cell cycle experiments were conducted after knockdown of UBE2T. Cell scratch, reactive oxygen species production and apoptosis experiments were conducted after the combination of radiotherapy and UBE2T silencing. Then the xenograft mode was further conducted. Results: UBE2T was highly expressed in human osteosarcoma. Suppression of UBE2T inhibited osteosarcoma cell proliferation and induced cell cycle arrest at the G2/M phase. Downregulation of UBE2T combined with radiation can substantially inhibit clonal formation and migration, and promote apoptosis of osteosarcoma cells in vitro and in vivo. Conclusion: UBE2T downregulation can enhance the radiosensitivity of osteosarcoma in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Shen
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Kai Zhao
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Han Li
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Bin Ning
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China.,Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Wenzhao Wang
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China.,Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Ronghan Liu
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Yining Zhang
- Department of Orthopaedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|