1
|
Kasri A, Camporesi E, Gkanatsiou E, Boluda S, Brinkmalm G, Stimmer L, Ge J, Hanrieder J, Villain N, Duyckaerts C, Vermeiren Y, Pape SE, Nicolas G, Laquerrière A, De Deyn PP, Wallon D, Blennow K, Strydom A, Zetterberg H, Potier MC. Amyloid-β peptide signature associated with cerebral amyloid angiopathy in familial Alzheimer's disease with APPdup and Down syndrome. Acta Neuropathol 2024; 148:8. [PMID: 39026031 PMCID: PMC11258176 DOI: 10.1007/s00401-024-02756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid plaques containing amyloid-β (Aβ) peptides, intraneuronal neurofibrillary tangles, extracellular neuropil threads, and dystrophic neurites surrounding plaques composed of hyperphosphorylated tau protein (pTau). Aβ can also deposit in blood vessel walls leading to cerebral amyloid angiopathy (CAA). While amyloid plaques in AD brains are constant, CAA varies among cases. The study focuses on differences observed between rare and poorly studied patient groups with APP duplications (APPdup) and Down syndrome (DS) reported to have higher frequencies of elevated CAA levels in comparison to sporadic AD (sAD), most of APP mutations, and controls. We compared Aβ and tau pathologies in postmortem brain tissues across cases and Aβ peptides using mass spectrometry (MS). We further characterized the spatial distribution of Aβ peptides with MS-brain imaging. While intraparenchymal Aβ deposits were numerous in sAD, DS with AD (DS-AD) and AD with APP mutations, these were less abundant in APPdup. On the contrary, Aβ deposits in the blood vessels were abundant in APPdup and DS-AD while only APPdup cases displayed high Aβ deposits in capillaries. Investigation of Aβ peptide profiles showed a specific increase in Aβx-37, Aβx-38 and Aβx-40 but not Aβx-42 in APPdup cases and to a lower extent in DS-AD cases. Interestingly, N-truncated Aβ2-x peptides were particularly increased in APPdup compared to all other groups. This result was confirmed by MS-imaging of leptomeningeal and parenchymal vessels from an APPdup case, suggesting that CAA is associated with accumulation of shorter Aβ peptides truncated both at N- and C-termini in blood vessels. Altogether, this study identified striking differences in the localization and composition of Aβ deposits between AD cases, particularly APPdup and DS-AD, both carrying three genomic copies of the APP gene. Detection of specific Aβ peptides in CSF or plasma of these patients could improve the diagnosis of CAA and their inclusion in anti-amyloid immunotherapy treatments.
Collapse
Affiliation(s)
- Amal Kasri
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Elena Camporesi
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Susana Boluda
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Department of Neuropathology Raymond Escourolle, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lev Stimmer
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Junyue Ge
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jörg Hanrieder
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Nicolas Villain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
| | - Charles Duyckaerts
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Department of Neuropathology Raymond Escourolle, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Yannick Vermeiren
- Department of Biomedical Sciences, Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Sarah E Pape
- Institute of Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
| | - Gaël Nicolas
- Department of Genetics, CNRMAJ, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, F-76000, Rouen, France
| | - Annie Laquerrière
- Department of Pathology, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, F-76000, Rouen, France
| | - Peter Paul De Deyn
- Department of Biomedical Sciences, Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - David Wallon
- Department of Neurology, CNRMAJ, Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, 76000, Rouen, France
| | - Kaj Blennow
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute On Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, People's Republic of China
| | - Andre Strydom
- Institute of Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
- UK Dementia Research Institute at UCL, London, UK.
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
| | - Marie-Claude Potier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, APHP, Hôpital de La Pitié Salpêtrière, InsermParis, France.
| |
Collapse
|
2
|
Banerjee G, Schott JM, Ryan NS. Familial cerebral amyloid disorders with prominent white matter involvement. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:289-315. [PMID: 39322385 DOI: 10.1016/b978-0-323-99209-1.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Familial cerebral amyloid disorders are characterized by the accumulation of fibrillar protein aggregates, which deposit in the parenchyma as plaques and in the vasculature as cerebral amyloid angiopathy (CAA). Amyloid β (Aβ) is the most common of these amyloid proteins, accumulating in familial and sporadic forms of Alzheimer's disease and CAA. However, there are also a number of rare, hereditary, non-Aβ cerebral amyloidosis. The clinical manifestations of these familial cerebral amyloid disorders are diverse, including cognitive or neuropsychiatric presentations, intracerebral hemorrhage, seizures, myoclonus, headache, ataxia, and spasticity. Some mutations are associated with extensive white matter hyperintensities on imaging, which may or may not be accompanied by hemorrhagic imaging markers of CAA; others are associated with occipital calcification. We describe the clinical, imaging, and pathologic features of these disorders and discuss putative disease mechanisms. Familial disorders of cerebral amyloid accumulation offer unique insights into the contributions of vascular and parenchymal amyloid to pathogenesis and the pathways underlying white matter involvement in neurodegeneration. With Aβ immunotherapies now entering the clinical realm, gaining a deeper understanding of these processes and the relationships between genotype and phenotype has never been more relevant.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, United Kingdom
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom.
| |
Collapse
|
3
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
4
|
Ben Yacoub T, Letellier C, Wohlschlegel J, Condroyer C, Slembrouck-Brec A, Goureau O, Zeitz C, Audo I. Generation of gene corrected human isogenic iPSC lines (IDVi003-A_CR13, IDVi003-A_CR21, IDVi003-A_CR24) from an inherited retinal dystrophy patient-derived IPSC line ITM2B-5286-3 (IDVi003-A) carrying the ITM2B c.782A > C variant using CRISPR/Cas9. Stem Cell Res 2023; 71:103166. [PMID: 37473460 DOI: 10.1016/j.scr.2023.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
The ITM2B-related retinal dystrophy (ITM2B-RD) was identified within patients carrying the autosomal dominant variant [c.782A > C, p.(Glu261Ala)] in ITM2B from whom induced pluripotent stem cell (IPSC) lines were previously generated. Here, we report the generation of three isogenic control iPSC lines from the derived affected subject cell line (ITM2B-5286-3) using CRISPR/Cas9 engineering. The three generated lines express pluripotency markers, can be differentiated into the three germ layers and present a normal karyotype. The generated iPSC lines can be used to study the implications of ITM2B-RD variant in vitro.
Collapse
Affiliation(s)
- Tasnim Ben Yacoub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France.
| | - Camille Letellier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Christel Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France; Institute of Ophthalmology, University College of London, London EC1V 9EL, United Kingdom.
| |
Collapse
|
5
|
Arber C, Casey JM, Crawford S, Rambarack N, Yaman U, Wiethoff S, Augustin E, Piers TM, Rostagno A, Ghiso J, Lewis PA, Revesz T, Hardy J, Pocock JM, Houlden H, Schott JM, Salih DA, Lashley T, Wray S. Microglia produce the amyloidogenic ABri peptide in familial British dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546552. [PMID: 37425748 PMCID: PMC10327149 DOI: 10.1101/2023.06.27.546552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutations in ITM2B cause familial British, Danish, Chinese and Korean dementias. In familial British dementia (FBD) a mutation in the stop codon of the ITM2B gene (also known as BRI2 ) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons, and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. Consequently, the ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. Pathological examination of post-mortem tissue support ABri expression in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are the major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. This has implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.
Collapse
|
6
|
Taipa R, Sousa L, Pinto M, Reis I, Rodrigues A, Oliveira P, Melo-Pires M, Coelho T. Neuropathology of central nervous system involvement in TTR amyloidosis. Acta Neuropathol 2023; 145:113-126. [PMID: 36198883 PMCID: PMC9807485 DOI: 10.1007/s00401-022-02501-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 01/25/2023]
Abstract
Hereditary transthyretin amyloidosis (ATTRv) is a systemic disease caused by the accumulation of misfolded transthyretin (TTR). It usually presents with an adult-onset progressive axonal peripheral neuropathy and cardiomyopathy. In the central nervous system (CNS), variant TTR is produced by the choroid plexus and accumulates in the leptomeninges. CNS symptoms have been increasingly recognized in this population, including transient focal neurological episodes and stroke, particularly in patients with the V30M mutation and longstanding disease. The prevalence, pathophysiology, and progression of CNS involvement remain to be clarified. The present work explores if there is a recognizable sequence of CNS TTR deposition in ATTRv. We studied the topographical and severity distribution of TTR deposition in 16 patients with ATTRv, aged 27-69 years and with a mean disease duration of 10.9 years (range: 3-29). Our results suggest that CNS pathological involvement in V30M ATTRv occurs early in the disease course, probably starting in pre-symptomatic phases, and follows a distinct sequence. Leptomeninges and subarachnoid meningeal vessels are affected earlier, then followed by perforating cortical vessels and subpial deposition, and finally by deposition in the subependymal and basal ganglia vessels near the ependymal lining. Brainstem and spinal cord show early and severe involvement, with amyloid subpial deposition already seen in initial stages. Despite massive superficial amyloid deposition, no parenchymal deposition outside subpial or subependymal regions was found. Additionally, vascular lesions or superficial cortical siderosis were not frequent. Future studies with more patients from different populations and TTR mutations will be important to confirm these findings. Defining stages of TTR pathology in the CNS may be useful to better understand pathogenic mechanisms leading to symptoms and to interpret neuroimaging biomarkers.
Collapse
Affiliation(s)
- Ricardo Taipa
- Portuguese Brain Bank, Neuropathology Unit, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, 4099-001, Porto, Portugal. .,UMIB, Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal. .,Laboratory for Integrative and Translational Research in Population Health, ITR, Porto, Portugal.
| | - Luísa Sousa
- UMIB, Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Laboratory for Integrative and Translational Research in Population Health, ITR, Porto, Portugal.,Department of Neurology, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal.,Unidade Corino de Andrade, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Miguel Pinto
- Portuguese Brain Bank, Neuropathology Unit, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, 4099-001, Porto, Portugal
| | - Inês Reis
- Portuguese Brain Bank, Neuropathology Unit, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, 4099-001, Porto, Portugal
| | - Aurora Rodrigues
- Portuguese Brain Bank, Neuropathology Unit, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, 4099-001, Porto, Portugal
| | - Pedro Oliveira
- Laboratory for Integrative and Translational Research in Population Health, ITR, Porto, Portugal.,Epidemiological Research Unit (EPIUnit), ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Manuel Melo-Pires
- Portuguese Brain Bank, Neuropathology Unit, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, 4099-001, Porto, Portugal
| | - Teresa Coelho
- Unidade Corino de Andrade, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
7
|
Fernandez A, Gomez MT, Vidal R. Lack of ApoE inhibits ADan amyloidosis in a mouse model of familial Danish dementia. J Biol Chem 2022; 299:102751. [PMID: 36436561 PMCID: PMC9792896 DOI: 10.1016/j.jbc.2022.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
The Apolipoprotein E-ε4 allele (APOE-ε4) is the strongest genetic risk factor for late onset Alzheimer disease (AD). ApoE plays a critical role in amyloid-β (Aβ) accumulation in AD, and genetic deletion of the murine ApoE gene in mouse models results in a decrease or inhibition of Aβ deposition. The association between the presence of ApoE and amyloid in amyloidoses suggests a more general role for ApoE in the fibrillogenesis process. However, whether decreasing levels of ApoE would attenuate amyloid pathology in different amyloidoses has not been directly addressed. Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease characterized by the presence of widespread parenchymal and vascular Danish amyloid (ADan) deposition and neurofibrillary tangles. A transgenic mouse model for FDD (Tg-FDD) is characterized by parenchymal and vascular ADan deposition. To determine the effect of decreasing ApoE levels on ADan accumulation in vivo, we generated a mouse model by crossing Tg-FDD mice with ApoE KO mice (Tg-FDD+/-/ApoE-/-). Lack of ApoE results in inhibition of ADan deposition up to 18 months of age. Additionally, our results from a genetic screen of Tg-FDD+/-/ApoE-/- mice emphasize the significant role for ApoE in neurodegeneration in FDD via glial-mediated mechanisms. Taken together, our findings suggest that the interaction between ApoE and ADan plays a key role in FDD pathogenesis, in addition to the known role for ApoE in amyloid plaque formation in AD.
Collapse
Affiliation(s)
- Anllely Fernandez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maria-Teresa Gomez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, USA,For correspondence: Ruben Vidal
| |
Collapse
|
8
|
Michno W, Koutarapu S, Camacho R, Toomey C, Stringer K, Minta K, Ge J, Jha D, Fernandez‐Rodriguez J, Brinkmalm G, Zetterberg H, Blennow K, Ryan NS, Lashley T, Hanrieder J. Chemical traits of cerebral amyloid angiopathy in familial British-, Danish-, and non-Alzheimer's dementias. J Neurochem 2022; 163:233-246. [PMID: 36102248 PMCID: PMC9828067 DOI: 10.1111/jnc.15694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/β-amyloid (Aβ) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with Aβ, while in contrast no Aβ deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and Aβ co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with Aβ x-42 and Aβ x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated Aβ. When compared with FDD, Aβ in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with Aβ3pE-40 and Aβ3-40 but not with Aβx-42 species. This suggests an increased aggregation propensity of Aβ in FDD that promotes co-aggregation of both Aβ and ADan. Further, CAA maturity appears to be mainly governed by Aβ content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology. Cover Image for this issue: https://doi.org/10.1111/jnc.15424.
Collapse
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
- Department of Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Srinivas Koutarapu
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Rafael Camacho
- Center for Cellular Imaging, Core FacilitiesThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Christina Toomey
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology, University College LondonLondonUK
| | - Katie Stringer
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Karolina Minta
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Junyue Ge
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Durga Jha
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Julia Fernandez‐Rodriguez
- Center for Cellular Imaging, Core FacilitiesThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute, UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Natalie S. Ryan
- UK Dementia Research Institute, UCLLondonUK
- Dementia Research Center, Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
| | - Tammaryn Lashley
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology, University College LondonLondonUK
| | - Jörg Hanrieder
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Dementia Research Center, Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
9
|
Moncaster JA, Moir RD, Burton MA, Chadwick O, Minaeva O, Alvarez VE, Ericsson M, Clark JI, McKee AC, Tanzi RE, Goldstein LE. Alzheimer's disease amyloid-β pathology in the lens of the eye. Exp Eye Res 2022; 221:108974. [PMID: 35202705 PMCID: PMC9873124 DOI: 10.1016/j.exer.2022.108974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/26/2023]
Abstract
Neuropathological hallmarks of Alzheimer's disease (AD) include pathogenic accumulation of amyloid-β (Aβ) peptides and age-dependent formation of amyloid plaques in the brain. AD-associated Aβ neuropathology begins decades before onset of cognitive symptoms and slowly progresses over the course of the disease. We previously reported discovery of Aβ deposition, β-amyloidopathy, and co-localizing supranuclear cataracts (SNC) in lenses from people with AD, but not other neurodegenerative disorders or normal aging. We confirmed AD-associated Aβ molecular pathology in the lens by immunohistopathology, amyloid histochemistry, immunoblot analysis, epitope mapping, immunogold electron microscopy, quantitative immunoassays, and tryptic digest mass spectrometry peptide sequencing. Ultrastructural analysis revealed that AD-associated Aβ deposits in AD lenses localize as electron-dense microaggregates in the cytoplasm of supranuclear (deep cortex) fiber cells. These Aβ microaggregates also contain αB-crystallin and scatter light, thus linking Aβ pathology and SNC phenotype expression in the lenses of people with AD. Subsequent research identified Aβ lens pathology as the molecular origin of the distinctive cataracts associated with Down syndrome (DS, trisomy 21), a chromosomal disorder invariantly associated with early-onset Aβ accumulation and Aβ amyloidopathy in the brain. Investigation of 1249 participants in the Framingham Eye Study found that AD-associated quantitative traits in brain and lens are co-heritable. Moreover, AD-associated lens traits preceded MRI brain traits and cognitive deficits by a decade or more and predicted future AD. A genome-wide association study of bivariate outcomes in the same subjects identified a new AD risk factor locus in the CTNND2 gene encoding δ-catenin, a protein that modulates Aβ production in brain and lens. Here we report identification of AD-related human Aβ (hAβ) lens pathology and age-dependent SNC phenotype expression in the Tg2576 transgenic mouse model of AD. Tg2576 mice express Swedish mutant human amyloid precursor protein (APP-Swe), accumulate hAβ peptides and amyloid pathology in the brain, and exhibit cognitive deficits that slowly progress with increasing age. We found that Tg2576 trangenic (Tg+) mice, but not non-transgenic (Tg-) control mice, also express human APP, accumulate hAβ peptides, and develop hAβ molecular and ultrastructural pathologies in the lens. Tg2576 Tg+ mice exhibit age-dependent Aβ supranuclear lens opacification that recapitulates lens pathology and SNC phenotype expression in human AD. In addition, we detected hAβ in conditioned medium from lens explant cultures prepared from Tg+ mice, but not Tg- control mice, a finding consistent with constitutive hAβ generation in the lens. In vitro studies showed that hAβ promoted mouse lens protein aggregation detected by quasi-elastic light scattering (QLS) spectroscopy. These results support mechanistic (genotype-phenotype) linkage between Aβ pathology and AD-related phenotypes in lens and brain. Collectively, our findings identify Aβ pathology as the shared molecular etiology of two age-dependent AD-related cataracts associated with two human diseases (AD, DS) and homologous murine cataracts in the Tg2576 transgenic mouse model of AD. These results represent the first evidence of AD-related Aβ pathology outside the brain and point to lens Aβ as an optically-accessible AD biomarker for early detection and longitudinal monitoring of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Juliet A. Moncaster
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mark A. Burton
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Oliver Chadwick
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Maria Ericsson
- Electron Microscopy Facility, Harvard Medical School, Boston, MA, 02115, USA
| | - John I. Clark
- Departments of Biological Structure and Ophthalmology, University of Washington, Seattle, WA, 98195, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Edith Nourse Rogers Memorial Veterans’ Hospital, Bedford, MA, 01730, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lee E. Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, 02118, USA,Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, 72 East Concord Street, B-7800 Boston, MA, 02118, USA,Corresponding author. Molecular Aging & Development Laboratory, Boston University, School of Medicine, 670 Albany Street, Boston, MA, 02118, USA. (L.E. Goldstein)
| |
Collapse
|
10
|
Kametani F, Hasegawa M. Structures of tau and α-synuclein filaments from brains of patients with neurodegenerative diseases. Neurochem Int 2022; 158:105362. [PMID: 35659527 DOI: 10.1016/j.neuint.2022.105362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Intracellular accumulations and aggregates of abnormal protein, consisting of amyloid-like fibrils, are common neuropathological features of many neurodegenerative diseases. The distributions and spreading of these pathological proteins are closely correlated with clinical symptoms and progression. Recent evidence supports the idea that template-mediated amplification of amyloid-like fibrils and intracellular propagation of fibril seeds are the main mechanisms by which pathological features spread along the neural circuits in the brain. Here, we review recent developments in the structural analysis of amyloid-like fibrils from brains of patients with various types of tauopathy and alpha-synucleinopathy, focusing on cryo-electron microscopy and mass analysis, and we discuss their relevance to the mechanisms of template-mediated amplification and intracellular propagation.
Collapse
Affiliation(s)
- Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Japan.
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Japan
| |
Collapse
|
11
|
Taylor X, Cisternas P, Jury N, Martinez P, Huang X, You Y, Redding-Ochoa J, Vidal R, Zhang J, Troncoso J, Lasagna-Reeves CA. Activated endothelial cells induce a distinct type of astrocytic reactivity. Commun Biol 2022; 5:282. [PMID: 35351973 PMCID: PMC8964703 DOI: 10.1038/s42003-022-03237-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Reactive astrogliosis is a universal response of astrocytes to abnormal events and injuries. Studies have shown that proinflammatory microglia can polarize astrocytes (designated A1 astrocytes) toward a neurotoxic phenotype characterized by increased Complement Component 3 (C3) expression. It is still unclear if inflammatory stimuli from other cell types may also be capable of inducing a subset of C3+ neurotoxic astrocytes. Here, we show that a subtype of C3+ neurotoxic astrocytes is induced by activated endothelial cells that is distinct from astrocytes activated by microglia. Furthermore, we show that endothelial-induced astrocytes have upregulated expression of A1 astrocytic genes and exhibit a distinctive extracellular matrix remodeling profile. Finally, we demonstrate that endothelial-induced astrocytes are Decorin-positive and are associated with vascular amyloid deposits but not parenchymal amyloid plaques in mouse models and AD/CAA patients. These findings demonstrate the existence of potentially extensive and subtle functional diversity of C3+-reactive astrocytes. Injured endothelial cells are shown to induce an A1 phenotype in astrocytes, characterized by a genetic signature associated with extracellular matrix remodeling factors (e.g. decorin and vascular Aß deposits).
Collapse
Affiliation(s)
- Xavier Taylor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46225, USA
| | - Pablo Cisternas
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nur Jury
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoqing Huang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Javier Redding-Ochoa
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Zhang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan Troncoso
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Kaeser SA, Häsler LM, Lambert M, Bergmann C, Bottelbergs A, Theunis C, Mercken M, Jucker M. CSF p-tau increase in response to Aβ-type and Danish-type cerebral amyloidosis and in the absence of neurofibrillary tangles. Acta Neuropathol 2022; 143:287-290. [PMID: 34961894 PMCID: PMC8742811 DOI: 10.1007/s00401-021-02400-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Stephan A Kaeser
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
- DZNE, German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany.
| | - Lisa M Häsler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany
| | - Carina Bergmann
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany
| | - Astrid Bottelbergs
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Clara Theunis
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Marc Mercken
- Neuroscience Department, Janssen Research and Development, Beerse, Belgium
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
- DZNE, German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Apátiga-Pérez R, Soto-Rojas LO, Campa-Córdoba BB, Luna-Viramontes NI, Cuevas E, Villanueva-Fierro I, Ontiveros-Torres MA, Bravo-Muñoz M, Flores-Rodríguez P, Garcés-Ramirez L, de la Cruz F, Montiel-Sosa JF, Pacheco-Herrero M, Luna-Muñoz J. Neurovascular dysfunction and vascular amyloid accumulation as early events in Alzheimer's disease. Metab Brain Dis 2022; 37:39-50. [PMID: 34406560 DOI: 10.1007/s11011-021-00814-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is clinically characterized by a progressive loss of cognitive functions and short-term memory. AD patients present two distinctive neuropathological lesions: neuritic plaques and neurofibrillary tangles (NFTs), constituted of beta-amyloid peptide (Aβ) and phosphorylated and truncated tau proteins. Aβ deposits around cerebral blood vessels (cerebral amyloid angiopathy, CAA) is a major contributor to vascular dysfunction in AD. Vascular amyloid deposits could be early events in AD due to dysfunction in the neurovascular unit (NVU) and the blood-brain barrier (BBB), deterioration of the gliovascular unit, and/or decrease of cerebral blood flow (CBF). These pathological events can lead to decreased Aβ clearance, facilitate a neuroinflammatory environment as well as synaptic dysfunction and, finally, lead to neurodegeneration. Here, we review the histopathological AD hallmarks and discuss the two-hit vascular hypothesis of AD, emphasizing the role of neurovascular dysfunction as an early factor that favors vascular Aβ aggregation and neurodegeneration. Addtionally, we emphasize that pericyte degeneration is a key and early element in AD that can trigger amyloid vascular accumulation and NVU/BBB dysfunction. Further research is required to better understand the early pathophysiological mechanisms associated with NVU alteration and CAA to generate early biomarkers and timely treatments for AD.
Collapse
Affiliation(s)
- Ricardo Apátiga-Pérez
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Luis O Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - B Berenice Campa-Córdoba
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Nabil Itzi Luna-Viramontes
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | | | | | - Linda Garcés-Ramirez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, México
| | - José Francisco Montiel-Sosa
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic.
| | - José Luna-Muñoz
- National Dementia BioBank. Ciencias Biológicas. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional 13 Autónoma de México, Estado de México, México.
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, República Dominicana.
| |
Collapse
|
15
|
Martins F, Santos I, da Cruz E Silva OAB, Tambaro S, Rebelo S. The role of the integral type II transmembrane protein BRI2 in health and disease. Cell Mol Life Sci 2021; 78:6807-6822. [PMID: 34480585 PMCID: PMC11072861 DOI: 10.1007/s00018-021-03932-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BRI2 is a type II transmembrane protein ubiquitously expressed whose physiological function remains poorly understood. Although several recent important advances have substantially impacted on our understanding of BRI2 biology and function, providing valuable information for further studies on BRI2. These findings have contributed to a better understanding of BRI2 biology and the underlying signaling pathways involved. In turn, these might provide novel insights with respect to neurodegeneration processes inherent to BRI2-related pathologies, namely Familial British and Danish dementias, Alzheimer's disease, ITM2B-related retinal dystrophy, and multiple sclerosis. In this review, we provided a state-of-the-art outline of BRI2 biology, both in physiological and pathological conditions, and discuss the proposed molecular underlying mechanisms. Overall, the BRI2 knowledge here reviewed is of extreme importance and may contribute to propose BRI2 and/or BRI2 proteolytic fragments as novel therapeutic targets for neurodegenerative diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabela Santos
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
16
|
Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, van Beers M, Tarutani A, Kametani F, Garringer HJ, Vidal R, Hallinan GI, Lashley T, Saito Y, Murayama S, Yoshida M, Tanaka H, Kakita A, Ikeuchi T, Robinson AC, Mann DMA, Kovacs GG, Revesz T, Ghetti B, Hasegawa M, Goedert M, Scheres SHW. Structure-based classification of tauopathies. Nature 2021; 598:359-363. [PMID: 34588692 DOI: 10.1038/s41586-021-03911-7] [Citation(s) in RCA: 424] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022]
Abstract
The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.
Collapse
Affiliation(s)
- Yang Shi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Yang Yang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | - Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fuyuki Kametani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grace I Hallinan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, University of Osaka, Osaka, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hidetomo Tanaka
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Andrew C Robinson
- Clinical Sciences Building, University of Manchester, Salford Royal Foundation Trust, Salford, UK
| | - David M A Mann
- Clinical Sciences Building, University of Manchester, Salford Royal Foundation Trust, Salford, UK
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tamas Revesz
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
17
|
Rostagno A, Calero M, Holton JL, Revesz T, Lashley T, Ghiso J. Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan. Neurobiol Dis 2021; 158:105452. [PMID: 34298087 PMCID: PMC8440498 DOI: 10.1016/j.nbd.2021.105452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022] Open
Abstract
Familial British and Danish dementias (FBD and FDD) share striking neuropathological similarities with Alzheimer's disease (AD), including intraneuronal neurofibrillary tangles as well as parenchymal and vascular amyloid deposits. Multiple amyloid associated proteins with still controversial role in amyloidogenesis colocalize with the structurally different amyloid peptides ABri in FBD, ADan in FDD, and Aβ in AD. Genetic variants and plasma levels of one of these associated proteins, clusterin, have been identified as risk factors for AD. Clusterin is known to bind soluble Aβ in biological fluids, facilitate its brain clearance, and prevent its aggregation. The current work identifies clusterin as the major ABri- and ADan-binding protein and provides insight into the biochemical mechanisms leading to the association of clusterin with ABri and ADan deposits. Mirroring findings in AD, the studies corroborate clusterin co-localization with cerebral parenchymal and vascular amyloid deposits in both disorders. Ligand affinity chromatography with downstream Western blot and amino acid sequence analyses unequivocally identified clusterin as the major ABri- and ADan-binding plasma protein. ELISA highlighted a specific saturable binding of clusterin to ABri and ADan with low nanomolar Kd values within the same range as those previously demonstrated for the clusterin-Aβ interaction. Consistent with its chaperone activity, thioflavin T binding assays clearly showed a modulatory effect of clusterin on ABri and ADan aggregation/fibrillization properties. Our findings, together with the known multifunctional activity of clusterin and its modulatory activity on the complex cellular pathways leading to oxidative stress, mitochondrial dysfunction, and the induction of cell death mechanisms - all known pathogenic features of these protein folding disorders - suggests the likelihood of a more complex role and a translational potential for the apolipoprotein in the amelioration/prevention of these pathogenic mechanisms.
Collapse
Affiliation(s)
- Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Miguel Calero
- Instituto de Salud Carlos III, 28029 Madrid, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; Alzheimer's Center Reina Sofia Foundation - CIEN Foundation, 28031 Madrid, Spain
| | - Janice L Holton
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tamas Revesz
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
18
|
Structure of Tau filaments in Prion protein amyloidoses. Acta Neuropathol 2021; 142:227-241. [PMID: 34128081 PMCID: PMC8270882 DOI: 10.1007/s00401-021-02336-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
In human neurodegenerative diseases associated with the intracellular aggregation of Tau protein, the ordered cores of Tau filaments adopt distinct folds. Here, we analyze Tau filaments isolated from the brain of individuals affected by Prion-Protein cerebral amyloid angiopathy (PrP-CAA) with a nonsense mutation in the PRNP gene that leads to early termination of translation of PrP (Q160Ter or Q160X), and Gerstmann–Sträussler–Scheinker (GSS) disease, with a missense mutation in the PRNP gene that leads to an amino acid substitution at residue 198 (F198S) of PrP. The clinical and neuropathologic phenotypes associated with these two mutations in PRNP are different; however, the neuropathologic analyses of these two genetic variants have consistently shown the presence of numerous neurofibrillary tangles (NFTs) made of filamentous Tau aggregates in neurons. We report that Tau filaments in PrP-CAA (Q160X) and GSS (F198S) are composed of 3-repeat and 4-repeat Tau isoforms, having a striking similarity to NFTs in Alzheimer disease (AD). In PrP-CAA (Q160X), Tau filaments are made of both paired helical filaments (PHFs) and straight filaments (SFs), while in GSS (F198S), only PHFs were found. Mass spectrometry analyses of Tau filaments extracted from PrP-CAA (Q160X) and GSS (F198S) brains show the presence of post-translational modifications that are comparable to those seen in Tau aggregates from AD. Cryo-EM analysis reveals that the atomic models of the Tau filaments obtained from PrP-CAA (Q160X) and GSS (F198S) are identical to those of the Tau filaments from AD, and are therefore distinct from those of Pick disease, chronic traumatic encephalopathy, and corticobasal degeneration. Our data support the hypothesis that in the presence of extracellular amyloid deposits and regardless of the primary amino acid sequence of the amyloid protein, similar molecular mechanisms are at play in the formation of identical Tau filaments.
Collapse
|
19
|
Liu X, Chen KL, Wang Y, Huang YY, Chen SD, Dong Q, Cui M, Yu JT. A Novel ITM2B Mutation Associated with Familial Chinese Dementia. J Alzheimers Dis 2021; 81:499-505. [PMID: 33814452 DOI: 10.3233/jad-210176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutations in ITM2B have been found to be associated with familial Danish dementia (FDD) and familial British dementia (FBD). Here, we describe a patient with dementia caused by a novel ITM2B p.*267Leuext*11 mutation. The patient presented with dementia, ataxia, deafness, and paraplegia. Amyloid PET and Tau PET showed abnormal deposition of amyloid and tau protein in brain. Summarized from previous 26 FBD and FDD cases, the clinical phenotype of ITM2B; p.*267Leuext*11 mutation in ITM2B is different from the features of FBD and FDD. Our findings increased genetic knowledge of familial dementia and extend the ethnic distribution of ITM2B mutations.
Collapse
Affiliation(s)
- Xin Liu
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ke-Liang Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Nassisi M, Wohlschlegel J, Liu B, Letellier C, Michiels C, Aubois A, Mohand-Said S, Habas C, Sahel JA, Zeitz C, Audo I. DEEP PHENOTYPING AND FURTHER INSIGHTS INTO ITM2B-RELATED RETINAL DYSTROPHY. Retina 2021; 41:872-881. [PMID: 32826790 DOI: 10.1097/iae.0000000000002953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To reappraise the presentation and the course of ITM2B-related retinal dystrophy and give further insights into ITM2B expression in the retina. METHODS The clinical data of nine subjects with ITM2B-related retinal dystrophy were retrospectively reviewed. The genetic mutation was assessed for its influence on splicing in cultured fibroblasts. The cellular expression of ITM2B within the inner retina was investigated in wild-type mice through mRNA in situ hybridization. RESULTS All patients complained of decreased vision and mild photophobia around their twenties-thirties. The peculiar feature was the hyperreflective material on optical coherence tomography within the inner retina and the central outer nuclear layer with thinning of the retinal nerve fiber layer. Although retinal imaging revealed very mild or no changes over the years, the visual acuity slowly decreased with about one Early Treatment Diabetic Retinopathy Study letter per year. Finally, full-field electroretinography showed a mildly progressive inner retinal and cone dysfunction. ITM2B mRNA is expressed in all cellular types of the inner retina. Disease mechanism most likely involves mutant protein misfolding and/or modified protein interaction rather than misplicing. CONCLUSION ITM2B-related retinal dystrophy is a peculiar, rare, slowly progressive retinal degeneration. Functional examinations (full-field electroretinography and visual acuity) seem more accurate in monitoring the progression in these patients because imaging tends to be stable over the years.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | - Bingqian Liu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Camille Letellier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Anne Aubois
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
- Académie des Sciences-Institut de France, Paris, France ; and
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
| |
Collapse
|
21
|
Kreilaus F, Masanetz R, Watt G, Przybyla M, Ittner A, Ittner L, Karl T. The behavioural phenotype of 14-month-old female TAU58/2 transgenic mice. Behav Brain Res 2021; 397:112943. [PMID: 33017638 DOI: 10.1016/j.bbr.2020.112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) exhibit intracellular inclusions [neurofibrillary tangles (NFT's)] of microtubule-associated protein tau that contributes to neuronal dysfunction and death. Mutations in the microtubule-associated protein tau (MAPT) gene leads to tau hyperphosphorylation and promotes NFT formation. The TAU58/2 transgenic mouse model expresses mutant human tau (P301S mutation) and exhibits behavioural abnormalities relevant to dementia in early adulthood. Here we comprehensively determined the behavioural phenotype of TAU58/2 transgenic female mice at 14 months of age using test paradigms relevant to FTD and AD. TAU58/2 females showed a significant motor deficit and lower bodyweight compared to WT littermates. Transgenic females failed to habituate to the test arena in the light-dark test. Interestingly, transgenics did not exhibit an anxiolytic-like phenotype and intermediate-term spatial learning in the cheeseboard test was intact. However, a significant learning deficit was detected in the 1st trial across test days indicating impaired long-term spatial memory. In addition, the preference for a previously rewarded location was absent in transgenic females during probe trial testing. Finally, TAU58/2 mice had a defective acoustic startle response and impaired sensorimotor gating. In conclusion TAU58/2 mice exhibit several behavioural deficits that resemble those observed in human FTD and AD. Additionally, we observed a novel startle response deficit in these mice. At 14 months of age, TAU58/2 females represent a later disease stage and are therefore a potentially useful model to test efficacy of therapeutics to reverse or ameliorate behavioural deficits in post-onset tauopapthy-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Rebecca Masanetz
- School of Medicine, Western Sydney University, NSW 2560, Australia; Faculty of Medical and Life Sciences, Hochschule Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Georgia Watt
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Lars Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, NSW 2560, Australia; Neuroscience Research Australia (NeuRA), NSW 2031, Australia; School of Medical Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
22
|
Cisternas P, Taylor X, Perkins A, Maldonado O, Allman E, Cordova R, Marambio Y, Munoz B, Pennington T, Xiang S, Zhang J, Vidal R, Atwood B, Lasagna‐Reeves CA. Vascular amyloid accumulation alters the gabaergic synapse and induces hyperactivity in a model of cerebral amyloid angiopathy. Aging Cell 2020; 19:e13233. [PMID: 32914559 PMCID: PMC7576303 DOI: 10.1111/acel.13233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of β‐amyloid (Aβ), other amyloids are known to associate with the vasculature. Alzheimer's disease (AD) is characterized by parenchymal Aβ deposition and intracellular accumulation of tau as neurofibrillary tangles (NFTs), affecting synapses directly, leading to behavioral and physical impairment. CAA increases with age and is present in 70%–97% of individuals with AD. Studies have overwhelmingly focused on the connection between parenchymal amyloid accumulation and synaptotoxicity; thus, the contribution of vascular amyloid is mostly understudied. Here, synaptic alterations induced by vascular amyloid accumulation and their behavioral consequences were characterized using a mouse model of Familial Danish dementia (FDD), a neurodegenerative disease characterized by the accumulation of Danish amyloid (ADan) in the vasculature. The mouse model (Tg‐FDD) displays a hyperactive phenotype that potentially arises from impairment in the GABAergic synapses, as determined by electrophysiological analysis. We demonstrated that the disruption of GABAergic synapse organization causes this impairment and provided evidence that GABAergic synapses are impaired in patients with CAA pathology. Understanding the mechanism that CAA contributes to synaptic dysfunction in AD‐related dementias is of critical importance for developing future therapeutic interventions.
Collapse
Affiliation(s)
- Pablo Cisternas
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Xavier Taylor
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Abigail Perkins
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Orlando Maldonado
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Elysabeth Allman
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Ricardo Cordova
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Yamil Marambio
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Braulio Munoz
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Taylor Pennington
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Shunian Xiang
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pathology and Laboratory Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Brady Atwood
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Cristian A. Lasagna‐Reeves
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
23
|
Taylor X, Cisternas P, You Y, You Y, Xiang S, Marambio Y, Zhang J, Vidal R, Lasagna-Reeves CA. A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy. J Neuroinflammation 2020; 17:223. [PMID: 32711525 PMCID: PMC7382050 DOI: 10.1186/s12974-020-01900-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of amyloid beta (Aβ), other amyloids are known to associate with the vasculature. Alzheimer’s disease (AD) is characterized by parenchymal Aβ deposition, intracellular accumulation of tau, and significant neuroinflammation. CAA increases with age and is present in 85–95% of individuals with AD. A substantial amount of research has focused on understanding the connection between parenchymal amyloid and glial activation and neuroinflammation, while associations between vascular amyloid pathology and glial reactivity remain understudied. Methods Here, we dissect the glial and immune responses associated with early-stage CAA with histological, biochemical, and gene expression analyses in a mouse model of familial Danish dementia (FDD), a neurodegenerative disease characterized by the vascular accumulation of Danish amyloid (ADan). Findings observed in this CAA mouse model were complemented with primary culture assays. Results We demonstrate that early-stage CAA is associated with dysregulation in immune response networks and lipid processing, severe astrogliosis with an A1 astrocytic phenotype, and decreased levels of TREM2 with no reactive microgliosis. Our results also indicate how cholesterol accumulation and ApoE are associated with vascular amyloid deposits at the early stages of pathology. We also demonstrate A1 astrocytic mediation of TREM2 and microglia homeostasis. Conclusion The initial glial response associated with early-stage CAA is characterized by the upregulation of A1 astrocytes without significant microglial reactivity. Gene expression analysis revealed that several AD risk factors involved in immune response and lipid processing may also play a preponderant role in CAA. This study contributes to the increasing evidence that brain cholesterol metabolism, ApoE, and TREM2 signaling are major players in the pathogenesis of AD-related dementias, including CAA. Understanding the basis for possible differential effects of glial response, ApoE, and TREM2 signaling on parenchymal plaques versus vascular amyloid deposits provides important insight for developing future therapeutic interventions.
Collapse
Affiliation(s)
- Xavier Taylor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pablo Cisternas
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yingjian You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shunian Xiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yamil Marambio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA. .,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
24
|
The Amyloid-Tau-Neuroinflammation Axis in the Context of Cerebral Amyloid Angiopathy. Int J Mol Sci 2019; 20:ijms20246319. [PMID: 31847365 PMCID: PMC6941131 DOI: 10.3390/ijms20246319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with the accumulation of Aβ, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis has been associated with an active immune response and perivascular deposition of hyperphosphorylated tau. Despite the fact that in Alzheimer’s disease (AD) a major focus of research has been the understanding of the connection between parenchymal amyloid plaques, tau aggregates in the form of neurofibrillary tangles (NFTs), and immune activation, the contribution of tau and neuroinflammation to neurodegeneration associated with CAA remains understudied. In this review, we discussed the existing evidence regarding the amyloid diversity in CAA and its relation to tau pathology and immune response, as well as the possible contribution of molecular and cellular mechanisms, previously associated with parenchymal amyloid in AD and AD-related dementias, to the pathogenesis of CAA. The detailed understanding of the “amyloid-tau-neuroinflammation” axis in the context of CAA could open the opportunity to develop therapeutic interventions for dementias associated with CAA that are currently being proposed for AD and AD-related dementias.
Collapse
|
25
|
A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer’s disease. Neurosci Lett 2019; 701:125-131. [DOI: 10.1016/j.neulet.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 11/22/2022]
|
26
|
You Y, Perkins A, Cisternas P, Muñoz B, Taylor X, You Y, Garringer HJ, Oblak AL, Atwood BK, Vidal R, Lasagna-Reeves CA. Tau as a mediator of neurotoxicity associated to cerebral amyloid angiopathy. Acta Neuropathol Commun 2019; 7:26. [PMID: 30808415 PMCID: PMC6390363 DOI: 10.1186/s40478-019-0680-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/17/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. Currently, there is no clear understanding of the mechanisms underlying the contribution of CAA to neurodegeneration. Despite the fact that CAA is highly associated with accumulation of Aβ, other types of amyloids have been shown to associate with the vasculature. Interestingly, in many cases, vascular amyloidosis is accompanied by significant tau pathology. However, the contribution of tau to neurodegeneration associated to CAA remains to be determined. We used a mouse model of Familial Danish Dementia (FDD), a neurodegenerative disease characterized by the accumulation of Danish amyloid (ADan) in the vasculature, to characterize the contribution of tau to neurodegeneration associated to CAA. We performed histological and biochemical assays to establish tau modifications associated with CAA in conjunction with cell-based and electrophysiological assays to determine the role of tau in the synaptic dysfunction associated with ADan. We demonstrated that ADan aggregates induced hyperphosphorylation and misfolding of tau. Moreover, in a mouse model for CAA, we observed tau oligomers closely associated to astrocytes in the vicinity of vascular amyloid deposits. We finally determined that the absence of tau prevents synaptic dysfunction induced by ADan oligomers. In addition to demonstrating the effect of ADan amyloid on tau misfolding, our results provide compelling evidence of the role of tau in neurodegeneration associated with ADan-CAA and suggest that decreasing tau levels could be a feasible approach for the treatment of CAA.
Collapse
|
27
|
Abstract
Familial Danish dementia (FDD) is a rare, autosomal dominant neurodegenerative disorder characterized by progressive hearing loss, cataracts, progressive ataxia, and dementia. While multiple pathophysiological studies exist in the literature, clinical case presentations are currently limited. We present a case of young-onset dementia in a 47-year-old patient with Danish heritage who was subsequently diagnosed FDD through genetic testing. Cognitive impairment was his initial symptom, followed by Parkinsonian symptoms, and mood disturbances. The patient experienced rapid decline over only 19 months. Increased awareness and understanding of familial forms of dementia (i.e., FDD) can contribute to an enhanced provision of care for patients with such conditions.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- a Department of Neurology , University of Kentucky College of Medicine , Lexington, KY, USA
| | - Timothy J Ainger
- a Department of Neurology , University of Kentucky College of Medicine , Lexington, KY, USA
| | - Dong Y Han
- a Department of Neurology , University of Kentucky College of Medicine , Lexington, KY, USA.,b Department of Neurosurgery , University of Kentucky College of Medicine , Lexington, KY, USA.,c Department of Physical Medicine & Rehabilitation , University of Kentucky College of Medicine , Lexington, KY, USA
| |
Collapse
|
28
|
Murray CE, Gami-Patel P, Gkanatsiou E, Brinkmalm G, Portelius E, Wirths O, Heywood W, Blennow K, Ghiso J, Holton JL, Mills K, Zetterberg H, Revesz T, Lashley T. The presubiculum is preserved from neurodegenerative changes in Alzheimer's disease. Acta Neuropathol Commun 2018; 6:62. [PMID: 30029687 PMCID: PMC6053705 DOI: 10.1186/s40478-018-0563-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
In the majority of affected brain regions the pathological hallmarks of Alzheimer’s disease (AD) are β-amyloid (Aβ) deposits in the form of diffuse and neuritic plaques, tau pathology in the form of neurofibrillary tangles, neuropil threads and plaque-associated abnormal neurites in combination with an inflammatory response. However, the anatomical area of the presubiculum, is characterised by the presence of a single large evenly distributed ‘lake-like’ Aβ deposit with minimal tau deposition or accumulation of inflammatory markers. Post-mortem brain samples from sporadic AD (SAD) and familial AD (FAD) and two hereditary cerebral amyloid diseases, familial British dementia (FBD) and familial Danish dementia (FDD) were used to compare the morphology of the extracellular proteins deposited in the presubiculum compared to the entorhinal cortex. The level of tau pathology and the extent of microglial activation were quantitated in the two brain regions in SAD and FAD. Frozen tissue was used to investigate the Aβ species and proteomic differences between the two regions. Consistent with our previous investigations of FBD and FDD cases we were able to establish that the ‘lake-like’ pre-amyloid deposits of the presubiculum were not a unique feature of AD but they also found two non-Aβ amyloidosis. Comparing the presubiculum to the entorhinal cortex the number of neurofibrillary tangles and tau load were significantly reduced; there was a reduction in microglial activation; there were differences in the Aβ profiles and the investigation of the whole proteome showed significant changes in different protein pathways. In summary, understanding why the presubiculum has a different morphological appearance, biochemical and proteomic makeup compared to surrounding brain regions severely affected by neurodegeneration could lead us to understanding protective mechanisms in neurodegenerative diseases.
Collapse
|
29
|
Martins F, Marafona AM, Pereira CD, Müller T, Loosse C, Kolbe K, da Cruz E Silva OAB, Rebelo S. Identification and characterization of the BRI2 interactome in the brain. Sci Rep 2018; 8:3548. [PMID: 29476059 PMCID: PMC5824958 DOI: 10.1038/s41598-018-21453-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/05/2018] [Indexed: 01/16/2023] Open
Abstract
BRI family proteins are ubiquitous type II transmembrane proteins but BRI2 is highly expressed in some neuronal tissues. Possible BRI2 functions include neuronal maturation and differentiation. Protein complexes appear to be important in mediating its functions. Previously described BRI2 interactors include the Alzheimer's amyloid precursor protein and protein phosphatase 1, but clearly the identification of novel interactors provides an important tool to understand the role and function of BRI2. To this end three rat brain regions (cerebellum, hippocampus, and cerebral cortex) were processed by BRI2 immunoprecipitation; co-precipitating proteins were identified by Nano-HPLC-MS/MS. The pool of the brain regions resulted in 511 BRI2 interacting proteins (BRI2 brain interactome) of which 120 were brain specific and 49 involved in neuronal differentiation. Brain region-specific analyses were also carried out for cerebellum, hippocampus, and cerebral cortex. Several novel BRI2 interactors were identified among them DLG4/PSD-95, which is singularly important as it places BRI2 in the postsynaptic compartment. This interaction was validated as well as the interaction with GAP-43 and synaptophysin. In essence, the resulting BRI2 brain interactome, associates this protein with neurite outgrowth and neuronal differentiation, as well as synaptic signalling and plasticity. It follows that further studies should address BRI2 particularly given its relevance to neuropathological conditions.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana M Marafona
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Cátia D Pereira
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Thorsten Müller
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
- Cell Signaling, Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Institute of Psychiatric Phenomics and Genomics, Clinical Center of the University of Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Christina Loosse
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
| | - Katharina Kolbe
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
- Cell Signaling, Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Institute of Psychiatric Phenomics and Genomics, Clinical Center of the University of Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Odete A B da Cruz E Silva
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
30
|
Erslev T. A brain worth keeping? Waste, value and time in contemporary brain banking. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2018; 67:16-23. [PMID: 29295774 DOI: 10.1016/j.shpsc.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 09/01/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
If a temporal rather than spatial concept of waste is adopted, novel categories emerge which are useful for identifying and understanding logics of temporality at play in determining what is kept in contemporary brain banks, and reveal that brain banks are constituted by more than stored materials. First, I apply the categories analytically on a recent UK brain banking discussion among professionals. This analysis highlights the importance of data in brain banks, as well as the centrality of ideas about pasts and futures in the discussions. Secondly, I investigate the case of a seven decades old, Danish brain bank which had been reduced to its physically stored material for 24 years, before being reinstituted in 2006. This case demonstrates the importance of material and conceptual infrastructures that co-constitute a collection, as they make up an experimental system that is crucial to maintaining the collection's continued relevance and usefulness as a scientific institution.
Collapse
Affiliation(s)
- Thomas Erslev
- Department of Philosophy and History of Ideas, School of Culture and Society, Aarhus University, Jens Chr. Skous Vej 7, 1465/426, DK-8000 Aarhus C Denmark.
| |
Collapse
|
31
|
Expression Pattern of the BCL6 and ITM2B Proteins in Normal Human Brains and in Alzheimer Disease. Appl Immunohistochem Mol Morphol 2018; 25:489-496. [PMID: 26862951 DOI: 10.1097/pai.0000000000000329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We reported that the integral membrane 2B gene (ITM2B, also called BRI2) is a target of BCL6 repression in lymphomas. Molecular alterations in ITM2B are associated with 2 neurodegenerative diseases, Familial British and Danish dementia, and dysregulation of ITM2B function has been implicated in the pathogenesis of Alzheimer disease (AD). Although ITM2B expression has been studied, the distribution of BCL6 in human brain has not been described. Our goal is to analyze BCL6 and ITM2B localization in normal human brains and in AD by immunohistochemistry to understand their relationship. We found that, in general, they have a reciprocal relationship. BCL6 expression is present in isolated cortical neurons, granule cells in the cerebellum, scattered glial cells, and in some cells of the ependyma and choroid plexus. ITM2B is expressed in most cortical neurons, neurons of the hippocampus and dentate nucleus, cerebellar Purkinje and granule cells, and (newly described here) in focal neurons in the basal ganglia, many neurons of the thalamus and brainstem, many cells in the ependyma and choroid plexus, and in the smooth muscle of blood vessels. ITM2B expression is prominent in plaques in AD-containing dystrophic neurites but absent in neurofibrillary tangles; BCL6 expression is absent in neurofibrillary tangles and in the nuclei of cells associated with plaques in AD. It is essential to understand the localization of BCL6 and ITM2B in the brain before considering manipulation of their expression as a potential therapeutic tool.
Collapse
|
32
|
Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia. Oncotarget 2017; 7:11923-44. [PMID: 26942869 PMCID: PMC4914259 DOI: 10.18632/oncotarget.7389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 12/26/2022] Open
Abstract
Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite -ß-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI.We have investigated further the pathogenic function of ß-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves ß-CTF, results in stabilization of ß-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits.
Collapse
|
33
|
Reddy GB, Reddy PY, Surolia A. Alzheimer's and Danish dementia peptides induce cataract and perturb retinal architecture in rats. Biomol Concepts 2017; 8:45-84. [PMID: 28222009 DOI: 10.1515/bmc-2016-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/08/2016] [Indexed: 02/08/2023] Open
Abstract
Familial Danish dementias (FDDs) are autosomal dominant neurodegenerative disorders that are associated with visual defects. In some aspects, FDD is similar to Alzheimer's disease (AD)- the amyloid deposits in FDD and AD are made of short peptides: amyloid β (Aβ) in AD and ADan in FDD. Previously, we demonstrated an interaction between the dementia peptides and α-crystallin leading to lens opacification in organ culture due to impaired chaperone activity of α-crystallin. Herein, we report the in vivo effects of ADan and Aβ on the eye. ADan [reduced (ADan-red) and oxidized (ADan-oxi)] and Aβ (Aβ1-40 and Aβ1-42) were injected intravitreally in rats. The onset of cataract was seen after injection of all the peptides, but the cataract matured by 2 weeks in the case of ADan-red, 5 weeks for ADan-oxi and 6 weeks for Aβ1-40, while Aβ1-42 had minimal effect on cataract progression. The severity of cataract is associated with insolubilization and alterations in crystallins and loss of chaperone activity of α-crystallin. Further, disruption of the architecture of the retina was evident from a loss of rhodopsin, increased gliosis, and the thinning of the retina. These results provide a basis for the dominant heredo-otoophthalmo-encephalopathy (HOOE)/FDD syndrome and indicate that ADan peptides are more potent than Aβpeptides in inflicting visual impairment.
Collapse
Affiliation(s)
- G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - P Yadagiri Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
34
|
Sami N, Rahman S, Kumar V, Zaidi S, Islam A, Ali S, Ahmad F, Hassan MI. Protein aggregation, misfolding and consequential human neurodegenerative diseases. Int J Neurosci 2017; 127:1047-1057. [PMID: 28110595 DOI: 10.1080/00207454.2017.1286339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are major components of the biological functions in a cell. Biology demands that a protein must fold into its stable three-dimensional structure to become functional. In an unfavorable cellular environment, protein may get misfolded resulting in its aggregation. These conformational disorders are directly related to the tissue damage resulting in cellular dysfunction giving rise to different diseases. This way, several neurodegenerative diseases such as Alzheimer, Parkinson Huntington diseases and amyotrophic lateral sclerosis are caused. Misfolding of the protein is prevented by innate molecular chaperones of different classes. It is envisaged that work on this line is likely to translate the knowledge into the development of possible strategies for early diagnosis and efficient management of such related human diseases. The present review deals with the human neurodegenerative diseases caused due to the protein misfolding highlighting pathomechanisms and therapeutic intervention.
Collapse
Affiliation(s)
- Neha Sami
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Safikur Rahman
- b Department of Medical Biotechnology , Yeungnam University , Gyeongsan , South Korea
| | - Vijay Kumar
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Sobia Zaidi
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Sher Ali
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
35
|
Abstract
The chapter describes the epidemiology of cerebrovascular diseases, anatomy of the cerebral blood vessels, pathophysiology of ischemia, hypoxia, hypoxemia, anemic hypoxia, histotoxic hypoxia, carbon monoxide damage, hyperoxid brain damage and decompression sickness, and selective cell and regional vulnerability; diseases of the blood vessels including atherosclerosis, hypertensive angiopathy, small vessel disease, inflammatory vascular diseases, cerebral amyloid angiopathies, CADASIL, CARASIL and other diseases that can lead to cerebrovascular occlusion; intracranial and intraspinal aneurysms and vascular malformations; hematologic disorders that can cause cerebral infarct or hemorrhage; brain ischemic damage; and spontaneous intracranial bleeding. Within ischemic brain damage, focal cerebral ischemia, hemorrhagic infarct, brain edema, penumbra, global cerebral ischemia, venous thrombosis, lacunas and lacunar state, status cribosus, granular atrophy of the cerebral cortex, hippocampal sclerosis, vascular leukoencephalopathy Binswanger type and multi-infarct encephalopathy are discussed in detail. Cognitive impairment of vascular origin deserves an individual section.
Collapse
Affiliation(s)
- Isidro Ferrer
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.
| | - Noemi Vidal
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Garringer HJ, Sammeta N, Oblak A, Ghetti B, Vidal R. Amyloid and intracellular accumulation of BRI 2. Neurobiol Aging 2016; 52:90-97. [PMID: 28131015 DOI: 10.1016/j.neurobiolaging.2016.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/29/2016] [Accepted: 12/18/2016] [Indexed: 01/07/2023]
Abstract
Familial British dementia (FBD) and familial Danish dementia (FDD) are caused by mutations in the BRI2 gene. These diseases are characterized clinically by progressive dementia and ataxia and neuropathologically by amyloid deposits and neurofibrillary tangles. Herein, we investigate BRI2 protein accumulation in FBD, FDD, Alzheimer disease and Gerstmann-Sträussler-Scheinker disease. In FBD and FDD, we observed reduced processing of the mutant BRI2 pro-protein, which was found accumulating intracellularly in the Golgi of neurons and glial cells. In addition, we observed an accumulation of a mature form of BRI2 protein in dystrophic neurites, surrounding amyloid cores. Accumulation of BRI2 was also observed in dystrophic neurites of Alzheimer disease and Gerstmann-Sträussler-Scheinker disease cases. Although it remains to be determined whether intracellular accumulation of BRI2 may lead to cell damage in these degenerative diseases, our study provides new insights into the role of mutant BRI2 in the pathogenesis of FBD and FDD and implicates BRI2 as a potential indicator of neuritic damage in diseases characterized by cerebral amyloid deposition.
Collapse
Affiliation(s)
- Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neeraja Sammeta
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian Oblak
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
37
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
38
|
Tacik P, Sanchez-Contreras M, Rademakers R, Dickson DW, Wszolek ZK. Genetic Disorders with Tau Pathology: A Review of the Literature and Report of Two Patients with Tauopathy and Positive Family Histories. NEURODEGENER DIS 2015; 16:12-21. [PMID: 26550830 DOI: 10.1159/000440840] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tauopathies are a group of neurodegenerative disorders characterized by the pathological accumulation of hyperphosphorylated and insoluble tau protein within neurons and glia. Although most cases are sporadic, hereditary tauopathies have also been reported. SUMMARY In this article, we review genetic disorders in which tau pathology has been reported and present two novel families with primary tauopathies. Mutations in the microtubule-associated protein tau gene (MAPT) cause a small subset of primary tauopathies. Mutations in 21 other genes and an 18q deletion syndrome have also been reported to be associated with tau pathology reminiscent of Alzheimer's disease, corticobasal degeneration, progressive supranuclear palsy, argyrophilic grain disease or Pick's disease. In 8 of the 21 genes, tau pathology was only seen in cases with some 'specific' mutations. In the remaining genes, tau pathology, often in the form of Alzheimer-type neurofibrillary lesions, was a common finding but was 'not mutation specific'. The probands of the two families were diagnosed with progressive supranuclear palsy based on clinicopathological evaluation. Their family histories were relevant for parkinsonism in 3 siblings of family 1 and 1 brother and the father from family 2, but these were not autopsy-confirmed. DNA from the brains of the probands from these families was screened for MAPT and leucine-rich repeat kinase 2 gene mutations, but no mutations were identified. KEY MESSAGES MAPT mutations are a cause of familial tauopathies, but other genes have also been associated with tau pathology. Novel genes still await discovery.
Collapse
Affiliation(s)
- Pawel Tacik
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Fla., USA
| | | | | | | | | |
Collapse
|
39
|
Biundo F, Ishiwari K, Del Prete D, D'Adamio L. Interaction of ApoE3 and ApoE4 isoforms with an ITM2b/BRI2 mutation linked to the Alzheimer disease-like Danish dementia: Effects on learning and memory. Neurobiol Learn Mem 2015; 126:18-30. [PMID: 26528887 DOI: 10.1016/j.nlm.2015.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Mutations in Amyloid β Precursor Protein (APP) and in genes that regulate APP processing--such as PSEN1/2 and ITM2b/BRI2--cause familial dementia, such Familial Alzheimer disease (FAD), Familial Danish (FDD) and British (FBD) dementias. The ApoE gene is the major genetic risk factor for sporadic AD. Three major variants of ApoE exist in humans (ApoE2, ApoE3, and ApoE4), with the ApoE4 allele being strongly associated with AD. ITM2b/BRI2 is also a candidate regulatory node genes predicted to mediate the common patterns of gene expression shared by healthy ApoE4 carriers and late-onset AD patients not carrying ApoE4. This evidence provides a direct link between ITM2b/BRI2 and ApoE4. To test whether ApoE4 and pathogenic ITM2b/BRI2 interact to modulate learning and memory, we crossed a mouse carrying the ITM2b/BRI2 mutations that causes FDD knocked-in the endogenous mouse Itm2b/Bri2 gene (FDDKI mice) with human ApoE3 and ApoE4 targeted replacement mice. The resultant ApoE3, FDDKI/ApoE3, ApoE4, FDDKI/ApoE4 male mice were assessed longitudinally for learning and memory at 4, 6, 12, and 16-17 months of age. The results showed that ApoE4-carrying mice displayed spatial working/short-term memory deficits relative to ApoE3-carrying mice starting in early middle age, while long-term spatial memory of ApoE4 mice was not adversely affected even at 16-17 months, and that the FDD mutation impaired working/short-term spatial memory in ApoE3-carrying mice and produced impaired long-term spatial memory in ApoE4-carrying mice in middle age. The present results suggest that the FDD mutation may differentially affect learning and memory in ApoE4 carriers and non-carriers.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Keita Ishiwari
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Dolores Del Prete
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Luciano D'Adamio
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States.
| |
Collapse
|
40
|
Todd K, Ghiso J, Rostagno A. Oxidative stress and mitochondria-mediated cell death mechanisms triggered by the familial Danish dementia ADan amyloid. Neurobiol Dis 2015; 85:130-143. [PMID: 26459115 DOI: 10.1016/j.nbd.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
Familial Danish Dementia (FDD), an early-onset non-amyloid-β (Aβ) cerebral amyloidosis, is neuropathologically characterized by widespread cerebral amyloid angiopathy, parenchymal amyloid and preamyloid deposits, as well as neurofibrillary degeneration indistinguishable to that seen in Alzheimer's disease (AD). The main amyloid subunit composing FDD lesions, a 34-amino acid de-novo generated peptide ADan, is the direct result of a genetic defect at the 3'-end of the BRI2 gene and the physiologic action of furin-like proteolytic processing at the C-terminal region of the ADan precursor protein. We aimed to study the impact of the FDD mutation, the additional formation of the pyroglutamate (pE) posttranslational modification as well as the relevance of C-terminal truncations -all major components of the heterogeneous FDD deposits- on the structural and neurotoxic properties of the molecule. Our data indicates that whereas the mutation generated a β-sheet-rich hydrophobic ADan subunit of high oligomerization/fibrillization propensity and the pE modification further enhanced these properties, C-terminal truncations had the opposite effect mostly abolishing these features. The potentiation of pro-amyloidogenic properties correlated with the initiation of neuronal cell death mechanisms involving oxidative stress, perturbation of mitochondrial membrane potential, release of mitochondrial cytochrome c, and downstream activation of caspase-mediated apoptotic pathways. The amyloid-induced toxicity was inhibited by targeting specific components of these detrimental cellular pathways, using reactive oxygen scavengers and monoclonal antibodies recognizing the pathological amyloid subunit. Taken together, the data indicate that the FDD mutation and the pE posttranslational modification are both primary elements driving intact ADan into an amyloidogenic/neurotoxic pathway while truncations at the C-terminus eliminate the pro-amyloidogenic characteristics of the molecule, likely reflecting effect of physiologic clearance mechanisms.
Collapse
Affiliation(s)
- Krysti Todd
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
41
|
Abstract
Here we review the similarities between a rare inherited disorder, familial British dementia (FBD), and the most common of all late-life neurological conditions, Alzheimer's diseases (AD). We describe the symptoms, pathology and genetics of FBD, the biology of the BRI2 protein and mouse models of FBD and familial Danish dementia. In particular, we focus on the evolving recognition of the importance of protein oligomers and aberrant processing of the amyloid β-protein precursor (APP) - themes that are common to both FBD and AD. The initial discovery that FBD is phenotypically similar to AD, but associated with the deposition of an amyloid peptide (ABri) distinct from the amyloid β-protein (Aβ) led many to assume that amyloid production alone is sufficient to initiate disease and that ABri is the molecular equivalent of Aβ. Parallel with work on Aβ, studies of ABri producing animal models and in vitro ABri toxicity experiments caused a revision of the amyloid hypothesis and a focus on soluble oligomers of Aβ and ABri. Contemporaneous other studies suggested that loss of the ABri precursor protein (BRI2) may underlie the cognitive deficits in FBD. In this regard it is important to note that BRI2 has been shown to interact with and regulate the processing of APP, and that mutant BRI2 leads to altered cleavage of APP. A synthesis of these results suggests that a “two-hit mechanism” better explains FBD than earlier toxic gain of function and toxic loss of function models. The lessons learned from the study of FBD imply that the molecular pathology of AD is also likely to involve both aberrant aggregation (in AD, Aβ) and altered APP processing. With regard to FBD, we propose that the C-terminal 11 amino acid of FBD-BRI2 interfere with both the normal function of BRI2 and promotes the production of cystine cross-linked toxic ABri oligomers. In this scenario, loss of BRI2 function leads to altered APP processing in as yet underappreciated ways. Given the similarities between FBD and AD it seems likely that study of the structure of ABri oligomers and FBD-induced changes in APP metabolites will further our understanding of AD.
Collapse
Affiliation(s)
- Adam Cantlon
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Republic of Ireland ; Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Carlo Sala Frigerio
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Republic of Ireland
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
42
|
Marcora MS, Fernández-Gamba AC, Avendaño LA, Rotondaro C, Podhajcer OL, Vidal R, Morelli L, Ceriani MF, Castaño EM. Amyloid peptides ABri and ADan show differential neurotoxicity in transgenic Drosophila models of familial British and Danish dementia. Mol Neurodegener 2014; 9:5. [PMID: 24405716 PMCID: PMC3898387 DOI: 10.1186/1750-1326-9-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/29/2013] [Indexed: 11/16/2022] Open
Abstract
Background Familial British and Familial Danish dementias (FBD and FDD, respectively) are associated with mutations in the BRI2 gene. Processing of the mutated BRI2 protein leads to the accumulation in the brain of the 34-mer amyloid Bri (ABri) and amyloid Dan (ADan) peptides, accompanied by neurofibrillary tangles. Recently, transgenic mice successfully reproduced different aspects of FDD, while modeling of FBD in vivo has been more difficult. In this work we have modeled FBD and FDD in Drosophila and tested the hypothesis that ABri and ADan are differentially neurotoxic. Results By using site-directed insertion, we generated transgenic lines carrying ABri, ADan, Bri2-23 (the normal product of wild-type BRI2 processing) and amyloid-β (Aβ) 1–42 as a well-characterized neurotoxic peptide, alone or with a His-tag. Therefore, we avoided random insertion effects and were able to compare levels of accumulation accurately. Peptides were expressed with the GAL4-Upstream Activating Sequence (UAS) system using specific drivers. Despite low levels of expression, toxicity in the eye was characterized by mild disorganization of ommatidia and amyloid peptides accumulation. The highest toxicity was seen for ADan, followed by Aβ42 and ABri. Pan-neuronal expression in the CNS revealed an age-dependent toxicity of amyloid peptides as determined by the ability of flies to climb in a geotaxis paradigm when compared to Bri2-23. This effect was stronger for ADan, detected at 7 days post-eclosion, and followed by ABri and Aβ42, whose toxicity became evident after 15 and 21 days, respectively. Histological analysis showed mild vacuolization and thioflavine-S-negative deposits of amyloid peptides. In contrast, the over-expression of amyloid peptides in the specific subset of lateral neurons that control circadian locomotor activity showed no toxicity. Conclusions Our results support the differential neurotoxicity of ADan and ABri in the Drosophila eye and CNS at low expression levels. Such differences may be partially attributed to rates of aggregation and accumulation. In the CNS, both peptides appear to be more neurotoxic than wild-type Aβ42. These Drosophila models will allow a systematic and unambiguous comparison of differences and similarities in the mechanisms of toxicity of diverse amyloid peptides associated with dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eduardo M Castaño
- From Fundación Instituto Leloir, Av, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
43
|
Watson D, Castaño E, Kokjohn TA, Kuo YM, Lyubchenko Y, Pinsky D, Connolly ES, Esh C, Luehrs DC, Stine WB, Rowse LM, Emmerling MR, Roher AE. Physicochemical characteristics of soluble oligomeric Aβand their pathologic role in Alzheimer's disease. Neurol Res 2013; 27:869-81. [PMID: 16354549 DOI: 10.1179/016164105x49436] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular fibrillar amyloid deposits are prominent and universal Alzheimer's disease (AD) features, but senile plaque abundance does not always correlate directly with the degree of dementia exhibited by AD patients. The mechanism(s) and dynamics of Abeta fibril genesis and deposition remain obscure. Enhanced Abeta synthesis rates coupled with decreased degradative enzyme production and accumulating physical modifications that dampen proteolysis may all enhance amyloid deposit formation. Amyloid accumulation may indirectly exert the greatest pathologic effect on the brain vasculature by destroying smooth muscle cells and creating a cascade of negative impacts on cerebral blood flow. The most visible manifestation of amyloid dis-equilibrium could actually be a defense mechanism employed to avoid serious vascular wall degradation while the major toxic effects to the gray and white matter neurons are mediated by soluble oligomeric Abeta peptides with high beta-sheet content. The recognition that dynamic soluble oligomeric Abeta pools exist in AD and are correlated to disease severity led to neurotoxicity and physical conformation studies. It is now recognized that the most basic soluble Abeta peptides are stable dimers with hydrophobic regions sequestered from the aqueous environment and are capable of higher order aggregations. Time course experiments employing a modified ELISA method able to detect Abeta oligomers revealed dynamic intermolecular interactions and additional experiments physically confirmed the presence of stable amyloid multimers. Amyloid peptides that are rich in beta-sheet structure are capable of creating toxic membrane ion channels and a capacity to self-assemble as annular structures was confirmed in vitro using atomic force microscopy. Biochemical studies have established that soluble Abeta peptides perturb metabolic processes, provoke release of deleterious reactive compounds, reduce blood flow, induce mitochondrial apoptotic toxicity and inhibit angiogenesis. While there is no question that gross amyloid deposition does contribute to AD pathology, the destructive potential now associated with soluble Abeta suggests that treatment strategies that target these molecules may be efficacious in preventing some of the devastating effects of AD.
Collapse
Affiliation(s)
- Desiree Watson
- Pfizer, Global Research and Development, Ann Arbor, MI 48106 USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Massive accumulation of 11C-Pittsburg compound B in the occipital lobes of a patient with early-onset dementia accompanied by muscle weakness and hypertonicity. Ann Nucl Med 2013; 27:935-41. [DOI: 10.1007/s12149-013-0762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/08/2013] [Indexed: 11/26/2022]
|
45
|
Garringer HJ, Murrell J, Sammeta N, Gnezda A, Ghetti B, Vidal R. Increased tau phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic mice. PLoS One 2013; 8:e56426. [PMID: 23418567 PMCID: PMC3572042 DOI: 10.1371/journal.pone.0056426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/10/2013] [Indexed: 01/24/2023] Open
Abstract
Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease caused by a 10-nucleotide duplication-insertion in the BRI2 gene. FDD is clinically characterized by loss of vision, hearing impairment, cerebellar ataxia and dementia. The main neuropathologic findings in FDD are the deposition of Danish amyloid (ADan) and the presence of neurofibrillary tangles (NFTs). Here we investigated tau accumulation and truncation in double transgenic (Tg-FDD-Tau) mice generated by crossing transgenic mice expressing human Danish mutant BRI2 (Tg-FDD) with mice expressing human 4-repeat mutant Tau-P301S (Tg-Tau). Compared to Tg-Tau mice, we observed a significant enhancement of tau deposition in Tg-FDD-Tau mice. In addition, a significant increase in tau cleaved at aspartic acid (Asp) 421 was observed in Tg-FDD-Tau mice. Tg-FDD-Tau mice also showed a significant decrease in synaptophysin levels, occurring before widespread deposition of fibrillar ADan and tau can be observed. Thus, the presence of soluble ADan/mutant BRI2 can lead to significant changes in tau metabolism and synaptic dysfunction. Our data provide new in vivo insights into the pathogenesis of FDD and the pathogenic pathway(s) by which amyloidogenic peptides, regardless of their primary amino acid sequence, can cause neurodegeneration.
Collapse
Affiliation(s)
- Holly J. Garringer
- Department of Pathology and Laboratory Medicine and Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (RV); (HJG)
| | - Jill Murrell
- Department of Pathology and Laboratory Medicine and Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Neeraja Sammeta
- Department of Pathology and Laboratory Medicine and Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Anita Gnezda
- Department of Pathology and Laboratory Medicine and Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine and Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine and Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (RV); (HJG)
| |
Collapse
|
46
|
Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, Brody DL. Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol 2013; 73:104-19. [PMID: 23225543 PMCID: PMC3563737 DOI: 10.1002/ana.23748] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although amyloid-beta (Aβ) peptide deposition into insoluble plaques is a pathological hallmark of Alzheimer disease; soluble oligomeric Aβ has been hypothesized to more directly underlie impaired learning and memory in dementia of the Alzheimer type. However, the lack of a sensitive, specific, and quantitative assay for Aβ oligomers has hampered rigorous tests of this hypothesis. METHODS We developed a plate-based single molecule counting fluorescence immunoassay for oligomeric Aβ sensitive to low pg/ml concentrations of synthetic Aβ dimers using the same Aβ-specific monoclonal antibody to both capture and detect Aβ. The Aβ oligomer assay does not recognize monomeric Aβ, amyloid precursor protein, or other non-Aβ peptide oligomers. RESULTS Aβ oligomers were detected in aqueous cortical lysates from patients with dementia of the Alzheimer type and nondemented patients with Aβ plaque pathology. However, Aβ oligomer concentrations in demented patients' lysates were tightly correlated with Aβ plaque coverage (r = 0.88), but this relationship was weaker in those from nondemented patients (r = 0.30) despite equivalent Aβ plaque pathology. The ratio of Aβ oligomer levels to plaque density fully distinguished demented from nondemented patients, with no overlap between groups in this derived variable. Other Aβ and plaque measures did not distinguish demented from nondemented patients. Aβ oligomers were not detected in cerebrospinal fluid with this assay. INTERPRETATION The results raise the intriguing hypothesis that the linkage between plaques and oligomers may be a key pathophysiological event underlying dementia of the Alzheimer type. This Aβ oligomer assay may be useful for many tests of the oligomer hypothesis.
Collapse
Affiliation(s)
| | - Hanzhi Zhao
- Department of Neurology, Washington University School of Medicine
| | - John R. Cirrito
- Department of Neurology, Washington University School of Medicine
- Hope Center for Neurological Disorders, Washington University School of Medicine
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine
- Hope Center for Neurological Disorders, Washington University School of Medicine
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine
- Hope Center for Neurological Disorders, Washington University School of Medicine
- Department of Developmental Biology, Washington University School of Medicine
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine
| | - David L. Brody
- Department of Neurology, Washington University School of Medicine
- Hope Center for Neurological Disorders, Washington University School of Medicine
| |
Collapse
|
47
|
Saul A, Lashley T, Revesz T, Holton J, Ghiso JA, Coomaraswamy J, Wirths O. Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. Neurobiol Aging 2012; 34:1416-25. [PMID: 23261769 DOI: 10.1016/j.neurobiolaging.2012.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/17/2012] [Accepted: 11/22/2012] [Indexed: 11/15/2022]
Abstract
Familial British and familial Danish dementia (FDD) are progressive neurodegenerative disorders characterized by cerebral deposition of the amyloidogenic peptides ABri and ADan, respectively. These amyloid peptides start with an N-terminal glutamate residue, which can be posttranslationally converted into a pyroglutamate (pGlu) modified form, a mechanism which has been extensively described to be relevant for amyloid-beta (Aβ) peptides in Alzheimer's disease. Like pGlu-Aβ peptides, pGlu-ABri peptides have an increased aggregation propensity and show higher toxicity on human neuroblastoma cells as their nonmodified counterparts. We have generated novel N-terminal specific antibodies detecting the pGlu-modified forms of ABri and ADan peptides. With these antibodies we were able to identify abundant extracellular amyloid plaques, vascular, and parenchymal deposits in human familial British dementia and FDD brain tissue, and in a mouse model for FDD. Double-stainings using C-terminal specific antibodies in human samples revealed that highly aggregated pGlu-ABri and pGlu-ADan peptides are mainly present in plaque cores and central vascular deposits, leading to the assumption that these peptides have seeding properties. Furthermore, in an FDD-mouse model ADan peptides were detected in presynaptic terminals of the hippocampus where they might contribute to impaired synaptic transmission. These similarities of ABri and ADan to Aβ in Alzheimer's disease suggest that the posttranslational pGlu-modification of amyloid peptides might represent a general pathological mechanism leading to increased aggregation and toxicity in these forms of degenerative dementias.
Collapse
Affiliation(s)
- Anika Saul
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Matsuda S, Tamayev R, D'Adamio L. Increased AβPP processing in familial Danish dementia patients. J Alzheimers Dis 2012; 27:385-91. [PMID: 21841249 DOI: 10.3233/jad-2011-110785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An autosomal dominant mutation in the BRI2/ITM2B gene causes Familial Danish Dementia (FDD). We have generated a mouse model of FDD, called FDDKI, genetically congruous to the human disease. These mice carry one mutant and one wild type Bri2/Itm2b allele, like FDD patients. Analysis of FDDKI mice and samples from human patients has shown that the Danish mutation causes loss of Bri2 protein. FDDKI mice show synaptic plasticity and memory impairments. BRI2 is a physiological interactor of amyloid-β protein precursor (AβPP), a gene associated with Alzheimer's disease, which inhibits processing of AβPP. AβPP/Bri2 complexes are reduced in synaptic membranes of FDDKI mice. Consequently, AβPP metabolites derived from processing of AβPP by β-, α-, and γ-secretases are increased in Danish dementia mice. AβPP haplodeficiency prevents memory and synaptic dysfunctions, consistent with a role for AβPP-metabolites in the pathogenesis of memory and synaptic deficits. This genetic suppression provides compelling evidence that AβPP and BRI2 functionally interact. Here, we have investigated whether AβPP processing is altered in FDD patients' brain samples. We find that the levels of several AβPP metabolites, including Aβ, are significantly increased in the brain sample derived from an FDD patient. Our data are consistent with the findings in FDDKI mice, and support the hypothesis that the neurological effects of the Danish form of BRI2 are caused by toxic AβPP metabolites, suggesting that Familial Danish and Alzheimer's dementias share common pathogenic mechanisms.
Collapse
Affiliation(s)
- Shuji Matsuda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
49
|
Memory deficits of British dementia knock-in mice are prevented by Aβ-precursor protein haploinsufficiency. J Neurosci 2012; 32:5481-5. [PMID: 22514310 DOI: 10.1523/jneurosci.5193-11.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Familial British Dementia (FBD) is caused by an autosomal dominant mutation in the BRI2/ITM2B gene (Vidal et al., 1999). FBD(KI) mice are a model of FBD that is genetically congruous to the human disease, because they carry one mutant and one wild-type Bri2/Itm2b allele. Analysis of these mice has shown that the British mutation causes memory impairments due to loss of Bri2 function (Tamayev et al., 2010b). BRI2 is a physiologic inhibitor of processing of the Aβ-precursor protein (APP; Matsuda et al., 2008), a gene associated with Alzheimer's disease (Bertram et al., 2010). Here we show that APP haploinsufficiency prevents memory dysfunctions seen in FBD(KI) mice. This genetic suppression is consistent with a role for APP in the pathogenesis of memory deficits. Moreover, it provides compelling evidence that the memory dysfunctions caused by the British BRI2 mutant are dependent on endogenous APP and that BRI2 and APP functionally interact. This evidence establishes a mechanistic connection between Familial British and Alzheimer's dementias.
Collapse
|
50
|
Proteomic characterization of a mouse model of familial Danish dementia. J Biomed Biotechnol 2012; 2012:728178. [PMID: 22619496 PMCID: PMC3350990 DOI: 10.1155/2012/728178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
A dominant mutation in the ITM2B/BRI2 gene causes familial Danish dementia (FDD) in humans. To model FDD in animal systems, a knock-in approach was recently implemented in mice expressing a wild-type and mutant allele, which bears the FDD-associated mutation. Since these FDD(KI) mice show behavioural alterations and impaired synaptic function, we characterized their synaptosomal proteome via two-dimensional differential in-gel electrophoresis. After identification by nanoliquid chromatography coupled to electrospray-linear ion trap tandem mass spectrometry, the differentially expressed proteins were classified according to their gene ontology descriptions and their predicted functional interactions. The Dlg4/Psd95 scaffold protein and additional signalling proteins, including protein phosphatases, were revealed by STRING analysis as potential players in the altered synaptic function of FDD(KI) mice. Immunoblotting analysis finally demonstrated the actual downregulation of the synaptosomal scaffold protein Dlg4/Psd95 and of the dual-specificity phosphatase Dusp3 in the synaptosomes of FDD(KI) mice.
Collapse
|