1
|
Mathis CA, Lopresti BJ, Ikonomovic MD, Klunk WE. Small-molecule PET Tracers for Imaging Proteinopathies. Semin Nucl Med 2017; 47:553-575. [PMID: 28826526 DOI: 10.1053/j.semnuclmed.2017.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this chapter, we provide a review of the challenges and advances in developing successful PET imaging agents for 3 major types of aggregated amyloid proteins: amyloid-beta (Aβ), tau, and alpha-synuclein (α-syn). These 3 amyloids are involved in the pathogenesis of a variety of neurodegenerative diseases, referred to as proteinopathies or proteopathies, that include Alzheimer disease, Lewy body dementias, multiple system atrophy, and frontotemporal dementias, among others. In the Introduction section, we briefly discuss the history of amyloid in neurodegenerative diseases and describe why progress in developing effective imaging agents has been hampered by the failure of crystallography to provide definitive ligand-protein interactions for rational radioligand design efforts. Instead, the field has relied on largely serendipitous, trial-and-error methods to achieve useful and specific PET amyloid imaging tracers for Aβ, tau, and α-syn deposits. Because many of the proteopathies involve more than 1 amyloid protein, it is important to develop selective PET tracers for the different amyloids to help assess the relative contribution of each to total amyloid burden. We use Pittsburgh compound B to illustrate some of the critical steps in developing a potent and selective Aβ PET imaging agent. Other selective Aβ and tau PET imaging compounds have followed similar pathways in their developmental processes. Success for selective α-syn PET imaging agents has not been realized yet, but work is ongoing in multiple laboratories throughout the world. In the tau sections, we provide background regarding 3-repeat (3R) and 4-repeat (4R) tau proteins and how they can affect the binding of tau radioligands in different tauopathies. We review the ongoing efforts to assess the properties of tau ligands, which are useful in 3R, 4R, or combined 3R-4R tauopathies. Finally, we describe in the α-syn sections recent attempts to develop selective tracers to image α-synucleinopathies.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
2
|
Kawasaki M, Fuchigami T, Kobashi N, Nakagaki T, Sano K, Atarashi R, Yoshida S, Haratake M, Nishida N, Nakayama M. Development of radioiodinated acridine derivatives for in vivo imaging of prion deposits in the brain. Bioorg Med Chem 2016; 25:1085-1093. [PMID: 28041803 DOI: 10.1016/j.bmc.2016.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023]
Abstract
Prion diseases are caused by deposition of abnormal prion protein aggregates (PrPSc) in the central nervous system. This study aimed to develop in vivo imaging probes that can detect cerebral PrPSc deposits. We synthesized several quinacrine-based acridine (AC) derivatives with 2,9-substitution and radioiodinated them. The AC derivatives were evaluated as prion-imaging probes using recombinant mouse prion protein (rMoPrP) aggregates and brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. The distribution of these compounds in mice was also evaluated. The 2-methoxy derivative [125I]2 exhibited the highest binding affinity for rMoPrP aggregates with an equilibrium dissociation constant (Kd) value of 43.4nM. Fluorescence imaging with 2 showed clear signals at the thioflavin T (ThT)-positive amyloid deposits in the mBSE-infected mouse brain. Although a discrepancy was observed between the in vitro binding of AC derivatives to the aggregates and in vivo distribution of these compounds in the brain and we failed to identify prospective prion-imaging probes in this study, the AC derivatives may be considered a useful scaffold for the development of in vivo imaging probes. Further chemical modification of these AC derivatives may discover clinically applicable prion imaging probes.
Collapse
Affiliation(s)
- Masao Kawasaki
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Nobuya Kobashi
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazunori Sano
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Ryuichiro Atarashi
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mamoru Haratake
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
3
|
Arango-Lievano M, Giannoni P, Claeysen S, Marchi N, Jeanneteau F. Longitudinal In Vivo Imaging of the Cerebrovasculature: Relevance to CNS Diseases. J Vis Exp 2016. [PMID: 28060355 DOI: 10.3791/54796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Remodeling of the brain vasculature is a common trait of brain pathologies. In vivo imaging techniques are fundamental to detect cerebrovascular plasticity or damage occurring overtime and in relation to neuronal activity or blood flow. In vivo two-photon microscopy allows the study of the structural and functional plasticity of large cellular units in the living brain. In particular, the thinned-skull window preparation allows the visualization of cortical regions of interest (ROI) without inducing significant brain inflammation. Repetitive imaging sessions of cortical ROI are feasible, providing the characterization of disease hallmarks over time during the progression of numerous CNS diseases. This technique accessing the pial structures within 250 μm of the brain relies on the detection of fluorescent probes encoded by genetic cellular markers and/or vital dyes. The latter (e.g., fluorescent dextrans) are used to map the luminal compartment of cerebrovascular structures. Germane to the protocol described herein is the use of an in vivo marker of amyloid deposits, Methoxy-O4, to assess Alzheimer's disease (AD) progression. We also describe the post-acquisition image processing used to track vascular changes and amyloid depositions. While focusing presently on a model of AD, the described protocol is relevant to other CNS disorders where pathological cerebrovascular changes occur.
Collapse
Affiliation(s)
| | - Patrizia Giannoni
- Inserm, U1191, Institute of Functional Genomics; CNRS, UMR-5203; Université de Montpellier
| | - Sylvie Claeysen
- Inserm, U1191, Institute of Functional Genomics; CNRS, UMR-5203; Université de Montpellier
| | - Nicola Marchi
- Inserm, U1191, Institute of Functional Genomics; CNRS, UMR-5203; Université de Montpellier;
| | - Freddy Jeanneteau
- Inserm, U1191, Institute of Functional Genomics; CNRS, UMR-5203; Université de Montpellier;
| |
Collapse
|
4
|
Bisht K, El Hajj H, Savage JC, Sánchez MG, Tremblay MÈ. Correlative Light and Electron Microscopy to Study Microglial Interactions with β-Amyloid Plaques. J Vis Exp 2016. [PMID: 27286292 DOI: 10.3791/54060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A detailed protocol is provided here to identify amyloid Aβ plaques in brain sections from Alzheimer's disease mouse models before pre-embedding immunostaining (specifically for ionized calcium-binding adapter molecule 1 (IBA1), a calcium binding protein expressed by microglia) and tissue processing for electron microscopy (EM). Methoxy-X04 is a fluorescent dye that crosses the blood-brain barrier and selectively binds to β-pleated sheets found in dense core Aβ plaques. Injection of the animals with methoxy-X04 prior to sacrifice and brain fixation allows pre-screening and selection of the plaque-containing brain sections for further processing with time-consuming manipulations. This is particularly helpful when studying early AD pathology within specific brain regions or layers that may contain very few plaques, present in only a small fraction of the sections. Post-mortem processing of tissue sections with Congo Red, Thioflavin S, and Thioflavin T (or even with methoxy-X04) can label β-pleated sheets, but requires extensive clearing with ethanol to remove excess dye and these procedures are incompatible with ultrastructural preservation. It would also be inefficient to perform labeling for Aβ (and other cellular markers such as IBA1) on all brain sections from the regions of interest, only to yield a small fraction containing Aβ plaques at the right location. Importantly, Aβ plaques are still visible after tissue processing for EM, allowing for a precise identification of the areas (generally down to a few square millimeters) to examine with the electron microscope.
Collapse
|
5
|
Caobelli F, Cobelli M, Pizzocaro C, Pavia M, Magnaldi S, Guerra UP. The role of neuroimaging in evaluating patients affected by Creutzfeldt-Jakob disease: a systematic review of the literature. J Neuroimaging 2014; 25:2-13. [PMID: 24593302 DOI: 10.1111/jon.12098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 12/13/2022] Open
Abstract
Diagnosis of Creutzfeldt-Jakob disease during life can be challenging since the huge variability of the symptoms which can be observed, especially in its early stages, may simulate other common forms of dementia. In latest years, noninvasive techniques such as magnetic resonance, positron emission tomography, and single-photon emission tomography have been evaluated to help clinical neurologists to provide a definite diagnosis. We here provide a systematic review of the current knowledge of neuroimaging in CJD in order to establish the actual state of the art.
Collapse
Affiliation(s)
- Federico Caobelli
- Department of Nuclear Medicine, Fondazione Poliambulanza, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tomography β-amyloid plaque imaging agents. Semin Nucl Med 2013; 42:423-32. [PMID: 23026364 DOI: 10.1053/j.semnuclmed.2012.07.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For 100 years, β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) have been recognized as the neuropathological hallmarks of Alzheimer's disease (AD), and their presence or absence could only be assessed postmortem using stains and dyes that identified these microscopic structures. Approximately 10 years ago, the first successful Aβ plaque-specific positron emission tomography (PET) imaging study was conducted in a living human subject clinically diagnosed with probable AD using the (11)C-labeled radiopharmaceutical Pittsburgh Compound B (PiB). Laboratory studies and preclinical evaluations to design PiB began a decade earlier than the first human PiB PET study and involved chemical modifications of different well-known dyes that bound specifically to the extended β-pleated sheets that comprise the fibrils of amyloid proteins such as Aβ plaques, NFTs, α-synuclein deposits, and prions. These preclinical studies were conducted in our laboratories at the University of Pittsburgh, starting with Congo red derivatives, followed by Chrysamine G derivatives, followed by X-series compounds, and finally with neutral derivatives of thioflavin-T. The in vitro and in vivo evaluations of the different derivatives as candidate PET radioligands for imaging Aβ plaques and neurofibrillary tangles in human brain are described in this review, along with the specific evaluation criteria by which the candidate radioligands were judged. Out of these studies came PiB, a PET radioligand that binds selectively and with high affinity to only fibrillar forms of Aβ. PiB has been used in many different human research protocols throughout the world and has demonstrated the usefulness of assessing the Aβ plaque status of subjects many years before the clinical diagnosis of probable AD. Recently, longer-lived (18)F-radiolabeled Aβ-selective radiopharmaceuticals have been developed. It is likely that the full clinical impact of these imaging agents will be realized by identifying presymptomatic subjects who would benefit from early drug treatments with future disease-modifying AD therapeutics.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
7
|
Asuni AA, Pankiewicz JE, Sadowski MJ. Differential molecular chaperone response associated with various mouse adapted scrapie strains. Neurosci Lett 2013; 538:26-31. [PMID: 23370284 DOI: 10.1016/j.neulet.2013.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/19/2012] [Accepted: 01/15/2013] [Indexed: 11/27/2022]
Abstract
Prionoses are a group of neurodegenerative diseases characterized by misfolding of cellular prion protein (PrP(C)) and accumulation of its diseases specific conformer PrP(Sc) in the brain and neuropathologically, they can be associated with presence or absence of PrP amyloid deposits. Functional molecular chaperones (MCs) that constitute the unfolded protein response include heat shock proteins and glucose-regulated protein families. They protect intracellular milieu against various stress conditions including accumulation of misfolded proteins and oxidative stress, typical of neurodegenerative diseases. Little is known about the role of MCs in pathogenesis of prionoses in mammalian prion model systems. In this study we characterized MCs response pattern in mice infected with various mouse adapted scrapie strains. Rather than uniform upregulation of MCs, we encountered two distinctly different patterns of MCs response distinguishing ME7 and 87V strains from 22L and 139A strains. ME7 and 87V strains are known for the induction of amyloid deposition in infected animals, while in mice infected with 22L and 139A strains amyloid deposits are absent. MCs response pattern similar to that associated with amyloidogenic ME7 and 87V strains was also observed in APPPS1-21 Alzheimer's transgenic mice, which represent an aggressive model of cerebral amyloidosis caused by β-amyloid deposition. Our results highlight the probability that different mechanisms of MCs regulation exist driven by amyloidogenic and non-amyloidogenic nature of prion strains.
Collapse
Affiliation(s)
- Ayodeji A Asuni
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
8
|
Boländer A, Kieser D, Voss C, Bauer S, Schön C, Burgold S, Bittner T, Hölzer J, Heyny-von Haußen R, Mall G, Goetschy V, Czech C, Knust H, Berger R, Herms J, Hilger I, Schmidt B. Bis(arylvinyl)pyrazines, -pyrimidines, and -pyridazines as imaging agents for tau fibrils and β-amyloid plaques in Alzheimer's disease models. J Med Chem 2012; 55:9170-80. [PMID: 22913544 DOI: 10.1021/jm300653b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The in vivo diagnosis of Alzheimer's disease (AD) is of high socioeconomic interest and remains a demanding field of research. The biopathological hallmarks of the disease are extracellular plaques consisting of aggregated β-amyloid peptides (Aβ) and tau protein derived intracellular tangles. Here we report the synthesis and evaluation of fluorescent pyrazine, pyrimidine,and pyridazine derivatives in vitro and in vivo aiming at a tau-based diagnosis of AD. The probes were pre-evaluated on human brain tissue by fluorescence microscopy and were found to label all known disease-related alterations at high contrast and specificity. To quantify the binding affinity, a new thiazine red displacement assay was developed and selected candidates were toxicologically profiled. The application in transgenic mouse models demonstrated bioavailability and brain permeability for one compound. In the course of histological testing, we discovered an AD-related deposition of tau aggregates in the Bowman's glands of the olfactory epithelium, which holds potential for an endoscopic diagnosis of AD in the olfactory system.
Collapse
Affiliation(s)
- Alexander Boländer
- Clemens Schoepf-Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Uraki R, Sakudo A, Michibata K, Ano Y, Kono J, Yukawa M, Onodera T. Blocking of FcR suppresses the intestinal invasion of scrapie agents. PLoS One 2011; 6:e17928. [PMID: 21437246 PMCID: PMC3060881 DOI: 10.1371/journal.pone.0017928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/16/2011] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are a family of neurodegenerative zoonotic foodborne disorders. Although prions can be transmitted orally, the mechanism by which prions are incorporated into the intestine remains unclear. Our previous studies have shown that an abnormal isoform of prion protein (PrPSc), which is the main component of prions, was efficiently incorporated into the intestine in suckling mice but not in weaned mice. Furthermore, suckling SCID mice lacking maternal antibodies showed decreased uptake of PrPSc into the intestine compared with suckling wild-type mice, while the lack of PrPSc uptake into the intestine of suckling SCID mice was rescued by the oral administration of IgG. These findings raise the possibility that the neonatal Fc receptor (nFcR), which contributes to the uptake of maternal antibodies into the intestine, plays a role in PrPSc incorporation into the intestine. The present immunohistochemical study further showed that the FcR blocker Z-ε-aminocaproic acid (ZAA) inhibited PrPSc incorporation into the intestinal villi of suckling mice, supporting the above mentioned concept. Therefore, our findings provide strong evidence that nFcR and maternal antibodies are involved in PrPSc incorporation into the intestine before the weaning period.
Collapse
Affiliation(s)
- Ryuta Uraki
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Aβ accumulation in choroid plexus is associated with mitochondrial-induced apoptosis. Neurobiol Aging 2010; 31:1569-81. [DOI: 10.1016/j.neurobiolaging.2008.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/05/2008] [Accepted: 08/24/2008] [Indexed: 01/04/2023]
|
11
|
In vivo detection of prion amyloid plaques using [11C]BF-227 PET. Eur J Nucl Med Mol Imaging 2009; 37:934-41. [DOI: 10.1007/s00259-009-1314-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
|
12
|
Cohen AD, Ikonomovic MD, Abrahamson EE, Paljug WR, Dekosky ST, Lefterov IM, Koldamova RP, Shao L, Debnath ML, Mason NS, Mathis CA, Klunk WE. Anti-Amyloid Effects of Small Molecule Aβ-Binding Agents in PS1/APP Mice. LETT DRUG DES DISCOV 2009; 6:437. [PMID: 20119496 DOI: 10.2174/157018009789057526] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AIMS: One promising approach for treatment of Alzheimer's disease (AD) is use of anti-amyloid therapies, based on the hypothesis that increases in amyloid-beta (Aβ) deposits in brain are a major cause of AD. Several groups have focused on Aβ immunotherapy with some success. Small molecules derivatives of Congo red have been shown to inhibit Aβ aggregation and protect against Aβ neurotoxicity in vitro. The agents described here are all small molecule Aβ-binding agents (SMAβBA's) derivatives of Congo red. MAIN METHODS: Here, we have explored the anti-amyloid properties of these SMAβBA's in mice doubly transgenic for human prensenilin-1 (PS1) and APP gene mutations that cause early-onset AD. Mice were treated with either methoxy-X04, X:EE:B34 and X:034-3-OMe1. After treatment, brains were examined for Aβ-deposition, using histochemistry, and soluble and insoluble Aβ levels were determined using ELISA. KEY FINDINGS: A range of anti-amyloid activity was observed with these three compounds. PS1/APP mice treated with methoxy-X04 and X:EE:B34 showed decrease in total Aβ load, a decrease in Aβ fibril load, and a decrease in average plaque size. Treatment with methoxy-X04 also resulted in a decrease in insoluble Aβ levels. The structurally similar compound, X:034:3-OMe1, showed no significant effect on any of these measures. The effectiveness of the SMAβBA's may be related to a combination of binding affinity for Aβ and entry into brain, but other factors appear to apply as well. SIGNIFICANCE: These data suggest that SMAβBA's may significantly decrease amyloid burden in brain during the pathogenesis of AD and could be useful therapeutics alone, or in combination with immunotherapy.
Collapse
Affiliation(s)
- A D Cohen
- University of Pittsburgh, Room 1422 WPIC, 3811 O'Hara Street, Pittsburgh, PA 15213-2593, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kepe V, Ghetti B, Farlow MR, Bresjanac M, Miller K, Huang SC, Wong KP, Murrell JR, Piccardo P, Epperson F, Repovs G, Smid LM, Petric A, Siddarth P, Liu J, Satyamurthy N, Small GW, Barrio JR. PET of brain prion protein amyloid in Gerstmann-Sträussler-Scheinker disease. Brain Pathol 2009; 20:419-30. [PMID: 19725833 DOI: 10.1111/j.1750-3639.2009.00306.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In vivo amyloid PET imaging was carried out on six symptomatic and asymptomatic carriers of PRNP mutations associated with the Gerstmann-Sträussler-Scheinker (GSS) disease, a rare familial neurodegenerative brain disorder demonstrating prion amyloid neuropathology, using 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([F-18]FDDNP). 2-Deoxy-2-[F-18]fluoro-d-glucose PET ([F-18]FDG) and magnetic resonance imaging (MRI) scans were also performed in each subject. Increased [F-18]FDDNP binding was detectable in cerebellum, neocortex and subcortical areas of all symptomatic gene carriers in close association with the experienced clinical symptoms. Parallel glucose metabolism ([F-18]FDG) reduction was observed in neocortex, basal ganglia and/or thalamus, which supports the close relationship between [F-18]FDDNP binding and neuronal dysfunction. Two asymptomatic gene carriers displayed no cortical [F-18]FDDNP binding, yet progressive [F-18]FDDNP retention in caudate nucleus and thalamus was seen at 1- and 2-year follow-up in the older asymptomatic subject. In vitro FDDNP labeling experiments on brain tissue specimens from deceased GSS subjects not participating in the in vivo studies indicated that in vivo accumulation of [F-18]FDDNP in subcortical structures, neocortices and cerebellum closely related to the distribution of prion protein pathology. These results demonstrate the feasibility of detecting prion protein accumulation in living patients with [F-18]FDDNP PET, and suggest an opportunity for its application to follow disease progression and monitor therapeutic interventions.
Collapse
Affiliation(s)
- Vladimir Kepe
- David Geffen School of Medicine at UCLA, Los Angeles, Calif 90095-6948, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- William E. Klunk
- Department of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chester A. Mathis
- Department of Radiology, Pharmacology, and Pharmaceutical Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
15
|
Li Q, Min J, Ahn YH, Namm J, Kim EM, Lui R, Kim HY, Ji Y, Wu H, Wisniewski T, Chang YT. Styryl-Based Compounds as Potential in vivo Imaging Agents for β-Amyloid Plaques. Chembiochem 2007; 8:1679-87. [PMID: 17705341 DOI: 10.1002/cbic.200700154] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A group of styryl-based neutral compounds has been synthesized in this study for potential use as in vivo imaging agents for beta-amyloid plaques. Of 56 candidates, 14 compounds were found to label beta-amyloid plaques well on Alzheimer's disease (AD) human brain sections in vitro. The binding affinity to beta-amyloid fibrils was then determined by measuring the change in fluorescence intensity. Interestingly, we found that a class of quinaldine-styryl scaffold compounds displays specific binding to beta-amyloid fibrils. A representative compound, STB-8, was used in ex vivo and in vivo imaging experiments on an AD transgenic mouse model and demonstrated excellent blood-brain barrier (BBB) permeability and specific staining of the AD beta-amyloid plaques.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry, New York University, School of Medicine, New York, NY 11219, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kawasaki Y, Kawagoe K, Chen CJ, Teruya K, Sakasegawa Y, Doh-ura K. Orally administered amyloidophilic compound is effective in prolonging the incubation periods of animals cerebrally infected with prion diseases in a prion strain-dependent manner. J Virol 2007; 81:12889-98. [PMID: 17881452 PMCID: PMC2169081 DOI: 10.1128/jvi.01563-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The establishment of effective therapeutic interventions for prion diseases is necessary. We report on a newly developed amyloidophilic compound that displays therapeutic efficacy when administered orally. This compound inhibited abnormal prion protein formation in prion-infected neuroblastoma cells in a prion strain-dependent manner: effectively for RML prion and marginally for 22L prion and Fukuoka-1 prion. When the highest dose (0.2% [wt/wt] in feed) was given orally to cerebrally RML prion-inoculated mice from inoculation until the terminal stage of disease, it extended the incubation periods by 2.3 times compared to the control. The compound exerted therapeutic efficacy in a prion strain-dependent manner such as that observed in the cell culture study: most effective for RML prion, less effective for 22L prion or Fukuoka-1 prion, and marginally effective for 263K prion. Its effectiveness depended on an earlier start of administration. The glycoform pattern of the abnormal prion protein in the treated mice was modified and showed predominance of the diglycosylated form, which resembled that of 263K prion, suggesting that diglycosylated forms of abnormal prion protein might be least sensitive or resistant to the compound. The mechanism of the prion strain-dependent effectiveness needs to be elucidated and managed. Nevertheless, the identification of an orally available amyloidophilic chemical encourages the pursuit of chemotherapy for prion diseases.
Collapse
Affiliation(s)
- Yuri Kawasaki
- Department of Prion Research, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Macfarlane RG, Wroe SJ, Collinge J, Yousry TA, Jäger HR. Neuroimaging findings in human prion disease. J Neurol Neurosurg Psychiatry 2007; 78:664-70. [PMID: 17135459 PMCID: PMC2117674 DOI: 10.1136/jnnp.2006.094821] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 11/09/2006] [Accepted: 11/15/2006] [Indexed: 11/03/2022]
Abstract
Imaging occupies an important role in the investigation of dementia and neurodegenerative disease. The role of imaging in prion disease used to be one of exclusion of other conditions. Over the past decade, the non-invasive nature of MRI, the improved range of magnetic resonance sequences and the availability of clinical and neuropathological correlation have led to a more prominent position of MRI and its inclusion in the diagnostic criteria for variant Creutzfeldt-Jakob disease. As experience of imaging in human prion disease increases, patterns of change related to strain and genotype may improve the diagnostic potential of imaging in the future, may reduce the need for more invasive testing and prove useful in future therapeutic trials. This paper reviews the current knowledge of imaging appearances in human prion disease.
Collapse
Affiliation(s)
- R G Macfarlane
- MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, London, UK.
| | | | | | | | | |
Collapse
|
18
|
Spinner DS, Kascsak RB, Lafauci G, Meeker HC, Ye X, Flory MJ, Kim JI, Schuller-Levis GB, Levis WR, Wisniewski T, Carp RI, Kascsak RJ. CpG oligodeoxynucleotide-enhanced humoral immune response and production of antibodies to prion protein PrPSc in mice immunized with 139A scrapie-associated fibrils. J Leukoc Biol 2007; 81:1374-85. [PMID: 17379700 DOI: 10.1189/jlb.1106665] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prion diseases are characterized by conversion of the cellular prion protein (PrP(C)) to a protease-resistant conformer, the srapie form of PrP (PrP(Sc)). Humoral immune responses to nondenatured forms of PrP(Sc) have never been fully characterized. We investigated whether production of antibodies to PrP(Sc) could occur in PrP null (Prnp(-/-)) mice and further, whether innate immune stimulation with the TLR9 agonist CpG oligodeoxynucleotide (ODN) 1826 could enhance this process. Whether such stimulation could raise anti-PrP(Sc) antibody levels in wild-type (Prnp(+/+)) mice was also investigated. Prnp(-/-) and Prnp(+/+) mice were immunized with nondenatured 139A scrapie-associated fibrils (SAF), with or without ODN 1826, and were tested for titers of PrP-specific antibodies. In Prnp(-/-) mice, inclusion of ODN 1826 in the immunization regime increased anti-PrP titers more than 13-fold after two immunizations and induced, among others, antibodies to an N-terminal epitope, which were only present in the immune repertoire of mice receiving ODN 1826. mAb 6D11, derived from such a mouse, reacts with the N-terminal epitope QWNK in native and denatured forms of PrP(Sc) and recombinant PrP and exhibits a K(d) in the 10(-)(11) M range. In Prnp(+/+) mice, ODN 1826 increased anti-PrP levels as much as 84% after a single immunization. Thus, ODN 1826 potentiates adaptive immune responses to PrP(Sc) in 139A SAF-immunized mice. These results represent the first characterization of humoral immune responses to nondenatured, infectious PrP(Sc) and suggest methods for optimizing the generation of mAbs to PrP(Sc), many of which could be used for diagnosis and treatment of prion diseases.
Collapse
Affiliation(s)
- Daryl S Spinner
- New York State Institute for Basic Research in Development Disabilities, 1050 Forest Hill Rd., Staten Island, NY 10314, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. ACTA ACUST UNITED AC 2007; 53:135-60. [PMID: 16959325 DOI: 10.1016/j.brainresrev.2006.08.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 08/02/2006] [Indexed: 11/19/2022]
Abstract
Congo red is a commonly used histological dye for amyloid detection. The specificity of this staining results from Congo red's affinity for binding to fibril proteins enriched in beta-sheet conformation. Unexpectedly, recent investigations indicate that the dye also possesses the capacity to interfere with processes of protein misfolding and aggregation, stabilizing native protein monomers or partially folded intermediates, while reducing concentration of more toxic protein oligomers. Inhibitory effects of Congo red upon amyloid toxicity may also range from blockade of channel formation and interference with glycosaminoglycans binding or immune functions, to the modulation of gene expression. Particularly, Congo red exhibits ameliorative effect in models of neurodegenerative disorders, such as Alzheimer's, Parkinson's, Huntington's and prion diseases. Another interesting application of Congo red analogues is the development of imaging probes. Based on their small molecular size and penetrability through blood-brain barrier, Congo red congeners can be used for both antemortem and in vivo visualization and quantification of brain amyloids. Therefore, understanding mechanisms involved in dye-amyloidal fibril binding and inhibition of aggregation will provide instructive guides for the design of future compounds, potentially useful for monitoring and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Petrea Frid
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, Sweden
| | | | | |
Collapse
|
20
|
Pankiewicz J, Prelli F, Sy MS, Kascsak RJ, Kascsak RB, Spinner DS, Carp RI, Meeker HC, Sadowski M, Wisniewski T. Clearance and prevention of prion infection in cell culture by anti-PrP antibodies. Eur J Neurosci 2006; 23:2635-47. [PMID: 16817866 PMCID: PMC1779824 DOI: 10.1111/j.1460-9568.2006.04805.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prion diseases are transmissible and invariably fatal neurodegenerative disorders associated with a conformational transformation of the cellular prion protein (PrP(C)) into a self-replicating and proteinase K (PK)-resistant conformer, scrapie PrP (PrP(Sc)). Humoral immunity may significantly prolong the incubation period and even prevent disease in murine models of prionoses. However, the mechanism(s) of action of anti-PrP monoclonal antibodies (Mabs) remain(s) obscure. The murine neuroblastoma N2a cell line, infected with the 22L mouse-adapted scrapie strain, was used to screen a large library of Mabs with similar binding affinities to PrP, to identify those antibodies which could clear established infection and/or prevent infection de novo. Three Mabs were found capable of complete and persistent clearing of already-infected N2a cells of PrP(Sc). These antibodies were 6D11 (generated to PK-resistant PrP(Sc) and detecting PrP residues 93-109), and 7H6 and 7A12, which were raised against recombinant PrP and react with neighbouring epitopes of PrP residues 130-140 and 143-155, respectively. Mabs were found to interact with PrP(Sc) formation both on the cell surface and after internalization in the cytosol. Treatment with Mabs was not associated with toxicity nor did it result in decreased expression of PrP(C). Both preincubation of N2a cells with Mabs prior to exposure to 22L inoculum and preincubation of the inoculum with Mabs prior to infecting N2a cells resulted in a significant reduction in PrP(Sc) levels. Information provided in these studies is important for the rational design of humoral immune therapy for prion infection in animals and eventually in humans.
Collapse
Key Words
- conformational disorder
- monoclonal antibodies
- n2a cell line
- scrapie
- treatment
- atcc, american type culture collection
- bse, bovine spongiform encephalopathy
- mab, monoclonal antibody
- mem, minimal essential medium
- mtt, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide
- n2a/22l cells, n2a cells infected with the 22l mouse-adapted scrapie strain
- pk, proteinase k
- prpc, cellular prion protein
- prpsc, scrapie prion protein
- recprp, recombinant prp
- vcjd, variant creutzfeldt – jakob disease
Collapse
Affiliation(s)
- Joanna Pankiewicz
- Department of Neurology, New York University School of
Medicine, 550 First Avenue, New York NY 10016, USA
| | - Frances Prelli
- Department of Neurology, New York University School of
Medicine, 550 First Avenue, New York NY 10016, USA
| | - Man-Sun Sy
- Departments of Pathology and Neuroscience, Case Western Reserve
University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Richard J. Kascsak
- New York State Institute for Basic Research in Developmental
Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Regina B. Kascsak
- New York State Institute for Basic Research in Developmental
Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Daryl S. Spinner
- New York State Institute for Basic Research in Developmental
Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Richard I. Carp
- New York State Institute for Basic Research in Developmental
Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Harry C. Meeker
- New York State Institute for Basic Research in Developmental
Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Marcin Sadowski
- Department of Neurology, New York University School of
Medicine, 550 First Avenue, New York NY 10016, USA
- Department of Psychiatry, New York University School of
Medicine, 550 First Avenue, New York NY 10016, USA
| | - Thomas Wisniewski
- Department of Neurology, New York University School of
Medicine, 550 First Avenue, New York NY 10016, USA
- Department of Psychiatry, New York University School of
Medicine, 550 First Avenue, New York NY 10016, USA
- Department of Pathology, New York University School of
Medicine, 550 First Avenue, New York NY 10016, USA
- New York State Institute for Basic Research in Developmental
Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| |
Collapse
|
21
|
Shoghi-Jadid K, Barrio JR, Kepe V, Wu HM, Small GW, Phelps ME, Huang SC. Imaging beta-amyloid fibrils in Alzheimer's disease: a critical analysis through simulation of amyloid fibril polymerization. Nucl Med Biol 2005; 32:337-51. [PMID: 15878503 DOI: 10.1016/j.nucmedbio.2005.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 02/04/2005] [Accepted: 02/13/2005] [Indexed: 11/17/2022]
Abstract
The polymerization of beta-amyloid (A beta) peptides into fibrillary plaques is implicated, in part, in the pathogenesis of Alzheimer's disease. A beta molecular imaging probes (A beta-MIPs) have been introduced in an effort to quantify amyloid burden or load, in subjects afflicted with AD by invoking the classic PET receptor model for the quantitation of neuronal receptor density. In this communication, we explore conceptual differences between imaging the density of amyloid fibril polymers and neuronal receptors. We formulate a mathematical model for the polymerization of A beta with parameters that are mapped to biological modulators of fibrillogenesis and introduce a universal measure for amyloid load to accommodate various interactions of A beta-MIPs with fibrils. Subsequently, we hypothesize four A beta-MIPs and utilize the fibrillogenesis model to simulate PET tissue time activity curves (TACs). Given the unique nature of polymer growth and resulting PET TAC, the four probes report differing amyloid burdens for a given brain pathology, thus complicating the interpretation of PET images. In addition, we introduce the notion of an MIP's resolution, apparent maximal binding site concentration, optimal kinetic topology and its resolving power in characterizing the pathological progression of AD and the effectiveness of drug therapy. The concepts introduced in this work call for a new paradigm that goes beyond the classic parameters B(max) and K(D) to include binding characteristics to polymeric peptide aggregates such as amyloid fibrils, neurofibrillary tangles and prions.
Collapse
Affiliation(s)
- Kooresh Shoghi-Jadid
- Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1766, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kudo Y. [Probes for diagnosis of Alzheimer's disease]. Nihon Yakurigaku Zasshi 2005; 126:199-206. [PMID: 16272764 DOI: 10.1254/fpj.126.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
23
|
ALBENSI BENEDICTC, ILKANICH ERINV, DINI GABRIELE, JANIGRO DAMIR. Elements of Scientific Visualization in Basic Neuroscience Research. Bioscience 2004. [DOI: 10.1641/0006-3568(2004)054[1127:eosvib]2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|