1
|
Parmar P, Spahic H, Lechner C, St Pierre M, Carlin K, Nugent M, Chavez-Valdez R. Neonatal hypoxia-ischemia alters the events governing the hippocampal critical period of postnatal synaptic plasticity leading to deficits in working memory in mice. Neurobiol Dis 2024; 202:106722. [PMID: 39486775 DOI: 10.1016/j.nbd.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Postnatal critical periods of synaptic plasticity (CPsp) are characterized by profound neural network refinement, which is shaped by synaptic activity and sculpted by maturation of the GABAergic network. Even after therapeutic hypothermia (TH), neonatal hypoxia-ischemia (HI) impairs two triggers for the initiation of the CPsp in the hippocampus: i) PSA-NCAM developmental decline and ii) parvalbumin (PV) + interneuron (IN) maturation. Thus, we investigated whether neonatal HI despite TH disturbs other events governing the onset, consolidation and closure of the postnatal CPsp in the hippocampus. We induced cerebral HI in P10 C57BL6 mice with right carotid ligation and 45 m of hypoxia (FiO2 = 0.08), followed by normothermia (36 °C, NT) or TH (31 °C) for 4 h with anesthesia-exposed shams as controls. ELISA, immunoblotting and immunohistochemistry were performed at 24 h (P11), 5 days (P15), 8 days (P18) and 30 days (P40) after HI injury. We specifically assessed: i) BDNF levels and TrkB activation, controlling the CPsp, ii) Otx2 and NPTX2 immunoreactivity (IR), engaging CPsp onset and iii) NogoR1, Lynx1 IR, PNN formation and myelination (MBP) mediating CPsp closure. Pups aged to P40 also received a battery of tests assessing working memory. Here, we documented deficits in hippocampal BDNF levels and TrkB activation at P18 in response to neonatal HI even with TH. Neonatal HI impaired in the CA1 the developmental increase in PV, Otx2, and NPTX2 between P11 and P18, the colocalization of Otx2 and PV at P18 and P40, the accumulation of NPTX2 in PV+ dendrites at P18 and P40, and the expression of NogoR at P40. Furthermore, neonatal HI decreased BDNF and impaired PNN development and myelination (MBP) at P40. Most of these abnormalities were insensitive to TH and correlated with memory deficits. Neonatal HI appears to disrupt many of the molecular and structural events initiating and consolidating the postnatal hippocampal CPsp, perhaps due to the early and delayed deficits in TrkB activation leading to memory deficits.
Collapse
Affiliation(s)
- Pritika Parmar
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Harisa Spahic
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Lechner
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mark St Pierre
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Nugent
- Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA; Neuroscience Intensive Care Nursery Program, Johns Hopkins University- School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. Neurosci Lett 2024; 831:137727. [PMID: 38467270 DOI: 10.1016/j.neulet.2024.137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Oligodendrocytes develop through sequential stages and understanding pathways regulating their differentiation remains an important area of investigation. Zinc is required for the function of enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature MBP+ oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after O4+,O1- pre-oligodendrocytes were switched from proliferation medium into terminal differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of major zinc storage proteins metallothioneins (MTs) and metal regulatory transcription factor 1 (MTF1), which controls expression of MTs. MT1, MT2 and MTF1 mRNAs were increased several fold in mature oligodendrocytes compared to oligodendrocytes in proliferation medium. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in ∼ 100% increase in free zinc in pre-oligodendrocytes but, paradoxically more modest ∼ 60% increase in mature oligodendrocytes despite increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Christopher M Elitt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States.
| | - Madeline M Ross
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| | - Jianlin Wang
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Paul A Rosenberg
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, United States
| |
Collapse
|
3
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550230. [PMID: 37546881 PMCID: PMC10402100 DOI: 10.1101/2023.07.26.550230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Oligodendrocytes develop through well characterized stages and understanding pathways regulating their differentiation remains an active area of investigation. Zinc is required for the function of many enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after developing oligodendrocytes were switched into differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of the major zinc storage proteins metallothioneins (MTs), and metal regulatory transcription factor 1 (MTF-1) which controls expression of MTs. MT-1, MT-2 and MTF1 mRNAs were all increased several fold in mature oligodendrocytes compared to developing oligodendrocytes. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in a ∼100% increase in free zinc in developing oligodendrocytes but, paradoxically more modest ∼60% increase in mature oligodendrocytes despite the increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
|
4
|
Antenatal and Postnatal Sequelae of Oxidative Stress in Preterm Infants: A Narrative Review Targeting Pathophysiological Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020422. [PMID: 36829980 PMCID: PMC9952227 DOI: 10.3390/antiox12020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The detrimental effects of oxidative stress (OS) can start as early as after conception. A growing body of evidence has shown the pivotal role of OS in the development of several pathological conditions during the neonatal period, which have been therefore defined as OS-related neonatal diseases. Due to the physiological immaturity of their antioxidant defenses and to the enhanced antenatal and postnatal exposure to free radicals, preterm infants are particularly susceptible to oxidative damage, and several pathophysiological cascades involved in the development of prematurity-related complications are tightly related to OS. This narrative review aims to provide a detailed overview of the OS-related pathophysiological mechanisms that contribute to the main OS-related diseases during pregnancy and in the early postnatal period in the preterm population. Particularly, focus has been placed on pregnancy disorders typically associated with iatrogenic or spontaneous preterm birth, such as intrauterine growth restriction, pre-eclampsia, gestational diabetes, chorioamnionitis, and on specific postnatal complications for which the role of OS has been largely ascertained (e.g., respiratory distress, bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, necrotizing enterocolitis, neonatal sepsis). Knowledge of the underlying pathophysiological mechanisms may increase awareness on potential strategies aimed at preventing the development of these conditions or at reducing the ensuing clinical burden.
Collapse
|
5
|
Dietz RM, Dingman AL, Herson PS. Cerebral ischemia in the developing brain. J Cereb Blood Flow Metab 2022; 42:1777-1796. [PMID: 35765984 PMCID: PMC9536116 DOI: 10.1177/0271678x221111600] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Brain ischemia affects all ages, from neonates to the elderly population, and is a leading cause of mortality and morbidity. Multiple preclinical rodent models involving different ages have been developed to investigate the effect of ischemia during different times of key brain maturation events. Traditional models of developmental brain ischemia have focused on rodents at postnatal day 7-10, though emerging models in juvenile rodents (postnatal days 17-25) indicate that there may be fundamental differences in neuronal injury and functional outcomes following focal or global cerebral ischemia at different developmental ages, as well as in adults. Here, we consider the timing of injury in terms of excitation/inhibition balance, oxidative stress, inflammatory responses, blood brain barrier integrity, and white matter injury. Finally, we review translational strategies to improve function after ischemic brain injury, including new ideas regarding neurorestoration, or neural repair strategies that restore plasticity, at delayed time points after ischemia.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andra L Dingman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
6
|
Oxidative Stress Biomarkers and Early Brain Activity in Extremely Preterm Infants: A Prospective Cohort Study. CHILDREN 2022; 9:children9091376. [PMID: 36138685 PMCID: PMC9497792 DOI: 10.3390/children9091376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Early brain activity, measured using amplitude-integrated EEG (aEEG), is correlated with neurodevelopmental outcome in preterm newborns. F2-isoprostanes (IPs) are early biomarkers predictive for brain damage. We aimed to investigate the relationship between perinatal IPs concentrations and quantitative aEEG measures in preterm newborns. Thirty-nine infants (gestational age (GA) 24–27 ± 6 weeks) who underwent neuromonitoring using aEEG during the first two days after birth were enrolled. The rate of spontaneous activity transients per minute (SAT rate) and inter-SAT interval (ISI) in seconds were computed. Two postnatal time-points were examined: within 12 h (day 1) and between 24 and 48 h (day 2). IPs were measured in plasma from cord blood (cb-IPs) and between 24 and 48 h (pl-IPs). Multivariable regression analyses were performed to assess the correlation between IPs and brain activity. Cb-IPs were not associated with SAT rate and ISI at day 1. Higher pl-IPs were followed by longer ISI (R = 0.68; p = 0.034) and decreased SAT rate (R = 0.58; p = 0.007) at day 2 after adjusting for GA, FiO2 and IVH. Higher pl-IPs levels are associated with decreased functional brain activity. Thus, pl-IPs may represent a useful biomarker of brain vulnerability in high-risk infants.
Collapse
|
7
|
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 2022; 39:319-343. [PMID: 35701726 PMCID: PMC10042984 DOI: 10.1007/s10565-022-09730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.
Collapse
|
8
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
9
|
Motavaf M, Piao X. Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Front Cell Neurosci 2021; 15:764486. [PMID: 34803612 PMCID: PMC8599582 DOI: 10.3389/fncel.2021.764486] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Perinatal white matter injury (WMI) is the most common brain injury in premature infants and can lead to life-long neurological deficits such as cerebral palsy. Preterm birth is typically accompanied by inflammation and hypoxic-ischemic events. Such perinatal insults negatively impact maturation of oligodendrocytes (OLs) and cause myelination failure. At present, no treatment options are clinically available to prevent or cure WMI. Given that arrested OL maturation plays a central role in the etiology of perinatal WMI, an increased interest has emerged regarding the functional restoration of these cells as potential therapeutic strategy. Cell transplantation and promoting endogenous oligodendrocyte function are two potential options to address this major unmet need. In this review, we highlight the underlying pathophysiology of WMI with a specific focus on OL biology and their implication for the development of new therapeutic targets.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Abstract
Intrauterine growth restriction is a condition that prevents normal fetal development, and previous studies have reported that intrauterine growth restriction is caused by adverse intrauterine factors. This condition affects both short- and long-term neurodevelopmental disorders. Studies have revealed that neurodevelopmental disorders can contribute to gray and white matter damage and decrease the brain volume of affected individuals. Further, these disorders are associated with increased risks of mental retardation, cognitive impairment, and cerebral palsy, which seriously affect the quality of life. Although the mechanisms underlying the neurologic injury associated with intrauterine growth restriction are not completely clear, studies have revealed that neuronal apoptosis, neuroinflammation, oxidative stress, excitatory toxicity, disruption of blood-brain barrier, and epigenetics may be involved in this process. This article reviews the manifestations and possible mechanisms underlying neurologic injury in intrauterine growth restriction and provides a theoretical basis for the effective prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lijia Wan
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Kaiju Luo
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Pingyang Chen
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|
12
|
Ross MM, Cherkerzian S, Mikulis ND, Turner D, Robinson J, Inder TE, Matthews LG. A randomized controlled trial investigating the impact of maternal dietary supplementation with pomegranate juice on brain injury in infants with IUGR. Sci Rep 2021; 11:3569. [PMID: 33574371 PMCID: PMC7878922 DOI: 10.1038/s41598-021-82144-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Animal studies have demonstrated the therapeutic potential of polyphenol-rich pomegranate juice. We recently reported altered white matter microstructure and functional connectivity in the infant brain following in utero pomegranate juice exposure in pregnancies with intrauterine growth restriction (IUGR). This double-blind exploratory randomized controlled trial further investigates the impact of maternal pomegranate juice intake on brain structure and injury in a second cohort of IUGR pregnancies diagnosed at 24–34 weeks’ gestation. Ninety-nine mothers and their eligible fetuses (n = 103) were recruited from Brigham and Women’s Hospital and randomly assigned to 8 oz pomegranate (n = 56) or placebo (n = 47) juice to be consumed daily from enrollment to delivery. A subset of participants underwent fetal echocardiogram after 2 weeks on juice with no evidence of ductal constriction. 57 infants (n = 26 pomegranate, n = 31 placebo) underwent term-equivalent MRI for assessment of brain injury, volumes and white matter diffusion. No significant group differences were found in brain volumes or white matter microstructure; however, infants whose mothers consumed pomegranate juice demonstrated lower risk for brain injury, including any white or cortical grey matter injury compared to placebo. These preliminary findings suggest pomegranate juice may be a safe in utero neuroprotectant in pregnancies with known IUGR warranting continued investigation. Clinical trial registration: NCT04394910, https://clinicaltrials.gov/ct2/show/NCT04394910, Registered May 20, 2020, initial participant enrollment January 16, 2016.
Collapse
Affiliation(s)
- Madeline M Ross
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Sara Cherkerzian
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Nicole D Mikulis
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Daria Turner
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Julian Robinson
- Department of Obstetrics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Lillian G Matthews
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA. .,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia. .,Monash Biomedical Imaging, Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Zhou W, Fu Y, Zhang M, Buabeid MA, Ijaz M, Murtaza G. Nanoparticle-mediated therapy of neuronal damage in the neonatal brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Coviello C, Perrone S, Buonocore G, Negro S, Longini M, Dani C, de Vries LS, Groenendaal F, Vijlbrief DC, Benders MJNL, Tataranno ML. Isoprostanes as Biomarker for White Matter Injury in Extremely Preterm Infants. Front Pediatr 2021; 8:618622. [PMID: 33585368 PMCID: PMC7874160 DOI: 10.3389/fped.2020.618622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background and Aim: Preterm white matter is vulnerable to lipid peroxidation-mediated injury. F2-isoprostanes (IPs), are a useful biomarker for lipid peroxidation. Aim was to assess the association between early peri-postnatal IPs, white matter injury (WMI) at term equivalent age (TEA), and neurodevelopmental outcome in preterm infants. Methods: Infants with a gestational age (GA) below 28 weeks who had an MRI at TEA were included. IPs were measured in cord blood (cb) at birth and on plasma (pl) between 24 and 48 h after birth. WMI was assessed using Woodward MRI scoring system. Multiple regression analyses were performed to assess the association between IPs with WMI and then with BSITD-III scores at 24 months corrected age (CA). Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive value of pl-IPs for the development of WMI. Results: Forty-four patients were included. cb-IPs were not correlated with WMI score at TEA, whereas higher pl-IPs and lower GA predicted higher WMI score (p = 0.037 and 0.006, respectively) after controlling for GA, FiO2 at sampling and severity of IVH. The area under the curve was 0.72 (CI 95% = 0.51-0.92). The pl-IPs levels plotted curve indicated that 31.8 pg/ml had the best predictive threshold with a sensitivity of 86% and a specificity of 60%, to discriminate newborns with any WMI from newborns without WMI. IPs were not associated with outcome at 24 months. Conclusion: Early measurement of pl-IPs may help discriminate patients showing abnormal WMI score at TEA, thus representing an early biomarker to identify newborns at risk for brain injury.
Collapse
Affiliation(s)
- Caterina Coviello
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Serafina Perrone
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Simona Negro
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Linda S. de Vries
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Daniel C. Vijlbrief
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Shaw JC, Crombie GK, Palliser HK, Hirst JJ. Impaired Oligodendrocyte Development Following Preterm Birth: Promoting GABAergic Action to Improve Outcomes. Front Pediatr 2021; 9:618052. [PMID: 33634057 PMCID: PMC7901941 DOI: 10.3389/fped.2021.618052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
16
|
Yap V, Perlman JM. Mechanisms of brain injury in newborn infants associated with the fetal inflammatory response syndrome. Semin Fetal Neonatal Med 2020; 25:101110. [PMID: 32303463 DOI: 10.1016/j.siny.2020.101110] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fetal inflammatory response syndrome (FIRS) is characterized by umbilical cord inflammation and elevated fetal pro-inflammatory cytokines. Surviving neonates, especially very preterm infants, have increased rates of neonatal morbidity including neurodevelopmental impairment. The mechanism of brain injury in FIRS is complex and may involve "multiple hits." Exposure to in utero inflammation initiates a cascade of the fetal immune response, where pro-inflammatory cytokines can cause direct injury to oligodendrocytes and neurons. Activation of microglia results in further injury to vulnerable pre-myelinating oligodendrocytes and influences the integrity of the fetal and newborn's blood-brain barrier, resulting in further exposure of the brain to developmental insults. Newborns exposed to FIRS are frequently exposed to additional perinatal and postnatal insults that can result in further brain injury. Future directions should include evaluations for new therapeutic interventions aimed at reducing brain injury by dampening FIRS, inhibition of microglial activation, and regeneration of immature oligodendrocytes.
Collapse
Affiliation(s)
- Vivien Yap
- Weill Cornell Medicine - New York Presbyterian Hospital, 525 East 68th Street, Suite N-506, New York, NY, 10065, United States.
| | - Jeffrey M Perlman
- Weill Cornell Medicine - New York Presbyterian Hospital, 525 East 68th Street, Suite N-506, New York, NY, 10065, United States
| |
Collapse
|
17
|
The effect of antenatal magnesium sulfate on intraventricular hemorrhage in premature infants: a systematic review and meta-analysis. Obstet Gynecol Sci 2020; 63:395-406. [PMID: 32689768 PMCID: PMC7393747 DOI: 10.5468/ogs.19210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/08/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE The aim of this systematic review and meta-analysis study was to determine the pooled estimate of the effect of antenatal magnesium sulfate (MgSO4) on intraventricular hemorrhage (IVH) in premature infants. METHODS Two review authors independently searched all randomized clinical trials from international databases, including Medline (PubMed), Web of Sciences, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), and Research Registers of ongoing trials (ClinicalTrials.gov), from January 1989 to August 2017. Two independent review authors were responsible for data collection. After extracting the necessary information from the evaluated articles, metaanalysis of the data was performed using Stata version 14. Also, sources of heterogeneity among studies were determined by Meta regression. RESULTS In this study, among 126 articles that were extracted from primary studies, 7 papers that evaluated the effect of MgSO4 on IVH were eligible for inclusion in the meta-analysis. The results of the meta-analysis showed that pooled relative risk (95% confidence interval [CI]) was 0.80 (95% CI, 0.63 to 1.03) for the effect of MgSO4 on IVH. CONCLUSION RESULTS of this study showed that although MgSO4 had a protective effect on IVH in premature infants, this effect was not statistically significant. Further studies are needed to determine the best dosage, timing, and gestational age to achieve the optimum effect of MgSO4 on IVH. SYSTEMATIC REVIEW REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO) Identifier: CRD42019119610.
Collapse
|
18
|
Jensen BK, Roth LM, Grinspan JB, Jordan-Sciutto KL. White matter loss and oligodendrocyte dysfunction in HIV: A consequence of the infection, the antiretroviral therapy or both? Brain Res 2019; 1724:146397. [PMID: 31442414 DOI: 10.1016/j.brainres.2019.146397] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023]
Abstract
While the severe cognitive effects of HIV-associated dementia have been reduced by combined antiretroviral therapy (cART), nearly half of HIV-positive (HIV+) patients still suffer from some form of HIV-Associated Neurocognitive Disorders (HAND). While frank neuronal loss has been dramatically reduced in HAND patients, white matter loss, including dramatic thinning of the corpus callosum, and loss of volume and structural integrity of myelin persists despite viral control by cART. It remains unclear whether changes in white matter underlie the clinical manifestation seen in patients or whether they are the result of persistent viral reservoirs, remnant damage from the acute infection, the antiretroviral compounds used to treat HIV, secondary effects due to peripheral toxicities or other associated comorbid conditions. Both HIV infection itself and its treatment with antiretroviral drugs can induce metabolic syndrome, lipodystrophy, atherosclerosis and peripheral neuropathies by increased oxidative stress, induction of the unfolded protein response and dysregulation of lipid metabolism. These virally and/or cART-induced processes can also cause myelin loss in the CNS. This review aims to highlight existing data on the contribution of white matter damage to HAND and explore the mechanisms by which HIV infection and its treatment contribute to persistence of white matter changes in people living with HIV currently on cART.
Collapse
Affiliation(s)
- Brigid K Jensen
- Vickie and Jack Farber Institute for Neuroscience, Jefferson Weinberg ALS Center, Thomas Jefferson University, United States; Department of Neurology, The Children's Hospital of Philadelphia, United States; Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | - Lindsay M Roth
- Department of Neurology, The Children's Hospital of Philadelphia, United States; Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | - Judith B Grinspan
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | | |
Collapse
|
19
|
Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev 2019; 148:19-37. [PMID: 31678359 DOI: 10.1016/j.addr.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Neonatal brain injury affects thousands of babies each year and may lead to long-term and permanent physical and neurological problems. Currently, therapeutic hypothermia is standard clinical care for term newborns with moderate to severe neonatal encephalopathy. Nevertheless, it is not completely protective, and additional strategies to restore and promote regeneration are urgently needed. One way to ensure recovery following injury to the immature brain is to augment endogenous regenerative pathways. However, novel strategies such as stem cell therapy, gene therapies and nanotechnology have not been adequately explored in this unique age group. In this perspective review, we describe current efforts that promote neuroprotection and potential targets that are unique to the developing brain, which can be leveraged to facilitate neuroregeneration.
Collapse
|
20
|
Abstract
Despite the advances in neonatal intensive care, the preterm brain remains vulnerable to white matter injury (WMI) and disruption of normal brain development (i.e., dysmaturation). Compared to severe cystic WMI encountered in the past decades, contemporary cohorts of preterm neonates experience milder WMIs. More than destructive lesions, disruption of the normal developmental trajectory of cellular elements of the white and the gray matter occurs. In the acute phase, in response to hypoxia-ischemia and/or infection and inflammation, multifocal areas of necrosis within the periventricular white matter involve all cellular elements. Later, chronic WMI is characterized by diffuse WMI with aberrant regeneration of oligodendrocytes, which fail to mature to myelinating oligodendrocytes, leading to myelination disturbances. Complete neuronal degeneration classically accompanies necrotic white matter lesions, while altered neurogenesis, represented by a reduction of the dendritic arbor and synapse formation, is observed in response to diffuse WMI. Neuroimaging studies now provide more insight in assessing both injury and dysmaturation of both gray and white matter. Preterm brain injury remains an important cause of neurodevelopmental disabilities, which are still observed in up to 50% of the preterm survivors and take the form of a complex combination of motor, cognitive, and behavioral concerns.
Collapse
Affiliation(s)
- Juliane Schneider
- Department of Woman-Mother-Child, Clinic of Neonatology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Steven P Miller
- Division of Neurology and Centre for Brain and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
21
|
Yap V, Perlman JM. Intraventricular Hemorrhage and White Matter Injury in the Preterm Infant. Neurology 2019. [DOI: 10.1016/b978-0-323-54392-7.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Janowska J, Sypecka J. Therapeutic Strategies for Leukodystrophic Disorders Resulting from Perinatal Asphyxia: Focus on Myelinating Oligodendrocytes. Mol Neurobiol 2018; 55:4388-4402. [PMID: 28660484 PMCID: PMC5884907 DOI: 10.1007/s12035-017-0647-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022]
Abstract
Perinatal asphyxia results from the action of different risk factors like complications during pregnancy, preterm delivery, or long and difficult labor. Nowadays, it is still the leading cause of neonatal brain injury known as hypoxic-ischemic encephalopathy (HIE) and resulting neurological disorders. A temporal limitation of oxygen, glucose, and trophic factors supply results in alteration of neural cell differentiation and functioning and/or leads to their death. Among the affected cells are oligodendrocytes, responsible for myelinating the central nervous system (CNS) and formation of white matter. Therefore, one of the major consequences of the experienced HIE is leukodystrophic diseases resulting from oligodendrocyte deficiency or malfunctioning. The therapeutic strategies applied after perinatal asphyxia are aimed at reducing brain damage and promoting the endogenous neuroreparative mechanisms. In this review, we focus on the biology of oligodendrocytes and discuss present clinical treatments in the context of their efficiency in preserving white matter structure and preventing cognitive and behavioral deficits after perinatal asphyxia.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego str., 02-106, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego str., 02-106, Warsaw, Poland.
| |
Collapse
|
23
|
Kolomeets NS. [Disturbance of oligodendrocyte differentiation in schizophrenia in relation to main hypothesis of the disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:108-117. [PMID: 28884727 DOI: 10.17116/jnevro201711781108-117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence coming from neuroimaging, molecular genetic and post-mortem studies have implicated oligodendrocyte abnormalities and compromised myelin integrity in schizophrenia. Activity-dependent myelination in adult brain is considered to be an important mechanism of neural circuit's plasticity due to the presence of a large population of oligodendrocyte progenitor cells (OPC) in the adult CNS. Growing evidence for impairment of oligodendrocyte differentiation has been reported in the brain of schizophrenia subjects. OPC are very vulnerable inflammation, oxidative stress, and elevated glutamate levels leading to excitotoxicity. The mechanisms of prolonged suppression of oligodendrocyte differentiation caused by prenatal maternal infection or preterm birth are discussed in view of increased risk of schizophrenia, neurodevelopmental and inflammation hypotheses of the disease. The data that some neuroleptics stimulate OPC differentiation and ameliorate myelin alterations support the notion that impairment in the differentiation of OPCs contributes to oligodendrocyte abnormalities and to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- N S Kolomeets
- National Mental Health Research Center, Moscow, Russia
| |
Collapse
|
24
|
Back SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol 2017; 134:331-349. [PMID: 28534077 PMCID: PMC5973818 DOI: 10.1007/s00401-017-1718-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
The human preterm brain is particularly susceptible to cerebral white matter injury (WMI) that disrupts the normal progression of developmental myelination. Advances in the care of preterm infants have resulted in a sustained reduction in the severity of WMI that has shifted from more severe focal necrotic lesions to milder diffuse WMI. Nevertheless, WMI remains a global health problem and the most common cause of chronic neurological morbidity from cerebral palsy and diverse neurobehavioral disabilities. Diffuse WMI involves maturation-dependent vulnerability of the oligodendrocyte (OL) lineage with selective degeneration of late oligodendrocyte progenitors (preOLs) triggered by oxidative stress and other insults. The magnitude and distribution of diffuse WMI are related to both the timing of appearance and regional distribution of susceptible preOLs. Diffuse WMI disrupts the normal progression of OL lineage maturation and myelination through aberrant mechanisms of regeneration and repair. PreOL degeneration is accompanied by early robust proliferation of OL progenitors that regenerate and augment the preOL pool available to generate myelinating OLs. However, newly generated preOLs fail to differentiate and initiate myelination along their normal developmental trajectory despite the presence of numerous intact-appearing axons. Disrupted preOL maturation is accompanied by diffuse gliosis and disturbances in the composition of the extracellular matrix and is mediated in part by inhibitory factors derived from reactive astrocytes. Signaling pathways implicated in disrupted myelination include those mediated by Notch, WNT-beta catenin, and hyaluronan. Hence, there exists a potentially broad but still poorly defined developmental window for interventions to promote white matter repair and myelination and potentially reverses the widespread disturbances in cerebral gray matter growth that accompanies WMI.
Collapse
Affiliation(s)
- Stephen A Back
- Division of Pediatric Neuroscience, Departments of Pediatrics and Neurology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239-3098, USA.
| |
Collapse
|
25
|
Zhou J, Butler EE, Rose J. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment. Front Hum Neurosci 2017; 11:103. [PMID: 28367118 PMCID: PMC5355477 DOI: 10.3389/fnhum.2017.00103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP.
Collapse
Affiliation(s)
- Joanne Zhou
- Department of Orthopaedic Surgery, Stanford UniversityStanford, CA, USA; Motion and Gait Analysis Lab, Lucile Packard Children's HospitalPalo Alto, CA, USA
| | - Erin E Butler
- Thayer School of Engineering, Dartmouth CollegeHanover, NH, USA; Neukom Institute for Computational Sciences, Dartmouth CollegeHanover, NH, USA
| | - Jessica Rose
- Department of Orthopaedic Surgery, Stanford UniversityStanford, CA, USA; Motion and Gait Analysis Lab, Lucile Packard Children's HospitalPalo Alto, CA, USA
| |
Collapse
|
26
|
Wisnowski JL, Wu TW, Reitman AJ, McLean C, Friedlich P, Vanderbilt D, Ho E, Nelson MD, Panigrahy A, Blüml S. The effects of therapeutic hypothermia on cerebral metabolism in neonates with hypoxic-ischemic encephalopathy: An in vivo 1H-MR spectroscopy study. J Cereb Blood Flow Metab 2016; 36:1075-86. [PMID: 26661180 PMCID: PMC4908621 DOI: 10.1177/0271678x15607881] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 10/22/2022]
Abstract
Therapeutic hypothermia has emerged as the first empirically supported therapy for neuroprotection in neonates with hypoxic-ischemic encephalopathy (HIE). We used magnetic resonance spectroscopy ((1)H-MRS) to characterize the effects of hypothermia on energy metabolites, neurotransmitters, and antioxidants. Thirty-one neonates with HIE were studied during hypothermia and after rewarming. Metabolite concentrations (mmol/kg) were determined from the thalamus, basal ganglia, cortical grey matter, and cerebral white matter. In the thalamus, phosphocreatine concentrations were increased by 20% during hypothermia when compared to after rewarming (3.49 ± 0.88 vs. 2.90 ± 0.65, p < 0.001) while free creatine concentrations were reduced to a similar degree (3.00 ± 0.50 vs. 3.74 ± 0.85, p < 0.001). Glutamate (5.33 ± 0.82 vs. 6.32 ± 1.12, p < 0.001), aspartate (3.39 ± 0.66 vs. 3.87 ± 1.19, p < 0.05), and GABA (0.92 ± 0.36 vs. 1.19 ± 0.41, p < 0.05) were also reduced, while taurine (1.39 ± 0.52 vs. 0.79 ± 0.61, p < 0.001) and glutathione (2.23 ± 0.41 vs. 2.09 ± 0.33, p < 0.05) were increased. Similar patterns were observed in other brain regions. These findings support that hypothermia improves energy homeostasis by decreasing the availability of excitatory neurotransmitters, and thereby, cellular energy demand.
Collapse
Affiliation(s)
- Jessica L Wisnowski
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA Brain and Creativity Institute, University of Southern California, Los Angeles, CA, USA Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA Rudi Schulte Research Institute, Santa Barbara, CA, USA
| | - Tai-Wei Wu
- Department of Pediatrics, Division of Neonatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan Department of Pediatrics, Division of Neonatology, Chang Gung University, Taoyuan, Taiwan
| | - Aaron J Reitman
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Division of Neonatal Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claire McLean
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Division of Neonatal Medicine, University of Southern California, Los Angeles, CA, USA
| | - Philippe Friedlich
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Division of Neonatal Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas Vanderbilt
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Developmental-Behavioral Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Eugenia Ho
- Center for Fetal and Neonatal Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Department of Pediatrics, Division of Child Neurology, University of Southern California, Los Angeles, CA, USA
| | - Marvin D Nelson
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA Brain and Creativity Institute, University of Southern California, Los Angeles, CA, USA Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Stefan Blüml
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA Rudi Schulte Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
27
|
Prenatal Systemic Hypoxia-Ischemia and Oligodendroglia Loss in Cerebellum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:333-345. [PMID: 27714697 DOI: 10.1007/978-3-319-40764-7_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypoxic-ischemic (HI) injury is an important cause of death and disabilities. Despite all improvements in neonatal care, the number of children who suffer some kind of injury during birth has remained stable in the last decade. A great number of studies have shown alterations in neural cells and many animal models have been proposed in the last 5 decades. Robinson et al. (2005) proposed an HI model in which the uterine arteries are temporarily clamped on the 18th gestation day. The findings were quite similar to the ones observed in postmortem studies. The white matter is clearly damaged, and a great amount of astrogliosis takes place both in the gray and white matters. Motor changes were also found but no data regarding the cerebellum, an important structure related to motor performance, was presented. Using this model, we have shown an increased level of iNOS at P0 and microgliosis and astrogliosis at P9, and astrogliosis at P23 (up to 4 weeks from the insult). NO is important in migration, maturation, and synaptic plasticity, but in exacerbated levels it may also contribute to cellular and tissue damage. We have also evaluated oligodendroglia development in the cerebellum. At P9 in HI animals, we found a decrease in the number of PDGFRα+ cells and an apparent delay in myelination, suggesting a failure in oligodendroglial progenitors migration/maturation and/or in the myelination process. These results point to an injury in cerebellar development that might help to explain the motor problems in HI.
Collapse
|
28
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Hanson C, Jones G, Lyden E, Kaufmann M, Armas L, Anderson-Berry A. Vitamin D metabolism in the premature newborn: A randomized trial. Clin Nutr 2015; 35:835-41. [PMID: 26302850 DOI: 10.1016/j.clnu.2015.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND & AIMS Vitamin D status during infancy has been associated with important pediatric health outcomes; however concentrations of many vitamin D metabolites in premature infants are not yet described. The objective of this study was to evaluate concentrations of 25(OH)D3, 24,25(OH)2D3, and 3-epi-25(OH)D3 in premature infants. METHODS 32 infants <32 weeks gestation were randomized to receive 400 or 800IU/day of vitamin D3 orally. Vitamin D metabolites from serum obtained monthly were analyzed in triplicate using a novel, very sensitive Liquid Chromatography-Tandem Mass Spectrometry-based method. Statistical analysis was conducted using the Fisher's exact test, Wilcoxon Rank Sum test, and Spearman correlation coefficients. Measurements over time were fit with linear mixed effect models. A p-value of <0.05 was considered statistically significant. RESULTS Mean serum 25(OH)D3 concentrations in cord blood were 17.3 ng/mL; mean 3-epi-25(OH)D3 were 1.3 ng/mL, mean 24,25(OH)2D3 were 1.4 ng/mL. Both 25(OH)D3 and 3-epi-25(OH)D3 increased significantly over time, and the percent of total 25(OH)D3 concentration that was 3-epi-25(OH)D3 also increased significantly (7.2% vs. 29.7%, p < 0.0001 for cord blood vs. 8 weeks). Serum 25(OH)D3:24,25(OH)2D3 ratios at weeks 4 and 8 were higher than ratios reported in older children and adults. CONCLUSION Vitamin D metabolism in infants appears to have distinct differences from adults. Vitamin D supplementation was effective in raising 25(OH)D3 concentrations; however significant increases in 3-epi-25(OH)D3 also occurred. Increased 25(OH)D3: 24,25(OH)2D3 ratios in premature infants may be due to immature expression of CYP24A1. Further work is necessary to determine if there are developmental advantages to this unique vitamin D metabolism.
Collapse
Affiliation(s)
- Corrine Hanson
- University of Nebraska Medical Center, School of Allied Health Professionals, Medical Nutrition Education, 984045 Nebraska Medical Center, Omaha, NE 68198-4045, USA.
| | - Glenville Jones
- Queen's University, Department of Biomedical and Molecular Sciences Kingston, Ontario K7L 3N6, Canada.
| | - Elizabeth Lyden
- University of Nebraska Medical Center, College of Public Health, 984375 Nebraska Medical Center, Omaha, NE 68198-4375, USA.
| | - Martin Kaufmann
- Queen's University, Department of Biomedical and Molecular Sciences Kingston, Ontario K7L 3N6, Canada.
| | - Laura Armas
- Creighton Osteoporosis Research Center, Creighton University 601 N 30th Street, Omaha, NE 68131, USA.
| | - Ann Anderson-Berry
- University of Nebraska Medical Center, Pediatrics, 981205 Nebraska Medical Center, Omaha, NE 68198-1205, USA.
| |
Collapse
|
30
|
Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, Gressens P. The role of inflammation in perinatal brain injury. Nat Rev Neurol 2015; 11:192-208. [PMID: 25686754 PMCID: PMC4664161 DOI: 10.1038/nrneurol.2015.13] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammation is increasingly recognized as being a critical contributor to both normal development and injury outcome in the immature brain. The focus of this Review is to highlight important differences in innate and adaptive immunity in immature versus adult brain, which support the notion that the consequences of inflammation will be entirely different depending on context and stage of CNS development. Perinatal brain injury can result from neonatal encephalopathy and perinatal arterial ischaemic stroke, usually at term, but also in preterm infants. Inflammation occurs before, during and after brain injury at term, and modulates vulnerability to and development of brain injury. Preterm birth, on the other hand, is often a result of exposure to inflammation at a very early developmental phase, which affects the brain not only during fetal life, but also over a protracted period of postnatal life in a neonatal intensive care setting, influencing critical phases of myelination and cortical plasticity. Neuroinflammation during the perinatal period can increase the risk of neurological and neuropsychiatric disease throughout childhood and adulthood, and is, therefore, of concern to the broader group of physicians who care for these individuals.
Collapse
Affiliation(s)
- Henrik Hagberg
- 1] Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK. [2] Perinatal Center, Institute of Physiology and Neurosciences and Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 435 43 Gothenburg, Sweden
| | - Carina Mallard
- Perinatal Center, Institute of Physiology and Neurosciences and Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 435 43 Gothenburg, Sweden
| | - Donna M Ferriero
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan J Vannucci
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Steven W Levison
- Department of Neurology and Neuroscience, Rutgers University, RBHS-New Jersey Medical School, Cancer Center, H-1226 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Zinaida S Vexler
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
31
|
Jantzie LL, Robinson S. Preclinical Models of Encephalopathy of Prematurity. Dev Neurosci 2015; 37:277-88. [PMID: 25722056 DOI: 10.1159/000371721] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
Encephalopathy of prematurity (EoP) encompasses the central nervous system (CNS) abnormalities associated with injury from preterm birth. Although rapid progress is being made, limited understanding exists of how cellular and molecular CNS injury from early birth manifests as the myriad of neurological deficits in children who are born preterm. More importantly, this lack of direct insight into the pathogenesis of these deficits hinders both our ability to diagnose those infants who are at risk in real time and could potentially benefit from treatment and our ability to develop more effective interventions. Current barriers to clarifying the pathophysiology, developmental trajectory, injury timing, and evolution include preclinical animal models that only partially recapitulate the molecular, cellular, histological, and functional abnormalities observed in the mature CNS following EoP. Inflammation from hypoxic-ischemic and/or infectious injury induced in utero in lower mammals, or actual prenatal delivery of more phylogenetically advanced mammals, are likely to be the most clinically relevant EOP models, facilitating translation to benefit infants. Injury timing, type, severity, and pathophysiology need to be optimized to address the specific hypothesis being tested. Functional assays of the mature animal following perinatal injury to mimic EoP should ideally test for the array of neurological deficits commonly observed in preterm infants, including gait, seizure threshold and cognitive and behavioral abnormalities. Here, we review the merits of various preclinical models, identify gaps in knowledge that warrant further study and consider challenges that animal researchers may face in embarking on these studies. While no one model system is perfect, insights relevant to the clinical problem can be gained with interpretation of experimental results within the context of inherent limitations of the chosen model system. Collectively, optimal use of multiple models will address a major challenge facing the field today - to identify the type and severity of CNS injury these vulnerable infants suffer in a safe and timely manner, such that emerging neurointerventions can be tailored to specifically address individual reparative needs.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, N. Mex., USA
| | | |
Collapse
|
32
|
Suryana E, Jones NM. The effects of hypoxic preconditioning on white matter damage following hypoxic-ischaemic injury in the neonatal rat brain. Int J Dev Neurosci 2014; 37:69-75. [PMID: 25009121 DOI: 10.1016/j.ijdevneu.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 11/17/2022] Open
Abstract
Myelination is an essential process in human development that is carried out by oligodendrocytes in the central nervous system. Hypoxic-ischaemic (HI) brain injury can disrupt myelination by causing oxidative stress, inflammation and excitotoxicity, resulting in the loss of myelin as well as cells of the oligodendrocyte lineage. We have previously shown that hypoxic preconditioning (HP) can protect against HI injury, however, to date there have been no reports of its effects on white matter injury. Sprague-Dawley rat pups (postnatal day (P) 6) were placed into control and HP groups. On P7, pups were further separated into HI and sham surgery groups. HI pups underwent a unilateral common carotid artery occlusion and then exposed to 8% oxygen for 3h. Sham pups underwent the same procedure without occlusion and were maintained in room air. Brains were removed 5 days post-surgery for analysis. In HI-only pups there was a significant reduction in brain volume observed. Consequently, when HP was performed prior to HI, the loss of brain tissue was prevented. The number of early and late oligodendrocyte progenitors (preOLs) in the corpus callosum was unaffected by HI, however, HI reduced the amount of myelin basic protein, indicating that HI may inhibit the maturation of preOLs. Whilst HP did not affect preOL density, it was found to prevent the loss of myelin caused by HI. This indicates that HP may either protect myelin directly or possibly promote the maturation of preOLs to regenerate the lost or damaged myelin.
Collapse
Affiliation(s)
- Eurwin Suryana
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| |
Collapse
|
33
|
Mifsud G, Zammit C, Muscat R, Di Giovanni G, Valentino M. Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci Ther 2014; 20:603-12. [PMID: 24703424 DOI: 10.1111/cns.12263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, form a functional unit with axons and play a crucial role in axonal integrity. An episode of hypoxia-ischemia causes rapid and severe damage to these particularly vulnerable cells via multiple pathways such as overactivation of glutamate and ATP receptors, oxidative stress, and disruption of mitochondrial function. The cardinal effect of OL pathology is demyelination and dysmyelination, and this has profound effects on axonal function, transport, structure, metabolism, and survival. The OL is a primary target of ischemia in adult-onset stroke and especially in periventricular leukomalacia and should be considered as a primary therapeutic target in these conditions. More emphasis is needed on therapeutic strategies that target OLs, myelin, and their receptors, as these have the potential to significantly attenuate white matter injury and to establish functional recovery of white matter after stroke. In this review, we will summarize recent progress on the role of OLs in white matter ischemic injury and the current and emerging principles that form the basis for protective strategies against OL death.
Collapse
Affiliation(s)
- Gabriella Mifsud
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | | | | | | |
Collapse
|
34
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
35
|
Blüml S, Wisnowski JL, Nelson MD, Paquette L, Panigrahy A. Metabolic maturation of white matter is altered in preterm infants. PLoS One 2014; 9:e85829. [PMID: 24465731 PMCID: PMC3899075 DOI: 10.1371/journal.pone.0085829] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
Significant physiological switches occur at birth such as the transition from fetal parallel blood flow to a two-circuit serial system with increased arterial oxygenation of blood delivered to all organs including the brain. In addition, the extra-uterine environment exposes premature infants to a host of stimuli. These events could conceivably alter the trajectory of brain development in premature infants. We used in vivo magnetic resonance spectroscopy to measure absolute brain metabolite concentrations in term and premature-born infants without evidence of brain injury at equivalent post-conceptional age. Prematurity altered the developmental time courses of N-acetyl-aspartate, a marker for axonal and neuronal development, creatine, an energy metabolite, and choline, a membrane metabolite, in parietal white matter. Specifically, at term-equivalency, metabolic maturation in preterm infants preceded development in term infants, but then progressed at a slower pace and trajectories merged at ≈340–370 post-conceptional days. In parieto/occipital grey matter similar trends were noticed but statistical significance was not reached. The timing of white matter development and synchronization of white matter and grey matter maturation in premature-born infants is disturbed. This may contribute to the greater risk of long-term neurological problems of premature infants and to their higher risk for white matter injury.
Collapse
Affiliation(s)
- Stefan Blüml
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Rudi Schulte Research Institute, Santa Barbara, California, United States of America
- * E-mail:
| | - Jessica L. Wisnowski
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Dornsife Cognitive Neuroscience Imaging Center, USC, Los Angeles, California, United States of America
| | - Marvin D. Nelson
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Lisa Paquette
- Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Ashok Panigrahy
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
36
|
Laptook AR. Neurologic and metabolic issues in moderately preterm, late preterm, and early term infants. Clin Perinatol 2013; 40:723-38. [PMID: 24182958 DOI: 10.1016/j.clp.2013.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Common neurologic morbidities encountered in very preterm and extremely preterm infants (intracranial hemorrhage, white matter injury and periventricular leukomalacia, and apnea of prematurity) are much less common in moderately preterm and late preterm infants. The frequency of germinal matrix hemorrhage-intraventricular hemorrhage and white matter injury are reported to be low, but selection bias in neuroimaging surveillance prevents ascertainment of precise frequencies. The major neurologic morbidity of moderately and late preterm infants is feeding difficulty reflecting developmental integration of suck, swallow, and breathing.
Collapse
Affiliation(s)
- Abbot R Laptook
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905, USA.
| |
Collapse
|
37
|
Perrone S, Tataranno LM, Stazzoni G, Ramenghi L, Buonocore G. Brain susceptibility to oxidative stress in the perinatal period. J Matern Fetal Neonatal Med 2013; 28 Suppl 1:2291-5. [PMID: 23968388 DOI: 10.3109/14767058.2013.796170] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative stress (OS) occurs at birth in all newborns as a consequence of the hyperoxic challenge due to the transition from the hypoxic intrauterine environment to extrauterine life. Free radical (FRs) sources such as inflammation, hyperoxia, hypoxia, ischaemia-reperfusion, neutrophil and macrophage activation, glutamate and free iron release, all increases the OS during the perinatal period. Newborns, and particularly preterm infants, have reduced antioxidant defences and are not able to counteract the harmful effects of FRs. Energy metabolism is central to life because cells cannot exist without an adequate supply of ATP. Due to its growth, the mammalian brain can be considered as a steady-state system in which ATP production matches ATP utilisation. The developing brain is particularly sensitive to any disturbances in energy generation, and even a short-term interruption can lead to long-lasting and irreversible damage. Whenever energy failure develops, brain damage can occur. Accumulating evidence indicates that OS is implicated in the pathogenesis of many neurological diseases, such as intraventricular haemorrhage, hypoxic-ischaemic encephalopathy and epilepsy.
Collapse
Affiliation(s)
- Serafina Perrone
- a Department of Pediatrics , Obstetrics and Reproduction Medicine, University of Siena , Siena , Italy and
| | - Luisa M Tataranno
- a Department of Pediatrics , Obstetrics and Reproduction Medicine, University of Siena , Siena , Italy and
| | - Gemma Stazzoni
- a Department of Pediatrics , Obstetrics and Reproduction Medicine, University of Siena , Siena , Italy and
| | - Luca Ramenghi
- b Neonatal Pathology Unit , Giannina Gaslini Hospital , Genova , Italy
| | - Giuseppe Buonocore
- a Department of Pediatrics , Obstetrics and Reproduction Medicine, University of Siena , Siena , Italy and
| |
Collapse
|
38
|
Haynes RL, van Leyen K. 12/15-lipoxygenase expression is increased in oligodendrocytes and microglia of periventricular leukomalacia. Dev Neurosci 2013; 35:140-54. [PMID: 23838566 DOI: 10.1159/000350230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/21/2013] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress involving premyelinating oligodendrocytes (OLs) is a major factor in the pathogenesis of preterm white matter injury. In animal and cell culture studies, activation of the lipid-oxidizing enzyme 12/15-lipoxygenase (12/15-LOX) plays a central role as an inflammatory mediator in the pathology of oxidative stress and OL cell death, as well as ischemia and neuronal death. The role of 12/15-LOX, however, is unclear in the developing human brain. The mechanism of 12/15-LOX involves the production of reactive oxygen species through the metabolism of arachidonic acid, as well as direct detrimental effects on organelle membranes. Here we tested the hypothesis that the density of 12/15-LOX-expressing cells is increased in periventricular leukomalacia (PVL). Using immunocytochemistry (ICC) in human paraffin-embedded tissue, 12/15-LOX expression was seen in macrophages of the focally necrotic lesions in the periventricular white matter, as well as in glial cells throughout the surrounding white matter with reactive gliosis. Interestingly, no significant 12/15-LOX expression was detected in neurons in the cerebral cortex overlying the damaged white matter. Using a scoring system from 0 to 3, we assessed the density of 12/15-LOX-expressing cells in diffusely gliotic white matter from 20 to 43 postconceptional (PC) weeks in 19 PVL cases (median = 36 PC weeks) and 10 control (non-PVL) cases (median = 34 PC weeks). The density of 12/15-LOX-positive cells was significantly increased in the diffuse component of PVL (score = 1.17 ± 0.15) compared to controls (score = 0.48 ± 0.21; p = 0.014). Using double-label ICC, 12/15-LOX was observed in PVL in OLs of the O4 and O1 premyelinating stages, as well as in mature OLs as determined with the mature OL marker adenomatous polyposis coli (APC). In addition, 12/15-LOX expression was present in a population of CD68-positive activated microglia. There was no 12/15-LOX expression in reactive astrocytes. Finally we observed terminal deoxynucleotide transferase dUTP nick end-labeling-positive cells within the white matter of PVL that expressed 12/15-LOX and/or within close proximity of 12/15-LOX-positive cells. Our data support a role for 12/15-LOX activation as an inflammatory mediator of injury in PVL, with a contribution of 12/15-LOX to PVL-induced damage to or cell death of OLs, including those at the O1 and O4 stages.
Collapse
Affiliation(s)
- Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
39
|
Sanches E, Arteni N, Scherer E, Kolling J, Nicola F, Willborn S, Wyse A, Netto C. Are the consequences of neonatal hypoxia–ischemia dependent on animals' sex and brain lateralization? Brain Res 2013; 1507:105-14. [DOI: 10.1016/j.brainres.2013.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
|
40
|
Shim SY, Kim HS. Oxidative stress and the antioxidant enzyme system in the developing brain. KOREAN JOURNAL OF PEDIATRICS 2013; 56:107-11. [PMID: 23559971 PMCID: PMC3611043 DOI: 10.3345/kjp.2013.56.3.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/17/2012] [Indexed: 12/02/2022]
Abstract
Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS) play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide (O2•-), hydroxyl radical (OH•), and hydrogen peroxide (H2O2). Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx), is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.
Collapse
Affiliation(s)
- So-Yeon Shim
- Division of Neonatology, Department of Pediatrics, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | | |
Collapse
|
41
|
Wang Y, Li B, Li Z, Huang S, Wang J, Sun R. Improvement of hypoxia-ischemia-induced white matter injury in immature rat brain by ethyl pyruvate. Neurochem Res 2013; 38:742-52. [PMID: 23471594 DOI: 10.1007/s11064-013-0972-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/10/2012] [Accepted: 01/11/2013] [Indexed: 01/09/2023]
Abstract
Ethyl pyruvate (EP) has been reported to be neuroprotective in several models of brain injury, yet its influence on periventricular leukomalacia still remains elusive. Here we investigated whether repeated administration of EP could protect against white matter injury after hypoxia-ischemia (HI) (right common carotid artery ligation and 6 % O2 for 60 min) in post-natal 3 day rat pups. EP was injected (50 mg/kg, intraperitoneally) 10 min, 1 and 24 h after HI insult. Treatment with EP significantly reduced HI-induced ventricular enlargement, loss of developing oligodendrocytes, and hypomyelination. We further demonstrated a marked inhibitory effect of EP on inflammatory responses, as indicated by the decreased number of activated microglia and astrocytes and the reduced release of proinflammatory cytokines. Moreover, EP down-regulated the expression of cleaved caspase-3 and Bax, and up-regulated Bcl-2 expression after HI exposure. In conclusion, our results demonstrated that EP was able to provide potent protection on white matter injury through blocking the cerebral inflammatory responses and modulating the apoptotic death program of oligodendrocytes, indicating a potential neuroprotective agent in neonatal brain injury.
Collapse
Affiliation(s)
- Yingyan Wang
- Pediatric Department of Qilu Hospital, Shandong University, Wenhuaxi Road 44, Jinan, 250012 Shandong Province, China
| | | | | | | | | | | |
Collapse
|
42
|
Kuypers E, Ophelders D, Jellema RK, Kunzmann S, Gavilanes AW, Kramer BW. White matter injury following fetal inflammatory response syndrome induced by chorioamnionitis and fetal sepsis: lessons from experimental ovine models. Early Hum Dev 2012; 88:931-6. [PMID: 23078831 DOI: 10.1016/j.earlhumdev.2012.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chorioamnionitis and fetal sepsis can induce a fetal inflammatory response syndrome (FIRS) which is closely related to the development of white matter injury in the fetal brain. Large epidemiological studies support the link between FIRS and fetal brain injury with a clear association between the presence of in utero inflammation and neurodevelopmental complications such as cerebral palsy, autism and cognitive impairments later in life. Translational animal models of chorioamnionitis and fetal sepsis are essential in understanding the underlying pathophysiological mechanisms of fetal brain injury after exposure to intra-uterine inflammation. Concerning this aspect, ovine models have high translational value since neurodevelopment in sheep closely resembles the human situation. In this article, we will review clinical and experimental evidence for the link between FIRS and white matter injury in the fetal brain. With respect to experimental findings, we will particularly focus on the lessons learned from ovine models of chorioamnionitis and fetal sepsis. We also highlight two key players implied in the pathophysiology of white matter injury after in utero exposure to inflammation.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Kayem G, Mandelbrot L, Haddad B. [Use of magnesium sulfate in obstetrics]. ACTA ACUST UNITED AC 2012; 40:605-13. [PMID: 22995056 DOI: 10.1016/j.gyobfe.2012.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/21/2012] [Indexed: 11/20/2022]
Abstract
Magnesium sulfate (MgSO(4)) is the best treatment of eclampsia, reduces the risk of recurrence better than other anticonvulsants and is recommended as first line in cases of eclampsia. In cases of severe pre-eclampsia and especially when prodromes are present, MgSO(4) reduces better than conventional anticonvulsants the risk of eclampsia. More recently, MgSO(4) was used in cases of preterm delivery to reduce the risk of cerebral palsy in premature infants. Three large randomized trials have obtained convergent results which all tended to show a neuroprotective effect of MgSO(4). These trials were included in three meta-analyzes that showed a 30% reduction in the incidence of cerebral palsy before 32 weeks gestation suggesting that this drug should be used in cases of preterm birth. A protocol using low doses associated with a well-conducted maternal surveillance reduces of maternal hypermagnesemia and the risk of maternal toxicity.
Collapse
Affiliation(s)
- G Kayem
- Service de gynécologie-obstétrique, hôpital Louis-Mourier, AP-HP, HUPNVS, université Paris Diderot, 178, rue des Renouillers, 92700 Colombes, France.
| | | | | |
Collapse
|
44
|
Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. J Neuropathol Exp Neurol 2012; 71:640-53. [PMID: 22710965 DOI: 10.1097/nen.0b013e31825cfa81] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Intrauterine growth retardation (IUGR) is associated with neurological deficits including cerebral palsy and cognitive and behavioral disabilities. The pathogenesis involves oxidative stress that leads to periventricular white matter injury with a paucity of mature oligodendrocytes and hypomyelination. The molecular mechanisms underlying this damage remain poorly understood. We used a rat model of IUGR created by bilateral ligation of the uterine artery at embryonic Day 19 that results in fetal growth retardation and oxidative stress in the developing brain. The IUGR rat pups showed significant delays in oligodendrocyte differentiation and myelination that resolved by 8 weeks. Bone morphogenetic protein 4 (BMP4), which inhibits oligodendrocyte maturation, was elevated in IUGR brains at postnatal time points and returned to near normal by adulthood. Despite the apparent recovery, behavioral deficiencies were found in 8-week-old female animals, suggesting that the early transient myelination defects have permanent effects. In support of these in vivo data, oligodendrocyte precursor cells cultured from postnatal IUGR rats retained increased BMP4 expression and impaired differentiation that was reversed with the BMP inhibitor noggin. Oxidants in oligodendrocyte cultures increased BMP expression, which decreased differentiation; however, abrogating BMP signaling with noggin in vitro and in BMP-deficient mice prevented these effects. Together, these findings suggest that IUGR results in delayed myelination through the generation of oxidative stress that leads to BMP4 upregulation.
Collapse
|
45
|
Modeling the encephalopathy of prematurity in animals: the important role of translational research. Neurol Res Int 2012; 2012:295389. [PMID: 22685653 PMCID: PMC3366246 DOI: 10.1155/2012/295389] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/18/2012] [Indexed: 12/23/2022] Open
Abstract
Translational research in preterm brain injury depends upon the delineation of the human neuropathology in order that animal models faithfully reiterate it, thereby ensuring direct relevance to the human condition. The major substrate of human preterm brain injury is the encephalopathy of prematurity that is characterized by gray and white matter lesions reflecting combined acquired insults, altered developmental trajectories, and reparative phenomena. Here we highlight the key features of human preterm brain development and the encephalopathy of prematurity that are critical for modeling in animals. The complete mimicry of the complex human neuropathology is difficult in animal models. Many models focus upon mechanisms related to a specific feature, for example, loss of premyelinating oligodendrocytes in the cerebral white matter. Nevertheless, animal models that simultaneously address oligodendrocyte, neuronal, and axonal injury carry the potential to decipher shared mechanisms and synergistic treatments to ameliorate the global consequences of the encephalopathy of prematurity.
Collapse
|
46
|
Savignon T, Costa E, Tenorio F, Manhães AC, Barradas PC. Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum. PLoS One 2012; 7:e35786. [PMID: 22540005 PMCID: PMC3335161 DOI: 10.1371/journal.pone.0035786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/22/2012] [Indexed: 12/03/2022] Open
Abstract
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.
Collapse
Affiliation(s)
- Tiago Savignon
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Everton Costa
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenorio
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
47
|
Shim SY, Kim HS, Kim EK, Choi JH. Expression of peroxiredoxin 1, 2, and 6 in the rat brain during perinatal development and in response to dexamethasone. Free Radic Res 2012; 46:231-9. [PMID: 22166015 DOI: 10.3109/10715762.2011.649749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxiredoxins (Prdx), a family of antioxidant proteins, have important defensive roles in the degenerative brain diseases and neuronal cell death in adult subjects. However, little is known in the neonatal brain. Here, we studied the developmental expression of Prdxs and their response to dexamethasone in the perinatal rat brain. Prdx 1 expression increased during late gestations and peaked at postnatal-day 1, when its expression gradually decreased. Prdx 2 expression remained largely unchanged. Prdx 6 expression continually increased as growing. Using immunohistochemistry, each Prdx showed a strong expression in the cerebral cortex and hippocampus. Prdx 1 was strongly expressed in the corpus callosum. The dexamethasone injection increased the expression of Prdx 6. In conclusion, we reveal for the first time that Prdx 1, 2 and 6 are found in abundance in the perinatal rat brain and are differentially expressed during development. The expression of Prdx 6 was affected by dexamethasone treatment.
Collapse
Affiliation(s)
- So-Yeon Shim
- Department of Pediatrics, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Magnesium sulfate tocolysis and intraventricular hemorrhage in very preterm infants. Indian J Pediatr 2012; 79:43-7. [PMID: 21625843 DOI: 10.1007/s12098-011-0440-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To estimate the contributory effect of tocolytic magnesium sulfate (MgSO4) exposure to intraventricular hemorrhage (IVH) in preterm infants born at 23-31 wks gestation to mothers without evidence of pregnancy induced hypertension and/or preeclampsia. METHODS Cases with IVH and controls without IVH were selected from a population-based cohort of preterm infants admitted from January 2004 through May 2008 to the Level III Neonatal Intensive Care Unit (NICU) at Robert Wood Johnson University Hospital. Cases and controls were matched primarily by exact gestational age in completed weeks and secondarily by the birth weight that was same or similar (+/-100 g). The odds of tocolytic MgSO(4) exposure among the cases and controls was tested in a regression model to control the difference in demographic and clinical factors between the IVH cases (IVH+) and controls without IVH (IVH-). RESULTS Eighty-nine IVH cases and 89 controls were comparable for parity, mode of delivery, antenatal corticosteroid exposure, and surfactant administration. IVH cases were less likely to have preterm premature rupture of membranes and were more likely to be born with low Apgar scores and require ventilation. Among the IVH cases, 30.3% of infants were exposed to tocolytic MgSO4 as compared to 47.2% of controls (Odds Ratio adjusted 0.471, 95% Confidence Interval 0.241, 0.906). CONCLUSIONS Among the preterm born infants with gestational age 23-31 wks and IVH, tocolytic MgSO4 exposure was less likely to be observed than in neonates with similar clinical characteristics but without IVH, thereby suggesting that antenatal exposure to MgSO(4) may have a protective effect against IVH.
Collapse
|
49
|
Developmental regulation of group I metabotropic glutamate receptors in the premature brain and their protective role in a rodent model of periventricular leukomalacia. ACTA ACUST UNITED AC 2011; 6:277-88. [PMID: 22169210 DOI: 10.1017/s1740925x11000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebral white matter injury in premature infants, known as periventricular leukomalacia (PVL), is common after hypoxia-ischemia (HI). While ionotropic glutamate receptors (iGluRs) can mediate immature white matter injury, we have previously shown that excitotoxic injury to premyelinating oligodendrocytes (preOLs) in vitro can be attenuated by group I metabotropic glutamate receptor (mGluR) agonists. Thus, we evaluated mGluR expression in developing white matter in rat and human brain, and tested the protective efficacy of a central nervous system (CNS)-penetrating mGluR agonist on injury to developing oligodendrocytes (OLs) in vivo. Group I mGluRs (mGluR1 and mGluR5) were strongly expressed on OLs in neonatal rodent cerebral white matter throughout normal development, with highest expression early in development on preOLs. Specifically at P6, mGluR1 and mGLuR5 were most highly expressed on GalC-positive OLs compared to neurons, axons, astrocytes and microglia. Systemic administration of (1S,3R) 1-aminocyclopentane-trans-1,3,-dicarboxylic acid (ACPD) significantly attenuated the loss of myelin basic protein in the white matter following HI in P6 rats. Assessment of postmortem human tissue showed both mGluR1 and mGluR5 localized on immature OLs in white matter throughout development, with mGluR5 highest in the preterm period. These data indicate group I mGluRs are highly expressed on OLs during the peak period of vulnerability to HI and modulation of mGluRs is protective in a rodent model of PVL. Group I mGluRs may represent important therapeutic targets for protection from HI-mediated white matter injury.
Collapse
|
50
|
Broadbelt KG, Rivera KD, Paterson DS, Duncan JR, Trachtenberg FL, Paulo JA, Stapels MD, Borenstein NS, Belliveau RA, Haas EA, Stanley C, Krous HF, Steen H, Kinney HC. Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome. Mol Cell Proteomics 2011; 11:M111.009530. [PMID: 21976671 DOI: 10.1074/mcp.m111.009530] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Impaired brainstem responses to homeostatic challenges during sleep may result in the sudden infant death syndrome (SIDS). Previously we reported a deficiency of serotonin (5-HT) and its key biosynthetic enzyme, tryptophan hydroxylase (TPH2), in SIDS infants in the medullary 5-HT system that modulates homeostatic responses during sleep. Yet, the underlying basis of the TPH2 and 5-HT deficiency is unknown. In this study, we tested the hypothesis that proteomics would uncover previously unrecognized abnormal levels of proteins related to TPH2 and 5-HT regulation in SIDS cases compared with controls, which could provide novel insight into the basis of their deficiency. We first performed a discovery proteomic analysis of the gigantocellularis of the medullary 5-HT system in the same data set with deficiencies of TPH2 and 5-HT levels. Analysis in 6 SIDS cases and 4 controls revealed a 42-75% reduction in abundance in 5 of the 6 isoforms identified of the 14-3-3 signal transduction family, which is known to influence TPH2 activity (p < 0.07). These findings were corroborated in an additional SIDS and control sample using an orthogonal MS(E)-based quantitative proteomic strategy. To confirm these proteomics results in a larger data set (38 SIDS, 11 controls), we applied Western blot analysis in the gigantocellularis and found that 4/7 14-3-3 isoforms identified were significantly reduced in SIDS cases (p ≤ 0.02), with a 43% reduction in all 14-3-3 isoforms combined (p < 0.001). Abnormalities in 5-HT and TPH2 levels and 5-HT(1A) receptor binding were associated with the 14-3-3 deficits in the same SIDS cases. These data suggest a potential molecular defect in SIDS related to TPH2 regulation, as 14-3-3 is critical in this process.
Collapse
Affiliation(s)
- Kevin G Broadbelt
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts; Proteomics Center, Children's Hospital Boston, Boston, Massachusetts.
| | - Keith D Rivera
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - David S Paterson
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Jhodie R Duncan
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | | | - Joao A Paulo
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts; Proteomics Center, Children's Hospital Boston, Boston, Massachusetts
| | | | - Natalia S Borenstein
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Richard A Belliveau
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth A Haas
- Rady Children's Hospital San Diego and University of California, San Diego School of Medicine, La Jolla, California
| | | | - Henry F Krous
- Rady Children's Hospital San Diego and University of California, San Diego School of Medicine, La Jolla, California
| | - Hanno Steen
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts; Proteomics Center, Children's Hospital Boston, Boston, Massachusetts
| | - Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|