1
|
Yu CH, Lin KC, Chang CL, Chen WM, Shia BC, Wu SY. Statin therapy enhances survival in unresectable stage III lung squamous cell carcinoma with concurrent chemoradiotherapy. Am J Cancer Res 2024; 14:2957-2970. [PMID: 39005681 PMCID: PMC11236787 DOI: 10.62347/nzhy5175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
To evaluate the impact of statin use on overall survival and lung cancer-specific survival in patients with unresectable stage III lung squamous cell carcinoma (LSCC) undergoing standard concurrent chemoradiotherapy (CCRT). Using data from the Taiwan Cancer Registry Database and National Health Insurance Research Database, this propensity score matching cohort study analyzed the influence of statin use during CCRT on overall survival and lung cancer-specific survival. Statin use during CCRT was independently associated with significant improvements in overall survival and lung cancer-specific survival. The adjusted hazard ratio (95% CI) for all-cause mortality in the statin group versus the non-statin group was 0.60 (0.53-0.68, P < 0.0001). Similarly, the adjusted hazard ratio for lung cancer-specific mortality in the statin group versus the non-statin group was 0.61 (95% CI, 0.54-0.70, P < 0.0001). Pravastatin and fluvastatin exhibited the greatest potential in reducing lung cancer-specific mortality among statins, with rosuvastatin following closely behind. Atorvastatin demonstrated comparable effectiveness, while simvastatin and lovastatin displayed lower efficacy in this regard. Furthermore, a dose-response relationship was observed, with higher cumulative defined daily doses and greater daily intensity of statin use associated with reduced mortality. Our study provides evidence that statin use during CCRT for unresectable stage III LSCC is associated with significant improvements in overall survival and lung cancer-specific survival. Pravastatin showed the highest potential for reducing lung cancer-specific mortality among statins, followed by rosuvastatin. Atorvastatin and fluvastatin exhibited similar effectiveness, while simvastatin and lovastatin demonstrated lower efficacy. The dose-response relationship showed higher statin utilization in reducing lung cancer-specific mortality.
Collapse
Affiliation(s)
- Chih-Hsien Yu
- Department of Cardiology, St. Paul’s HospitalTaoyuan, Taiwan
| | - Kuan-Chou Lin
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical UniversityTaipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Chia-Lun Chang
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical UniversityTaipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityTaipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic UniversityTaipei, Taiwan
| | - Ben-Chang Shia
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityTaipei, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic UniversityTaipei, Taiwan
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia UniversityTaichung, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia UniversityTaichung, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
2
|
Spadella MA, Silva EJR, Chies AB, Almeida LAD. Insights Into Antioxidant Strategies to Counteract Radiation-Induced Male Infertility. Antioxid Redox Signal 2024; 40:776-801. [PMID: 37917108 DOI: 10.1089/ars.2023.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Radiotherapy, which employs ionizing radiation to destroy or prevent the multiplication of tumor cells, has been increasingly used in the treatment of neoplastic diseases, especially cancers. However, radiation collaterally leads to prolonged periods of sperm count suppression, presumably due to impaired spermatogenesis by depleting the germ cell pool, which has long-term side effects for male reproduction. Recent Advances: Studies of antioxidant compounds as a potential strategy for male fertility preservation have been performed mainly from animal models, aiming to prevent and restore the male germinal tissue and its function, particularly against the oxidative stress effects of radiation. Evidence in preclinical and clinical trials has shown that inhibitors of the renin-angiotensin system and other drugs, such as statins and metformin, are candidates for ameliorating radiation-induced damage to several tissues, including the testis and prostate. Critical Issues: Research for developing an ideal radioprotective agent is challenging due to toxicity in the normal tissue, tumor radioresistance, cellular response to radiation, costs, regulation, and timeline development. Moreover, male radioprotection experiments in humans, mainly clinical trials, are scarce and use few individuals. This scenario is reflected in the slow progress of innovation in the radioprotection field. Future Directions: Expanding human studies to provide clues on the efficacy and safety of radioprotective compounds in the human reproductive system is necessary. Drug repurposing, frequently used in clinical practice, can be a way to shorten the development pipeline for innovative approaches for radioprotection or radiomitigation of the repercussions of radiotherapy in the male reproductive system.
Collapse
Affiliation(s)
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Agnaldo Bruno Chies
- Laboratory of Pharmacology; Marília Medical School-Famema, Marília, São Paulo, Brazil
| | | |
Collapse
|
3
|
Mohammadgholi M, Hosseinimehr SJ. Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells. Curr Med Chem 2024; 31:2751-2769. [PMID: 37026495 DOI: 10.2174/0929867330666230407104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.
Collapse
Affiliation(s)
- Mohsen Mohammadgholi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Rao Y, Samuels Z, Carter LM, Monette S, Panikar S, Pereira P, Lewis J. Statins enhance the efficacy of HER2-targeting radioligand therapy in drug-resistant gastric cancers. Proc Natl Acad Sci U S A 2023; 120:e2220413120. [PMID: 36972439 PMCID: PMC10083538 DOI: 10.1073/pnas.2220413120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in various cancer types. HER2-targeting trastuzumab plus chemotherapy is used as first-line therapy for HER2-positive recurrent or primary metastatic gastric cancer, but intrinsic and acquired trastuzumab resistance inevitably develop over time. To overcome gastric cancer resistance to HER2-targeted therapies, we have conjugated trastuzumab with a beta-emitting therapeutic isotope, lutetium-177, to deliver radiation locally to gastric tumors with minimal toxicity. Because trastuzumab-based targeted radioligand therapy (RLT) requires only the extramembrane domain binding of membrane-bound HER2 receptors, HER2-targeting RLT can bypass any resistance mechanisms that occur downstream of HER2 binding. Leveraging our previous discoveries that statins, a class of cholesterol-lowering drugs, can enhance the cell surface-bound HER2 to achieve effective drug delivery in tumors, we proposed that the combination of statins and [177Lu]Lu-trastuzumab-based RLT can enhance the therapeutic efficacy of HER2-targeted RLT in drug-resistant gastric cancers. We demonstrate that lovastatin elevates cell surface HER2 levels and increases the tumor-absorbed radiation dose of [177Lu]Lu-DOTA-trastuzumab. Furthermore, lovastatin-modulated [177Lu]Lu-DOTA-trastuzumab RLT durably inhibits tumor growth and prolongs overall survival in mice bearing NCI-N87 gastric tumors and HER2-positive patient-derived xenografts (PDXs) of known clinical resistance to trastuzumab therapy. Statins also exhibit a radioprotective effect, reducing radiotoxicity in a mice cohort given the combination of statins and [177Lu]Lu-DOTA-trastuzumab. Since statins are commonly prescribed to patients, our results strongly support the feasibility of clinical studies that combine lovastatin with HER2-targeted RLT in HER2-postive patients and trastuzumab-resistant HER2-positive patients.
Collapse
Affiliation(s)
- Yi Rao
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Zachary Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Lukas M. Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY10065
| | - Sandeep Surendra Panikar
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Patricia M. R. Pereira
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Department of Pharmacology, Weill Cornell Medicine, New York, NY10021
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| |
Collapse
|
5
|
Hosseini A, Alipour A, Baradaran Rahimi V, Askari VR. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. Biofactors 2022; 49:322-350. [PMID: 36471898 DOI: 10.1002/biof.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different toxins, including chemicals and natural, can be entered from various routes and influence human health. Herbal medicines and their active components can attenuate the toxicity of agents via multiple mechanisms. For example, kaempferol, as a flavonoid, can be found in fruits and vegetables, and has an essential role in improving disorders such as cardiovascular disorders, neurological diseases, cancer, pain, and inflammation situations. The beneficial effects of kaempferol may be related to the inhibition of oxidative stress, attenuation of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. This flavonoid boasts a wide spectrum of toxin targeting effects in tissue fibrosis, inflammation, and oxidative stress thus shows promising protective effects against natural and chemical toxin induced hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, lung, and intestinal in the in vitro and in vivo setting. The most remarkable aspect of kaempferol is that it does not focus its efforts on just one organ or one molecular pathway. Although its significance as a treatment option remains questionable and requires more clinical studies, it seems to be a low-risk therapeutic option. It is crucial to emphasize that kaempferol's poor bioavailability is a significant barrier to its use as a therapeutic option. Nanotechnology can be a promising way to overcome this challenge, reviving optimism in using kaempferol as a viable treatment agent against toxin-induced disorders.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alieh Alipour
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
7
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
8
|
Shu J, Ma X, Ma H, Huang Q, Zhang Y, Guan M, Guan C. Transcriptomic, proteomic, metabolomic, and functional genomic approaches of Brassica napus L. during salt stress. PLoS One 2022; 17:e0262587. [PMID: 35271582 PMCID: PMC8912142 DOI: 10.1371/journal.pone.0262587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/30/2021] [Indexed: 12/30/2022] Open
Abstract
Environmental abiotic stresses limit plant growth, development, and reproduction. This study aims to reveal the response of Brassica napus to salt stress. Here, transcriptomics, metabolomics, and proteomics analysis were performed on 15 Brassica napus leave samples treated with salt at different times. Through functional enrichment analyzing the differentially expressed genes (DEGs), differential metabolites (DMs) and differentially expressed proteins (DEPs), the key factors that dominate Brassica napus response to salt stress were identified. The results showed that the two key hormones responding to salt stress were Abscisic acid (ABA) and jasmonic acid (JA). Salt stress for 24h is an important milestone. Brassica napus adjusted multiple pathways at 24h to avoid over-response to salt stress and cause energy consumption. The increased expression in BnPP2C is tangible evidence. In response to salt stress, JA and ABA work together to reduce the damage caused by salt stress in Brassica napus. The increased expression of all BnJAZs after salt stress highlighted the function of JA that cannot be ignored responding to salt stress. In addition, some metabolites, such as N-acetyl-5-hydroxytryptamine, L-Cysteine and L-(+)-Arginine, play a critical role in maintaining the balance of ROS. Proteins like catalase-3, cysteine desulfurase, HSP90 and P450_97A3 were the most critical differential proteins in response to salt stress. These findings of this study provide data support for Brassica napus breeding.
Collapse
Affiliation(s)
- Jiabin Shu
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, Zhejiang, China
| | - Xiao Ma
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Hua Ma
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Qiurong Huang
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Ye Zhang
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Mei Guan
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| | - Chunyun Guan
- The Oilseed Crop Research Institute, National Oilseed Crop Improvement Center (Hunan), Hunan Agricultural University, Hunan, China
| |
Collapse
|
9
|
Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology 2021; 29:939-963. [PMID: 33822324 PMCID: PMC8021940 DOI: 10.1007/s10787-021-00806-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) first discovered in Wuhan, Hubei province, China in December 2019. SARS-CoV-2 has infected several millions of people, resulting in a huge socioeconomic cost and over 2.5 million deaths worldwide. Though the pathogenesis of COVID-19 is not fully understood, data have consistently shown that SARS-CoV-2 mainly affects the respiratory and gastrointestinal tracts. Nevertheless, accumulating evidence has implicated the central nervous system in the pathogenesis of SARS-CoV-2 infection. Unfortunately, however, the mechanisms of SARS-CoV-2 induced impairment of the central nervous system are not completely known. Here, we review the literature on possible neuropathogenic mechanisms of SARS-CoV-2 induced cerebral damage. The results suggest that downregulation of angiotensin converting enzyme 2 (ACE2) with increased activity of the transmembrane protease serine 2 (TMPRSS2) and cathepsin L in SARS-CoV-2 neuroinvasion may result in upregulation of proinflammatory mediators and reactive species that trigger neuroinflammatory response and blood brain barrier disruption. Furthermore, dysregulation of hormone and neurotransmitter signalling may constitute a fundamental mechanism involved in the neuropathogenic sequelae of SARS-CoV-2 infection. The viral RNA or antigenic peptides also activate or interact with molecular signalling pathways mediated by pattern recognition receptors (e.g., toll-like receptors), nuclear factor kappa B, Janus kinase/signal transducer and activator of transcription, complement cascades, and cell suicide molecules. Potential molecular targets and therapeutics of SARS-CoV-2 induced neurologic damage are also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, 1000, Sofia, Bulgaria
| |
Collapse
|
10
|
Rios CI, Cassatt DR, Hollingsworth BA, Satyamitra MM, Tadesse YS, Taliaferro LP, Winters TA, DiCarlo AL. Commonalities Between COVID-19 and Radiation Injury. Radiat Res 2021; 195:1-24. [PMID: 33064832 PMCID: PMC7861125 DOI: 10.1667/rade-20-00188.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023]
Abstract
As the multi-systemic components of COVID-19 emerge, parallel etiologies can be drawn between SARS-CoV-2 infection and radiation injuries. While some SARS-CoV-2-infected individuals present as asymptomatic, others exhibit mild symptoms that may include fever, cough, chills, and unusual symptoms like loss of taste and smell and reddening in the extremities (e.g., "COVID toes," suggestive of microvessel damage). Still others alarm healthcare providers with extreme and rapid onset of high-risk indicators of mortality that include acute respiratory distress syndrome (ARDS), multi-organ hypercoagulation, hypoxia and cardiovascular damage. Researchers are quickly refocusing their science to address this enigmatic virus that seems to unveil itself in new ways without discrimination. As investigators begin to identify early markers of disease, identification of common threads with other pathologies may provide some clues. Interestingly, years of research in the field of radiation biology documents the complex multiorgan nature of another disease state that occurs after exposure to high doses of radiation: the acute radiation syndrome (ARS). Inflammation is a key common player in COVID-19 and ARS, and drives the multi-system damage that dramatically alters biological homeostasis. Both conditions initiate a cytokine storm, with similar pro-inflammatory molecules increased and other anti-inflammatory molecules decreased. These changes manifest in a variety of ways, with a demonstrably higher health impact in patients having underlying medical conditions. The potentially dramatic human impact of ARS has guided the science that has identified many biomarkers of radiation exposure, established medical management strategies for ARS, and led to the development of medical countermeasures for use in the event of a radiation public health emergency. These efforts can now be leveraged to help elucidate mechanisms of action of COVID-19 injuries. Furthermore, this intersection between COVID-19 and ARS may point to approaches that could accelerate the discovery of treatments for both.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Yeabsera S. Tadesse
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
11
|
Jameson MB, Gormly K, Espinoza D, Hague W, Asghari G, Jeffery GM, Price TJ, Karapetis CS, Arendse M, Armstrong J, Childs J, Frizelle FA, Ngan S, Stevenson A, Oostendorp M, Ackland SP. SPAR - a randomised, placebo-controlled phase II trial of simvastatin in addition to standard chemotherapy and radiation in preoperative treatment for rectal cancer: an AGITG clinical trial. BMC Cancer 2019; 19:1229. [PMID: 31847830 PMCID: PMC6918635 DOI: 10.1186/s12885-019-6405-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/26/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Retrospective studies show improved outcomes in colorectal cancer patients if taking statins, including overall survival, pathological response of rectal cancer to preoperative chemoradiotherapy (pCRT), and reduced acute and late toxicities of pelvic radiation. Major tumour regression following pCRT has strong prognostic significance and can be assessed in vivo using MRI-based tumour regression grading (mrTRG) or after surgery using pathological TRG (pathTRG). METHODS A double-blind phase 2 trial will randomise 222 patients planned to receive long-course fluoropyrimidine-based pCRT for rectal adenocarcinoma at 18+ sites in New Zealand and Australia. Patients will receive simvastatin 40 mg or placebo daily for 90 days starting 1 week prior to standard pCRT. Pelvic MRI 6 weeks after pCRT will assess mrTRG grading prior to surgery. The primary objective is rates of favourable (grades 1-2) mrTRG following pCRT with simvastatin compared to placebo, considering mrTRG in 4 ordered categories (1, 2, 3, 4-5). Secondary objectives include comparison of: rates of favourable pathTRG in resected tumours; incidence of toxicity; compliance with intended pCRT and trial medication; proportion of patients undergoing surgical resection; cancer outcomes and pathological scores for radiation colitis. Tertiary objectives include: association between mrTRG and pathTRG grouping; inter-observer agreement on mrTRG scoring and pathTRG scoring; studies of T-cell infiltrates in diagnostic biopsies and irradiated resected normal and malignant tissue; and the effect of simvastatin on markers of systemic inflammation (modified Glasgow prognostic score and the neutrophil-lymphocyte ratio). Trial recruitment commenced April 2018. DISCUSSION When completed this study will be able to observe meaningful differences in measurable tumour outcome parameters and/or toxicity from simvastatin. A positive result will require a larger RCT to confirm and validate the merit of statins in the preoperative management of rectal cancer. Such a finding could also lead to studies of statins in conjunction with chemoradiation in a range of other malignancies, as well as further exploration of possible mechanisms of action and interaction of statins with both radiation and chemotherapy. The translational substudies undertaken with this trial will provisionally explore some of these possible mechanisms, and the tissue and data can be made available for further investigations. TRIAL REGISTRATION ANZ Clinical Trials Register ACTRN12617001087347. (www.anzctr.org.au, registered 26/7/2017) Protocol Version: 1.1 (June 2017).
Collapse
Affiliation(s)
- Michael B Jameson
- Waikato Hospital and Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | | | - David Espinoza
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Wendy Hague
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | | | | | - Timothy Jay Price
- Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
| | | | | | - James Armstrong
- Consumer Advisory Panel, Australasian Gastro-Intestinal Trials Group, Sydney, Australia
| | - John Childs
- Regional Cancer and Blood Centre, Auckland District Health Board, Auckland, New Zealand
| | | | - Sam Ngan
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Stephen P Ackland
- University of Newcastle, Lake Macquarie Private Hospital and Calvary Mater Newcastle Hospital, Newcastle, Australia.
| |
Collapse
|
12
|
Bykov VN, Grebenyuk AN, Ushakov IB. The Use of Radioprotective Agents to Prevent Effects Associated with Aging. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Cui M, Xiao H, Li Y, Zhang S, Dong J, Wang B, Zhu C, Jiang M, Zhu T, He J, Wang H, Fan S. Sexual Dimorphism of Gut Microbiota Dictates Therapeutics Efficacy of Radiation Injuries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901048. [PMID: 31728280 PMCID: PMC6839645 DOI: 10.1002/advs.201901048] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Indexed: 05/15/2023]
Abstract
Accidental or iatrogenic ionizing radiation exposure precipitates acute and chronic radiation injuries. The traditional paradigm of mitigating radiotherapy-associated adverse side effects has ignored the gender-specific dimorphism of patients' divergent responses. Here, the effects of sexual dimorphism on curative efficiencies of therapeutic agents is examined in murine models of irradiation injury. Oral gavage of simvastatin ameliorates radiation-induced hematopoietic injury and gastrointestinal tract dysfunction in male mice, but adversely deteriorates these radiation syndromes in female animals. In a sharp contrast, feeding animals with high-fat diet (HFD) elicites explicitly contrary results. High-throughput sequencing of microbial 16S rRNA, host miRNA, and mRNA shows that simvastatin or HFD administration preventes radiation-altered enteric bacterial taxonomic structure, preserves miRNA expression profile, and reprogrammes the spectrum of mRNA expression in small intestines of male or female mice, respectively. Notably, faecal microbiota transplantation of gut microbes from opposite sexual donors abrogates the curative effects of simvastatin or HFD in respective genders of animals. Together, these findings demonstrate that curative efficiencies of therapeutic strategies mitigating radiation toxicity might be dependent on the gender of patients, thus simvastatin or HFD might be specifically useful for fighting against radiation toxicity in a sex-dependent fashion partly based on sex-distinct gut microbiota composition in preclinical settings.
Collapse
Affiliation(s)
- Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Junbo He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| | - Haichao Wang
- Laboratory of Emergency Medicine Feinstein Institute for Medical Research Manhasset NY 11030 USA
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College 238 Baidi Road Tianjin 300192 China
| |
Collapse
|
14
|
Ionizing Radiation induction of cholesterol biosynthesis in Lung tissue. Sci Rep 2019; 9:12546. [PMID: 31467399 PMCID: PMC6715797 DOI: 10.1038/s41598-019-48972-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
While evidence supporting the notion that exposures to heavy ion radiation increase the risk for cancer and other disease development is accumulating, the underlying biological mechanisms remain poorly understood. To identify novel phenotypes that persist over time that may be related to increased disease development risk, we performed a quantitative global proteome analysis of immortalized human bronchial epithelial cells (HBEC3-KT) at day 7 post exposure to 0.5 Gy Fe ion (600 MeV/nucleon, Linear Energy Transfer (LET) = 175 keV/μm). The analysis revealed a significant increase in the expression of 4 enzymes of the cholesterol biosynthesis pathway. Elevated expression of enzymes of the cholesterol pathway was associated with increased cholesterol levels in irradiated cells and in lung tissue measured by a biochemical method and by filipin staining of cell-bound cholesterol. While a 1 Gy dose of Fe ion was sufficient to induce a robust response, a dose of 5 Gy X-rays was necessary to induce a similar cholesterol accumulation in HBEC3-KT cells. Radiation-increased cholesterol levels were reduced by treatment with inhibitors affecting the activity of enzymes in the biosynthesis pathway. To examine the implications of this finding for radiotherapy exposures, we screened a panel of lung cancer cell lines for cholesterol levels following exposure to X-rays. We identified a subset of cell lines that increased cholesterol levels in response to 5 Gy X-rays. Survival studies revealed that statin treatment is radioprotective, suggesting that cholesterol increases are associated with cytotoxicity. In summary, our findings uncovered a novel radiation-induced response, which may modify radiation treatment outcomes and contribute to risk for radiation-induced cardiovascular disease and carcinogenesis.
Collapse
|
15
|
Pathak R, Kumar VP, Hauer-Jensen M, Ghosh SP. Enhanced Survival in Mice Exposed to Ionizing Radiation by Combination of Gamma-Tocotrienol and Simvastatin. Mil Med 2019; 184:644-651. [PMID: 30901461 DOI: 10.1093/milmed/usy408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Ionizing radiation exposure is a major concern for active military service members, as well as civilian population. Considering that the exposure is not predictable, it is imperative that strategies to counteract radiation damage must be discovered. Recent in vitro studies performed in our laboratory demonstrated that the vitamin E analog gamma-tocotrienol (GT3) in combination with cholesterol-lowering drugs (Statins), synergistically induced endothelial thrombomodulin, an anticoagulant with radio-protective efficacy. It was hypothesized that the combination of treatment with both GT3 along with Statins would provide better radiation protection in vivo than each drug individually. CD2F1 mice were injected subcutaneously with either vehicle or single dose of GT3 (200 mg/kg body weight) 24 hours before irradiation followed by oral or subcutaneous administration of various doses of simvastatin (25, 50, and 100 mg/kg body weight) before exposure to lethal doses (11.5 and 12 Gy) of Cobalt-60 (60Co) gamma-irradiation. The combined treatment group exhibited enhanced radiation lethality protection substantially, accelerated white blood cell recovery, and augmented restoration of bone marrow cellularity when compared to the animals treated with either drug exclusively. This information clearly suggests that combined treatment could be used as a safeguard for military personnel from exposure to harmful ionizing radiation.
Collapse
Affiliation(s)
- Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR
| | - Vidya Prasanna Kumar
- Armed Forces Radiobiology Research Institute, USUHS, 4555 South Palmer Road Bldg 42, Bethesda, MD
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR
| | - Sanchita Purohit Ghosh
- Armed Forces Radiobiology Research Institute, USUHS, 4555 South Palmer Road Bldg 42, Bethesda, MD
| |
Collapse
|
16
|
Wang J, Li T, Feng J, Li L, Wang R, Cheng H, Yuan Y. Kaempferol protects against gamma radiation-induced mortality and damage via inhibiting oxidative stress and modulating apoptotic molecules in vivo and vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:128-137. [PMID: 29705372 DOI: 10.1016/j.etap.2018.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 05/02/2023]
Abstract
To investigate the potential protective effect of kaempferol, a representative flavonoid, against radiation induced mortality and injury in vivo and vitro.C57BL/6 male mice and human umbilical venous endothelial cells (HUVECs) were pretreated with kaempferol before radiation. We found that kaempferol can effectively increase 30-day survival rate after 8.5 Gy lethal total body irradiation (TBI). Mice were sacrificed at 7th day after 7 Gy TBI, we found kaempferol against radiation-induced tissues damage, by inhibiting the oxidative stress, and attenuating morphological changes and cell apoptosis. In vitro, kaempferol increased HUVECs cell viability and decrease apoptosis. It also mitigated oxidative stress and restored the abnormal expression of prx-5, Cyt-c, Caspase9 and Caspase3 in mRNA and protein level in HUVECs after radiation. Taken together, it suggests kaempferol can protect against gamma-radiation induced tissue damage and mortality. The present study is the first report of the radioprotective role of kaempferol in vivo and vitro.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China; Department of Pharmacy, Punan Hospital, Shanghai 200125, China; Department of Pharmacology, College of Pharmacy, Second Millitary Medical University, Shanghai 200433, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Shanghai 200125, China
| | - Jingjing Feng
- Department of Pharmacology, College of Pharmacy, Second Millitary Medical University, Shanghai 200433, China
| | - Li Li
- Department of Pharmacology, College of Pharmacy, Second Millitary Medical University, Shanghai 200433, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Hao Cheng
- Department of Pharmacology, College of Pharmacy, Second Millitary Medical University, Shanghai 200433, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China.
| |
Collapse
|
17
|
Occurrence of pneumonitis following radiotherapy of breast cancer - A prospective study. Strahlenther Onkol 2018; 194:520-532. [PMID: 29450591 PMCID: PMC5960004 DOI: 10.1007/s00066-017-1257-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/22/2017] [Indexed: 01/17/2023]
Abstract
AIM of this study is to determine the temporal resolution of therapy-induced pneumonitis, and to assess promoting factors in adjuvant treated patients with unilateral mammacarcinoma. PATIENTS AND METHODS A total of 100 post-surgery patients were recruited. The cohort was treated by 2 field radiotherapy (2FRT; breast and chest wall, N = 75), 3 field radiotherapy (3FRT; + supraclavicular lymphatic region, N = 8), or with 4 field radiotherapy (4FRT; + parasternal lymphatic region, N = 17). Ninety-one patients received various systemic treatments prior to irradiation. Following an initial screening visit post-RT, two additional visits after 12 and 25 weeks were conducted including radiographic examination. In addition, general anamnesis and the co-medication were recorded. The endpoint was reached as soon as a pneumonitis was developed or at maximum of six months post-treatment. RESULTS A pneumonitis incidence of 13% was determined. Of 91 patients with prior systemic therapy, 11 patients developed pneumonitis. Smoking history and chronic obstructive pulmonary disease (COPD) appeared to be positive predictors, whereas past pneumonia clearly promoted pneumonitis. Further pneumonitis-promoting predictors are represented by the applied field extensions (2 field radiotherapy [2FRT] < 3 field radiotherapy [3FRT] < 4 field radiotherapy [4FRT]) and the type of combined initial systemic therapies. As a consequence, all of the three patients in the study cohort treated with 4FRT and initial chemotherapy combined with anti-hormone and antibody protocols developed pneumonitis. A combination of the hormone antagonists tamoxifen and goserelin might enhance the risk for pneumonitis. Remarkably, none of the 11 patients co-medicated with statins suffered from pneumonitis. CONCLUSIONS The rapidly increasing use of novel systemic therapy schedules combined with radiotherapy (RT) needs more prospective studies with larger cohorts. Our results indicate that contribution to pneumonitis occurrence of various (neo)adjuvant therapy approaches followed by RT is of minor relevance, whereas mean total lung doses of >10 Gy escalate the risk of lung tissue complications. The validity of potential inhibitors of therapy-induced pneumonitis as observed for statin co-medication should further be investigated in future trials.
Collapse
|
18
|
Jeong BK, Song JH, Jeong H, Choi HS, Jung JH, Hahm JR, Woo SH, Jung MH, Choi BH, Kim JH, Kang KM. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice. Oncotarget 2017; 7:15105-17. [PMID: 26943777 PMCID: PMC4924773 DOI: 10.18632/oncotarget.7874] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 12/16/2022] Open
Abstract
Purpose Radiation therapy is a highly effective treatment for patients with solid tumors. However, it can cause damage and inflammation in normal tissues. Here, we investigated the effects of alpha-lipoic acid (ALA) as radioprotection agent for the small intestine in a mouse model. Materials and Methods Whole abdomen was evenly irradiated with total a dose of 15 Gy. Mice were treated with either ALA (100 mg/kg, intraperitoneal injection [i.p.]) or saline (equal volume, i.p.) the prior to radiation as 100 mg/kg/day for 3 days. Body weight, food intake, histopathology, and biochemical parameters were evaluated. Results Significant differences in body weight and food intake were observed between the radiation (RT) and ALA + RT groups. Moreover, the number of crypt cells was higher in the ALA + RT group. Inflammation was decreased and recovery time was shortened in the ALA + RT group compared with the RT group. The levels of inflammation-related factors (i.e., phosphorylated nuclear factor kappa B and matrix metalloproteinase-9) and mitogen-activated protein kinases were significantly decreased in the ALA + RT group compared with those in the RT group. Conclusions ALA treatment prior to radiation decreases the severity and duration of radiation-induced enteritis by reducing inflammation, oxidative stress, and cell death.
Collapse
Affiliation(s)
- Bae Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.,Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.,Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hojin Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.,Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jung Hwa Jung
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.,Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Ryeal Hahm
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.,Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Hoon Woo
- Department of Otolaryngology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.,Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Myeong Hee Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Bong-Hoi Choi
- Department of Nuclear Medicine and Molecular Imaging, Gyeongsang National University, Jinju, Republic of Korea
| | - Jin Hyun Kim
- Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea.,Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea.,Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
19
|
Han X, Zhang J, Xue X, Zhao Y, Lu L, Cui M, Miao W, Fan S. Theaflavin ameliorates ionizing radiation-induced hematopoietic injury via the NRF2 pathway. Free Radic Biol Med 2017; 113:59-70. [PMID: 28939421 DOI: 10.1016/j.freeradbiomed.2017.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/17/2017] [Indexed: 12/24/2022]
Abstract
It has been well established that reactive oxygen species (ROS) play a critical role in ionizing radiation (IR)-induced hematopoietic injury. Theaflavin (TF), a polyphenolic compound from black tea, has been implicated in the regulation of endogenous cellular antioxidant systems. However, it remains unclear whether TF could ameliorate IR-induced hematopoietic injury, particularly the hematopoietic stem cell (HSC) injury. In this study, we explored the potential role of TF in IR-induced HSC injury and the underlying mechanism in a total body irradiation (TBI) mouse model. Our results showed that TF improved survival of irradiated wild-type mice and ameliorated TBI-induced hematopoietic injury by attenuating myelosuppression and myeloid skewing, increasing HSC frequency, and promoting reconstitution of irradiated HSCs. Furthermore, TF inhibited TBI-induced HSC senescence. These effects of TF were associated with a decline in ROS levels and DNA damage in irradiated HSCs. TF reduced oxidative stress mainly by up-regulating nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream targets in irradiated Lineage-c-kit+ positive cells. However, TF failed to improve the survival, to increase HSC frequency and to reduce ROS levels of HSCs in irradiated Nrf2-/- mice. These findings suggest that TF ameliorates IR-induced HSC injury via the NRF2 pathway. Therefore, TF has the potential to be used as a radioprotective agent to ameliorate IR-induced hematopoietic injury.
Collapse
Affiliation(s)
- Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Xiaolei Xue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Weimin Miao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300041,China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| |
Collapse
|
20
|
Yang H, Huang F, Tao Y, Zhao X, Liao L, Tao X. Simvastatin ameliorates ionizing radiation-induced apoptosis in the thymus by activating the AKT/sirtuin 1 pathway in mice. Int J Mol Med 2017; 40:762-770. [PMID: 28677744 PMCID: PMC5547942 DOI: 10.3892/ijmm.2017.3047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Simvastatin is a HMG-CoA reductase inhibitor widely used to lower plasma cholesterol and to protect against cardiovascular risk factors. The aim of this study was to investigate whether simvastatin attenuates ionizing radiation-induced damage in the mouse thymus and to elucidate the possible mechanisms invovled. For this purpose, male C57BL/6J mice aged 6 weeks were used and exposed to 4 Gy 60Co γ-radiation with or without simvastatin (20 mg/kg/day, for 14 days). Apoptosis was determined by terminal deoxynucle-otidyltransferase-mediated dUTP nick-end labeling (TUNEL) assay or transmission electron microscopy (TEM) examination. Thymocytes were also isolated and incubated in DMEM supplemented with 10% FBS at 37°C and exposed to 8 Gy 60Co γ-radiation with or without simvastatin (20 µM). The expression levels of Bcl-2, p53, p-p53, AKT, sirtuin 1 and poly(ADP-ribose) polymerase (PARP) were determined by western blot analysis. TUNEL and TEM examination revealed that simvastatin treatment significantly mitigated ionizing radiation-induced apoptosis in the mouse thymus. It was also found that simvastatin treatment increased AKT/sirtuin 1 expression following exposure to ionizing radiation in vivo and in vitro. In the in vivo model, but not in the in vitro model, Bcl-2 and PARP expression was augmented and that of p53/p-p53 decreased following treatment with simvastatin. On the whole, our findings indicate that simvastatin exerts a protective effect against ionizing radiation-induced damage in the mouse thymus, which may be partially attributed to the activation of the AKT/sirtuin 1 pathway.
Collapse
Affiliation(s)
- Hong Yang
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Fei Huang
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yulong Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xinbin Zhao
- School of Pharmaceutical Sciences Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Lina Liao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xia Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
21
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
22
|
Singh A, Yashavarddhan MH, Kalita B, Ranjan R, Bajaj S, Prakash H, Gupta ML. Podophyllotoxin and Rutin Modulates Ionizing Radiation-Induced Oxidative Stress and Apoptotic Cell Death in Mice Bone Marrow and Spleen. Front Immunol 2017; 8:183. [PMID: 28289414 PMCID: PMC5326804 DOI: 10.3389/fimmu.2017.00183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/08/2017] [Indexed: 12/11/2022] Open
Abstract
The present study is aimed to investigate the radioprotective efficacy of G-003M (combination of podophyllotoxin and rutin) against gamma radiation-induced oxidative stress and subsequent cell death in mice bone marrow and spleen. Prophylactic administration of G-003M (−1 h) rendered more than 85% survival in mice exposed to 9 Gy (lethal dose) with dose reduction factor of 1.26. G-003M pretreated mice demonstrated significantly reduced level of reactive oxygen species, membrane lipid peroxidation, and retained glutathione level. In the same group, we obtained increased expression of master redox regulator, nuclear factor erythroid-derived like-2 factor (Nrf-2), and its downstream targets (heme oxygenase-1, Nqo-1, glutathione S-transferase, and thioredoxin reductase-1). In addition, G-003M preadministration has also shown a significant reduction in Keap-1 level (Nrf-2 inhibitor). Radiation-induced lethality was significantly amended in combination-treated (G-003M) mice as demonstrated by reduced 8-OHdG, annexin V FITC+ cells, and restored mitochondrial membrane potential. Expression of antiapoptotic protein Bcl-2 and Bcl-xL was restored in G-003M pretreated group. However, proapoptotic proteins (Puma, Bax, Bak, Caspase-3, and Caspase-7) were significantly declined in this group. Further analysis of immune cells revealed G-003M-mediated restoration of CD3 and CD19 receptor, which was found decreased to significant level following irradiation. Similarly, Gr-1, a marker of granulocytes, was also retained by G-003M administration prior to radiation. Modulatory potential of this formulation (G-003M) can be exploited as a safe and effective countermeasure against radiation-induced lymphohemopoietic injury.
Collapse
Affiliation(s)
- Abhinav Singh
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization , Delhi , India
| | - M H Yashavarddhan
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization , Delhi , India
| | - Bhargab Kalita
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization , Delhi , India
| | - Rajiv Ranjan
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization , Delhi , India
| | - Sania Bajaj
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization , Delhi , India
| | - Hridayesh Prakash
- Translational Medicine Laboratory, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Manju Lata Gupta
- Division of Radioprotective Drug Development and Research, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization , Delhi , India
| |
Collapse
|
23
|
Sharma D, Goel HC, Chauhan S. Radioprotective potential of Lagenaria siceraria extract against radiation-induced gastrointestinal injury. Appl Physiol Nutr Metab 2016; 41:1248-1254. [DOI: 10.1139/apnm-2016-0136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cucurbits (prebiotics) were investigated as novel agents for radio-modification against gastrointestinal injury. The cell-cycle fractions and DNA damage were monitored in HCT-15 cells. A cucurbit extract was added to culture medium 2 h before irradiation (6 Gy) and was substituted by fresh medium at 4 h post-irradiation. The whole extract of the fruits of Lagenaria siceraria, Luffa cylindrica, or Cucurbita pepo extract enhanced G2 fractions (42%, 34%, and 37%, respectively) as compared with control (20%) and irradiated control (31%). With cucurbits, the comet tail length remained shorter (L. siceraria, 28 μm; L. cylindrica, 34.2 μm; C. pepo, 36.75 μm) than irradiated control (41.75 μm). For in vivo studies, L. siceraria extract (2 mg/kg body weight) was administered orally to mice at 2 h before and 4 and 24 h after whole-body irradiation (10 Gy). L. siceraria treatment restored the glutathione contents to 48.8 μmol/gm as compared with control (27.6 μmol/gm) and irradiated control (19.6 μmol/gm). Irradiation reduced the villi height from 379 to 350 μm and width from 54 to 27 μm. L. siceraria administration countered the radiation effects (length, 366 μm; width, 30 μm, respectively) and improved the villi morphology and tight junction integrity. This study reveals the therapeutic potential of cucurbits against radiation-induced gastrointestinal injury.
Collapse
Affiliation(s)
- Dhara Sharma
- Dhara Sharma, Amity Center for Radiation Biology, Amity University, Sector-125, Noida-201303, U.P., India
- Dhara Sharma, Amity Center for Radiation Biology, Amity University, Sector-125, Noida-201303, U.P., India
| | - Harish Chandra Goel
- Dhara Sharma, Amity Center for Radiation Biology, Amity University, Sector-125, Noida-201303, U.P., India
- Dhara Sharma, Amity Center for Radiation Biology, Amity University, Sector-125, Noida-201303, U.P., India
| | - Sonal Chauhan
- Dhara Sharma, Amity Center for Radiation Biology, Amity University, Sector-125, Noida-201303, U.P., India
- Dhara Sharma, Amity Center for Radiation Biology, Amity University, Sector-125, Noida-201303, U.P., India
| |
Collapse
|
24
|
Williams JP, Calvi L, Chakkalakal JV, Finkelstein JN, O’Banion MK, Puzas E. Addressing the Symptoms or Fixing the Problem? Developing Countermeasures against Normal Tissue Radiation Injury. Radiat Res 2016; 186:1-16. [PMID: 27332954 PMCID: PMC4991354 DOI: 10.1667/rr14473.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Laura Calvi
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Joe V. Chakkalakal
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - M. Kerry O’Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Edward Puzas
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
25
|
Yang C, Yang X, Du J, Wang H, Li H, Zeng L, Gu W, Jiang J. Retinoic acid promotes the endogenous repair of lung stem/progenitor cells in combined with simvastatin after acute lung injury: a stereological analysis. Respir Res 2015; 16:140. [PMID: 26561298 PMCID: PMC4642746 DOI: 10.1186/s12931-015-0300-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of acute respiratory distress syndrome (ARDS), most commonly seen during the organ dysfunction remains unsatisfied. Presently, the stem/progenitor cell-based endogenous repair has been aroused attention enormously. This report investigated the effects of retinoic acid (RA) plus simvastatin (SS) with respect to dynamics of lung repair cells as well as to elucidate the underlying mechanism. Materials and methods The experimental Sprague–Dawley rats were divided randomly into normal control (control), sham operated (sham), ARDS, ARDS + vehicle and ARDS + RA + SS groups. ARDS was reproduced through hemorrhagic shock/resuscitation (shock) and subsequent intratracheal LPS (4.5 mg/kg, Escherichia coli serotype O55: B5) injection. The rats were treated by intragastric administration of RA (2 mg/kg/day) and SS (2 mg/kg/day) for 5 days in the ARDS + RA + SS group. Seven days after the first RA-SS injection, a right lower lobe of lung was sampled for histological analysis concerning systemic uniform random sampling method. Immunohistochemistry of inflation-fixed lungs for alveolar type 1 (AT1), alveolar type 2 (AT2) and Clara cells was measured by AQP5, Pro-SPC and CCSP staining respectively. The alveolar cell proliferation and apoptosis were analyzed with Ki67 staining and terminal deoxylnucleotidyl transferase mediated-dUTP nick end labeling (TUNEL) method. Meanwhile, the alveolar cell numerical and surface density (alveolar cells, AT1, AT2, Clara, proliferating and apoptotic cells) were evaluated by stereology. Results RA-SS compound exerted anti-inflammatory and pro-repairing effects on respiratory tracts in ARDS induced by hemorrhagic-endotoxin shock. The numerical density and surface density of alveolar cells, AT1 cell fraction, and numerical density of AT2 and Clara cells were significantly increased after treatment with RA-SS compound in ARDS. Concurrently, the Ki67+ alveolar cells were obviously increased while the TUNEL+ alveolar cells were reduced, which was correlated with the attenuation of inflammatory injury and functional repair in injured lung tissues. Conclusions Our data convincingly indicated that the prophylactic and therapeutic treatment of RA plus SS had obvious beneficial effect on the remodeling/regeneration of injured pulmonary tissues, suggesting that the underlying mechanisms are related to the re-balance between regeneration and apoptosis in lung stem/progenitor cells.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Research Institute of Surgery, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, 400042, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Haisheng Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Research Institute of Surgery, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, 400042, China.
| |
Collapse
|
26
|
Cai J, Lu S, Yao Z, Deng YP, Zhang LD, Yu JW, Ren GF, Shen FM, Jiang GJ. Glibenclamide attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic mice. Cardiovasc Diabetol 2014; 13:106. [PMID: 25077824 PMCID: PMC4147163 DOI: 10.1186/s12933-014-0106-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 01/25/2014] [Accepted: 06/22/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sepsis is a common disease that continues to increase in incidence in the world. Diseases, such as diabetes mellitus, may make the situation worse. Diabetic patients are at increased risk for common infections. This study was designed to investigate the role of glibenclamide on myocardial injury by lipopolysaccharides (LPS) in streptozotocin induced diabetic mice (STZ-mice). METHODS LPS was used to induce endotoxemia in STZ-mice. Heart rate and mean arterial pressure were measured by MPA-HBBS. Serum epinephrine level was measured by enzyme-linked immunosorbent assays (ELISA). Myocardial injury was examined by light and transmission electron microscope and TUNEL staining. Macrophage infiltration was measured by immunohistochemistry. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels in myocardial tissue and serum in STZ-mice, and in conditional medium of primary cultured peritoneal macrophages were determined by ELISA. Nalp3 and Caspase-1 protein levels were measured by Western blotting analysis. RESULTS STZ administration decreased body weight and increased blood glucose in C57BL/6 mice. LPS injection caused decreases of heart rate and mean arterial pressure, and elevated serum epinephrine level in C57BL/6 mice. Compared with control mice without STZ treatment, LPS induced more severe myocardial injury and macrophage infiltration in STZ-mice, which was attenuated by pretreatment of glibenclamide. LPS stimulation enhanced the levels of IL-1β and TNF-α in both cardiac tissue and serum. Glibenclamide pretreatment significantly inhibited the serum levels of pro-inflammatory cytokines. Either high glucose or LPS increased the levels of IL-1β and TNF-α in the conditional medium of peritoneal macrophages. Glibenclamide treatment suppressed the increase of IL-1β level induced by high glucose and LPS. Furthermore, Nalp3 and Caspase-1 levels were markedly increased by high glucose plus LPS, and both proteins were significantly inhibited by glibenclamide treatment. CONCLUSIONS We conclude that glibenclamide could attenuate myocardial injury induced by LPS challenge in STZ-mice, which was possibly related to inhibiting inflammation through Nalp3 inflammasomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fu-Ming Shen
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang, China.
| | | |
Collapse
|