1
|
Traverse KKF, Breselge S, Trautman JG, Dee A, Wang J, Childs KL, Lee-Parsons CWT. Characterization of the ZCTs, a subgroup of Cys2-His2 zinc finger transcription factors regulating alkaloid biosynthesis in Catharanthus roseus. PLANT CELL REPORTS 2024; 43:209. [PMID: 39115578 PMCID: PMC11310244 DOI: 10.1007/s00299-024-03295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 08/11/2024]
Abstract
KEY MESSAGE The C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the terpenoid indole alkaloid pathway when highly expressed. Catharanthus roseus is the sole known producer of the anti-cancer terpenoid indole alkaloids (TIAs), vinblastine and vincristine. While the enzymatic steps of the pathway have been elucidated, an understanding of its regulation is still emerging. The present study characterizes an important subgroup of Cys2-His2 zinc finger transcription factors known as Zinc finger Catharanthus Transcription factors (ZCTs). We identified three new ZCT members (named ZCT4, ZCT5, and ZCT6) that clustered with the putative repressors of the TIA pathway, ZCT1, ZCT2, and ZCT3. We characterized the role of these six ZCTs as potential redundant regulators of the TIA pathway, and their tissue-specific and jasmonate-responsive expression. These ZCTs share high sequence conservation in their two Cys2-His2 zinc finger domains but differ in the spacer length and sequence between these zinc fingers. The transient overexpression of ZCTs in seedlings significantly repressed the promoters of the terpenoid (pLAMT) and condensation branch (pSTR1) of the TIA pathway, consistent with that previously reported for ZCT1, ZCT2, and ZCT3. In addition, ZCTs significantly repressed and indirectly activated several promoters of the vindoline pathway (not previously studied). The ZCTs differed in their tissue-specific expression but similarly increased with jasmonate in a dosage-dependent manner (except for ZCT5). We showed significant activation of the pZCT1 and pZCT3 promoters by the de-repressed CrMYC2a, suggesting that the jasmonate-responsive expression of the ZCTs can be mediated by CrMYC2a. In summary, the C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the TIA pathway when highly expressed.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Juliet G Trautman
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Amanda Dee
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
2
|
Moin M, Saha A, Bakshi A, D. D, M.S. M, P.B. K. Study on Transcriptional Responses and Identification of Ribosomal Protein Genes for Potential Resistance against Brown Planthopper and Gall Midge Pests in Rice. Curr Genomics 2021; 22:98-110. [PMID: 34220297 PMCID: PMC8188583 DOI: 10.2174/1389202922666210219113220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/04/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Our previous studies have revealed the roles of ribosomal protein (RP) genes in the abiotic stress responses of rice. METHODS In the current investigation, we examine the possible involvement of these genes in insect stress responses. We have characterized the RP genes that included both Ribosomal Protein Large (RPL) and Ribosomal Protein Small (RPS) subunit genes in response to infestation by two economically important insect pests, the brown planthopper (BPH) and the Asian rice gall midge (GM) in rice. Differential transcript patterns of seventy selected RP genes were studied in a susceptible and a resistant genotype of indica rice: BPT5204 and RPNF05, respectively. An in silico analyses of the upstream regions of these genes also revealed the presence of cis-elements that are associated with wound signaling. RESULTS We identified the genes that were up or downregulated in either one of the genotypes, or both of them after pest infestation. The transcript patterns of a majority of the genes were found to be temporally-regulated by both the pests. In the resistant RPNF05, BPH infestation activated RPL15, L51 and RPS5a genes while GM infestation induced RPL15, L18a, L22, L36.2, L38, RPS5, S9.2 and S25a at a certain point of time. These genes that were particularly upregulated in the resistant genotype, RPNF05, but not in BPT5204 suggest their potential involvement in plant resistance against either of the two pests studied. CONCLUSION Taken together, RPL15, L51, L18a, RPS5, S5a, S9.2, and S25a appear to be the genes with possible roles in insect resistance in rice.
Collapse
Affiliation(s)
- Mazahar Moin
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Achala Bakshi
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Divya D.
- Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad-500030, India
| | - Madhav M.S.
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Kirti P.B.
- Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
- Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad-500030, India
| |
Collapse
|
3
|
Stasko AK, Batnini A, Bolanos-Carriel C, Lin JE, Lin Y, Blakeslee JJ, Dorrance AE. Auxin Profiling and GmPIN Expression in Phytophthora sojae-Soybean Root Interactions. PHYTOPATHOLOGY 2020; 110:1988-2002. [PMID: 32602813 DOI: 10.1094/phyto-02-20-0046-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Auxin (indole-3-acetic acid, IAA) has been implicated as a susceptibility factor in both beneficial and pathogenic molecular plant-microbe interactions. Previous studies have identified a large number of auxin-related genes underlying quantitative disease resistance loci (QDRLs) for Phytophthora sojae. Thus, we hypothesized that auxin may be involved the P. sojae-soybean interaction. The levels of IAA and related metabolites were measured in mycelia and media supernatant as well as in mock and inoculated soybean roots in a time course assay. The expression of 11 soybean Pin-formed (GmPIN) auxin efflux transporter genes was also examined. Tryptophan, an auxin precursor, was detected in the P. sojae mycelia and media supernatant. During colonization of roots, levels of IAA and related metabolites were significantly higher in both moderately resistant Conrad and moderately susceptible Sloan inoculated roots compared with mock controls at 48 h postinoculation (hpi) in one experiment and at 72 hpi in a second, with Sloan accumulating higher levels of the auxin catabolite IAA-Ala than Conrad. Additionally, one GmPIN at 24 hpi, one at 48 hpi, and three at 72 hpi had higher expression in inoculated compared with the mock control roots in Conrad. The ability of resistant cultivars to cope with auxin accumulation may play an important role in quantitative disease resistance. Levels of jasmonic acid (JA), another plant hormone associated with defense responses, were also higher in inoculated roots at these same time points, suggesting that JA also plays a role during the later stages of infection.
Collapse
Affiliation(s)
- Anna K Stasko
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Amine Batnini
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Carlos Bolanos-Carriel
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Jinshan Ella Lin
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| | - Yun Lin
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
4
|
Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots. Foods 2020; 9:foods9101515. [PMID: 33096865 PMCID: PMC7589261 DOI: 10.3390/foods9101515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022] Open
Abstract
Carrots contain a significant content of phenolic compounds, mainly phenolic acids. Technological processing of carrots inflicts wounding stress and induces accumulation of these compounds, especially caffeic acid derivatives, in the periderm tissue. In this study, the effect of minimal processing (polishing, washing, peeling, and grating) on the retention of soluble phenolic acids in carrots was monitored during cold storage. Storage for up to 4 weeks and 24 h was used for whole and grated carrot samples, respectively. Total phenolic acid levels found in differently processed carrots varied greatly at the beginning of the storage period and on dry weight basis they ranged from 228 ± 67.9 mg/kg (grated carrot) to 996 ± 177 mg/kg (machine washed). In each case, processing followed by storage induced phenolic acid accumulation in the carrots. At the end of the experiment (4 weeks at +8 °C), untreated and machine-washed carrots contained ca. 4-fold more phenolic acids than at day 0. Similarly, polished carrots contained 9-fold and peeled carrots 31-fold more phenolic acids than at day 0. The phenolic acid content in grated carrot doubled after 24 h storage at +4 °C. Individual phenolic acids were characterized by high resolution mass spectrometry. MS data strongly suggest the presence of daucic acid conjugates of phenolic acids in carrot. Storage time did not have statistically similar effect on all compounds and generally in a way that dicaffeoyldaucic acid had the highest increase. This research provides important information for primary production, packaging, catering, the fresh-cut industry and consumers regarding the selection of healthier minimally processed carrots.
Collapse
|
5
|
Lu L, Yang Y, Zhang H, Sun D, Li Z, Guo Q, Wang C, Qiao L. Oligogalacturonide-accelerated healing of mechanical wounding in tomato fruit requires calcium-dependent systemic acquired resistance. Food Chem 2020; 337:127992. [PMID: 32920270 DOI: 10.1016/j.foodchem.2020.127992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 01/28/2023]
Abstract
Mechanical wounding causes significant economic losses of fresh produce due to accelerated senescence and spoilage as well as loss of nutritional value. Here, pre-application of oligogalacturonides (OGs) enzymatically hydrolyzed from apple pectin effectively reduced the healing times of mechanical wounds from>24 h in mock groups to 12 h, and the Botrytis cinerea infection rate was reduced from 37.5% to 12.5%. OGs accordingly increased callose deposition; SlPR1, SlPAL and SlHCT gene expression; and phenylalanine ammonia-lyase (PAL) activity around the wounds. Inhibition of Ca2+ signaling using the inhibitor Ruthenium Red markedly inhibited OG accelerated healing of mechanical wounding on fruit. SlPG2, SlEXP1, and SlCEL2 mRNAs accumulation was reduced in OG-elicited tomato fruit compared to water-treated fruit with subsequent retardation of the fruit softening during ripening. These results indicated that apple pectin OGs accelerate wound healing and inhibit fruit softening by activating calcium signaling in tomato fruits during postharvest storage.
Collapse
Affiliation(s)
- Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ying Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haoran Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Dandan Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Liping Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
6
|
Transcriptome Analysis of Wounding in the Model Grass Lolium temulentum. PLANTS 2020; 9:plants9060780. [PMID: 32580425 PMCID: PMC7356841 DOI: 10.3390/plants9060780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Abstract
For forage and turf grasses, wounding is a predominant stress that often results in extensive loss of vegetative tissues followed by rapid regrowth. Currently, little is known concerning the perception, signaling, or molecular responses associated with wound stress in forage- and turf-related grasses. A transcriptome analysis of Lolium temulentum plants subjected to severe wounding revealed 9413 upregulated and 7704 downregulated, distinct, differentially expressed genes (DEGs). Categories related to signaling, transcription, and response to stimuli were enriched in the upregulated DEGs. Specifically, sequences annotated as enzymes involved in hormone biosynthesis/action and cell wall modifications, mitogen-activated protein kinases, WRKY transcription factors, proteinase inhibitors, and pathogen defense-related DEGs were identified. Surprisingly, DEGs related to heat shock and chaperones were more prevalent in the downregulated DEGs when compared with the upregulated DEGs. This wound transcriptome analysis is the first step in identifying the molecular components and pathways used by grasses in response to wounding. The information gained from the analysis will provide a valuable molecular resource that will be used to develop approaches that can improve the recovery, regrowth, and long-term fitness of forage and turf grasses before/after cutting or grazing.
Collapse
|
7
|
Correa LDJ, Maciel OVB, Bücker-Neto L, Pilati L, Morozini AM, Faria MV, Da-Silva PR. A Comprehensive Analysis of Wheat Resistance to Rhopalosiphum padi (Hemiptera: Aphididae) in Brazilian Wheat Cultivars. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1493-1503. [PMID: 32249292 DOI: 10.1093/jee/toaa059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 05/19/2023]
Abstract
Rhopalosiphum padi L. is one of the predominant aphids affecting wheat crops worldwide. Therefore, the identification of resistant genotypes and the understanding of molecular response mechanisms involved in wheat resistance to this aphid may contribute to the development of new breeding strategies. In this study, we evaluated the resistance of 15 wheat cultivars to R. padi and performed morpho-histological and gene expression analyses of two wheat cultivars (BRS Timbaúva, resistant and Embrapa 16, susceptible) challenged and unchallenged by R. padi. The main findings of our work are as follows: 1) most Brazilian wheat cultivars recently released are resistant to R. padi; 2) Green leaf volatiles are probably involved in the resistance of the BRS Timbaúva cultivar to the aphid; 3) trichomes were more abundant and larger in the resistant cultivar; 4) the internal morphology did not show differences between cultivars; 5) the lipoxygenase-encoding gene was downregulated in the susceptible cultivar and basal expression remained level in the resistant cultivar; and 6) the expression of resistance-related proteins was induced in the resistant but not in the susceptible cultivar. Lipoxygenase is the first enzyme in the octadecanoic pathway, a well-known route for the synthesis of signaling molecules involved in the activation of plant defense. The overall analyses suggest that the key steps in BRS Timbaúva resistance to R. padi may be presence or absence of green leaf volatiles decreasing the aphid preference and the action of nonglandular trichome as a physical barrier, which allows continuous lipoxygenase-encoding gene expression.
Collapse
Affiliation(s)
- Leia de Jesus Correa
- Plant Genetics and Molecular Biology Laboratory, Graduate Program in Agronomy, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, PR, Brazil
| | - Orlando Vilas Boas Maciel
- Plant Genetics and Molecular Biology Laboratory, Graduate Program in Agronomy, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, PR, Brazil
| | - Lauro Bücker-Neto
- Department of Biological Sciences, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, Paraná, Brazil
| | - Laura Pilati
- Department of Biological Sciences, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, Paraná, Brazil
| | - Ana Maria Morozini
- Department of Biological Sciences, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, Paraná, Brazil
| | - Marcos Ventura Faria
- Plant Genetics and Molecular Biology Laboratory, Graduate Program in Agronomy, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, PR, Brazil
| | - Paulo Roberto Da-Silva
- Plant Genetics and Molecular Biology Laboratory, Graduate Program in Agronomy, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, PR, Brazil
- Department of Biological Sciences, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, Paraná, Brazil
| |
Collapse
|
8
|
Bidabadi SS, Jain SM. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. PLANTS (BASEL, SWITZERLAND) 2020; 9:E702. [PMID: 32492786 PMCID: PMC7356144 DOI: 10.3390/plants9060702] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Plants generally have the highest regenerative ability because they show a high degree of developmental plasticity. Although the basic principles of plant regeneration date back many years, understanding the cellular, molecular, and physiological mechanisms based on these principles is currently in progress. In addition to the significant effects of some factors such as medium components, phytohormones, explant type, and light on the regeneration ability of an explant, recent reports evidence the involvement of molecular signals in organogenesis and embryogenesis responses to explant wounding, induced plant cell death, and phytohormones interaction. However, some cellular behaviors such as the occurrence of somaclonal variations and abnormalities during the in vitro plant regeneration process may be associated with adverse effects on the efficacy of plant regeneration. A review of past studies suggests that, in some cases, regeneration in plants involves the reprogramming of distinct somatic cells, while in others, it is induced by the activation of relatively undifferentiated cells in somatic tissues. However, this review covers the most important factors involved in the process of plant regeneration and discusses the mechanisms by which plants monitor this process.
Collapse
Affiliation(s)
- Siamak Shirani Bidabadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - S. Mohan Jain
- Department of Agricultural Sciences, University of Helsinki, PL-27 Helsinki, Finland
| |
Collapse
|
9
|
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, Levitsky V, Sevilem I, Roszak P, Slane D, Jürgens G, Mironova V, Brady SM, Weijers D. Specification and regulation of vascular tissue identity in the Arabidopsis embryo. Development 2020; 147:dev186130. [PMID: 32198154 DOI: 10.1242/dev.186130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.
Collapse
Affiliation(s)
- Margot E Smit
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Cristina I Llavata-Peris
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Henriette van Beijnum
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Daria Novikova
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Victor Levitsky
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Iris Sevilem
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Pawel Roszak
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Daniel Slane
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Victoria Mironova
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| |
Collapse
|
10
|
Luo W, Komatsu S, Abe T, Matsuura H, Takahashi K. Comparative Proteomic Analysis of Wild-Type Physcomitrella Patens and an OPDA-Deficient Physcomitrella Patens Mutant with Disrupted PpAOS1 and PpAOS2 Genes after Wounding. Int J Mol Sci 2020; 21:ijms21041417. [PMID: 32093080 PMCID: PMC7073133 DOI: 10.3390/ijms21041417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Wounding is a serious environmental stress in plants. Oxylipins such as jasmonic acid play an important role in defense against wounding. Mechanisms to adapt to wounding have been investigated in vascular plants; however, those mechanisms in nonvascular plants remain elusive. To examine the response to wounding in Physcomitrella patens, a model moss, a proteomic analysis of wounded P. patens was conducted. Proteomic analysis showed that wounding increased the abundance of proteins related to protein synthesis, amino acid metabolism, protein folding, photosystem, glycolysis, and energy synthesis. 12-Oxo-phytodienoic acid (OPDA) was induced by wounding and inhibited growth. Therefore, OPDA is considered a signaling molecule in this plant. Proteomic analysis of a P. patens mutant in which the PpAOS1 and PpAOS2 genes, which are involved in OPDA biosynthesis, are disrupted showed accumulation of proteins involved in protein synthesis in response to wounding in a similar way to the wild-type plant. In contrast, the fold-changes of the proteins in the wild-type plant were significantly different from those in the aos mutant. This study suggests that PpAOS gene expression enhances photosynthesis and effective energy utilization in response to wounding in P. patens.
Collapse
Affiliation(s)
- Weifeng Luo
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Setsuko Komatsu
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan;
| | - Tatsuya Abe
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Hideyuki Matsuura
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Kosaku Takahashi
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 165-8502, Japan
- Correspondence:
| |
Collapse
|
11
|
Lacroix B, Citovsky V. Biolistic Approach for Transient Gene Expression Studies in Plants. Methods Mol Biol 2020; 2124:125-139. [PMID: 32277451 DOI: 10.1007/978-1-0716-0356-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its inception in the late 1980s, the delivery of exogenous nucleic acids into living cells via high-velocity microprojectiles (biolistic, or microparticle bombardment) has been an invaluable tool for both agricultural and fundamental plant research. Here, we review the technical aspects and the major applications of the biolistic method for studies involving transient gene expression in plant cells. These studies cover multiple areas of plant research, including gene expression, protein subcellular localization and cell-to-cell movement, plant virology, silencing, and the more recently developed targeted genome editing via transient expression of customized endonucleases.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
12
|
Secoiridoids Metabolism Response to Wounding in Common Centaury ( Centaurium erythraea Rafn) Leaves. PLANTS 2019; 8:plants8120589. [PMID: 31835780 PMCID: PMC6963686 DOI: 10.3390/plants8120589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 01/18/2023]
Abstract
Centaurium erythraea Rafn produces and accumulates various biologically active specialized metabolites, including secoiridoid glucosides (SGs), which help plants to cope with unfavorable environmental conditions. Specialized metabolism is commonly modulated in a way to increase the level of protective metabolites, such as SGs. Here, we report the molecular background of the wounding-induced changes in SGs metabolism for the first time. The mechanical wounding of leaves leads to a coordinated up-regulation of SGs biosynthetic genes and corresponding JA-related transcription factors (TFs) after 24 h, which results in the increase of metabolic flux through the biosynthetic pathway and, finally, leads to the elevated accumulation of SGs 96 h upon injury. The most pronounced increase in relative expression was detected for secologanin synthase (CeSLS), highlighting this enzyme as an important point for the regulation of biosynthetic flux through the SG pathway. A similar expression pattern was observed for CeBIS1, imposing itself as the TF that is prominently involved in wound-induced regulation of SGs biosynthesis genes. The high degree of positive correlations between and among the biosynthetic genes and targeted TFs expressions indicate the transcriptional regulation of SGs biosynthesis in response to wounding with a significant role of CeBIS1, which is a known component of the jasmonic acid (JA) signaling pathway.
Collapse
|
13
|
Hoermayer L, Friml J. Targeted cell ablation-based insights into wound healing and restorative patterning. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:124-130. [PMID: 31585333 PMCID: PMC6900583 DOI: 10.1016/j.pbi.2019.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are constantly under attack by herbivores, rough environmental situations, or mechanical pressure. These challenges often lead to the induction of wounds or destruction of already specified and developed tissues. Additionally, wounding makes plants vulnerable to invasion by pathogens, which is why wound signalling often triggers specific defence responses. To stay competitive or, eventually, survive under these circumstances, plants need to regenerate efficiently, which in rigid, tissue migration-incompatible plant tissues requires post-embryonic patterning and organogenesis. Now, several studies used laser-assisted single cell ablation in the Arabidopsis root tip as a minimal wounding proxy. Here, we discuss their findings and put them into context of a broader spectrum of wound signalling, pathogen responses and tissue as well as organ regeneration.
Collapse
Affiliation(s)
- Lukas Hoermayer
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
14
|
Hussein Z, Fawole OA, Opara UL. Determination of physical, biochemical and microstructural changes in impact-bruise damaged pomegranate fruit. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00138-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Sng NJ, Kolaczkowski B, Ferl RJ, Paul AL. A member of the CONSTANS-Like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation. AOB PLANTS 2019; 11:ply075. [PMID: 30705745 PMCID: PMC6348315 DOI: 10.1093/aobpla/ply075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
A feature of the physiological adaptation to spaceflight in Arabidopsis thaliana (Arabidopsis) is the induction of reactive oxygen species (ROS)-associated gene expression. The patterns of ROS-associated gene expression vary among Arabidopsis ecotypes, and the role of ROS signalling in spaceflight acclimation is unknown. What could differences in ROS gene regulation between ecotypes on orbit reveal about physiological adaptation to novel environments? Analyses of ecotype-dependent responses to spaceflight resulted in the elucidation of a previously uncharacterized gene (OMG1) as being ROS-associated. The OMG1 5' flanking region is an active promoter in cells where ROS activity is commonly observed, such as in pollen tubes, root hairs, and in other tissues upon wounding. qRT-PCR analyses revealed that upon wounding on Earth, OMG1 is an apparent transcriptional regulator of MYB77 and GRX480, which are associated with the ROS pathway. Fluorescence-based ROS assays show that OMG1 affects ROS production. Phylogenetic analysis of OMG1 and closely related homologs suggests that OMG1 is a distant, unrecognized member of the CONSTANS-Like protein family, a member that arose via gene duplication early in the angiosperm lineage and subsequently lost its first DNA-binding B-box1 domain. These data illustrate that members of the rapidly evolving COL protein family play a role in regulating ROS pathway functions, and their differential regulation on orbit suggests a role for ROS signalling in spaceflight physiological adaptation.
Collapse
Affiliation(s)
- Natasha J Sng
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| | - Bryan Kolaczkowski
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Robert J Ferl
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Anna-Lisa Paul
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
16
|
Kuo YW, Lin JS, Li YC, Jhu MY, King YC, Jeng ST. MicroR408 regulates defense response upon wounding in sweet potato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:469-483. [PMID: 30403812 PMCID: PMC6322576 DOI: 10.1093/jxb/ery381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/02/2018] [Indexed: 05/08/2023]
Abstract
MiRNAs play diverse roles in plant development and defense responses by binding to their mRNA targets based on sequence complementarity. Here, we investigated a wound-related miR408 and its target genes in sweet potato (Ipomoea batatas) by small RNA deep sequencing and transcriptome analysis. The expression patterns of miR408 and the miR408 precursor were significantly repressed by wounding and jasmonate (JA). In contrast, expression of the putative target genes IbKCS (3-ketoacyl-CoA synthase 4), IbPCL (plantacyanin), and IbGAUT (galacturonosyltransferase 7-like) of miR408 was increased following wounding, whereas only IbKCS was increased after JA treatment. Target cleavage site mapping and Agrobacterium-mediated transient assay demonstrated that IbKCS, IbPCL, and IbGAUT were the targets of miR408. The expression of miR408 target genes was repressed in transgenic sweet potatoes overexpressing miR408. These data indicated a relationship between miR408 and its target genes. Notably, miR408-overexpressing plants showed a semi-dwarf phenotype and attenuated resistance to insect feeding, while transgenic plants overexpressing IbKCS exhibited more insect resistance than plants overexpressing only the empty vector. Collectively, sweet potato reduces the abundance of miR408 upon wounding to elevate the expression of IbKCS, IbPCL, and IbGAUT. The expression of IbKCS enhances the defense system against herbivore wounding.
Collapse
Affiliation(s)
- Yun-Wei Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chi Li
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Min-Yao Jhu
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Wang QW, Jia LY, Shi DL, Wang RF, Lu LN, Xie JJ, Sun K, Feng HQ, Li X. Effects of extracellular ATP on local and systemic responses of bean (Phaseolus vulgaris L) leaves to wounding. Biosci Biotechnol Biochem 2018; 83:417-428. [PMID: 30458666 DOI: 10.1080/09168451.2018.1547623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wounding increased the extracellular Adenosine 5'-triphosphate (eATP) level of kidney bean leaves. Treatment with wounding or exogenous ATP increased the hydrogen peroxide (H2O2) content, activities of catalase and polyphenol oxidase, and malondialdehyde content in both the treated and systemic leaves. Pre-treatment with ATP-degrading enzyme, apyrase, to the wounded leaves reduced the wound-induced local and systemic increases in H2O2 content, activities of catalase and polyphenol oxidase, and malondialdehyde content. Application of dimethylthiourea (DMTU) and diphenylene iodonium (DPI) to the wounded and ATP-treated leaves, respectively, reduced the wound- and ATP-induced local and systemic increases in H2O2 content, activities of catalase and polyphenol oxidase, and malondialdehyde content. Moreover, the wound- and ATP-induced systemic increases of these physiological parameters were suppressed when DMTU or DPI applied to leaf petiole of the wounded and ATP-treated leaves. These results suggest that eATP at wounded sites could mediate the wound-induced local and systemic responses by H2O2-dependent signal transduction.
Collapse
Affiliation(s)
- Qing-Wen Wang
- a Department of Biology Science, College of Life Sciences , Northwest Normal University , Lanzhou , China
| | - Lin-Yun Jia
- a Department of Biology Science, College of Life Sciences , Northwest Normal University , Lanzhou , China
| | - Dai-Long Shi
- a Department of Biology Science, College of Life Sciences , Northwest Normal University , Lanzhou , China
| | - Rong-Fang Wang
- b Institute of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Li-Na Lu
- a Department of Biology Science, College of Life Sciences , Northwest Normal University , Lanzhou , China
| | - Jia-Jia Xie
- a Department of Biology Science, College of Life Sciences , Northwest Normal University , Lanzhou , China
| | - Kun Sun
- a Department of Biology Science, College of Life Sciences , Northwest Normal University , Lanzhou , China
| | - Han-Qing Feng
- a Department of Biology Science, College of Life Sciences , Northwest Normal University , Lanzhou , China
| | - Xin Li
- c Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations , Lanzhou University , Lanzhou , China
| |
Collapse
|
18
|
Senavirathna MDHJ, Asaeda T. Microwave radiation alters burn injury-evoked electric potential in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1486145. [PMID: 29944441 PMCID: PMC6110360 DOI: 10.1080/15592324.2018.1486145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/28/2018] [Indexed: 05/04/2023]
Abstract
The dielectric effect enforced on charged ions and dipolar molecules by the oscillating electric field of microwaves may influence electric signaling in plants. In the present study, the exposure of Nicotiana benthamiana plants to continuous wave 2.45 GHz microwave radiation with 1.9 - 2.1 W m-2 power density significantly reduced the amplitude of leaf burning-induced variation potential along the plant stem. The change in amplitude of the variation potential occurred mainly because of a significant reduction of the depolarization rate. This effect was not observed during the post-microwave exposure period. The unique characteristics observed in the variation potentials were also observed under microwave exposure, suggesting unaffected information delivery to distant locations or unaffected transport of specific chemicals generated by the injury.
Collapse
Affiliation(s)
| | - T. Asaeda
- Department of Environmental Science, Saitama University, Saitama, Japan
| |
Collapse
|
19
|
Conn A, Pedmale UV, Chory J, Navlakha S. High-Resolution Laser Scanning Reveals Plant Architectures that Reflect Universal Network Design Principles. Cell Syst 2017; 5:53-62.e3. [PMID: 28750198 DOI: 10.1016/j.cels.2017.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/15/2017] [Accepted: 06/29/2017] [Indexed: 11/19/2022]
Abstract
Transport networks serve critical functions in biological and engineered systems, and yet their design requires trade-offs between competing objectives. Due to their sessile lifestyle, plants need to optimize their architecture to efficiently acquire and distribute resources while also minimizing costs in building infrastructure. To understand how plants resolve this design trade-off, we used high-precision three-dimensional laser scanning to map the architectures of tomato, tobacco, or sorghum plants grown in several environmental conditions and through multiple developmental time points, scanning in total 505 architectures from 37 plants. Using a graph-theoretic algorithm that we developed to evaluate design strategies, we find that plant architectures lie along the Pareto front between two simple length-based objectives-minimizing total branch length and minimizing nutrient transport distance-thereby conferring a selective fitness advantage for plant transport processes. The location along the Pareto front can distinguish among species and conditions, suggesting that during evolution, natural selection may employ common network design principles despite different optimization trade-offs.
Collapse
Affiliation(s)
- Adam Conn
- Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ullas V Pedmale
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Saket Navlakha
- Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
20
|
Hartmann R, Fricke A, Stützel H, Mansourian S, Dekker T, Wohanka W, Alsanius B. Internalization of Escherichia coli O157:H7 gfp+ in rocket and Swiss chard baby leaves as affected by abiotic and biotic damage. Lett Appl Microbiol 2017; 65:35-41. [PMID: 28397273 DOI: 10.1111/lam.12742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 11/29/2022]
Abstract
Internalization of human pathogens in edible parts of vegetables eaten raw is a major concern, since once internalized they are protected from sanitizing treatments. In this study, we examined the invasion of gfp-labelled Escherichia coli O157:H7 into intact and biotically (infection with Xanthomonas campestris/Pseudomonas syringae) and abiotically (grating with silicon carbide) damaged leaves of wild rocket (Diplotaxis tenuifolia) and Swiss chard (Beta vulgaris subsp. cicla) using laser scanning confocal microscopy. Bacterial cells were found in internal locations of the tissue, irrespective of tissue health status. Contaminated leaf sections of biotically and abiotically damaged wild rocket leaves showed higher susceptibility to microbial invasion, while the pathogen was internalized in greater numbers into intact Swiss chard leaf sections when abiotically, but not biotically, damaged. The greatest differences were observed between the plant species; after surface sanitization, E. coli O157:H7 was still detected in wild rocket leaves, but not in Swiss chard leaves. SIGNIFICANCE AND IMPACT OF THE STUDY Contamination of leafy vegetables with Escherichia coli O157:H7 is a growing problem, as reported outbreaks are increasing. However, establishment of this human pathogen in the phyllosphere is not completely understood. Using laser scanning confocal microscopy, we demonstrated that E. coli O157:H7gfp+ can invade plant tissue of Swiss chard and wild rocket leaves and that the bacterium is more sensitive to surface sanitization of Swiss chard leaves. Damage to leaf tissue promoted leaf invasion, but the nature of the damage (abiotic or biotic) and plant species had an impact.
Collapse
Affiliation(s)
- R Hartmann
- Department of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - A Fricke
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - H Stützel
- Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz Universität, Hannover, Germany
| | - S Mansourian
- Chemical Ecology Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - T Dekker
- Chemical Ecology Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - W Wohanka
- Department of Pomology, Geisenheim University, Geisenheim, Germany
| | - B Alsanius
- Department of Biosystems and Technology, Microbial Horticulture Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
21
|
Li YH, Zhang HN, Wu QS, Muday GK. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments. PLANTA 2017; 245:1193-1213. [PMID: 28303391 DOI: 10.1007/s00425-017-2677-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/09/2017] [Indexed: 05/12/2023]
Abstract
A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.
Collapse
Affiliation(s)
- Yun-He Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, No. 1 Huxiu Road, Zhanjiang, 524091, China.
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang, 524091, China.
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA.
| | - Hong-Na Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, No. 1 Huxiu Road, Zhanjiang, 524091, China
| | - Qing-Song Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, No. 1 Huxiu Road, Zhanjiang, 524091, China
| | - Gloria K Muday
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| |
Collapse
|
22
|
Iakimova ET, Woltering EJ. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. PLANTA 2017; 245:681-705. [PMID: 28194564 PMCID: PMC5357506 DOI: 10.1007/s00425-017-2656-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.
Collapse
Affiliation(s)
| | - Ernst J Woltering
- Wageningen University and Research, Food and Biobased Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
- Wageningen University, Horticulture and Product Physiology, P.O. Box 630, 6700 AP, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Rawat S, Ali S, Mittra B, Grover A. Expression analysis of chitinase upon challenge inoculation to Alternaria wounding and defense inducers in Brassica juncea. ACTA ACUST UNITED AC 2017; 13:72-79. [PMID: 28352565 PMCID: PMC5361129 DOI: 10.1016/j.btre.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
Abstract
Expression of chitinase gene was studied by RT-PCR in response to Alternaria brassicae. Chitinase gene is induced by Alternaria, wounding and by JA and not by SA. It shows the tissue specificity of the gene. Pathogen-inducible 2.5 kb chitinase class IV promoter was isolated from B. juncea by Genome Walking. Induction pattern of chitinase gene is also reflected in promoter validation studied in transgenic Arabidopsis leaf. This will help in using this promoter discretely in developing fungus resistant transgenic plants.
Chitinases are the hydrolytic enzymes which belong to the pathogenesis-related (PR) protein family and play an important role not only in plant defense but also in various abiotic stresses. However, only a limited number of chitinase genes have been characterised in B. juncea. In this study, we have characterised B. juncea class IV chitinase gene (accession no EF586206) in response to fungal infection, salicylic acid (SA), jasmonic acid (JA) treatments and wounding. Gene expression studies revealed that the transcript levels of Bjchitinase (BjChp) gene increases significantly both in local and distal tissues after Alternaria infection. Bjchitinase gene was also induced by jasmonic acid and wounding but moderately by salicylic acid. A 2.5 kb class IV chitinase promoter of this gene was isolated from B. juncea by Genome walking (accession no KF055403.1). In-silico analysis of this promoter revealed a number of conserved cis-regulatory elements related to defense, wounding and signalling molecules like SA, and JA. For validation, chitinase promoter was fused to the GUS gene, and the resultant construct was then introduced into Arabidopsis plants. Histochemical analysis of T2 transgenic Arabidopsis plants showed that higher GUS activity in leaves after fungal infection, wounding and JA treatment but weakly by SA. GUS activity was seen in meristematic tissues, young leaves, seeds and siliques. Finally investigation has led to the identification of a pathogen-inducible, developmentally regulated and organ-specific promoter. Present study revealed that Bjchitinase (BjChp) promoter is induced during biotic and environmental stress and it can be used in developing finely tuned transgenics.
Collapse
Affiliation(s)
- Sandhya Rawat
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India; Fakir Mohan University, Vyasa Vihar, Balasore, Orissa 756020, India
| | - Sajad Ali
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bhabatosh Mittra
- Fakir Mohan University, Vyasa Vihar, Balasore, Orissa 756020, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
24
|
Kim YH, Khan AL, Waqas M, Lee IJ. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:510. [PMID: 28428797 PMCID: PMC5382202 DOI: 10.3389/fpls.2017.00510] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 05/20/2023]
Abstract
Silicon (Si) is the second most abundant element in soil, where its availability to plants can exhilarate to 10% of total dry weight of the plant. Si accumulation/transport occurs in the upward direction, and has been identified in several crop plants. Si application has been known to ameliorate plant growth and development during normal and stressful conditions over past two-decades. During abiotic (salinity, drought, thermal, and heavy metal etc) stress, one of the immediate responses by plant is the generation of reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide ([Formula: see text]), hydrogen peroxide (H2O2), and hydroxyl radicals (OH), which cause severe damage to the cell structure, organelles, and functions. To alleviate and repair this damage, plants have developed a complex antioxidant system to maintain homeostasis through non-enzymatic (carotenoids, tocopherols, ascorbate, and glutathione) and enzymatic antioxidants [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)]. To this end, the exogenous application of Si has been found to induce stress tolerance by regulating the generation of ROS, reducing electrolytic leakage, and malondialdehyde (MDA) contents, and immobilizing and reducing the uptake of toxic ions like Na, under stressful conditions. However, the interaction of Si and plant antioxidant enzyme system remains poorly understood, and further in-depth analyses at the transcriptomic level are needed to understand the mechanisms responsible for the Si-mediated regulation of stress responses.
Collapse
Affiliation(s)
- Yoon-Ha Kim
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- Division of Plant Sciences, University of Missouri-ColumbiaColumbia, MO, USA
| | - Abdul L. Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of NizwaNizwa, Oman
| | - Muhammad Waqas
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- Department of Agriculture, Abdul Wali Khan University MardanKhyber Pakhtunkhwa, Pakistan
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National UniversityDaegu, South Korea
- *Correspondence: In-Jung Lee
| |
Collapse
|
25
|
Sweeney C, Lakshmanan V, Bais HP. Interplant Aboveground Signaling Prompts Upregulation of Auxin Promoter and Malate Transporter as Part of Defensive Response in the Neighboring Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:595. [PMID: 28469632 PMCID: PMC5395557 DOI: 10.3389/fpls.2017.00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 05/20/2023]
Abstract
When disrupted by stimuli such as herbivory, pathogenic infection, or mechanical wounding, plants secrete signals such as root exudates and volatile organic compounds (VOCs). The emission of VOCs induces a response in the neighboring plant communities and can improve plant fitness by alerting nearby plants of an impending threat and prompting them to alter their physiology for defensive purposes. In this study, we investigated the role of plant-derived signals, released as a result of mechanical wounding, that may play a role in intraspecific communication between Arabidopsis thaliana communities. Plant-derived signals released by the wounded plant resulted in more elaborate root development in the neighboring, unwounded plants. Such plant-derived signals also upregulated the Aluminum-activated malate transporter (ALMT1) responsible for the secretion of malic acid (MA) and the DR5 promoter, an auxin responsive promoter concentrated in root apex of the neighboring plants. We speculate that plant-derived signal-induced upregulation of root-specific ALMT1 in the undamaged neighboring plants sharing the environment with stressed plants may associate more with the benign microbes belowground. We also observed increased association of beneficial bacterium Bacillus subtilis UD1022 on roots of the neighboring plants sharing environment with the damaged plants. Wounding-induced plant-derived signals therefore induce defense mechanisms in the undamaged, local plants, eliciting a two-pronged preemptive response of more rapid root growth and up-regulation of ALMT1, resulting in increased association with beneficial microbiome.
Collapse
Affiliation(s)
- Connor Sweeney
- Delaware Biotechnology Institute, NewarkDE, USA
- Department of Plant and Soil Sciences, University of Delaware, NewarkDE, USA
- Wilmington Charter School, WilmingtonDE, USA
| | - Venkatachalam Lakshmanan
- Delaware Biotechnology Institute, NewarkDE, USA
- Department of Plant and Soil Sciences, University of Delaware, NewarkDE, USA
| | - Harsh P. Bais
- Delaware Biotechnology Institute, NewarkDE, USA
- Department of Plant and Soil Sciences, University of Delaware, NewarkDE, USA
- *Correspondence: Harsh P. Bais,
| |
Collapse
|
26
|
Zou Y, Chintamanani S, He P, Fukushige H, Yu L, Shao M, Zhu L, Hildebrand DF, Tang X, Zhou JM. A gain-of-function mutation in Msl10 triggers cell death and wound-induced hyperaccumulation of jasmonic acid in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:600-9. [PMID: 26356550 DOI: 10.1111/jipb.12427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/09/2015] [Indexed: 05/02/2023]
Abstract
Jasmonates (JAs) are rapidly induced after wounding and act as key regulators for wound induced signaling pathway. However, what perceives the wound signal and how that triggers JA biosynthesis remains poorly understood. To identify components involved in Arabidopsis wound and JA signaling pathway, we screened for mutants with abnormal expression of a luciferase reporter, which is under the control of a wound-responsive promoter of an ethylene response factor (ERF) transcription factor gene, RAP2.6 (Related to APetala 2.6). The rea1 (RAP2.6 expresser in shoot apex) mutant constitutively expressed the RAP2.6-LUC reporter gene in young leaves. Along with the typical JA phenotypes including shorter petioles, loss of apical dominance, accumulation of anthocyanin pigments and constitutive expression of JA response gene, rea1 plants also displayed cell death and accumulated high levels of JA in response to wounding. The phenotype of rea1 mutant is caused by a gain-of-function mutation in the C-terminus of a mechanosensitive ion channel MscS-like 10 (MSL10). MSL10 is localized in the plasma membrane and is expressed predominantly in root tip, shoot apex and vascular tissues. These results suggest that MSL10 is involved in the wound-triggered early signal transduction pathway and possibly in regulating the positive feedback synthesis of JA.
Collapse
Affiliation(s)
- Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | | | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, 77840, USA
| | - Hirotada Fukushige
- Department of Agronomy, Agricultural Sciences Center-Noth, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | - Liping Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meiyu Shao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - David F Hildebrand
- Department of Agronomy, Agricultural Sciences Center-Noth, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | - Xiaoyan Tang
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
27
|
Zhao N, Lin H, Lan S, Jia Q, Chen X, Guo H, Chen F. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:125-32. [PMID: 26934101 DOI: 10.1016/j.plaphy.2016.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 05/10/2023]
Abstract
The known members of plant methyl esterase (MES) family catalyze the hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated VvMES1-15. In this report, VvMES5 was selected for molecular, biochemical and structural studies. VvMES5 is most similar to tomato methyl jasmonate esterase. E. coli-expressed recombinant VvMES5 displayed methyl jasmonate (MeJA) esterase activity, it was renamed VvMJE1. Under steady-state conditions, VvMJE1 exhibited an apparent Km value of 92.9 μM with MeJA. VvMJE1 was also shown to have lower activity with methyl salicylate (MeSA), another known substrate of the MES family, and only at high concentrations of the substrate. To understand the structural basis of VvMJE1 in discriminating MeJA and MeSA, a homolog model of VvMJE1 was made using the X-ray structure of tobacco SABP2, which encodes for methyl salicylate esterase, as a template. Interestingly, two bulky residues at the binding site and near the surface of tobacco SABP2 are replaced by relatively small residues in VvMJE1. Such a change enables the accommodation of a larger substrate MeJA in VvMJE1. The expression of VvMJE1 was compared in control grape plants and grape plants treated with one of the three stresses: heat, cold and UV-B. While the expression of VvMJE1 was not affected by heat treatment, its expression was significantly up-regulated by cold treatment and UV-B treatment. This result suggests that VvMJE1 has a role in response of grape plants to these two abiotic stresses.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| | - Hong Lin
- USDA Agricultural Research Service, Crop Diseases, Pests and Genetics Research Unit, 9611 S. Riverbend Avenue, Parlier, CA 93648, USA
| | - Suque Lan
- USDA Agricultural Research Service, Crop Diseases, Pests and Genetics Research Unit, 9611 S. Riverbend Avenue, Parlier, CA 93648, USA; Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qidong Jia
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
28
|
Xu YH, Liao YC, Zhang Z, Liu J, Sun PW, Gao ZH, Sui C, Wei JH. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis. Sci Rep 2016; 6:21843. [PMID: 26902148 PMCID: PMC4763180 DOI: 10.1038/srep21843] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023] Open
Abstract
Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant's defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis.
Collapse
Affiliation(s)
- Yan-Hong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yong-Cui Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Hainan Branch Institute of Medicinal Plant, Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Wanning 571533, China
| | - Juan Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Pei-Wen Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhi-Hui Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chun Sui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jian-He Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
- Hainan Branch Institute of Medicinal Plant, Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Wanning 571533, China
| |
Collapse
|
29
|
Singh SK, Wu Y, Ghosh JS, Pattanaik S, Fisher C, Wang Y, Lawson D, Yuan L. RNA-sequencing Reveals Global Transcriptomic Changes in Nicotiana tabacum Responding to Topping and Treatment of Axillary-shoot Control Chemicals. Sci Rep 2015; 5:18148. [PMID: 26670135 PMCID: PMC4680964 DOI: 10.1038/srep18148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/12/2015] [Indexed: 11/30/2022] Open
Abstract
Removal of terminal buds (topping) and control of the formation of axillary shoots (suckers) are common agronomic practices that significantly impact the yield and quality of various crop plants. Application of chemicals (suckercides) to plants following topping is an effective method for sucker control. However, our current knowledge of the influence of topping, and subsequent suckercide applications, to gene expression is limited. We analyzed the differential gene expression using RNA-sequencing in tobacco (Nicotiana tabacum) that are topped, or treated after topping by two different suckercides, the contact-localized-systemic, Flupro(®) (FP), and contact, Off-Shoot-T(®). Among the differentially expressed genes (DEGs), 179 were identified as common to all three conditions. DEGs, largely related to wounding, phytohormone metabolism and secondary metabolite biosynthesis, exhibited significant upregulation following topping, and downregulation after suckercide treatments. DEGs related to photosynthetic processes were repressed following topping and suckercide treatments. Moreover, topping and FP-treatment affect the expression of auxin and cytokinin signaling pathway genes that are possibly involved in axillary shoot formation. Our results provide insights into the global change of plant gene expression in response to topping and suckercide treatments. The regulatory elements of topping-inducible genes are potentially useful for the development of a chemical-free sucker control system.
Collapse
Affiliation(s)
- Sanjay K. Singh
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
| | - Yongmei Wu
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
| | - Jayadri S. Ghosh
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
| | - Colin Fisher
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, U.S.A.
| | - Ying Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Darlene Lawson
- R J Reynolds, Inc. 950 Reynolds Blvd, Winston-Salem, NC 27102, U.S.A.
| | - Ling Yuan
- Kentucky Tobacco Research and Development Center , University of Kentucky, Lexington, KY 40546, U.S.A
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, U.S.A.
| |
Collapse
|
30
|
Jardine KJ, Meyers K, Abrell L, Alves EG, Yanez Serrano AM, Kesselmeier J, Karl T, Guenther A, Chambers JQ, Vickers C. Emissions of putative isoprene oxidation products from mango branches under abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3697-708. [PMID: 23881400 PMCID: PMC3745727 DOI: 10.1093/jxb/ert202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze-thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under (13)CO2 resulted in rapid (<30 min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.
Collapse
Affiliation(s)
- Kolby J Jardine
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Building 64, Room 241, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sato C, Aikawa K, Sugiyama S, Nabeta K, Masuta C, Matsuura H. Distal transport of exogenously applied jasmonoyl-isoleucine with wounding stress. PLANT & CELL PHYSIOLOGY 2011; 52:509-17. [PMID: 21266461 DOI: 10.1093/pcp/pcr011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Determining the mobile signal used by plants to defend against biotic and abiotic stresses has proved elusive, but jasmonic acid (JA) and its derivatives appear to be involved. Using deuterium-labeled analogs, we investigated the distal transport of JA and jasmonoyl-isoleucine (JA-Ile) in response to leaf wounding in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum) plants. We recovered [(2)H(2)-2]JA ([(2)H(2)]JA) and [(2)H(3)-12]JA-Ile ([(2)H(3)]JA-Ile) in distal leaves of N. tabacum and S. lycopersicum after treating wounded leaves with [(2)H(2)]JA or [(2)H(3)]JA-Ile. We found that JA-Ile had a greater mobility than JA, despite its lower polarity, and that application of exogenous JA-Ile to wounded leaves of N. tabacum led to a higher accumulation of JA and JA-Ile in distal leaves compared with wounded control plants. We also found that exudates from the stem of S. lycopersicum plants with damaged leaflets contained JA and JA-Ile at higher levels than in an undamaged plant, and a significant difference in the levels of JA-Ile was observed 30 min after wounding. Based on these results, it was found that JA-Ile is a transportable compound, which suggests that JA-Ile is a signaling cue involved in the resistance to biotic and abiotic stresses in plants.
Collapse
Affiliation(s)
- Chizuru Sato
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | | | | | | | | | | |
Collapse
|
32
|
Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB. Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1803-13. [PMID: 21172815 PMCID: PMC3060671 DOI: 10.1093/jxb/erq358] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/04/2010] [Accepted: 10/20/2010] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) and related molecules such as peroxynitrite, S-nitrosoglutathione (GSNO), and nitrotyrosine, among others, are involved in physiological processes as well in the mechanisms of response to stress conditions. In sunflower seedlings exposed to five different adverse environmental conditions (low temperature, mechanical wounding, high light intensity, continuous light, and continuous darkness), key components of the metabolism of reactive nitrogen species (RNS) and reactive oxygen species (ROS), including the enzyme activities L-arginine-dependent nitric oxide synthase (NOS), S-nitrosogluthathione reductase (GSNOR), nitrate reductase (NR), catalase, and superoxide dismutase, the content of lipid hydroperoxide, hydrogen peroxide, S-nitrosothiols (SNOs), the cellular level of NO, GSNO, and GSNOR, and protein tyrosine nitration [nitrotyrosine (NO(2)-Tyr)] were analysed. Among the stress conditions studied, mechanical wounding was the only one that caused a down-regulation of NOS and GSNOR activities, which in turn provoked an accumulation of SNOs. The analyses of the cellular content of NO, GSNO, GSNOR, and NO(2)-Tyr by confocal laser scanning microscopy confirmed these biochemical data. Therefore, it is proposed that mechanical wounding triggers the accumulation of SNOs, specifically GSNO, due to a down-regulation of GSNOR activity, while NO(2)-Tyr increases. Consequently a process of nitrosative stress is induced in sunflower seedlings and SNOs constitute a new wound signal in plants.
Collapse
Affiliation(s)
- Mounira Chaki
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Raquel Valderrama
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Ana M. Fernández-Ocaña
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Alfonso Carreras
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Maria. V. Gómez-Rodríguez
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - José R. Pedrajas
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Juan C. Begara-Morales
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | | | - Francisco Luque
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | - Marina Leterrier
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J. Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Juan B. Barroso
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| |
Collapse
|
33
|
Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KSV, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ, Lers A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. PLANT PHYSIOLOGY 2010; 154:1929-56. [PMID: 20947671 PMCID: PMC2996037 DOI: 10.1104/pp.110.160697] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 10/10/2010] [Indexed: 05/18/2023]
Abstract
The abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum 'Shiran 1335') flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal. Microarray analysis using the Affymetrix Tomato GeneChip revealed changes in expression, occurring prior to and during pedicel abscission, of many genes with possible regulatory functions. They included a range of auxin- and ethylene-related transcription factors, other transcription factors and regulatory genes that are transiently induced early, 2 h after flower removal, and a set of novel AZ-specific genes. All gene expressions initiated by flower removal and leading to pedicel abscission were inhibited by indole-3-acetic acid application, while 1-methylcyclopropene pretreatment inhibited only the ethylene-induced expressions, including those induced by wound-associated ethylene signals. These results confirm our hypothesis that acquisition of ethylene sensitivity in the AZ is associated with altered expression of auxin-regulated genes resulting from auxin depletion. Our results shed light on the regulatory control of abscission at the molecular level and further expand our knowledge of auxin-ethylene cross talk during the initial controlling stages of the process.
Collapse
Affiliation(s)
- Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. THE PLANT CELL 2008; 20:1678-92. [PMID: 18586869 PMCID: PMC2483369 DOI: 10.1105/tpc.107.054296] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 05/26/2008] [Accepted: 06/06/2008] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is effective against a broad range of pathogens. SAR development in dicotyledonous plants, such as tobacco (Nicotiana tabacum) and Arabidopsis thaliana, is mediated by salicylic acid (SA). Here, using two types of SAR-inducing chemicals, 1,2-benzisothiazol-3(2H)-one1,1-dioxide and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester, which act upstream and downstream of SA in the SAR signaling pathway, respectively, we show that treatment with abscisic acid (ABA) suppresses the induction of SAR in Arabidopsis. In an analysis using several mutants in combination with these chemicals, treatment with ABA suppressed SAR induction by inhibiting the pathway both upstream and downstream of SA, independently of the jasmonic acid/ethylene-mediated signaling pathway. Suppression of SAR induction by the NaCl-activated environmental stress response proved to be ABA dependent. Conversely, the activation of SAR suppressed the expression of ABA biosynthesis-related and ABA-responsive genes, in which the NPR1 protein or signaling downstream of NPR1 appears to contribute. Therefore, our data have revealed that antagonistic crosstalk occurs at multiple steps between the SA-mediated signaling of SAR induction and the ABA-mediated signaling of environmental stress responses.
Collapse
Affiliation(s)
- Michiko Yasuda
- Plant Acquired Immunity Research Unit, Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 2007; 3:1800-12. [PMID: 17953483 PMCID: PMC2039767 DOI: 10.1371/journal.pgen.0030172] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 12/25/2022] Open
Abstract
Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation. Plants are sessile organisms constantly challenged by a wide spectrum of biotic and abiotic stresses. These stresses cause considerable losses in crop yields worldwide, while the demand for food and energy is on the rise. Understanding the molecular mechanisms driving stress responses is crucial to devising targeted strategies to engineer stress-tolerant plants. To identify primary stress-responsive genes we examined the transcriptional profile of plants after mechanical wounding, which was used as a brief, inductive stimulus. Comparison of the ensemble of rapid wound response transcripts with published transcript profiles revealed a notable overlap with biotic and abiotic stress-responsive genes. Additional quantitative analyses of selected genes over a wounding time-course enabled classification into two groups: transient and stably expressed. Bioinformatic analysis of rapid wound response gene promoter sequences enabled us to identify a novel DNA motif, designated the Rapid Stress Response Element. This motif is sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby confirming the functional involvement of this motif in the primary transcriptional stress response. The genes we identified may represent initial components of the general stress-response network and may be useful in engineering multi-stress tolerant plants.
Collapse
Affiliation(s)
- Justin W Walley
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Sean Coughlan
- Agilent Technologies, Wilmington, Delaware, United States of America
| | - Matthew E Hudson
- Department of Crop Sciences, University Of Illinois, Urbana, Illinois, United States of America
| | - Michael F Covington
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Roy Kaspi
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Gopalan Banu
- Genomic Medicine, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Stacey L Harmer
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Katayoon Dehesh
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P. Transcript profiling of the anoxic rice coleoptile. PLANT PHYSIOLOGY 2007; 144:218-31. [PMID: 17369434 PMCID: PMC1913783 DOI: 10.1104/pp.106.093997] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 03/06/2007] [Indexed: 05/14/2023]
Abstract
Rice (Oryza sativa) seeds can germinate in the complete absence of oxygen. Under anoxia, the rice coleoptile elongates, reaching a length greater than that of the aerobic one. In this article, we compared and investigated the transcriptome of rice coleoptiles grown under aerobic and anaerobic conditions. The results allow drawing a detailed picture of the modulation of the transcripts involved in anaerobic carbohydrate metabolism, suggesting up-regulation of the steps required to produce and metabolize pyruvate and its derivatives. Sugars appear to play a signaling role under anoxia, with several genes indirectly up-regulated by anoxia-driven sugar starvation. Analysis of the effects of anoxia on the expansin gene families revealed that EXPA7 and EXPB12 are likely to be involved in rice coleoptile elongation under anoxia. Genes coding for ethylene response factors and heat shock proteins are among the genes modulated by anoxia in both rice and Arabidopsis (Arabidopsis thaliana). Identification of anoxia-induced ethylene response factors is suggestive because genes belonging to this gene family play a crucial role in rice tolerance to submergence, a process closely related to, but independent from, the ability to germinate under anoxia. Genes coding for some enzymes requiring oxygen for their activity are dramatically down-regulated under anoxia, suggesting the existence of an energy-saving strategy in the regulation of gene expression.
Collapse
|
37
|
Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. THE PLANT CELL 2007; 19:1665-81. [PMID: 17513501 PMCID: PMC1913739 DOI: 10.1105/tpc.106.048041] [Citation(s) in RCA: 546] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/14/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Abstract
Analyses of Arabidopsis thaliana defense response to the damping-off oomycete pathogen Pythium irregulare show that resistance to P. irregulare requires a multicomponent defense strategy. Penetration represents a first layer, as indicated by the susceptibility of pen2 mutants, followed by recognition, likely mediated by ERECTA receptor-like kinases. Subsequent signaling of inducible defenses is predominantly mediated by jasmonic acid (JA), with insensitive coi1 mutants showing extreme susceptibility. In contrast with the generally accepted roles of ethylene and salicylic acid cooperating with or antagonizing, respectively, JA in the activation of defenses against necrotrophs, both are required to prevent disease progression, although much less so than JA. Meta-analysis of transcriptome profiles confirmed the predominant role of JA in activation of P. irregulare-induced defenses and uncovered abscisic acid (ABA) as an important regulator of defense gene expression. Analysis of cis-regulatory sequences also revealed an unexpected overrepresentation of ABA response elements in promoters of P. irregulare-responsive genes. Subsequent infections of ABA-related and callose-deficient mutants confirmed the importance of ABA in defense, acting partly through an undescribed mechanism. The results support a model for ABA affecting JA biosynthesis in the activation of defenses against this oomycete.
Collapse
Affiliation(s)
- Bruce A T Adie
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. THE PLANT CELL 2007; 19:805-18. [PMID: 17369371 PMCID: PMC1867372 DOI: 10.1105/tpc.106.046581] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The plant hormone jasmonic acid (JA) plays a key role in the environmental stress responses and developmental processes of plants. Although ATMYC2/JASMONATE-INSENSITIVE1 (JIN1) is a major positive regulator of JA-inducible gene expression and essential for JA-dependent developmental processes in Arabidopsis thaliana, molecular mechanisms underlying the control of ATMYC2/JIN1 expression remain largely unknown. Here, we identify a mitogen-activated protein kinase (MAPK) cascade, MAPK KINASE 3 (MKK3)-MAPK 6 (MPK6), which is activated by JA in Arabidopsis. We also show that JA negatively controls ATMYC2/JIN1 expression, based on quantitative RT-PCR and genetic analyses using gain-of-function and loss-of-function mutants of the MKK3-MPK6 cascade. These results indicate that this kinase unit plays a key role in JA-dependent negative regulation of ATMYC2/JIN1 expression. Both positive and negative regulation by JA may be used to fine-tune ATMYC2/JIN1 expression to control JA signaling. Moreover, JA-regulated root growth inhibition is affected by mutations in the MKK3-MPK6 cascade, which indicates important roles in JA signaling. We provide a model explaining how MPK6 can convert three distinct signals - JA, pathogen, and cold/salt stress - into three different sets of responses in Arabidopsis.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2537-52. [PMID: 17545220 DOI: 10.1093/jxb/erm043] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plants are equipped with a range of defence mechanisms against herbivorous insects. In cruciferous species, jasmonic acid, salicylic acid, and ethylene along with glucosinolates and their hydrolysis products play important roles in plant protection and plant-insect communication. In turn, a number of herbivores have adapted to plants that contain glucosinolates. As a result of adaptation to their host plants, specialized insects may elicit different plant-inducible responses than generalists. Oligonucleotide microarrays and qRT-PCR analysis were used to characterize transcriptional profiles of Arabidopsis thaliana plants in response to infestation with a generalist aphid, Myzus persicae, or a cruciferous plant specialist, Brevicoryne brassicae. To find possible differences and similarities in molecular responses between plants differing in predominant glucosinolate hydrolysis products, three ecotypes of A. thaliana were chosen: Wassilewskija (Ws), Cape Verde Islands (Cvi), and Landsberg erecta (Ler), which, respectively, produce mainly isothiocyanates, epithionitriles, and nitriles. In all three ecotypes, general stress-responsive genes, genes belonging to octadecanoid and indole glucosinolate synthesis pathways were induced upon both generalist and specialist attack. By contrast, transcription of myrosinases, enzymes hydrolysing glucosinolates, was suppressed. The induction of the jasmonic acid synthesis pathway was strongest in Cvi, while the up-regulation of the indole glucosinolate synthesis pathway was highest in Ler, suggesting a slightly different defence strategy in these two ecotypes. Specialist and generalist infestations caused statistically significant differential regulation of 60 genes in Ws and 21 in Cvi. Among these were jasmonic acid and tryptophan synthesis pathway enzymes, and pathogenesis related protein (PR1). Insect no-choice experiments revealed lowered fitness of B. brassicae on Ler and Cvi in comparison to Ws, but no ecotype-dependent change in fecundity of M. persicae. Targeted studies employing constructs of GUS reporter gene under the control of promoters from CYP79B2 and CYP79B3 genes showed insect-specific induction of the indole glucosinolates synthesis pathway.
Collapse
Affiliation(s)
- Anna Kusnierczyk
- Department of Biology, The Norwegian University of Science and Technology, Realfagbygget, 7491, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
40
|
Meir S, Hunter DA, Chen JC, Halaly V, Reid MS. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. PLANT PHYSIOLOGY 2006; 141:1604-16. [PMID: 16778017 PMCID: PMC1533941 DOI: 10.1104/pp.106.079277] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/02/2006] [Accepted: 06/05/2006] [Indexed: 05/10/2023]
Abstract
To understand how auxin regulates sensitivity of abscission zone (AZ) tissues to ethylene, we used a polymerase chain reaction-based subtractive approach to identify gene transcripts in Mirabilis jalapa AZs that changed in abundance during the time the zones became competent to abscise in response to exogenous ethylene. Transcript expression was then examined in leaf and stem AZs over the period they became ethylene competent following indole-3-acetic acid (IAA) depletion either by leaf deblading, treatment with the IAA transport inhibitor naphthylphthalamic acid, or cutting the stem above a node (decapitation). Transcripts down-regulated by deblading/decapitation included Mj-Aux/IAA1 and Mj-Aux/IAA2, encoding Aux/IAA proteins, and three other transcripts showing highest identity to a polygalacturonase inhibitor protein, a beta-expansin, and a beta-tubulin. Application of IAA to the cut end of petioles or stumps inhibited abscission, and prevented the decline in the levels of transcripts in both AZs. Transcripts up-regulated in the AZ following deblading/decapitation or treatment with naphthylphthalamic acid were isolated from plants pretreated with 1-methylcyclopropene before deblading to help select against ethylene-induced genes. Some of the up-regulated transcripts showed identity to proteins associated with ethylene or stress responses, while others did not show homology to known sequences. Sucrose infiltration of stem stumps enhanced abscission following ethylene treatment and also enhanced the induction of some of the up-regulated genes. Our results demonstrate a correlation between acquisition of competence to respond to ethylene in both leaf and stem AZs, and decline in abundance of auxin regulatory gene transcripts.
Collapse
Affiliation(s)
- Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| | | | | | | | | |
Collapse
|
41
|
Szczegielniak J, Klimecka M, Liwosz A, Ciesielski A, Kaczanowski S, Dobrowolska G, Harmon AC, Muszyńska G. A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase. PLANT PHYSIOLOGY 2005; 139:1970-83. [PMID: 16299185 PMCID: PMC1310574 DOI: 10.1104/pp.105.066472] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Using protein sequence data obtained from a calcium- and phospholipid-regulated protein kinase purified from maize (Zea mays), we isolated a cDNA encoding a calcium-dependent protein kinase (CDPK), which we designated ZmCPK11. The deduced amino acid sequence of ZmCPK11 includes the sequences of all the peptides obtained from the native protein. The ZmCPK11 sequence contains the kinase, autoregulatory, and calmodulin-like domains typical of CDPKs. Transcripts for ZmCPK11 were present in every tested organ of the plant, relatively high in seeds and seedlings and lower in stems, roots, and leaves. In leaves, kinase activity and ZmCPK11 mRNA accumulation were stimulated by wounding. The level of ZmCPK11 is also increased in noninjured neighboring leaves. The results suggest that the maize protein kinase is involved in a systemic response to wounding. Bacterially expressed glutathione S-transferase (GST)-ZmCPK11 was catalytically active in a calcium-dependent manner. Like the native enzyme, GST-ZmCPK11 was able to phosphorylate histone III-S and Syntide 2. Phosphorylation of histone was stimulated by phosphatidylserine, phosphatidylinositol, and phosphatidic acid, whereas phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, diolein, and cardiolipin did not increase the enzymatic activity. Autophosphorylation of GST-ZmCPK11 was stimulated by calcium and by phosphatidic acid and, to a lesser extent, by phosphatidylserine. Phosphatidylcholine did not affect autophosphorylation. These data unequivocally identify the maize phospholipid- and calcium-regulated protein kinase, which has protein kinase C-like activity, as a CDPK, and emphasize the potential that other CDPKs are regulated by phospholipids in addition to calcium.
Collapse
Affiliation(s)
- Jadwiga Szczegielniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B. Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. PLANT PHYSIOLOGY 2005; 139:1401-10. [PMID: 16244141 PMCID: PMC1283775 DOI: 10.1104/pp.105.069054] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 07/28/2005] [Accepted: 09/12/2005] [Indexed: 05/05/2023]
Abstract
During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35SuidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.
Collapse
Affiliation(s)
- Stanislav Isayenkov
- Department of Secondary Metabolism , Leibniz Institute of Plant Biochemistry, D-06120 Halle , Germany
| | | | | | | | | |
Collapse
|
43
|
Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya KI, Shibata D, Kobayashi Y, Ohta H. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. PLANT PHYSIOLOGY 2005; 139:1268-83. [PMID: 16258017 PMCID: PMC1283764 DOI: 10.1104/pp.105.067058] [Citation(s) in RCA: 382] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Jasmonic acid (JA) and methyl jasmonate (MeJA), collectively known as JAs, regulate diverse physiological processes in plants, including the response to wounding. Recent reports suggest that a cyclopentenone precursor of JA, 12-oxo-phytodienoic acid (OPDA), can also induce gene expression. However, little is known about the physiological significance of OPDA-dependent gene expression. We used microarray analysis of approximately 21,500 Arabidopsis (Arabidopsis thaliana) genes to compare responses to JA, MeJA, and OPDA treatment. Although many genes responded identically to both OPDA and JAs, we identified a set of genes (OPDA-specific response genes [ORGs]) that specifically responded to OPDA but not to JAs. ORGs primarily encoded signaling components, transcription factors, and stress response-related genes. One-half of the ORGs were induced by wounding. Analysis using mutants deficient in the biosynthesis of JAs revealed that OPDA functions as a signaling molecule in the wounding response. Unlike signaling via JAs, OPDA signaling was CORONATINE INSENSITIVE 1 independent. These results indicate that an OPDA signaling pathway functions independently of JA/MeJA signaling and is required for the wounding response in Arabidopsis.
Collapse
Affiliation(s)
- Nozomi Taki
- Department of Bioscience, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. THE PLANT CELL 2005; 17:2217-29. [PMID: 15980262 PMCID: PMC1182484 DOI: 10.1105/tpc.105.032714] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 05/19/2005] [Accepted: 05/31/2005] [Indexed: 05/03/2023]
Abstract
A combined genetic and transcriptome analysis was performed to study the molecular basis of the arbuscular mycorrhiza (AM) symbiosis. By testing the AM phenotype of nodulation-impaired mutants and complementation analysis, we defined seven Lotus japonicus common symbiosis genes (SYMRK, CASTOR, POLLUX, SYM3, SYM6, SYM15, and SYM24) that are required for both fungal and bacterial entry into root epidermal or cortical cells. To describe the phenotype of these mutants at the molecular level, we screened for differentiating transcriptional responses of mutant and wild-type roots by large-scale gene expression profiling using cDNA-amplified fragment length polymorphism. Two percent of root transcripts was found to increase in abundance during AM development, from which a set of AM-regulated marker genes was established. A Ser-protease (SbtS) and a Cys-protease (CysS) were also activated during root nodule development. AM-induced transcriptional activation was abolished in roots carrying mutations in common symbiosis genes, suggesting a central position of these genes in a pathway leading to the transcriptional activation of downstream genes. By contrast, AM fungus-induced gene repression appeared to be unaffected in mutant backgrounds, which indicates the presence of additional independent signaling pathways.
Collapse
Affiliation(s)
| | - Thilo Winzer
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | | | - Shusei Sato
- Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | | | | | - Niels Sandal
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Jens Stougaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - K. Judith Webb
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | |
Collapse
|
45
|
Guan Y, Nothnagel EA. Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. PLANT PHYSIOLOGY 2004; 135:1346-66. [PMID: 15235117 PMCID: PMC519053 DOI: 10.1104/pp.104.039370] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/29/2004] [Accepted: 04/03/2004] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are cell wall proteoglycans and are widely distributed in the plant kingdom. Classical AGPs and some nonclassical AGPs are predicted to have a glycosylphosphatidylinositol lipid anchor and have been suggested to be involved in cell-cell signaling. Yariv phenylglycoside is a synthetic probe that specifically binds to plant AGPs and has been used to study AGP functions. We treated Arabidopsis suspension cell cultures with Yariv phenylglycoside and observed decreased cell viability, increased cell wall apposition and cytoplasmic vesiculation, and induction of callose deposition. The induction of cell wall apposition and callose synthesis led us to hypothesize that Yariv binding of plant surface AGPs triggers wound-like responses. To study the effect of Yariv binding to plant surface AGPs and to further understand AGP functions, an Arabidopsis whole genome array was used to monitor the transcriptional modifications after Yariv treatment. By comparing the genes that are induced by Yariv treatment with genes whose expressions have been previously shown to be induced by other conditions, we conclude that the gene expression profile induced by Yariv phenylglycoside treatment is most similar to that of wound induction. It remains uncertain whether the Yariv phenylglycoside cross-linking of cell surface AGPs induces these genes through a specific AGP-based signaling mechanism or through a general mechanical perturbation of the cell surface.
Collapse
Affiliation(s)
- Yu Guan
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
46
|
Cruz Castillo M, Martínez C, Buchala A, Métraux JP, León J. Gene-specific involvement of beta-oxidation in wound-activated responses in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:85-94. [PMID: 15141068 PMCID: PMC429335 DOI: 10.1104/pp.104.039925] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The coordinated induced expression of beta-oxidation genes is essential to provide the energy supply for germination and postgerminative development. However, very little is known about other functions of beta-oxidation in nonreserve organs. We have identified a gene-specific pattern of induced beta-oxidation gene expression in wounded leaves of Arabidopsis. Mechanical damage triggered the local and systemic induction of only ACX1 among acyl-coenzyme A oxidase (ACX) genes, and KAT2/PED1 among 3-ketoacyl-coenzyme A thiolase (KAT) genes in Arabidopsis. In turn, wounding induced KAT5/PKT2 only systemically. Although most of the beta-oxidation genes were activated by wound-related factors such as dehydration and abscisic acid, jasmonic acid (JA) induced only ACX1 and KAT5. Reduced expression of ACX1 or KAT2 genes, in transgenic plants expressing their corresponding mRNAs in antisense orientation, correlated with defective wound-activated synthesis of JA and with reduced expression of JA-responsive genes. Induced expression of JA-responsive genes by exogenous application of JA was unaffected in those transgenic plants, suggesting that ACX1 and KAT2 play a major role in driving wound-activated responses by participating in the biosynthesis of JA in wounded Arabidopsis plants.
Collapse
Affiliation(s)
- M Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
47
|
Sousa Silva M, Margarida Fortes A, Sanchéz Testillanob P, Risueño MDC, Salom'e Pais M. Differential expression and cellular localization of ERKs during organogenic nodule formation from internodes of Humulus lupulus var. Nugget. Eur J Cell Biol 2004; 83:425-33. [PMID: 15506566 DOI: 10.1078/0171-9335-00397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression and subcellular localization of extracellular signal-regulated kinase 1 or 2 (ERK1/2) homologues (HLERK1/2) during the process of organogenic nodule formation in Humulus lupulus var. Nugget was studied using antibodies specific for ERK1 and ERK2, and for phosphorylated mitogen-activated protein kinases (MAPKs). The increase in HLERK levels, detected by Western blotting 12 hours after wounding suggests their involvement in response to the wounding treatment applied for morphogenesis induction. In dividing cambial cells, occurring in between 4 and 7 days after morphogenesis induction, as well as in dividing prenodular cells (15 days after induction) HLERK1 and/or 2 were localized in the nucleus. However, as soon as nodular cells start proliferating to form shoot meristems, HLERK1 and 2 were detected in the cytoplasm and not in the nucleus. The data reported account for a differential expression and activation of HLERK1 and HLERK2 throughout the process of nodule formation and plantlet regeneration. HLERK1 appears to be expressed in the stages of nodule formation and plantlet regeneration, playing a possible role in controlling cell proliferation and differentiation. HLERK2 may be induced as a response to reactive oxygen species (ROS) generated by wounding of internodes as its expression is reduced in liquid medium with less oxygen availability compared to solid medium. However, addition of a ROS inhibitor to the liquid medium does not result in a further decrease in the HLERK2 level.
Collapse
Affiliation(s)
- Marta Sousa Silva
- Laboratory of Plant Biotechnology-ICAT, Campus of Science Faculty of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
48
|
Riemann M, Muller A, Korte A, Furuya M, Weiler EW, Nick P. Impaired induction of the jasmonate pathway in the rice mutant hebiba. PLANT PHYSIOLOGY 2003; 133:1820-30. [PMID: 14605232 PMCID: PMC300735 DOI: 10.1104/pp.103.027490] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2003] [Revised: 06/27/2003] [Accepted: 08/31/2003] [Indexed: 05/17/2023]
Abstract
The elongation of rice (Oryza sativa) coleoptiles is inhibited by light, and this photoinhibition was used to screen for mutants with impaired light response. In one of the isolated mutants, hebiba, coleoptile elongation was stimulated in the presence of red light, but inhibited in the dark. Light responses of endogenous indolyl-3-acetic acid and abscisic acid were identical between the wild type and the mutant. In contrast, the wild type showed a dramatic increase of jasmonate heralded by corresponding increases in the content of its precursor o-phytodienoic acid, whereas both compounds were not detectable in the mutant. The jasmonate response to wounding was also blocked in the mutant. The mutant phenotype was rescued by addition of exogenous methyl jasmonate and o-phytodienoic acid. Moreover, the expression of O. sativa 12-oxophytodienoic acid reductase, an early gene of jasmonic acid-synthesis, is induced by red light in the wild type, but not in the mutant. This evidence suggests a novel role for jasmonates in the light response of growth, and we discuss a cross-talk between jasmonate and auxin signaling. In addition, hebiba represents the first rice mutant in which the induction of the jasmonate pathway is impaired providing a valuable tool to study the role of jasmonates in Graminean development.
Collapse
Affiliation(s)
- Michael Riemann
- Biologisches Institut II, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Gobel C, Feussner I, Rosahl S. Lipid Peroxidation during the Hypersensitive Response in Potato in the Absence of 9-Lipoxygenases. J Biol Chem 2003; 278:52834-40. [PMID: 14551198 DOI: 10.1074/jbc.m310833200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hypersensitive cell death is an important defense reaction of plants to pathogen infection and is accompanied by lipid peroxidation processes. These may occur non-enzymatically by the action of reactive oxygen species or may be catalyzed by enzymes such as alpha-dioxygenases, lipoxygenases, or peroxidases. Correlative data showing increases in 9-lipoxygenase products in hyper-sensitively reacting cells have so far suggested that a large part of lipid peroxidation is mediated by a specific set of 9-lipoxygenases. To address the significance of 9-lipoxygenases for this type of pathogen response in potato, RNA interference constructs of a specific pathogen-induced potato 9-lipoxygenase were transferred to potato plants. Significantly reduced 9-lipoxygenase transcript levels were observed in transgenic plants after pathogen treatment. In addition, 9-lipoxygenase activity was hardly detectable, and levels of 9-lipoxygenase-derived oxylipins were reduced up to 12-fold after pathogen infection. In contrast to wild type plants, high levels of non-enzymatically as well as 13-lipoxygenase-derived oxylipins were present in 9-lipoxygenase-deficient plants. From this we conclude that during the normal hypersensitive response in potato, lipid peroxidation may occur as a controlled and directed process that is facilitated by the action of a specific 9-lipoxygenase. If 9-lipoxygenase-mediated formation of hydroperoxides is repressed, autoxidative lipid peroxidation processes and 13-lipoxygenase-mediated oxylipins synthesis become prominent. The unaltered timing and extent of necrosis formation suggests that the origin of lipid hydroperoxides does not influence pathogen-induced cell death in potato.
Collapse
Affiliation(s)
- Cornelia Gobel
- Department of Stress and Developmental Biology, Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany
| | | | | |
Collapse
|
50
|
Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H. Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. PLANT PHYSIOLOGY 2003; 131:454-62. [PMID: 12586870 PMCID: PMC166822 DOI: 10.1104/pp.102.011007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Revised: 08/07/2002] [Accepted: 10/16/2002] [Indexed: 05/17/2023]
Abstract
Tobacco (Nicotiana tabacum) genes regulated during the early stage of responses to wounding were screened by a modified fluorescence differential display method. Among 28 genes initially identified, a particular clone designated NtC7 was subjected to further analysis. Its transcripts were found to accumulate rapidly and transiently within 1 h upon treatments with not only wounding but also salt and osmotic stresses. However, jasmonic and abscisic acids and ethylene did not effectively induce NtC7 transcripts. Amino acid sequence analysis suggested NtC7 to be a new type of transmembrane protein that belongs to the receptor-like protein family, and a membrane location was confirmed in onion (Allium cepa) epidermis cells transiently expressing an NtC7-green fluorescent protein fusion protein. Seeds of transgenic tobacco overexpressing NtC7 normally germinated and grew in the presence of 500 mM mannitol, but not in the presence of 220 mM sodium chloride or 60 mM lithium chloride. Cuttings of mature transgenic leaf exhibited a marked tolerance upon treatment with 500 mM mannitol for 12 h, at which concentration wild-type counterparts were seriously damaged. These results suggested that NtC7 predominantly functions in maintenance of osmotic adjustment independently of ion homeostasis.
Collapse
Affiliation(s)
- Takashi Tamura
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|