1
|
Jin H, Tang M, Zhu L, Yu X, Yang Q, Fu X. Characterization of a Drought-Induced Betaine Aldehyde Dehydrogenase Gene SgBADH from Suaeda glauca. PLANTS (BASEL, SWITZERLAND) 2024; 13:2716. [PMID: 39409587 PMCID: PMC11478665 DOI: 10.3390/plants13192716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Betaine aldehyde dehydrogenases (BADHs) are key enzymes in the biosynthesis of glycine betaine, which is an important organic osmolyte that maintains cell structure and improves plant tolerance to abiotic stresses, especially in halotolerant plants. Improving the drought tolerance of crops will greatly increase their yield. In this study, a novel BADH gene named SgBADH from Suaeda glauca was induced by drought stress or abscisic acid. To explore the biological function of SgBADH, the SgBADH gene was transformed into Arabidopsis. Then, we found SgBADH-overexpressing Arabidopsis seedlings showed enhanced tolerance to drought stress. SgBADH transgenic Arabidopsis seedlings also had longer roots compared with controls under drought stress, while SgBADH-overexpressing Arabidopsis exhibited increased glycine betaine accumulation and decreased malondialdehyde (MDA) under drought stress. Our results suggest that SgBADH might be a positive regulator in plants during the response to drought.
Collapse
Affiliation(s)
- Hangxia Jin
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Min Tang
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Longmin Zhu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Xiaomin Yu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Qinghua Yang
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Xujun Fu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| |
Collapse
|
2
|
Li S, Liu X, Yin L, Wang S, Deng X. Alteration in lipid metabolism is involved in nitrogen deficiency response in wheat seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108883. [PMID: 38943879 DOI: 10.1016/j.plaphy.2024.108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Changes of membrane lipid composition contribute to plant adaptation to various abiotic stresses. Here, a comparative study was undertaken to investigate the mechanisms of how lipid alteration affects plant growth and development under nitrogen (N) deficiency. Two wheat cultivars: the N deficiency-tolerant cultivar Xiaoyan 6 (XY) and the N deficiency-sensitive cultivar Aikang 58 (AK) were used to test if the high N-deficiency tolerance was related with lipid metabolism. The results showed that N deficiency inhibited the morpho-physiological parameters in both XY and AK cultivars, which showed a significant decrease in biomass, N content, photosynthetic efficiency, and lipid contents. However, these decreases were more pronounced in AK than XY. In addition, XY showed a notable increase in fatty acid unsaturation, relatively well-maintained chloroplast ultrastructure, and minimized damage of lipid peroxidation and enhanced PSII activity under N-deficient condition, as compared with AK. Transcription levels of many genes involved in lipid biosynthesis and fatty acid desaturation were up-regulated in response to N deficiency in two wheat cultivars, while the expressions were much higher in XY than AK under N deficiency. These results highlight the importance of alterations in lipid metabolism in N deficiency tolerance in wheat. High levels of lipid content and unsaturated fatty acids maintained the membrane structure and function, contributing to high photosynthesis and antioxidant capacities, thereby improved the tolerance to N deficiency.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China
| | - Xiaoxiao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; School of Biological and Environmental Engineering, Xi'an University, Shaanxi, Xi'an, 710065, China
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China.
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| |
Collapse
|
3
|
Wu M, Xu J, Nie Z, Shi H, Liu H, Zhang Y, Li C, Zhao P, Liu H. Physiological, biochemical and transcriptomic insights into the mechanisms by which molybdenum mitigates cadmium toxicity in Triticum aestivum L. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134516. [PMID: 38714056 DOI: 10.1016/j.jhazmat.2024.134516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
There are many heavy metal stresses in agricultural biological systems, especially cadmium (Cd) stress, which prevent the full growth of plants, lead to a serious decline in crop yield, and endanger human health. Molybdenum (Mo), an essential nutrient element for plants, regulates plant growth mainly by reducing the absorption of heavy metals and protecting plants from oxidative damage. The aim of this study was to determine the protective effect of Mo (1 μM) application on wheat plants under conditions of Cd (10 μM) toxicity. The biomass, Cd and Mo contents, photosynthesis, leaf and root ultrastructure, antioxidant system, and active oxygen content of the wheat plants were determined. Mo increased the total chlorophyll content of wheat leaves by 43.02% and the net photosynthetic rate by 38.67%, and ameliorated the inhibitory effect of cadmium on photosynthesis by up-regulating photosynthesis-related genes and light-trapping genes. In addition, Mo reduced the content of superoxide anion (O2•-) by 16.55% and 31.12%, malondialdehyde (MDA) by 20.75% and 7.17%, hydrogen peroxide (H2O2) by 24.69% and 8.17%, and electrolyte leakage (EL) by 27.59% and 16.82% in wheat leaves and roots, respectively, and enhanced the antioxidant system to reduce the burst of reactive oxygen species and alleviate the damage of Cd stress on wheat. According to the above results, Mo is considered a plant essential nutrient that enhances Cd tolerance in wheat by limiting the absorption, accumulation and transport of Cd and by regulating antioxidant defence mechanisms. ENVIRONMENTAL IMPLICATION: Cadmium (Cd),is one of the most toxic heavy metals in the environment, and Cd pollution is a global environmental problem that threatens food security and human health. Molybdenum (Mo), as an essential plant nutrient, is often used to resist environmental stress. However, the mechanism of Mo treatment on wheat subjected to Cd stress has not been reported. In this study, we systematically analysed the effects of Mo on the phenotype, physiology, biochemistry, ultrastructure and Cd content of wheat subjected to Cd stress, and comprehensively analysed the transcriptomics. It not only reveals the mechanism of Mo tolerance to Cd stress in wheat, but also provides new insights into phytoremediation and plant growth in Cd-contaminated soil.
Collapse
Affiliation(s)
- Mengmeng Wu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; Engineering Technology Research Center of Soil Pollution Control in Henan Province, Zhengzhou 450046, China
| | - Zhaojun Nie
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; Engineering Technology Research Center of Soil Pollution Control in Henan Province, Zhengzhou 450046, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Haiyang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; Engineering Technology Research Center of Soil Pollution Control in Henan Province, Zhengzhou 450046, China
| | - Yupeng Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; Engineering Technology Research Center of Soil Pollution Control in Henan Province, Zhengzhou 450046, China
| | - Chang Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; Engineering Technology Research Center of Soil Pollution Control in Henan Province, Zhengzhou 450046, China
| | - Peng Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain of the Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; Engineering Technology Research Center of Soil Pollution Control in Henan Province, Zhengzhou 450046, China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain of the Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Yu B, Li J, Moussa MG, Wang W, Song S, Xu Z, Shao H, Huang W, Yang Y, Han D, Dang B, Xu J, Jia W. Molybdenum inhibited the growth of Phytophthora nicotiana and improved the resistance of Nicotiana tabacum L. against tobacco black shank. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105803. [PMID: 38458661 DOI: 10.1016/j.pestbp.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
Tobacco black shank (TBS) is a soil-borne fungal disease caused by Phytophthora nicotiana (P. nicotianae), significantly impeding the production of high-quality tobacco. Molybdenum (Mo), a crucial trace element for both plants and animals, plays a vital role in promoting plant growth, enhancing photosynthesis, bolstering antioxidant capacity, and maintaining ultrastructural integrity. However, the positive effect of Mo on plant biotic stress is little understood. This study delves into the inhibitory effects of Mo on P. nicotianae and seeks to unravel the underlying mechanisms. The results showed that 16.32 mg/L of Mo significantly inhibited mycelial growth, altered mycelial morphological structure, damaged mycelial cell membrane, and ultimately led to the leakage of cell inclusions. In addition, 0.6 mg/kg Mo applied in soil significantly reduced the severity of TBS. Mo increased photosynthetic parameters and photosynthetic pigment contents of tobacco leaves, upregulated expression of NtPAL and NtPPO resistance genes, as well as improved activities of SOD, POD, CAT, PPO, and PAL in tobacco plants. Furthermore, Mo could regulate nitrogen metabolism and amino acids metabolism to protect tobacco plants against P. nicotianae infection. These findings not only present an ecologically sound approach to control TBS but also contribute valuable insights to the broader exploration of the role of microelements in plant disease management.
Collapse
Affiliation(s)
- Bingjie Yu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Junling Li
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Mohamed G Moussa
- International Center for Biosaline Agriculture, ICBA, Dubai, P.O. Box 14660, United Arab Emirates; Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Wenchao Wang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Shaosen Song
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Huifang Shao
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Yongxia Yang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan agricultural university, Zhengzhou, Henan, China.
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Qu L, Xu Z, Huang W, Han D, Dang B, Ma X, Liu Y, Xu J, Jia W. Selenium-molybdenum interactions reduce chromium toxicity in Nicotiana tabacum L. by promoting chromium chelation on the cell wall. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132641. [PMID: 37797574 DOI: 10.1016/j.jhazmat.2023.132641] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Chromium (Cr) is a hazardous heavy metal that negatively affects animals and plants. The micronutrients selenium (Se) and molybdenum (Mo) have been widely shown to alleviate heavy metal toxicity in plants. However, the molecular mechanism of Cr chelation on the cell wall by combined treatment with Se and Mo has not been reported. Therefore, this study aimed to explore the effects of Se-Mo interactions on the subcellular distribution of Cr (50 µM) and on cell wall composition, structure, functional groups and Cr content, in addition to performing a comprehensive analysis of the transcriptome. Our results showed that the cell walls of shoots and roots accumulated 51.0% and 65.0% of the Cr, respectively. Furthermore, pectin in the cell wall bound 69.5%/90.2% of the Cr in the shoots/roots. Se-Mo interactions upregulated the expression levels of related genes encoding galacturonosyltransferase (GAUT), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-glucose-4-epimerase (GALE), involved in polysaccharide biosynthesis, thereby increasing pectin and cellulose levels. Moreover, combined treatment with Se and Mo increased the lignin content and cell wall thickness by upregulating the expression levels of genes encoding cinnamyl alcohol dehydrogenase (CAD), peroxidase (POX) and phenylalanine amino-lyase (PAL), involved in lignin biosynthesis. Fourier-transform infrared (FTIR) spectroscopy results showed that Se + Mo treatment (in combination) increased the number of carboxylic acid groups (-COOH) groups, thereby enhancing the Cr chelation ability. The results not only elucidate the molecular mechanism of action of Se-Mo interactions in mitigating Cr toxicity but also provide new insights for phytoremediation and food safety.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Xiaohan Ma
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Yizan Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Wu C, Zhang X, Cui Z, Gou J, Zhang B, Sun X, Xu N. Patatin-like phospholipase A-induced alterations in lipid metabolism and jasmonic acid production affect the heat tolerance of Gracilariopsis lemaneiformis. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105688. [PMID: 35759824 DOI: 10.1016/j.marenvres.2022.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
High temperatures seriously limit the growth and productivity of Gracilariopsis lemaneiformis. By hydrolyzing glycerolipids into lysophospholipids (LPs) and free fatty acids (FFAs), patatin-like phospholipase A (pPLA) plays an important role in stress responses. GlpPLA expression was up-regulated under heat stress, however, the regulation of pPLA in heat tolerance of G. lemaneiformis is unknown. In this study, G. lemaneiformis under heat stress was treated with bromoenololide (BEL), a chemical inhibitor of pPLA, to evaluate the cellular function of pPLA in this species. When pPLA was inhibited through BEL treatment, the sensitivity of G. lemaneiformis to heat stress increased and the biomass and maximum and effective quantum yield of photosystem II decreased. Moreover, BEL treatment resulted in a significant decrease in many lipid molecular species, all of which are mainly composed of 16C, 18C, and 20C fatty acids. Consistently, FFA levels and LPs contents in G. lemaneiformis under BEL treatment showed a significant decrease. The first step in the synthesis of jasmonic acid (JA) is the lipoxygenase (LOX)-mediated oxygenation of linolenic acid (C18:3). BEL treatment decreased JA and C18:3 accumulation and markedly downregulated the expression of GILOX under heat stress. Together, these results indicate that pPLA is closely related to the growth of G. lemaneiformis under heat stress, and pPLA is involved in the lipid metabolism and JA biosynthesis of G. lemaneiformis in response to heat stress. This research broadens the understanding of the heat stress adaptation mechanism of G. lemaneiformis.
Collapse
Affiliation(s)
- Chunmei Wu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiaoqian Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Zhenhao Cui
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinhao Gou
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Bo Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
7
|
Oliveira SL, Crusciol CAC, Rodrigues VA, Galeriani TM, Portugal JR, Bossolani JW, Moretti LG, Calonego JC, Cantarella H. Molybdenum Foliar Fertilization Improves Photosynthetic Metabolism and Grain Yields of Field-Grown Soybean and Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:887682. [PMID: 35720532 PMCID: PMC9199428 DOI: 10.3389/fpls.2022.887682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 06/02/2023]
Abstract
Foliar fertilization has been used as a supplemental strategy to plant nutrition especially in crops with high yield potential. Applying nutrients in small doses stimulates photosynthesis and increases yield performance. The aim of this study was to evaluate the efficiency of foliar application of molybdenum (Mo) to soybean and maize. The treatments consisted of the presence (+Mo) and absence (-Mo) of supplementation. Plant nutritional status, nitrate reductase (NR) activity, gas exchange parameters, photosynthetic enzyme activity (Rubisco in soybean and maize and PEPcase in maize), total soluble sugar concentration, leaf protein content, shoot dry matter, shoot nitrogen accumulated, number of grains per plant, mass of 100 grains, and grain yield were evaluated. For soybean and maize, application of Mo increased leaf NR activity, nitrogen and protein content, Rubisco activity, net photosynthesis, and grain yield. These results indicate that foliar fertilization with Mo can efficiently enhance nitrogen metabolism and the plant’s response to carbon fixation, resulting in improved crop yields.
Collapse
Affiliation(s)
- Sirlene Lopes Oliveira
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | | | - Vitor Alves Rodrigues
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Tatiani Mayara Galeriani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - José Roberto Portugal
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - João William Bossolani
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Luiz Gustavo Moretti
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Juliano Carlos Calonego
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Heitor Cantarella
- Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Campinas, Brazil
| |
Collapse
|
8
|
Wu S, Hu C, Wang X, Wang Y, Yu M, Xiao H, Shabala S, Wu K, Tan Q, Xu S, Sun X. Cadmium-induced changes in composition and co-metabolism of glycerolipids species in wheat root: Glycerolipidomic and transcriptomic approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127115. [PMID: 34537635 DOI: 10.1016/j.jhazmat.2021.127115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Lipids are the structural constituents of cell membranes and play crucial roles in plant adaptation to abiotic stresses. The aim of this study was to use glycerolipidomic and transcriptomic to analyze the changes in lipids metabolism induced by cadmium (Cd) exposure in wheat. The results indicated that Cd stress did not decrease the concentrations of monogalactosyldiacyglycerol (MGDG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and phosphatidic acid at 6 h, but decreased digalactosyldoacylglycerol (DGDG), MGDG, PC, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and LPC concentrations in wheat root at 24 h. Although the concentrations of highly abundant glycerolipids PC and PE were decreased, the ratios of PC/PE increased thus contributing to wheat adaptation to Cd stress. Cd did not reduce the extent of total lipid unsaturation due to the unchanged concentrations of high abundance species of C36:4, C34:2, C34:3 and C36:6 at 6 h, indicative of their roles in resisting Cd stress. The correlation analysis revealed the glycerolipids species experiencing co-metabolism under Cd stress, which is driven by the activated expression of genes related to glycerolipid metabolism, desaturation and oxylipin synthesis. This study gives insights into the changes of glycerolipids induced by Cd and the roles in wheat adaptation to Cd stress.
Collapse
Affiliation(s)
- Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA
| | - Yiwen Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Hongdong Xiao
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Kongjie Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Institute of Quality Stander and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciencs, Guangzhou 510640, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
9
|
Alamri S, Siddiqui MH, Mukherjee S, Kumar R, Kalaji HM, Irfan M, Minkina T, Rajput VD. Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism, osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118268. [PMID: 34610411 DOI: 10.1016/j.envpol.2021.118268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
There is little information available to decipher the interaction between molybdenum (Mo) and nitric oxide (NO) in mitigating arsenic (AsV) stress in plants. The present work highlights the associative role of exogenous Mo and endogenous NO signaling in regulating AsV tolerance in wheat seedlings. Application of Mo (1 μM) on 25-day-old wheat seedlings grown in the presence (5 μM) or absence of AsV stress caused improvement of photosynthetic pigment metabolism, reduction of electrolytic leakage and reactive oxygen species (ROS), and higher accumulation of osmolytes (proline and total soluble sugars). The molybdenum treatment upregulated antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase and glutathione reductase. In addition, the accumulation of nonenzymatic antioxidants (ascorbate and glutathione) was correlated with an increase in ascorbate peroxidase and glutathione reductase activity. The application of cPTIO (endogenous NO scavenger; 100 μM) reversed the Mo-mediated effects, thus indicating that endogenous NO may accompany Mo-induced mitigation of AsV stress. Mo treatment stimulated the accumulation of endogenous NO in the presence of AsV stress. Thus, it is evident that Mo and NO-mediated AsV stress tolerance in wheat seedlings are primarily operative through chlorophyll restoration, osmolytes accumulation, reduced electrolytic leakage, and ROS homeostasis.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
10
|
Abreu S, Heron S, Solgadi A, Joffre F, Tchapla A, Chaminade P. Rapid assessment of triacylglycerol fatty acyls composition by LC-APPI +-HRMS using monoacylglycerol like fragments intensities. Anal Chim Acta 2021; 1178:338809. [PMID: 34482865 DOI: 10.1016/j.aca.2021.338809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/27/2021] [Indexed: 11/18/2022]
Abstract
We present a new analytical approach for the analysis of triacylglycerol fatty acyls distribution by normal phase liquid chromatography (NPLC) coupled with APPI+-HRMS. The NPLC method used allows the separation of more than 30 classes of lipids. The energy of the APPI+ source enables the formation of low-intensity ions B fragments ([RC = O+74]+ <3%), characteristic of lipids with a glycerol esterified by one or more fatty acyls. We found the relative intensities of ions B were close to the fatty acyl distribution. To establish the proof of concept, we decided to focus on the triacylglycerols (TGs) class, the major component of plant oils. By either NPLC or FIA, the TGs class appeared as a single peak. In our experimental conditions, ions B are always present in the mass spectra of TGs and each ion B is specific to a fatty acyl group. The Orbitrap mass spectrometer featured high enough resolution and accuracy to identify ions B and distinguish them from other TG fragment ions. A further adjustment of the fatty acyls relative quantities calculation from ions B intensities was computed using weighting coefficients of ions B response. The methodology was developed and validated using plant oils characterized by a GC-FID reference method. NPLC-APPI+-HRMS method offers the advantage of analyzing the fatty acyl composition of complex lipid extracts without the need for sample preparation.
Collapse
Affiliation(s)
- Sonia Abreu
- Université Paris-Saclay, Lipides: Systèmes Analytiques et Biologiques, 92290, Chatenay-Malabry, France
| | - Sylvie Heron
- Université Paris-Saclay, ICP - CNRS UMR 8000, (LETIAM), 91400, Orsay, France
| | - Audrey Solgadi
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes Au Service de L'Innovation Thérapeutique, IPSIT-SAMM, 92290, Chatenay-Malabry, France
| | | | - Alain Tchapla
- Université Paris-Saclay, ICP - CNRS UMR 8000, (LETIAM), 91400, Orsay, France
| | - Pierre Chaminade
- Université Paris-Saclay, Lipides: Systèmes Analytiques et Biologiques, 92290, Chatenay-Malabry, France.
| |
Collapse
|
11
|
Konstantinov DK, Zubairova US, Ermakov AA, Doroshkov AV. Comparative transcriptome profiling of a resistant vs susceptible bread wheat ( Triticum aestivum L.) cultivar in response to water deficit and cold stress. PeerJ 2021; 9:e11428. [PMID: 34026365 PMCID: PMC8123233 DOI: 10.7717/peerj.11428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/19/2021] [Indexed: 11/28/2022] Open
Abstract
Bread wheat (Triticum aestivum L.) is one of the most important agricultural plants wearing abiotic stresses, such as water deficit and cold, that cause its productivity reduction. Since resistance to abiotic factors is a multigenic trait, therefore modern genome-wide approaches can help to involve various genetic material in breeding. One technique is full transcriptome analysis that reveals groups of stress response genes serving marker-assisted selection markers. Comparing transcriptome profiles of the same genetic material under several stresses is essential and makes the whole picture. Here, we addressed this by studying the transcriptomic response to water deficit and cold stress for two evolutionarily distant bread wheat varieties: stress-resistant cv. Saratovskaya 29 (S29) and stress-sensitive cv. Yanetzkis Probat (YP). For the first time, transcriptomes for these cultivars grown under abiotic stress conditions were obtained using Illumina based MACE technology. We identified groups of genes involved in response to cold and water deficiency stresses, including responses to each stress factor and both factors simultaneously that may be candidates for resistance genes. We discovered a core group of genes that have a similar pattern of stress-induced expression changes. The particular expression pattern was revealed not only for the studied varieties but also for the published transcriptomic data on cv. Jing 411 and cv. Fielder. Comparative transcriptome profiling of cv. S29 and cv. YP in response to water deficit and cold stress confirmed the hypothesis that stress-induced expression change is unequal within a homeologous gene group. As a rule, at least one changed significantly while the others had a relatively lower expression. Also, we found several SNPs distributed throughout the genomes of cv. S29 and cv. YP and distinguished the studied varieties from each other and the reference cv. Chinese Spring. Our results provide new data for genomics-assisted breeding of stress-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Dmitrii K Konstantinov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Ulyana S Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Anton A Ermakov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexey V Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
12
|
Molybdenum Supply Alleviates the Cadmium Toxicity in Fragrant Rice by Modulating Oxidative Stress and Antioxidant Gene Expression. Biomolecules 2020; 10:biom10111582. [PMID: 33233373 PMCID: PMC7700372 DOI: 10.3390/biom10111582] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence shows that cadmium (Cd) toxicity causes severe perturbations on growth performance, physio-biochemical and molecular processes in crop plants. Molybdenum (Mo), an essential trace element, plays key roles in oxidative stress tolerance of higher plants. Hence, the present study has been conducted to investigate the possible role of Mo in alleviating Cd-induced inhibitions in two fragrant rice cultivars namely Guixiangzhan (GXZ) and Meixiangzhan-2 (MXZ-2). The results revealed that Mo application enhanced the plant dry biomass by 73.24% in GXZ and 58.09% in MXZ-2 under Cd stress conditions, suggesting that Mo supplementation alleviated Cd-induced toxicity effects in fragrant rice. The enhanced Cd-tolerance in fragrant rice plants prompted by Mo application could be ascribed to its ability to regulate Cd uptake and reduce Cd-induced oxidative stress as evident by lower hydrogen peroxide levels, electrolyte leakage and malondialdehyde contents in Cd-stressed plants. The ameliorative role of Mo against Cd-toxicity also reflected through its protection to the photosynthetic pigments, proline and soluble protein. Mo also induced antioxidant defense systems via maintaining higher contents of glutathione and ascorbate as well as enhancing the ROS-detoxifying enzymes such as catalase, peroxidase, superoxide dismutase and ascorbate peroxidase activities and up-regulating transcript abundance in both fragrant rice cultivars under Cd stress. Conclusively, Mo-mediated modulation of Cd toxicity in fragrant rice was through restricting Cd uptake, maintaining photosynthetic performance and alleviating oxidative damages via the strong anti-oxidative defense systems; however, GXZ cultivar is comparatively more Cd tolerant and Mo-efficient as evident from the less growth inhibition and biomass reduction as well as enhanced Mo-induced Cd stress tolerance and less oxidative damage than MXZ-2 fragrant rice cultivar.
Collapse
|