1
|
Noor I, Sohail H, Akhtar MT, Cui J, Lu Z, Mostafa S, Hasanuzzaman M, Hussain S, Guo N, Jin B. From stress to resilience: Unraveling the molecular mechanisms of cadmium toxicity, detoxification and tolerance in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176462. [PMID: 39332719 DOI: 10.1016/j.scitotenv.2024.176462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Soil contamination with cadmium (Cd) has become a global issue due to increasing human activities. Cd contamination poses threats to plant growth as well as jeopardizing food safety and human health through the accumulation of Cd in edible parts of plants. Unraveling the Cd toxicity mechanisms and responses of plants to Cd stress is critical for promoting plant growth and ensuring food safety in Cd-contaminated soils. Toxicological research on plant responses to heavy metal stress has extensively studied Cd, as it can disrupt multiple physiological processes. In addition to morpho-anatomical, hormonal, and biochemical responses, plants rapidly initiate transcriptional modifications to combat Cd stress-induced oxidative and genotoxic damage. Various families of transcription factors play crucial roles in triggering such responses. Moreover, epigenetic modifications have been identified as essential players in maintaining plant genome stability under genotoxic stress. Plants have developed several detoxification strategies to mitigate Cd-induced toxicity, such as cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. This review provides a comprehensive update on understanding of molecular mechanisms involved in Cd uptake, transportation, and detoxification, with a particular emphasis on the signaling pathways that involve transcriptional and epigenetic responses in plants. This review highlights the innovative strategies for enhancing Cd tolerance and explores their potential application in various crops. Furthermore, this review offers strategies for increasing Cd tolerance and limiting Cd bioavailability in edible parts of plants, thereby improving the safety of food crops.
Collapse
Affiliation(s)
- Iqra Noor
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Hamza Sohail
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Muhammad Tanveer Akhtar
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Jiawen Cui
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Zhaogeng Lu
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Salma Mostafa
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sajjad Hussain
- Citrus Centre, Texas A&M University-Kingsville, Weslaco 78599, United States of America
| | - Nan Guo
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Biao Jin
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Xie J, Zheng S, Wei H, Shi Z, Liu Z, Zhang J. Assessing the interactive effects of microplastics and acid rain on cadmium toxicity in rice seedlings: Insights from physiological and transcriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175533. [PMID: 39155013 DOI: 10.1016/j.scitotenv.2024.175533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
In heavy metal-contaminated areas, the simultaneous occurrence of increasing microplastic pollution and persistent acid rain poses a serious threat to food security. However, the mechanisms of combined exposure to microplastics (MP) and acid rain (AR) on the toxicity of cadmium (Cd) in rice seedlings remain unclear. Our study investigated the combined effects of exposure to polyvinyl chloride microplastics and AR (pH 4.0) on the toxicity of Cd (0.3, 3, and 10 mg/L) in rice seedlings. The results showed that at low Cd concentrations, the combined exposure had no significant effect, but at high Cd concentrations, it alleviated the effects of Cd stress. The combined application of MP and AR alleviated the inhibitory effects of Cd on seedling growth and chlorophyll content. Under high Cd concentrations (10 mg/L), the simultaneous addition of MP and AR significantly reduced the production of reactive oxygen species (ROS), the content of malondialdehyde (MDA), and the activity of the superoxide dismutase (SOD). Compared with AR or MP alone, the combination of MP and AR reduced root cell damage and Cd accumulation in rice seedlings. Transcriptomic analysis confirmed that under high Cd concentrations, the combination of MP and AR altered the expression levels of genes related to Cd transport, uptake, MAPK kinase, GSTs, MTs, and transcription factors, producing a synergistic effect on oxidative stress and glutathione metabolism. These results indicate that co-exposure to MP and AR affected the toxicity of Cd in rice seedlings and alleviated Cd toxicity under high Cd concentrations to some extent. These findings provide a theoretical basis for evaluating the toxicological effects of microplastic and acid rain pollution on crop growth in areas contaminated with heavy metals, and are important for safe agricultural production and ecological security.
Collapse
Affiliation(s)
- Jiefen Xie
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiang Liu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Chen W, Zhang P, Liu D, Wang X, Lu S, Liu Z, Yang M, Deng T, Chen L, Qi H, Xiao S, Chen Q, Qiu R, Xie L. OsPLDα1 mediates cadmium stress response in rice by regulating reactive oxygen species accumulation and lipid remodeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135702. [PMID: 39217932 DOI: 10.1016/j.jhazmat.2024.135702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lipid remodeling is crucial for various cellular activities and the stress tolerance of plants; however, little is known about the lipid dynamics induced by the heavy metal cadmium (Cd). In this study, we investigated the phospholipid profiles in rice (Oryza sativa) under Cd exposure. We observed a significant decline in the total amounts of phosphatidylcholine and phosphatidylserine, contrasted with an elevation in phosphatidic acid (PA) due to Cd stress. Additionally, Cd stress prompted the activation of phospholipase D (PLD) and induced the expression of PLDα1. OsPLDα1 knockout mutants (Ospldα1) showed increased sensitivity to Cd, characterized by a heightened accumulation of hydrogen peroxide in roots and diminished PA production following Cd treatment. Conversely, PLDα1-overexpressing (OsPLDα1-OE) lines demonstrated enhanced tolerance to Cd, with suppressed transcription of the respiratory burst oxidase homolog (Rboh) genes. The transcription levels of genes associated with Cd uptake and transport were accordingly modulated in Ospldα1 and OsPLDα1-OE plants relative to the wild-type. Taken together, our findings underscore the pivotal role of OsPLDα1 in conferring tolerance to Cd by modulating reactive oxygen species homeostasis and lipid remodeling in rice.
Collapse
Affiliation(s)
- Wenzhen Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Peixian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaozhuo Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Sen Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhixuan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mingkang Yang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qinfang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Yang H, Yu H, Wang S, Huang H, Ye D, Zhang X, Liu T, Wang Y, Zheng Z, Li T. Comparative transcriptomics reveals the key pathways and genes of cadmium accumulation in the high cadmium-accumulating rice (Oryza Sativa L.) line. ENVIRONMENT INTERNATIONAL 2024; 193:109113. [PMID: 39509840 DOI: 10.1016/j.envint.2024.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The high cadmium (Cd)-accumulating rice line Lu527-8 (H8) has already been proven to exhibit elevated Cd concentration and translocation over the normal rice line Lu527-4 (N4). H8 and N4 are sister lines that diverged from the same parents, while the molecular mechanisms underlying the genotypic differences in Cd enrichment between the two rice lines remains unclear. Here an in-depth exploration was performed via transcriptome analysis with 2919 and 2563 differentially expressed genes (DEGs) in H8 and N4 identified, respectively. Gene ontology(GO) enrichment revealed that Cd-stressed rice both exhibited enhanced defense and antioxidant responses, while N4 displayed unique categories related to cell wall biosynthesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 5 mutual pathways between H8 and N4. Many genes associated with cell wall biosynthesis were identified as the Cd-responsive DEGs. Enhanced phenylpropanoid biosynthesis and unique diterpenoid biosynthesis resulted in intensified lignin biosynthesis, which likely led to apoplastic barrier formation, subsequently blocked Cd inflow and reduced radial Cd transport in the root, thereby limited Cd translocation into aerial parts in N4. The key genes OsPAL6 and OsPAL8 that encode phenylalanine ammonia lyase (PAL), and gibberellin (GA) biosynthesis-related key genes including OsCPS2, OsCPS4, OsKSL4, OsKSL7 and some CYP superfamily members played vital roles in the process. Meanwhile, the greater upregulation of Cd transporters, such as OsIRT1/2, some OsABCs, OsYSLs, and OsZIPs in H8, accounted for the higher root absorption of Cd compared to N4. These findings unveil the molecular basis of the differential Cd concentration and translocation between the two rice lines, contributing valuable insights to the theory of Cd accumulation in rice.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Lab for Bioresource Recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengwang Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
5
|
Yu G, Xiang J, Liu J, Zhang X, Lin H, Sunahara GI, Yu H, Jiang P, Lan H, Qu J. Single-cell atlases reveal leaf cell-type-specific regulation of metal transporters in the hyperaccumulator Sedum alfredii under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136185. [PMID: 39418904 DOI: 10.1016/j.jhazmat.2024.136185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Hyperaccumulation in plants is a complex and dynamic biological process. Sedum alfredii, the most studied Cd hyperaccumulator, can accumulate up to 9000 mg kg-1 Cd in its leaves without suffering toxicity. Although several studies have reported the molecular mechanisms of Cd hyperaccumulation, our understanding of the cell-type-specific transcriptional regulation induced by Cd remains limited. In this study, the first full-length transcriptome of S. alfredii was generated using the PacBio Iso-Seq technology. A total of 18,718,513 subreads (39.90 Gb) were obtained, with an average length of 2133 bp. The single-cell RNA sequencing was employed on leaves of S. alfredii grown under Cd stress. A total of 12,616 high-quality single cells were derived from the control and Cd-treatment samples of S. alfredii leaves. Based on cell heterogeneity and the expression profiles of previously reported marker genes, seven cell types with 12 transcriptionally distinct cell clusters were identified, thereby constructing the first single-cell atlas for S. alfredii leaves. Metal transporters such as CAX5, COPT5, ZIP5, YSL7, and MTP1 were up-regulated in different cell types of S. alfredii leaves under Cd stress. The distinctive gene expression patterns of metal transporters indicate special gene regulatory networks underlying Cd tolerance and hyperaccumulation in S. alfredii. Collectively, our findings are the first observation of the cellular and molecular responses of S. alfredii leaves under Cd stress and lay the cornerstone for future hyperaccumulator scRNA-seq investigations.
Collapse
Affiliation(s)
- Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingyu Xiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pingping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huachun Lan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Hu S, Chen J, Wang H, Ji E, Su X, Zhu M, Xiang X, Gong L, Zhou Q, Xiao X, Wu G, Zha H. The transcription factor OsNAC5 regulates cadmium accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117102. [PMID: 39332196 DOI: 10.1016/j.ecoenv.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Cadmium (Cd) is a hazardous heavy metal that threatens human health through the consumption of contaminated rice. To mitigate Cd accumulation in rice grains, it is crucial to reduce Cd uptake. Nevertheless, the transcriptional mechanisms governing Cd uptake in rice remain largely unknown. This research identifies the transcription factor OsNAC5 in Oryza sativa as a positive regulator of the Cd transporter gene OsNRAMP1, thereby influencing Cd uptake. OsNAC5 is predominantly expressed in the roots, resides in the nucleus, and is upregulated by Cd-induced hydrogen peroxide (H2O2). Knocking out OsNAC5 results in lower Cd concentrations in both shoots and roots and heightens sensitivity to Cd. The expression of OsNRAMP1, enhanced by Cd stress, is dependent on OsNAC5. OsNAC5 binds to "CATGTG" motifs in the OsNRAMP1 promoter, activating its expression. The loss of OsNAC5 function leads to reduced Cd accumulation in rice grains. Our findings provide insights into the transcriptional regulation of Cd stress response in rice and propose biotechnological strategies to lower Cd uptake in crops.
Collapse
Affiliation(s)
- Shubao Hu
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Jinfen Chen
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Hui Wang
- College of Resources and Environment, Anqing Normal University, Anqing, China
| | - E Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Su
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Muyao Zhu
- College of Resources and Environment, Anhui Science and Technology University, Bengbu, China
| | - Xiaoyan Xiang
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Li Gong
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Xin Xiao
- College of Resources and Environment, Anqing Normal University, Anqing, China
| | - Ganlin Wu
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China.
| | - Hannie Zha
- College of Computer and Information, Anqing Normal University, Anqing 246003, China.
| |
Collapse
|
7
|
Lin M, Liu H, Liu B, Li X, Qian W, Zhou D, Jiang J, Zhang Y. Transcriptome-wide m 6A methylation profile reveals tissue specific regulatory networks in switchgrass (Panicum virgatum L.) under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134904. [PMID: 38996680 DOI: 10.1016/j.jhazmat.2024.134904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
The heavy metal cadmium (Cd), known for its high toxicity, poses a grave threat to human health through the food chain. N6-methyladenosine (m6A), the most abundant internal modification, regulates plant adaptation to various adversities, yet the panorama of m6A modifications in switchgrass under cadmium stress remains elusive. This study examines the physiological responses of switchgrass roots and shoots exposed to 50 μM CdCl2, alongside an overview of transcriptome-wide m6A methylation patterns. After cadmium treatment, methylation modifications are primarily enriched near stop codons and the 3'UTR region, with a negative correlation between m6A modification and gene expression levels. In shoots, approximately 58 % of DEGs with m6A modifications show upregulation in expression and decrease in m6A peaks, including zinc transporter 4-like (ZIP4). In roots, about 43 % of DEGs with m6A modifications exhibit downregulation in expression and increase in m6A peaks, such as the ABC transporter family member (ABCG25). We further validate the m6A enrichment, gene expression and mRNA stability of ZIP4 in response to Cd treatment. The results suggest that the negative correlation of m6A enrichment and gene expression is due to altered mRNA stability. Our study establishes an m6A regulatory network governing cadmium transport in switchgrass roots and shoots, offering new avenues for candidate gene manipulation in phytoremediation applications of heavy metal pollution.
Collapse
Affiliation(s)
- Mengzhuo Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bowen Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenwu Qian
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jishan Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Wu X, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121979. [PMID: 39088904 DOI: 10.1016/j.jenvman.2024.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 μM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.
Collapse
Affiliation(s)
- Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
9
|
Huang BY, Lü QX, Tang ZX, Tang Z, Chen HP, Yang XP, Zhao FJ, Wang P. Machine learning methods to predict cadmium (Cd) concentration in rice grain and support soil management at a regional scale. FUNDAMENTAL RESEARCH 2024; 4:1196-1205. [PMID: 39431142 PMCID: PMC11489518 DOI: 10.1016/j.fmre.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Rice is a major dietary source of the toxic metal cadmium (Cd). Concentration of Cd in rice grain varies widely at the regional scale, and it is challenging to predict grain Cd concentration using soil properties. The lack of reliable predictive models hampers management of contaminated soils. Here, we conducted a three-year survey of 601 pairs of soil and rice samples at a regional scale. Approximately 78.3% of the soil samples exceeded the soil screening values for Cd in China, and 53.9% of rice grain samples exceeded the Chinese maximum permissible limit for Cd. Predictive models were developed using multiple linear regression and machine learning methods. The correlations between rice grain Cd and soil total Cd concentrations were poor (R 2 < 0.17). Both linear regression and machine learning methods identified four key factors that significantly affect grain Cd concentrations, including Fe-Mn oxide bound Cd, soil pH, field soil moisture content, and the concentration of soil reducible Mn. The machine learning-based support vector machine model showed the best performance (R 2 = 0.87) in predicting grain Cd concentrations at a regional scale, followed by machine learning-based random forest model (R 2 = 0.67), and back propagation neural network model (R 2 = 0.64). Scenario simulations revealed that liming soil to a target pH of 6.5 could be one of the most cost-effective approaches to reduce the exceedance of Cd in rice grain. Taken together, these results show that machine learning methods can be used to predict Cd concentration in rice grain reliably at a regional scale and to support soil management and safe rice production.
Collapse
Affiliation(s)
- Bo-Yang Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi-Xin Lü
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Xian Tang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Tang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Ping Chen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ping Yang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Liu C, Wen L, Cui Y, Ahammed GJ, Cheng Y. Metal transport proteins and transcription factor networks in plant responses to cadmium stress. PLANT CELL REPORTS 2024; 43:218. [PMID: 39153039 DOI: 10.1007/s00299-024-03303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.
Collapse
Affiliation(s)
- Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Lang Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Yijia Cui
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Yuan Cheng
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China.
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
11
|
Ma W, Li Y, Ge C, Wang M, Zhou D. Effect of Genotype on Cadmium and Trace Element Accumulation in Wheat from Weakly Alkaline Cadmium-contaminated Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:9. [PMID: 38981934 DOI: 10.1007/s00128-024-03915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
Cadmium (Cd) contamination of farmland soils leads to Cd accumulation in crops and reduced micronutrient uptake, posing grave risks to food safety. Herein, we investigated the enrichment and transportation patterns of Cd and trace elements in different parts of six wheat genotypes grown in weakly alkaline Cd-contaminated soils via pot experiments. The results revealed that the wheat grain variety with high Cd accumulation (Ningmai13) demonstrated a 1.94-fold increase compared to the variety with low accumulation (Yanong0428). The transfer factor of Cd from wheat straw to grain ranged from 0.319 to 0.761, while the transfer factor of Cd from root to straw ranged from 0.167 to 0.461. Furthermore, the concentrations of other metals in wheat grains followed the order of Zn > Mn > Fe > Cu. There was a significant positive correlation between Cd and Mn in grains, indicating a potential synergistic effect. Overall, this study provides valuable insights into the regulation of micronutrient intake to modulate Cd uptake in wheat.
Collapse
Affiliation(s)
- Wenyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yuliang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Zhang H, Sun B, Wu W, Li Y, Yin Z, Lu C, Zhao H, Kong L, Ding X. The MYB transcription factor OsMYBxoc1 regulates resistance to Xoc by directly repressing transcription of the iron transport gene OsNRAMP5 in rice. PLANT COMMUNICATIONS 2024; 5:100859. [PMID: 38444161 PMCID: PMC11211514 DOI: 10.1016/j.xplc.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a continuous threat to rice cultivation, leading to substantial yield losses with socioeconomic implications. Iron ions are essential mineral nutrients for plant growth, but little information is available on how they influence mechanisms of rice immunity against Xoc. Here, we investigated the role of the myeloblastosis-related (MYB) transcriptional repressor OsMYBxoc1 in modulation of rice resistance through control of iron ion transport. Overexpression of OsMYBxoc1 significantly increased rice resistance, whereas OsMYBxoc1 RNA-interference lines and knockout mutants showed the opposite result. Suppression of OsMYBxoc1 expression dampened the immune response induced by pathogen-associated molecular patterns. We demonstrated that OsMYBxoc1 binds specifically to the OsNRAMP5 promoter and represses transcription of OsNRAMP5. OsNRAMP5, a negative regulator of rice resistance to bacterial leaf streak, possesses metal ion transport activity, and inhibition of OsMYBxoc1 expression increased the iron ion content in rice. Activity of the ion-dependent H2O2 scavenging enzyme catalase was increased in plants with suppressed expression of OsMYBxoc1 or overexpression of OsNRAMP5. We found that iron ions promoted Xoc infection and interfered with the production of reactive oxygen species induced by Xoc. The type III effector XopAK directly inhibited OsMYBxoc1 transcription, indicating that the pathogen may promote its own proliferation by relieving restriction of iron ion transport in plants. In addition, iron complemented the pathogenicity defects of the RS105_ΔXopAK mutant strain, further confirming that iron utilization by Xoc may be dependent upon XopAK. In conclusion, our study reveals a novel mechanism by which OsMYBxoc1 modulates rice resistance by regulating iron accumulation and demonstrates that Xoc can accumulate iron ions by secreting the effector XopAK to promote its own infection.
Collapse
Affiliation(s)
- Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Wu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
13
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
14
|
Zhao Y, Xie Q, Yang Q, Cui J, Tan W, Zhang D, Xiang J, Deng L, Guo Y, Li M, Liu L, Yan M. Genome-wide identification and evolutionary analysis of the NRAMP gene family in the AC genomes of Brassica species. BMC PLANT BIOLOGY 2024; 24:311. [PMID: 38649805 PMCID: PMC11036763 DOI: 10.1186/s12870-024-04981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Brassica napus, a hybrid resulting from the crossing of Brassica rapa and Brassica oleracea, is one of the most important oil crops. Despite its significance, B. napus productivity faces substantial challenges due to heavy metal stress, especially in response to cadmium (Cd), which poses a significant threat among heavy metals. Natural resistance-associated macrophage proteins (NRAMPs) play pivotal roles in Cd uptake and transport within plants. However, our understanding of the role of BnNRAMPs in B. napus is limited. Thus, this study aimed to conduct genome-wide identification and bioinformatics analysis of three Brassica species: B. napus, B. rapa, and B. oleracea. RESULTS A total of 37 NRAMPs were identified across the three Brassica species and classified into two distinct subfamilies based on evolutionary relationships. Conservative motif analysis revealed that motif 6 and motif 8 might significantly contribute to the differentiation between subfamily I and subfamily II within Brassica species. Evolutionary analyses and chromosome mapping revealed a reduction in the NRAMP gene family during B. napus evolutionary history, resulting in the loss of an orthologous gene derived from BoNRAMP3.2. Cis-acting element analysis suggested potential regulation of the NRAMP gene family by specific plant hormones, such as abscisic acid (ABA) and methyl jasmonate (MeJA). However, gene expression pattern analyses under hormonal or stress treatments indicated limited responsiveness of the NRAMP gene family to these treatments, warranting further experimental validation. Under Cd stress in B. napus, expression pattern analysis of the NRAMP gene family revealed a decrease in the expression levels of most BnNRAMP genes with increasing Cd concentrations. Notably, BnNRAMP5.1/5.2 exhibited a unique response pattern, being stimulated at low Cd concentrations and inhibited at high Cd concentrations, suggesting potential response mechanisms distinct from those of other NRAMP genes. CONCLUSIONS In summary, this study indicates complex molecular dynamics within the NRAMP gene family under Cd stress, suggesting potential applications in enhancing plant resilience, particularly against Cd. The findings also offer valuable insights for further understanding the functionality and regulatory mechanisms of the NRAMP gene family.
Collapse
Affiliation(s)
- Yuquan Zhao
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Qijun Xie
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Qian Yang
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jiamin Cui
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Wenqing Tan
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Jianhua Xiang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Lichao Deng
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yiming Guo
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Mei Li
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Lili Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China.
| | - Mingli Yan
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China.
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
15
|
Wang M, Mu C, Lin X, Ma W, Wu H, Si D, Ge C, Cheng C, Zhao L, Li H, Zhou D. Foliar Application of Nanoparticles Reduced Cadmium Content in Wheat ( Triticum aestivum L.) Grains via Long-Distance "Leaf-Root-Microorganism" Regulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6900-6912. [PMID: 38613493 DOI: 10.1021/acs.est.3c10506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Foliar application of beneficial nanoparticles (NPs) exhibits potential in reducing cadmium (Cd) uptake in crops, necessitating a systematic understanding of their leaf-root-microorganism process for sustainable development of efficient nano-enabled agrochemicals. Herein, wheat grown in Cd-contaminated soil (5.23 mg/kg) was sprayed with different rates of four commonly used NPs, including nano selenium (SeNPs)/silica (SiO2NPs)/zinc oxide/manganese dioxide. SeNPs and SiO2NPs most effectively reduced the Cd concentration in wheat grains. Compared to the control, Cd concentration in grains was significantly decreased by 35.0 and 33.3% by applying 0.96 mg/plant SeNPs and 2.4 mg/plant SiO2NPs, and the grain yield was significantly increased by 33.9% with SeNPs application. Down-regulated gene expression of Cd transport proteins (TaNramp5 and TaLCT1) and up-regulated gene expression of vacuolar Cd fixation proteins (TaHMA3 and TaTM20) were observed with foliar SeNPs and SiO2NPs use. SeNPs increased the levels of leaf antioxidant metabolites. Additionally, foliar spray of SeNPs resulted in lower abundances of rhizosphere organic acids and reduced Cd bioavailability in rhizosphere soil, and soil microorganisms related to carbon and nitrogen (Solirubrobacter and Pedomicrobium) were promoted. Our findings underscore the potential of the foliar application of SeNPs and SiO2NPs as a plant and rhizosphere soil metabolism-regulating approach to reduce Cd accumulation in wheat grains.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chunyi Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xinying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wenyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
16
|
Li A, Kong L, Peng C, Feng W, Zhang Y, Guo Z. Predicting Cd accumulation in rice and identifying nonlinear effects of soil nutrient elements based on machine learning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168721. [PMID: 38008332 DOI: 10.1016/j.scitotenv.2023.168721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
The spatial mismatch of Cd content in soil and rice causes difficulties in environmental management for paddy soil. To investigate the influence of soil environment on the accumulation of Cd in rice grain, we conducted a paired field sampling in the middle of the Xiangjiang River basin, examining the relationships between soil properties, soil nutrient elements, Cd content, plant uptake factor (PUFCd), and translocation factors in different rice organs (root, shoot, and grain). The total soil Cd (CdT) and available Cd (CdA) contents and PUFCd showed large spatial variability with ranges of 0.31-6.19 mg/kg, 0.03-3.07 mg/kg, and 0.02-3.51, respectively. Soil pH, CdT, CdA, and the contents of soil nutrient elements (Mg, Mn, Ca, P, Si, and B) were linearly correlated with grain Cd content (Cdg) and PUFCd. The decision tree analysis identified nonlinear effects of Si, Zn and Fe on rice Cd accumulation, which suggested that low Si and high Zn led to high Cdg, and low Si and Fe caused high PUFCd. Using the soil nutrient elements as predictor variables, random forest models successfully predicted the Cdg and PUFCd and performed better than multiple linear regressions. It suggested the impacts of soil nutrient elements on rice Cd accumulation should receive more attention.
Collapse
Affiliation(s)
- Aoxue Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Linglan Kong
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yan Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
17
|
Li XY, Li XY, Jiang YF, Zhang C, Yang Q, Manzoor M, Luo J, Guan DX. High-resolution chemical imaging to understand Cd activation in rice rhizosphere of karstic soils. CHEMOSPHERE 2024; 349:140988. [PMID: 38122945 DOI: 10.1016/j.chemosphere.2023.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Cadmium (Cd) activation, especially at a high spatial resolution, in paddy soils with a high geogenic Cd background is yet to be understood. To investigate the temporal and spatial patterns of Cd activation in rice rhizosphere, pot and rhizotron experiments were conducted using four paddy soils with high geogenic Cd (0.11-3.70 mg kg-1) from Guangxi, southwestern China. The pot experiment results showed that porewater Cd concentrations initially decreased and then increased over the complete rice growth period, reaching its lowest value during the late-tillering and early-filling stages. Besides, correlation analysis identified organic matter and root manganese (Mn) content as the main factors affecting rice Cd uptake, with Mn having a negative effect and organic matter having a positive effect. Sub-millimeter two-dimensional chemical imaging revealed that the distribution of labile Cd in the rhizosphere (by diffusive gradients in thin-films, or DGT) was influenced by the root system and soil properties, such as pH (by planar optode) and acid phosphatase activity (by soil zymography). Soil acid phosphatase activity increased under Cd stress. The overall pH at rice rhizosphere decreased. Moreover, a close relationship was found between the spatial distributions of soil labile Mn and Cd at the rhizosphere, with higher Mn being associated with lower Cd lability. This study highlights Mn as a key element in regulating rice Cd uptake and enlightens future Mn-based strategies for addressing Cd pollution in rice paddy soils, especially in karst areas with high geochemical background.
Collapse
Affiliation(s)
- Xing-Yue Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi-Yuan Li
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yi-Fan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Gu L, Hou Y, Sun Y, Chen X, Wang G, Wang H, Zhu B, Du X. The maize WRKY transcription factor ZmWRKY64 confers cadmium tolerance in Arabidopsis and maize (Zea mays L.). PLANT CELL REPORTS 2024; 43:44. [PMID: 38246890 DOI: 10.1007/s00299-023-03112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE ZmWRKY64 positively regulates Arabidopsis and maize Cd stress through modulating Cd uptake, translocation, and ROS scavenging genes expression. Cadmium (Cd) is a highly toxic heavy metal with severe impacts on crops growth and development. The WRKY transcription factor is a significant regulator influencing plant stress response. Nevertheless, the function of the WRKY protein in maize Cd stress response remains unclear. Here, we identified a maize WRKY gene, ZmWRKY64, the expression of which was enhanced in maize roots and leaves under Cd stress. ZmWRKY64 was localized in the nucleus and displayed transcriptional activity in yeast. Heterologous expression of ZmWRKY64 in Arabidopsis diminished Cd accumulation in plants by negatively regulating the expression of AtIRT1, AtZIP1, AtHMA2, AtNRAMP3, and AtNRAMP4, which are involved in Cd uptake and transport, resulting in Cd stress tolerance. Knockdown of ZmWRKY64 in maize led to excessive Cd accumulation in leaf cells and in the cytosol of the root cells, resulting in a Cd hypersensitive phenotype. Further analysis confirmed that ZmWRKY64 positively regulated ZmABCC4, ZmHMA3, ZmNRAMP5, ZmPIN2, ZmABCG51, ZmABCB13/32, and ZmABCB10, which may influence Cd translocation and auxin transport, thus mitigating Cd toxicity in maize. Moreover, ZmWRKY64 could directly enhance the transcription of ZmSRG7, a reported key gene regulating reactive oxygen species homeostasis under abiotic stress. Our results indicate that ZmWRKY64 is important in maize Cd stress response. This work provides new insights into the WRKY transcription factor regulatory mechanism under a Cd-polluted environment and may lead to the genetic improvement of Cd tolerance in maize.
Collapse
Affiliation(s)
- Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yiyue Sun
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuanxuan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Guangyi Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
19
|
Zhang W, Guan M, Chen M, Lin X, Xu P, Cao Z. Mutation of OsNRAMP5 reduces cadmium xylem and phloem transport in rice plants and its physiological mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122928. [PMID: 37967711 DOI: 10.1016/j.envpol.2023.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/18/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Natural resistance associated macrophage protein 5 (NRAMP5) is a key transporter for cadmium (Cd) uptake by rice roots; however, the effect of OsNRAMP5 on Cd translocation and redistribution in rice plants remains unknown. In this study, an extremely low Cd-accumulation mutant (lcd1) and wild type (WT) plants were utilized to investigate the effect of OsNRAMP5 mutation on Cd translocation and redistribution via the xylem and phloem and its possible physiological mechanism using field, hydroponic and isotope-labelling experiments. The results showed that OsNRAMP5 mutation reduced xylem and phloem transport of Cd, due to remarkably lower Cd translocation from roots to shoots and from the leaves Ⅰ-Ⅲ to their corresponding nodes, as well as lower Cd concentrations in xylem and phloem sap of lcd1 compared to WT plants. Mutation of OsNRAMP5 reduced Cd translocation from roots to shoots in lcd1 plants by increasing Cd deposition in cellulose of root cell walls and reducing OsHMA2-and OsCCX2-mediated xylem loading of Cd, and the citric acid- and tartaric acid-mediated long-distance xylem transport of Cd. Moreover, OsNRAMP5 mutation inhibited Cd redistribution from flag leaves to nodes and panicles in lcd1 plants by increasing Cd sequestration in cellulose and vacuoles, and decreasing OsLCT1-mediated Cd phloem transport in flag leaves.
Collapse
Affiliation(s)
- Wanyue Zhang
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Meiyan Guan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Mingxue Chen
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaoyan Lin
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ping Xu
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenzhen Cao
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
20
|
Kuang L, Yan T, Gao F, Tang W, Wu D. Multi-omics analysis reveals differential molecular responses to cadmium toxicity in rice root tip and mature zone. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132758. [PMID: 37837773 DOI: 10.1016/j.jhazmat.2023.132758] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that can be readily absorbed by plants and enriched in human body. Rice (Oryza sativa L.) yield and grain quality are affected by excessive Cd in the soil. Therefore, understanding the mechanisms of Cd absorption, accumulation and detoxification in the root apex is crucial for developing low-Cd rice cultivars. After Cd treatment, Cd concentration in rice root tips (RT) was 1.4 times higher than that in basal roots (BR). To uncover the distinct molecular responses to Cd toxicity, we conducted transcriptomic, proteomic, and metabolomic analyses on the two root sections. The results revealed that the RT exhibited 1.2-2.0 fold higher transcript or protein abundance of several Cd-related transporters than the BR, including Nramp1, Nramp5, IRT1, and HMA3, thereby contributing to more Cd accumulation in the RT. Furthermore, multi-omics analysis unveiled that the RT had enhanced activity in 'phenylpropanoid metabolism', 'AsA-GSH cycle' and 'tryptophan metabolism', conferring the stronger antioxidant system. While the BR showed higher activation in 'cell wall remodeling' and 'terpenoid biosynthesis'. This comprehensive study provides insights into the regulatory network of genes, proteins and metabolites involved in the differential responses to Cd toxicity between rice root tips and mature zones.
Collapse
Affiliation(s)
- Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Wenbang Tang
- Yuelushan Laboratory, Changsha 410128, China; State Key Laboratory of Hybrid Rice, Changsha 410125, China; Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| |
Collapse
|
21
|
Zhang X, Ma Y, Lai D, He M, Zhang X, Zhang W, Ji M, Zhu Y, Wang Y, Liu L, Xu L. RsPDR8, a member of ABCG subfamily, plays a positive role in regulating cadmium efflux and tolerance in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108149. [PMID: 37939545 DOI: 10.1016/j.plaphy.2023.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Radish (Raphanus sativus L.) is one of the most vital root vegetable crops worldwide. Cadmium (Cd), a non-essential and toxic heavy metal, can dramatically restrict radish taproot quality and safety. Although the Peiotrpic Drug Resistance (PDR) genes play crucial roles in heavy metal accumulation and transport in plants, the systematic identification and functional characterization of RsPDRs remain largely unexplored in radish. Herein, a total of 19 RsPDR genes were identified from the radish genome. A few RsPDRs, including RsPDR1, RsPDR8 and RsPDR12, showed significant differential expression under Cd and lead (Pb) stress in the 'NAU-YH' genotype. Interestingly, the plasma membrane-localized RsPDR8 exhibited significantly up-regulated expression and enhanced promoter activity under Cd exposure. Ectopic expression of RsPDR8 conferred Cd tolerance via reducing Cd accumulation in yeast cells. Moreover, the transient transformation of RsPDR8 revealed that it positively regulated Cd tolerance by promoting ROS scavenging and enhancing membrane permeability in radish. In addition, overexpression of RsPDR8 increased root elongation but deceased Cd accumulation compared with the WT plants in Arabidopsis, demonstrating that it could play a positive role in mediating Cd efflux and tolerance in plants. Together, these results would facilitate deciphering the molecular mechanism underlying RsPDR8-mediated Cd tolerance and detoxification in radish.
Collapse
Affiliation(s)
- Xinyu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yingfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Deqiang Lai
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061001, PR China
| | - Min He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weilan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingmei Ji
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061001, PR China
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
22
|
Chakraborty M, Sharma B, Ghosh A, Sah D, Rai JPN. Elicitation of E-waste (acrylonitrile-butadiene styrene) enriched soil bioremediation and detoxification using Priestia aryabhattai MGP1. ENVIRONMENTAL RESEARCH 2023; 238:117126. [PMID: 37716383 DOI: 10.1016/j.envres.2023.117126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Given the rise in both usage and disposal of dangerous electronics, there is a catastrophic rise in assemblage of electronic waste (e-waste). E-waste including various plastic resins are among the most frequently discarded materials in electronic gadgets. In current digital era, managing e-waste has become universal concern. From the viewpoint of persisting lacuna of e-waste managing methods, the current study is designed to fabricate an eco-friendly e-waste treatment with native soil bacteria employing an enrichment culture method. In the presence of e-waste, indigenous soil microbes were stimulated to degrade e-waste. Microbial cultures were isolated using enrichment medium containing acrylonitrile-butadiene styrene (ABS) as the primary carbon source. Priestia aryabhattai MGP1 was found to be the most dominant e-polymer degrading bacterial isolate, as it was reported to degrade ABS plastic in disposed-off television casings. Furthermore, to increase degradation potential of MGP1, Response Surface Methodology (RSM) was adopted which resulted in optimized conditions (pH 7, shaking-speed 120 rpm, and temperature 30 °C), for maximum degradation (18.88%) after 2 months. The structural changes induced by microbial treatment were demonstrated by comparing the findings of Field emission scanning electron microscopy (FESEM) images and Fourier Transform Infrared (FTIR) spectra confirming the disappearance of ≡ C─H peaks along with C-H, C=C and C ≡N bond destabilization following degradation. Energy-dispersive X-ray (EDX) analyzers of the native and decomposed e-polymer samples revealed a considerable loss in elemental weight % of oxygen by 8.4% and silica by 0.5%. Magnesium, aluminium and chlorine which were previously present in the untreated sample, were also removed after treatment by the bacterial action. When seeds of Vigna radiata were screened using treated soil in the presence of both e-waste and the chosen potent bacterial strain, it was also discovered that there was reduced toxicity in terms of improved germination and growth metrics as a phytotoxicity criterion.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Environmental Sciences, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Barkha Sharma
- Department of Microbiology, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Ankita Ghosh
- Department of Environmental Sciences, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Diksha Sah
- Department of Environmental Sciences, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - J P N Rai
- Department of Environmental Sciences, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India.
| |
Collapse
|
23
|
Chang JD, Huang S, Wiseno I, Sui FQ, Feng F, Zheng L, Ma JF, Zhao FJ. Dissecting the promotional effect of zinc on cadmium translocation from roots to shoots in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6790-6803. [PMID: 37610886 DOI: 10.1093/jxb/erad330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
It is often expected that Zn decreases Cd accumulation in plants due to competition for the same transporters. Here, we found that increasing Zn supply markedly increased the root-to-shoot translocation of Cd in rice. RNA sequencing showed that high Zn up-regulated expression of genes involved in glutathione biosynthesis and metabolism and the Zn/Cd transporter gene OsHMA2, but down-regulated expression of genes related to Zn uptake. Knockout of the iron or Zn transporter genes OsIRT1, OsIRT2, or OsZIP9 did not affect the Zn promotional effect on Cd translocation. Knockout of the manganese/Cd transporter gene OsNRAMP5 greatly reduced Cd uptake but did not affect the Zn promotional effect. Variation in the tonoplast transporter gene OsHMA3 affected Cd translocation but did not change the Zn promotional effect. Knockout of the Zn/Cd transporter gene OsHMA2 not only decreased Cd and Zn translocation, but also abolished the Zn promotional effect. Increased expression of OsHMA2 under high Zn conditions supports the hypothesis that this transporter participates in the promotional effect of Zn on Cd translocation. The results also show that OsIRT1, OsIRT2, and OsZIP9 made only small contributions to Cd uptake under low Zn conditions but not under high Zn conditions, whereas the dominant role of OsNRAMP5 in Cd uptake diminished under low Zn conditions.
Collapse
Affiliation(s)
- Jia-Dong Chang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Indi Wiseno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Fu-Qing Sui
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Feng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Fang-Jie Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Ni WJ, Mubeen S, Leng XM, He C, Yang Z. Molecular-Assisted Breeding of Cadmium Pollution-Safe Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37923701 DOI: 10.1021/acs.jafc.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cadmium (Cd) contamination in edible agricultural products, especially in crops intended for consumption, has raised worldwide concerns regarding food safety. Breeding of Cd pollution-safe cultivars (Cd-PSCs) is an effective solution to preventing the entry of Cd into the food chain from contaminated agricultural soil. Molecular-assisted breeding methods, based on molecular mechanisms for cultivar-dependent Cd accumulation and bioinformatic tools, have been developed to accelerate and facilitate the breeding of Cd-PSCs. This review summarizes the recent progress in the research of the low Cd accumulation traits of Cd-PSCs in different crops. Furthermore, the application of molecular-assisted breeding methods, including transgenic approaches, genome editing, marker-assisted selection, whole genome-wide association analysis, and transcriptome, has been highlighted to outline the breeding of Cd-PSCs by identifying critical genes and molecular biomarkers. This review provides a comprehensive overview of the development of Cd-PSCs and the potential future for breeding Cd-PSC using modern molecular technologies.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Samavia Mubeen
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chuntao He
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Yang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Jing H, Yang W, Chen Y, Yang L, Zhou H, Yang Y, Zhao Z, Wu P, Zia-Ur-Rehman M. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165369. [PMID: 37433335 DOI: 10.1016/j.scitotenv.2023.165369] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Cadmium (Cd) contamination in rice fields has been recognized as a severe global agro-environmental issue. To reach the goal of controlling Cd risk, we must pay more attention and obtain an in-depth understanding of the environmental behavior, uptake and translocation of Cd in soil-rice systems. However, to date, these aspects still lack sufficient exploration and summary. Here, we critically reviewed (i) the processes and transfer proteins of Cd uptake/transport in the soil-rice system, (ii) a series of soil and other environmental factors affecting the bioavailability of Cd in paddies, and (iii) the latest advances in regard to remediation strategies while producing rice. We propose that the correlation between the bioavailability of Cd and environmental factors must be further explored to develop low Cd accumulation and efficient remediation strategies in the future. Second, the mechanism of Cd uptake in rice mediated by elevated CO2 also needs to be given more attention. Meanwhile, more scientific planting methods (direct seeding and intercropping) and suitable rice with low Cd accumulation are important measures to ensure the safety of rice consumption. In addition, the relevant Cd efflux transporters in rice have yet to be revealed, which will promote molecular breeding techniques to address the current Cd-contaminated soil-rice system. The potential for efficient, durable, and low-cost soil remediation technologies and foliar amendments to limit Cd uptake by rice needs to be examined in the future. Conventional breeding procedures combined with molecular marker techniques for screening rice varieties with low Cd accumulation could be a more practical approach to select for desirable agronomic traits with low risk.
Collapse
Affiliation(s)
- Haonan Jing
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agriculture University, Changsha 410128, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
26
|
Zhang M, Chang MH, Li H, Shu YJ, Bai Y, Gao JY, Zhu JX, Dong XY, Guo DL, Guo CH. MsYSL6, A Metal Transporter Gene of Alfalfa, Increases Iron Accumulation and Benefits Cadmium Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3485. [PMID: 37836225 PMCID: PMC10575464 DOI: 10.3390/plants12193485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Iron (Fe) is necessary for plant growth and development. The mechanism of uptake and translocation in Cadmium (Cd) is similar to iron, which shares iron transporters. Yellow stripe-like transporter (YSL) plays a pivotal role in transporting iron and other metal ions in plants. In this study, MsYSL6 and its promoter were cloned from leguminous forage alfalfa. The transient expression of MsYSL6-GFP indicated that MsYSL6 was localized to the plasma membrane and cytoplasm. The expression of MsYSL6 was induced in alfalfa by iron deficiency and Cd stress, which was further proved by GUS activity driven by the MsYSL6 promoter. To further identify the function of MsYSL6, it was heterologously overexpressed in tobacco. MsYSL6-overexpressed tobacco showed better growth and less oxidative damage than WT under Cd stress. MsYSL6 overexpression elevated Fe and Cd contents and induced a relatively high Fe translocation rate in tobacco under Cd stress. The results suggest that MsYSL6 might have a dual function in the absorption of Fe and Cd, playing a role in the competitive absorption between Fe and Cd. MsYSL6 might be a regulatory factor in plants to counter Cd stress. This study provides a novel gene for application in heavy metal enrichment or phytoremediation and new insights into plant tolerance to toxic metals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dong-Lin Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.Z.); (M.-H.C.); (H.L.); (Y.-J.S.); (Y.B.); (J.-Y.G.); (J.-X.Z.); (X.-Y.D.)
| | - Chang-Hong Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; (M.Z.); (M.-H.C.); (H.L.); (Y.-J.S.); (Y.B.); (J.-Y.G.); (J.-X.Z.); (X.-Y.D.)
| |
Collapse
|
27
|
Huang G, Huang Y, Ding X, Ding M, Wang P, Wang Z, Jiang Y, Zou L, Zhang W, Li Z. Effects of high manganese-cultivated seedlings on cadmium uptake by various rice (Oryza sativa L.) genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115440. [PMID: 37688861 DOI: 10.1016/j.ecoenv.2023.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Cadmium (Cd) contamination in paddy soil threatens rice growth and food safety, enriching manganese (Mn) in rice seedlings is expected to reduce Cd uptake by rice. The effects of 250 μM Mn-treated seedlings on reducing Cd uptake of four rice genotypes (WYJ21, ZJY1578, HHZ, and HLYSM) planted in 0.61 mg kg-1 Cd-contaminated soil, were studied through the hydroponic and pot experiments. The results showed that the ZJY1578 seedling had the highest Mn level (459 μg plant-1), followed by WYJ21 (309 μg plant-1), and less Mn accumulated in the other genotypes. The relative expression of OsNramp5 (natural resistance-associated macrophage protein) was reduced by 42.7 % in ZJY1578 but increased by 23.3 % in HLYSM. The expressions of OsIRT1 (iron-regulated transporter-like protein) were reduced by 24.0-56.0 % in the four genotypes, with the highest reduction in ZJY1578. Consequently, a greater reduction of Cd occurred in ZJY1578 than that in the other genotypes, i.e., the root and shoot Cd at the tillering were reduced by 27.8 % and 48.5 %, respectively. At the mature stage, total Cd amount and distribution in the shoot and brown rice were also greatly reduced in ZJY1578, but the inhibitory effects were weakened compared to the tillering stage. This study found various responses of Cd uptake and transporters to Mn-treated seedlings among rice genotypes, thus resulting in various Cd reductions. In the future, the microscopic transport processes of Cd within rice should be explored to deeply explain the genotypic variation.
Collapse
Affiliation(s)
- Gaoxiang Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yunpei Huang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Xinya Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Mingjun Ding
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Peng Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Zhongfu Wang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Yinghui Jiang
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Long Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Wendong Zhang
- Agricultural and Rural Grain Bureau of Yujiang District, Yingtan 335200, China
| | - Zhenling Li
- Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
28
|
Chen X, Zhao Y, Zhong Y, Chen J, Qi X. Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants. PLANTA 2023; 258:17. [PMID: 37314548 DOI: 10.1007/s00425-023-04170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION The role of transporters in subcellular metal transport is of great significance for plants in coping with heavy metal stress and maintaining their proper growth and development. Heavy metal toxicity is a serious long-term threat to plant growth and agricultural production, becoming a global environmental concern. Excessive heavy metal accumulation not only damages the biochemical and physiological functions of plants but also causes chronic health hazard to human beings through the food chain. To deal with heavy metal stress, plants have evolved a series of elaborate mechanisms, especially a variety of spatially distributed transporters, to strictly regulate heavy metal uptake and distribution. Deciphering the subcellular role of transporter proteins in controlling metal absorption, transport and separation is of great significance for understanding how plants cope with heavy metal stress and improving their adaptability to environmental changes. Hence, we herein introduce the detrimental effects of excessive common essential and non-essential heavy metals on plant growth, and describe the structural and functional characteristics of transporter family members, with a particular emphasis on their roles in maintaining heavy metal homeostasis in various organelles. Besides, we discuss the potential of controlling transporter gene expression by transgenic approaches in response to heavy metal stress. This review will be valuable to researchers and breeders for enhancing plant tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Xingqi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuqing Zhong
- Environmental Monitoring Station of Suzhou City, Suzhou, 215004, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
29
|
Xiong S, Kong X, Chen G, Tian L, Qian D, Zhu Z, Qu LQ. Metallochaperone OsHIPP9 is involved in the retention of cadmium and copper in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1946-1961. [PMID: 36850039 DOI: 10.1111/pce.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
Metallochaperones are a unique class of proteins that play crucial roles in metal homoeostasis and detoxification. However, few metallochaperones have been functionally characterised in rice. Heterologous expression of Heavy metal-associated Isoprenylated Plant Protein 9 (OsHIPP9), a metallochaperone, altered yeast tolerance to cadmium (Cd) and copper (Cu). We investigated the physiological role of OsHIPP9 in rice. OsHIPP9 was primarily expressed in the root exodermis and xylem region of enlarged vascular bundles (EVB) at nodes. KO of OsHIPP9 increased the Cd concentrations of the upper nodes and panicle, but decreased Cd in expanded leaves. KO of OsHIPP9 decreased Cu uptake and accumulation in rice. Constitutive OX of OsHIPP9 increased Cd and Cu accumulation in aboveground tissues and brown rice. OsHIPP9 showed binding capacity for Cd and Cu. We propose that OsHIPP9 has dual metallochaperone roles, chelating Cd in the xylem region of EVB for Cd retention in the nodes and chelating Cu in rice roots to aid Cu uptake.
Collapse
Affiliation(s)
- Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaohang Kong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Cheng J, Zhang S, Yi Y, Qin Y, Chen ZH, Deng F, Zeng F. Hydrogen peroxide reduces root cadmium uptake but facilitates root-to-shoot cadmium translocation in rice through modulating cadmium transporters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107754. [PMID: 37236064 DOI: 10.1016/j.plaphy.2023.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) contamination in agricultural soils has become a serious worldwide environmental problem threatening crop production and human health. Hydrogen peroxide (H2O2) is a critical second messenger in plant response to Cd exposure. However, its role in Cd accumulation in various organs of plants and the mechanistic basis of this regulation remains to be elucidated. In this study, we used electrophysiological and molecular approaches to understand how H2O2 regulates Cd uptake and translocation in rice plants. Our results showed that the pretreatment of H2O2 significantly reduced Cd uptake by rice roots, which was associated with the downregulation of OsNRAMP1 and OsNRAMP5. On the other hand, H2O2 promoted the root-to-shoot translocation of Cd, which might be attributed to the upregulation of OsHMA2 critical for Cd2+ phloem loading and the downregulation of OsHMA3 involved in the vacuolar compartmentalization of Cd2+, leading to the increased Cd accumulation in rice shoots. Furthermore, such regulatory effects of H2O2 on Cd uptake and translocation were notably amplified by the elevated level of exogenous calcium (Ca). Collectively, our results suggest that H2O2 can inhibit Cd uptake but increase root to shoot translocation through modulating the transcriptional levels of genes encoding Cd transporters, furthermore, application of Ca can amplify this effect. These findings will broaden our understanding of the regulatory mechanisms of Cd transport in rice plants and provide theoretical foundation for breeding rice for low Cd accumulation.
Collapse
Affiliation(s)
- Jianhui Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Shuo Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yun Yi
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yuan Qin
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhong-Hua Chen
- School of Science & Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Fenglin Deng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| | - Fanrong Zeng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
31
|
Fan P, Wu L, Wang Q, Wang Y, Luo H, Song J, Yang M, Yao H, Chen S. Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131008. [PMID: 36842201 DOI: 10.1016/j.jhazmat.2023.131008] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Medicinal plants have a wide range of uses worldwide. However, the quality of medicinal plants is affected by severe cadmium pollution. Cadmium can reduce photosynthetic capacity, lead to plant growth retardation and oxidative stress, and affect secondary metabolism. Medicinal plants have complex mechanisms to cope with cadmium stress. On the one hand, an antioxidant system can effectively scavenge excess reactive oxygen species produced by cadmium stress. On the other hand, cadmium chelates are formed by chelating peptides and then sequestered through vacuolar compartmentalization. Cadmium has no specific transporter in plants and is generally transferred to plant tissues through competition for the transporters of divalent metal ions, such as zinc, iron, and manganese. In recent years, progress has been achieved in exploring the physiological mechanisms by which medicinal plants responding to cadmium stress. The exogenous regulation of cadmium accumulation in medicinal plants has been studied, and the aim is reducing the toxicity of cadmium. However, research into molecular mechanisms is still lagging. In this paper, we review the physiological and molecular mechanisms and regulatory networks of medicinal plants exposed to cadmium, providing a reference for the study on the responses of medicinal plants to cadmium stress.
Collapse
Affiliation(s)
- Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Qing Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
32
|
Liu P, Jiang L, Long P, Li Q, Hou F, Yuan G, Chen Z, Zhang M, Zou C, Pan G, Ma L, Shen Y. A genome-wide co-expression network analysis revealed ZmNRAMP6-mediated regulatory pathway involved in maize tolerance to lead stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:122. [PMID: 37142873 DOI: 10.1007/s00122-023-04371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE A metal transporter ZmNRAMP6 was identified by using a trait-associated co-expression network analysis at a genome-wide level. ZmNRAMP6 confers maize sensitivity to Pb by accumulating it to maize shoots. ZmNRAMP6 knockout detains Pb in roots, activates antioxidant enzymes, and improves Pb tolerance. Lead (Pb) is one of the most toxic heavy metal pollutants, which can penetrate plant cells via root absorption and thus cause irreversible damages to the human body through the food chain. To identify the key gene responsible for Pb tolerance in maize, we performed a trait-associated co-expression network analysis at a genome-wide level, using two maize lines with contrasting Pb tolerances. Finally, ZmNRAMP6 that encodes a metal transporter was identified as the key gene among the Pb tolerance-associated co-expression module. Heterologous expression of ZmNRAMP6 in yeast verified its role in Pb transport. Combined Arabidopsis overexpression and maize mutant analysis suggested that ZmNRAMP6 conferred plant sensitivity to Pb stress by mediating Pb distribution across the roots and shoots. Knockout of ZmNRAMP6 caused Pb retention in the roots and activation of the antioxidant enzyme system, resulting in an increased Pb tolerance in maize. ZmNRAMP6 was likely to transport Pb from the roots to shoots and environment. An integration of yeast one-hybrid and dual-luciferase reporter assay uncovered that ZmNRAMP6 was negatively regulated by a known Pb tolerance-related transcript factor ZmbZIP54. Collectively, knockout of ZmNRAMP6 will aid in the bioremediation of contaminated soil and food safety guarantee of forage and grain corn.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengxia Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
33
|
Peera Sheikh Kulsum PG, Khanam R, Das S, Nayak AK, Tack FMG, Meers E, Vithanage M, Shahid M, Kumar A, Chakraborty S, Bhattacharya T, Biswas JK. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. ENVIRONMENTAL RESEARCH 2023; 220:115098. [PMID: 36586716 DOI: 10.1016/j.envres.2022.115098] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a major contaminant of concern, has been extensively reviewed and debated for its anthropogenic global shifts. Cadmium levels in rice grains raise wide food safety concerns. The aim of this review is therefore to capture the dynamics of Cd in paddy soil, translocation pathways of Cd from soil to consumption rice, and assess its bio-accessibility in human consumption. In crop plants, Cd reduces absorption of nutrients and water, triggers oxidative stress, and inhibits plant metabolism. Understanding the mechanisms and behaviour of Cd in paddy soil and rice allows to explain, predict and intervene in Cd transferability from soil to grains and human exposure. Factors affecting Cd movement in soil, and further to rice grain, are elucidated. Recently, physiological and molecular understanding of Cd transport in rice plants have been advanced. Morphological-biochemical characteristics and Cd transporters of plants in such a movement were also highlighted. Ecologically viable remediation approaches, including low input cost agronomic methods, phytoremediation and microbial bioremediation methods, are emerging.
Collapse
Affiliation(s)
| | - Rubina Khanam
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Shreya Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Amaresh Kumar Nayak
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Mohammad Shahid
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Anjani Kumar
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Sukalyan Chakraborty
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Tanushree Bhattacharya
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies &International Centre for Ecological Engineering, Universityof Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
34
|
Chen Y, Chao ZF, Jin M, Wang YL, Li Y, Wu JC, Xiao Y, Peng Y, Lv QY, Gui S, Wang X, Han ML, Fernie AR, Chao DY, Yan J. A heavy metal transporter gene ZmHMA3a promises safe agricultural production on cadmium-polluted arable land. J Genet Genomics 2023; 50:130-134. [PMID: 36028132 DOI: 10.1016/j.jgg.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yuanyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaoyao Li
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jia-Chen Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiao-Yan Lv
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaqing Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences (BAAFS), Beijing 100097, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
35
|
Tang Z, Wang HQ, Chen J, Chang JD, Zhao FJ. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:570-593. [PMID: 36546407 DOI: 10.1111/jipb.13440] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Plants take up a wide range of trace metals/metalloids (hereinafter referred to as trace metals) from the soil, some of which are essential but become toxic at high concentrations (e.g., Cu, Zn, Ni, Co), while others are non-essential and toxic even at relatively low concentrations (e.g., As, Cd, Cr, Pb, and Hg). Soil contamination of trace metals is an increasing problem worldwide due to intensifying human activities. Trace metal contamination can cause toxicity and growth inhibition in plants, as well as accumulation in the edible parts to levels that threatens food safety and human health. Understanding the mechanisms of trace metal toxicity and how plants respond to trace metal stress is important for improving plant growth and food safety in contaminated soils. The accumulation of excess trace metals in plants can cause oxidative stress, genotoxicity, programmed cell death, and disturbance in multiple physiological processes. Plants have evolved various strategies to detoxify trace metals through cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. Multiple signal transduction pathways and regulatory responses are involved in plants challenged with trace metal stresses. In this review, we discuss the recent progress in understanding the molecular mechanisms involved in trace metal toxicity, detoxification, and regulation, as well as strategies to enhance plant resistance to trace metal stresses and reduce toxic metal accumulation in food crops.
Collapse
Affiliation(s)
- Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han-Qing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Dong Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
36
|
Li Z, Jiang L, Wang C, Liu P, Ma L, Zou C, Pan G, Shen Y. Combined genome-wide association study and gene co-expression network analysis identified ZmAKINβγ1 involved in lead tolerance and accumulation in maize seedlings. Int J Biol Macromol 2023; 226:1374-1386. [PMID: 36455818 DOI: 10.1016/j.ijbiomac.2022.11.250] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Lead (Pb) contamination has become an important abiotic stress that negatively influences crop biomass and yield, threatening human health via food chains. The excavation of causal genes for Pb tolerance in maize will contribute to the breeding of Pb-tolerant maize germplasms. This study aimed to demonstrate the effects of AKINbetagamma-1 protein kinase (ZmAKINβγ1) on maize tolerance to Pb and reveal its molecular mechanisms underlying Pb tolerance. ZmAKINβγ1 was identified using genome-wide association study and weighted gene co-expression network analysis for shoot dry weight (SDW) and root dry weight (RDW) under Pb treatment. The OE and RNAi experiments showed that ZmAKINβγ1 negatively regulated maize tolerance to Pb by reducing SDW and RDW and increasing Pb accumulation in maize. Comparative transcriptome analysis between the OE/RNAi and wild-type lines revealed that ZmAKINβγ1 participated in the pectin metabolism process and nitrogen compound response. Gene-based association analyses revealed that three variants located in ZmAKINβγ1 promoter induced changes in its expression and Pb tolerance among maize lines. The dual-luciferase reporter system verified that the two genotypes (AAT and CGG) of ZmAKINβγ1 promoter had contrasting transcriptional activities. Collectively, ZmAKINβγ1-mediated Pb tolerance provided new insights into the cultivation of Pb-tolerant maize varieties and phytoremediation of Pb-polluted soils.
Collapse
Affiliation(s)
- Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; College of Bioengineering, Sichuan University of Science & Engneering, Yibin 644000, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangtang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
37
|
Tan Z, Li J, Guan J, Wang C, Zhang Z, Shi G. Genome-Wide Identification and Expression Analysis Reveals Roles of the NRAMP Gene Family in Iron/Cadmium Interactions in Peanut. Int J Mol Sci 2023; 24:ijms24021713. [PMID: 36675227 PMCID: PMC9866697 DOI: 10.3390/ijms24021713] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The natural resistance-associated macrophage protein (NRAMP) family plays crucial roles in metal uptake and transport in plants. However, little is known about their functions in peanut. To understand the roles of AhNRAMP genes in iron/cadmium interactions in peanut, genome-wide identification and bioinformatics analysis was performed. A total of 15 AhNRAMP genes were identified from the peanut genome, including seven gene pairs derived from whole-genome duplication and a segmental duplicated gene. AhNRAMP proteins were divided into two distinct subfamilies. Subfamily I contains eight acid proteins with a specific conserved motif 7, which were predicted to localize in the vacuole membrane, while subfamily II includes seven basic proteins sharing specific conserved motif 10, which were localized to the plasma membrane. Subfamily I genes contained four exons, while subfamily II had 13 exons. AhNRAMP proteins are perfectly modeled on the 5m94.1.A template, suggesting a role in metal transport. Most AhNRAMP genes are preferentially expressed in roots, stamens, or developing seeds. In roots, the expression of most AhNRAMPs is induced by iron deficiency and positively correlated with cadmium accumulation, indicating crucial roles in iron/cadmium interactions. The findings provide essential information to understand the functions of AhNRAMPs in the iron/cadmium interactions in peanuts.
Collapse
|
38
|
Tanwar UK, Stolarska E, Rudy E, Paluch-Lubawa E, Grabsztunowicz M, Arasimowicz-Jelonek M, Sobieszczuk-Nowicka E. Metal tolerance gene family in barley: an in silico comprehensive analysis. J Appl Genet 2022; 64:197-215. [PMID: 36586056 PMCID: PMC10076399 DOI: 10.1007/s13353-022-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Metal-tolerance proteins (MTPs) are divalent cation transporters that play critical roles in metal tolerance and ion homeostasis in plants. However, a comprehensive study of MTPs is still lacking in crop plants. The current study aimed to comprehensively identify and characterize the MTP gene family in barley (Hordeum vulgare, Hv), an important crop. In total, 12 HvMTPs were identified in the barley genome in this study. They were divided into three phylogenetic groups (Zn-cation diffusion facilitator proteins [CDFs], Fe/Zn-CDFs, and Mn-CDFs) and further subdivided into seven groups (G1, G5, G6, G7, G8, G9, and G12). The majority of MTPs were hydrophobic proteins found in the vacuolar membrane. Gene duplication analysis of HvMTPs revealed one pair of segmental-like duplications in the barley genome. Evolutionary analysis suggested that barley MTPs underwent purifying natural selection. Additionally, the HvMTPs were analyzed in the pan-genome sequences of barley (20 accessions), which suggests that HvMTPs are highly conserved in barley evolution. Cis-acting regulatory elements, microRNA target sites, and protein-protein interaction analysis indicated the role of HvMTPs in a variety of biological processes. Expression profiling suggests that HvMTPs play an active role in maintaining barley nutrient homeostasis throughout its life cycle, and their expression levels were not significantly altered by abiotic stresses like cold, drought, or heat. The expression of barley HvMTP genes in the presence of heavy metals such as Zn2+, Cu2+, As3+, and Cd2+ revealed that these MTPs were induced by at least one metal ion, implying their involvement in metal tolerance or transportation. The identification and comprehensive investigation of MTP gene family members will provide important gene resources for the genetic improvement of crops for metal tolerance, bioremediation, or biofortification of staple crops.
Collapse
Affiliation(s)
- Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Ewelina Stolarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Elżbieta Rudy
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Ewelina Paluch-Lubawa
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Magda Grabsztunowicz
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
39
|
Chang JD, Gao W, Wang P, Zhao FJ. OsNRAMP5 Is a Major Transporter for Lead Uptake in Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17481-17490. [PMID: 36418022 DOI: 10.1021/acs.est.2c06384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lead (Pb) is one of the most toxic metals affecting human health globally. Food is an important source of chronic Pb exposure in humans. How Pb is taken up by rice, a staple food for over half of the global population, remains unknown. In the present study, we investigated the role of OsNRAMP5, a member of the NRAMP (Natural Resistance-Associated Macrophage Protein) transporter family, in Pb uptake by rice roots. Heterologous expression of OsNRAMP5 in yeast increased Pb uptake and sensitivity toward Pb. Knockout of OsNRAMP5 in rice by CRISPR/Cas9 gene editing resulted in significant decreases in root uptake of Pb and accumulation in rice shoots. The maximum influx velocity (Vmax) for Pb uptake of the knockout mutants was 70% lower than that of wild-type plants. When grown in Pb-contaminated paddy soil, OsNRAMP5 knockout mutants accumulated approximately 50 and 70% lower Pb concentrations in the grain and straw, respectively, than the wild type. OsNRAMP5 expression in rice roots was not affected by Pb exposure. These results indicate that OsNRAMP5 is a major transporter for Pb uptake in rice, in addition to its role in the uptake of manganese and cadmium. This study provides a mechanistic understanding of Pb uptake in rice plants and a potential strategy to limit Pb accumulation in rice grains.
Collapse
Affiliation(s)
- Jia-Dong Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiping Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
40
|
AbdElgawad H, Sheteiwy MS, Saleh AM, Mohammed AE, Alotaibi MO, Beemster GTS, Madany MMY, van Dijk JR. Elevated CO 2 differentially mitigates chromium (VI) toxicity in two rice cultivars by modulating mineral homeostasis and improving redox status. CHEMOSPHERE 2022; 307:135880. [PMID: 35964713 DOI: 10.1016/j.chemosphere.2022.135880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) contamination reduces crop productivity worldwide. On the other hand, the expected increase in the future CO2 levels (eCO2) would improve plant growth under diverse growth conditions. However, the synergetic effect of eCO2 has not been investigated at both physiological and biochemical levels in Cr-contaminated soil. This study aims to analyze the mitigating effect of eCO2 on Cr VI phytotoxicity in two rice cultivars (Giza 181 and Sakha 106). Plants are exposed to different Cr concentrations (0, 200 and 400 mg Cr/kg Soil) at ambient (aCO2) and eCO2 (410 and 620 ppm, respectively). Unlike the stress parameters (MDA, H2O2 and protein oxidation), growth and photosynthetic reactions significantly dropped with increasing Cr concentration. However, in eCO2 conditions, plants were able to mitigate the Cr stress by inducing antioxidants as well as higher concentrations of phytochelatins to detoxify Cr. Notably, the expression levels of the genes involved in mineral nutrition i.e., OsNRAMP1, OsRT1, OsHMA3, OsLCT1 and iron chelate reductase were upregulated in Cr-stressed Giza 181 plants grown under eCO2. Mainly in Sakha 106, eCO2 induced ascorbate-glutathione (ASC/GSH)-mediated antioxidative defense system. The present study brings the first ever comprehensive assessment of how future eCO2 differentially mitigated Cr toxicity in rice.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Jesper R van Dijk
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Geobiology, Department of Biology, University of Antwerp, Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| |
Collapse
|
41
|
Syu CH, Nieh TI, Hsieh MT, Lo YC, Du PR, Lin YW, Wu DH. Uncovering the Genetic of Cadmium Accumulation in the Rice 3K Panel. PLANTS (BASEL, SWITZERLAND) 2022; 11:2813. [PMID: 36365266 PMCID: PMC9657585 DOI: 10.3390/plants11212813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Because Cadmium (Cd) is harmful to humans, and most non-smokers are exposed to Cd mainly through rice consumption, low-Cd rice breeding is urgently needed. It might not be possible to apply variation created using gene editing technology to breeding directly, so it is important to explore genetic variation in this trait in a natural population. In this study, variation in 4 genes was identified among 3024 accessions from the International Rice Research Institute 3000 Rice Genome Project (IRRI 3K-RGP) and 71 other important varieties, and the relationships between the variants and plant Cd accumulation were validated with hydroponic and pot experiments. Variants in OsNRAMP1, OsNRAMP5, OsLCD, and OsHMA3 were grouped into two, four, three, and two haplotypes, respectively. Fourteen combinations of these haplotypes, which were referred to as Cd-mobile types, were found in the collection. Of these, type 14 was shown to have the greatest potential for low-Cd accumulation, and functional markers for this type were designed. The results of this study provide an important resource for low-Cd rice breeding and highlight an effective strategy for pre-breeding programs.
Collapse
Affiliation(s)
- Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City 413008, Taiwan
| | - Ting-Iun Nieh
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City 413008, Taiwan
| | - Meng-Ting Hsieh
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City 413008, Taiwan
| | - Yu-Ching Lo
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City 413008, Taiwan
| | - Pei-Rong Du
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City 413008, Taiwan
| | - Yu-Wen Lin
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City 413008, Taiwan
| | - Dong-Hong Wu
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City 413008, Taiwan
| |
Collapse
|
42
|
Wang W, Zhang F, Liu D, Chen K, Du B, Qiu X, Xu J, Xing D. Distribution characteristics of selenium, cadmium and arsenic in rice grains and their genetic dissection by genome-wide association study. Front Genet 2022; 13:1007896. [PMCID: PMC9612882 DOI: 10.3389/fgene.2022.1007896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
High selenium (Se) and low cadmium (Cd) and arsenic (As) contents in rice grains were good for human health. The genetic basis and relationship of Se, Cd and As concentrations in rice grains are still largely unknown. In the present study, large variations were observed in Se, Cd and As concentrations in brown and milled rice in normal and Se treatment conditions in 307 rice accessions from 3K Rice Genomes Project. Se fertilizer treatment greatly increased Se concentrations but had no obvious changes in concentrations of Cd and As both in brown and milled rice. Total of 237 QTL were identified for Se, Cd and As concentrations in brown and milled rice in normal and Se treatment conditions as well as ratio of concentrations under Se treatment to normal conditions. Only 19 QTL (13.4%) were mapped for concentrations of Se and Cd, Se and As, and Se, Cd and As in the same or adjacent regions, indicating that most Se concentration QTL are independent of Cd and As concentration QTL. Forty-three favorable alleles were identified for 40 candidate genes by gene-based association study and haplotype analysis in 14 important QTL regions. Se-enriched rice variety will be developed by pyramiding favorable alleles at different Se QTL and excluding undesirable alleles at Cd and As QTL, or combining favorable alleles at Se QTL with the alleles at Se-sensitive QTL by marker-assisted selection.
Collapse
Affiliation(s)
- Wenxi Wang
- College of Economy and Management, Hubei University of Technology, Wuhan, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Fan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapu Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Du
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Xianjin Qiu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Xianjin Qiu, ; Jianlong Xu,
| | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- *Correspondence: Xianjin Qiu, ; Jianlong Xu,
| | - Danying Xing
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
43
|
Yu E, Wang W, Yamaji N, Fukuoka S, Che J, Ueno D, Ando T, Deng F, Hori K, Yano M, Shen RF, Ma JF. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain. NATURE FOOD 2022; 3:597-607. [PMID: 37118598 DOI: 10.1038/s43016-022-00569-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 04/30/2023]
Abstract
Global contamination of soils with toxic cadmium (Cd) is a serious health threat. Here we found that a tandem duplication of a gene encoding a manganese/Cd transporter, OsNramp5, was responsible for low-Cd accumulation in Pokkali, an old rice cultivar. This duplication doubled the expression of OsNramp5 gene but did not alter its spatial expression pattern and cellular localization. Higher expression of OsNramp5 increased uptake of Cd and Mn into the root cells but decreased Cd release to the xylem. Introgression of this allele into Koshihikari, an elite rice cultivar, through backcrossing significantly reduced Cd accumulation in the grain when cultivated in soil heavily contaminated with Cd but did not affect both grain yield and eating quality. This study not only reveals the molecular mechanism underlying low-Cd accumulation but also provides a useful target for breeding rice cultivars with low-Cd accumulation.
Collapse
Affiliation(s)
- En Yu
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Wenguang Wang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Shuichi Fukuoka
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Jing Che
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Daisei Ueno
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Tsuyu Ando
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Fenglin Deng
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Kiyosumi Hori
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Masahiro Yano
- National Institute of Crop Science, National Agriculture Research Organization, Tsukuba, Japan
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| |
Collapse
|
44
|
Tang L, Dong J, Qu M, Lv Q, Zhang L, Peng C, Hu Y, Li Y, Ji Z, Mao B, Peng Y, Shao Y, Zhao B. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155006. [PMID: 35381246 DOI: 10.1016/j.scitotenv.2022.155006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
OsNRAMP5 is a transporter responsible for cadmium (Cd) and manganese (Mn) uptake and root-to-shoot translocation of Mn in rice plants. Knockout of OsNRAMP5 is regarded as an effective approach to minimize Cd uptake and accumulation in rice. It is vital to evaluate the effects of knocking out OsNRAMP5 on Cd and Mn accumulation, as well as Cd tolerance of rice plants in response to varying environmental Cd concentrations, and to uncover the underlying mechanism, which until now, has remained largely unexplored. This study showed that knockout of OsNRAMP5 decreased Cd uptake, but simultaneously facilitated Cd translocation from roots to shoots. The effect of OsNRAMP5 knockout on reducing root Cd uptake weakened, however its effect on improving root-to-shoot Cd translocation was constant with increasing environmental Cd concentrations. As a result, its mutation dramatically reduced Cd accumulation in shoots under low and moderate Cd stress, but inversely increased that under high Cd conditions. Interestingly, Cd tolerance of its knockout mutants was persistently enhanced, irrespective of lower or higher Cd concentrations in shoots, compared with that of wild-type plants. Knockout of OsNRAMP5 mitigated Cd toxicity by dramatically diminishing Cd uptake at low or moderate external Cd concentrations. Remarkably, its knockout effectively complemented deficient mineral nutrients in shoots, thereby indirectly enhancing rice tolerance to severe Cd stress. Additionally, its mutation conferred preferential delivery of Mn to young leaves and grains. These results have important implications for the application of the OsNRAMP5 mutation in mitigating Cd toxicity and lowering the risk of excessive Cd accumulation in rice grains.
Collapse
Affiliation(s)
- Li Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Jiayu Dong
- Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Mengmeng Qu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Liping Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Can Peng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yaokui Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Zhongying Ji
- Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; Longping Branch of Graduate School, Hunan University, Changsha 410125, China
| | - Yan Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; Longping Branch of Graduate School, Hunan University, Changsha 410125, China.
| |
Collapse
|
45
|
Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants. TOXICS 2022; 10:toxics10080411. [PMID: 35893843 PMCID: PMC9332107 DOI: 10.3390/toxics10080411] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants.
Collapse
|
46
|
Yu W, Deng S, Chen X, Cheng Y, Li Z, Wu J, Zhu D, Zhou J, Cao Y, Fayyaz P, Shi W, Luo Z. PcNRAMP1 Enhances Cadmium Uptake and Accumulation in Populus × canescens. Int J Mol Sci 2022; 23:ijms23147593. [PMID: 35886940 PMCID: PMC9316961 DOI: 10.3390/ijms23147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Poplars are proposed for the phytoremediation of heavy metal (HM) polluted soil. Characterization of genes involved in HM uptake and accumulation in poplars is crucial for improving the phytoremediation efficiency. Here, Natural Resistance-Associated Macrophage Protein 1 (NRAMP1) encoding a transporter involved in cadmium (Cd) uptake and transport was functionally characterized in Populus × canescens. Eight putative PcNRAMPs were identified in the poplar genome and most of them were primarily expressed in the roots. The expression of PcNRAMP1 was induced in Cd-exposed roots and it encoded a plasma membrane-localized protein. PcNRAMP1 showed transport activity for Cd2+ when expressed in yeast. The PcNRAMP1-overexpressed poplars enhanced net Cd2+ influxes by 39–52% in the roots and Cd accumulation by 25–29% in aerial parts compared to the wildtype (WT). However, Cd-induced biomass decreases were similar between the transgenics and WT. Further analysis displayed that the two amino acid residues of PcNRAMP1, i.e., M236 and P405, play pivotal roles in regulating its transport activity for Cd2+. These results suggest that PcNRAMP1 is a plasma membrane-localized transporter involved in Cd uptake and transporting Cd from the roots to aerial tissues, and that the conserved residues in PcNRAMP1 are essential for its Cd transport activity in poplars.
Collapse
Affiliation(s)
- Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Xin Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Dongyue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj 75919-63179, Iran;
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| | - Zhibin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| |
Collapse
|
47
|
Konishi N, Huang S, Yamaji N, Ma JF. Cell-Type-Dependent but CME-Independent Polar Localization of Silicon Transporters in Rice. PLANT & CELL PHYSIOLOGY 2022; 63:699-712. [PMID: 35277719 DOI: 10.1093/pcp/pcac032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Silicon (Si) is an important nutrient required for sustainable and high production of rice and its uptake is mediated by a pair of influx (OsLsi1)-efflux (OsLsi2) transporters showing polar localization. However, the mechanisms underlying their polarity are unknown. Here, we revealed that the polarity of the Si transporters depends on cell types. The polar localization of both OsLsi1 and OsLsi2 was not altered by Si supply, but their protein abundance was reduced. Double immunostaining showed that localization of OsLsi1 and OsLsi2 was separated at the edge of the lateral polar domain by Casparian strips in the endodermis, whereas they were slightly overlapped at the transversal side of the exodermis. When OsLsi1 was ectopically expressed in the shoots, it showed polar localization at the xylem parenchyma cells of the basal node and leaf sheath, but not at the phloem companion cells. Ectopic expression of non-polar Si transporters, barley HvLsi2 and maize ZmLsi2 in rice, resulted in their polar localization at the proximal side. The polar localization of OsLsi1 and OsLsi2 was not altered by inhibition of clathrin-mediated endocytosis (CME) by dominant-negative induction of dynamin-related protein1A and knockout of mu subunit of adaptor protein 2 complex, although the knockout mutants of OsAP2M gene showed dwarf phenotype. These results indicate that CME is not required for the polar localization of Si transporters. Taken together, our results indicate that CME-independent machinery controls the polar localization of Si transporters in exodermis, endodermis of root cells and xylem parenchyma cells.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
48
|
Synergetic modulation of plant cadmium tolerance via MYB75-mediated ROS homeostasis and transcriptional regulation. PLANT CELL REPORTS 2022; 41:1515-1530. [PMID: 35503475 DOI: 10.1007/s00299-022-02871-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
Abstract
KEY MESSAGE MYB75 enhances plant cadmium tolerance by mediating ROS homeostasis and cadmium tolerance-related genes expression. Cadmium (Cd) is a heavy metal with biological toxicity, which can be detoxified through chelation and compartmentation in plants. Transcriptional regulation mediates plant Cd tolerance by modulating these processes. However, the mechanism remains to be studied. Our results showed a previously unknown function of MYB75 transcription factor in the regulation of Cd tolerance. Cd exposure stimulates anthocyanin accumulation by raising MYB75 expression. Enhanced Cd tolerance was observed in the MYB75-overexpressing plants, whereas increased Cd sensitivity was found in the MYB75 loss-of-function mutants. Under Cd stress conditions, lower reactive oxygen species (ROS) levels were detected in MYB75-overexpressing plants than in wild type plants. In contrast, higher ROS levels were found in MYB75 loss-of-function mutants. Overexpression of MYB75 was associated with increased glutathione (GSH) and phytochelatin (PC) content under Cd exposure. Furthermore, the expression of Cd stress-related gene including ACBP2 and ABCC2 was elevated in MYB75-overexpressing plants, and this upregulation was mediated through the mechanism by which MYB75 directly bind to the promoter of ACBP2 and ABCC2. Our findings reveal an important role for MYB75 in the regulation of plant Cd tolerance via anthocyanin-mediated ROS homeostasis, and through upregulation of Cd stress-related gene at the transcriptional level.
Collapse
|
49
|
Amtmann A, Bennett MJ, Henry A. Root phenotypes for the future. PLANT, CELL & ENVIRONMENT 2022; 45:595-601. [PMID: 35092061 DOI: 10.1111/pce.14269] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Anna Amtmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Amelia Henry
- Plant Breeding Innovations Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| |
Collapse
|
50
|
Podar D, Maathuis FJM. The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. PLANT, CELL & ENVIRONMENT 2022; 45:719-736. [PMID: 34622470 DOI: 10.1111/pce.14188] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Human activity and natural processes have led to the widespread dissemination of metals and metalloids, many of which are toxic and have a negative impact on plant growth and development. Roots, as the first point of contact, are essential in endowing plants with tolerance to excess metal(loid) in the soil. The most important root processes that contribute to tolerance are: adaptation of transport processes that affect uptake efflux and long-distance transport of metal(loid)s; metal(loid) detoxification within root cells via conjugation to thiol rich compounds and subsequent sequestration in the vacuole; plasticity in root architecture; the presence of bacteria and fungi in the rhizosphere that impact on metal(loid) bioavailability; the role of root exudates. In this review, we provide details on these processes and assess their relevance on the detoxification of arsenic, cadmium, mercury and zinc in crops. Furthermore, we assess which of these strategies have been tested in field conditions and whether they are effective in terms of improving crop metal(loid) tolerance.
Collapse
Affiliation(s)
- Dorina Podar
- Department of Molecular Biology and Biotechnology, Faculty of Biology-Geology, Babeș-Bolyai University, Cluj, Romania
| | | |
Collapse
|