1
|
Sun Q, He Z, Feng D, Wei R, Zhang Y, Ye J, Chai L, Xu J, Cheng Y, Xu Q, Deng X. The abscisic acid-responsive transcriptional regulatory module CsERF110-CsERF53 orchestrates citrus fruit coloration. PLANT COMMUNICATIONS 2024; 5:101065. [PMID: 39164970 PMCID: PMC11589302 DOI: 10.1016/j.xplc.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Carotenoid biosynthesis is closely associated with abscisic acid (ABA) during the ripening process of non-climacteric fruits, but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear. Here, we identified two master regulators of ABA-mediated citrus fruit coloration, CsERF110 and CsERF53, which activate the expression of carotenoid metabolism genes (CsGGPPS, CsPSY, CsPDS, CsCRTISO, CsLCYB2, CsLCYE, CsHYD, CsZEP, and CsNCED2) to facilitate carotenoid accumulation. Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53. We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53. Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling, thereby orchestrating citrus fruit coloration. Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops, the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches, further contributing to improving the quality of citrus and other carotenoid-rich crops.
Collapse
Affiliation(s)
- Quan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhengchen He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Feng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ranran Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingzi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Zhang Y, He J, Qin G, Yang K, Chen P, Niu C, Li X, Mei C, Wang J, Guan Q, Bao C. Apple MdZAT5 mediates root development under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108833. [PMID: 38879984 DOI: 10.1016/j.plaphy.2024.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Root plays an important role in plant drought tolerance, especially in horticultural crops like apples. However, the crucial regulator and molecular mechanism in root development of apple trees under drought are not well unknown. Cys2/His2-type Zinc-finger proteins are essential for plant response to drought, while the members of C2H2 Zinc-finger proteins in apple are largely unknown. In this study, we identified the members of the C1-2i subclass family of C2H2 Zinc-finger proteins in apple (Malus × domestica). Among them, MdZAT5 is significantly induced in apple roots under drought conditions and positively regulates apple root development under drought. Further investigation revealed that MdZAT5 positively regulates root development and root hydraulic conductivity by mediating the transcription level of MdMYB88 under drought stress. Taken together, our results demonstrate the importance of MdZAT5 in root development under drought in apple trees. This finding provides a new candidate direction for apple breeding for drought resistance.
Collapse
Affiliation(s)
- Yutian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kecheng Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Chundong Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuewei Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Mei
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China
| | - Jiangbo Wang
- College of Plant Science, Tarim University, Aral, 843300, China.
| | - Qingmei Guan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chana Bao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Science, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Liu Y, Zhao C, Tang X, Wang L, Guo R. Transcriptomic and Metabolomic Insights into ABA-Related Genes in Cerasus humilis under Drought Stress. Int J Mol Sci 2024; 25:7635. [PMID: 39062878 PMCID: PMC11276642 DOI: 10.3390/ijms25147635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cerasus humilis, a small shrub of the Cerasus genus within the Rosaceae family, is native to China and renowned for its highly nutritious and medicinal fruits, robust root system, and remarkable drought resistance. This study primarily employed association transcriptome and metabolome analyses to assess changes in abscisic acid (ABA) levels and identify key regulatory genes in C. humilis subjected to varying degrees of drought stress. Notably, we observed distinct alterations in transcription factors across different drought intensities. Specifically, our transcriptome data indicated noteworthy shifts in GATA, MYB, MYC, WRKY, C2H2, and bHLH transcription factor families. Furthermore, combined transcriptomic and metabolomic investigations demonstrated significant enrichment of metabolic pathways, such as 'Carbon metabolism', 'Biosynthesis of amino acids', 'Biosynthesis of cofactors', 'Phenylpropanoid biosynthesis', 'Starch and sucrose metabolism', and 'Plant hormone signal transduction' under moderate (Mod) or severe (Sev) drought conditions. A total of 11 candidate genes involved in ABA biosynthesis and signaling pathways were identified. The down-regulated genes included secoisolariciresinol dehydrogenase-like and PYL2. Conversely, genes including FAD-dependent urate hydroxylase-like, cytochrome P450 97B2, carotenoid cleavage dioxygenase 4 (CCD4), SnRK2.2, ABI 5-like protein 5, PP2C 51, and SnRK2.3, were up-regulated under Mod or Sev drought stress. This study lays the genetic foundation for ABA biosynthesis to enhance drought tolerance and provides genetic resources for plant genetic engineering and breeding efforts.
Collapse
Affiliation(s)
| | | | | | | | - Ruixue Guo
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (C.Z.); (X.T.); (L.W.)
| |
Collapse
|
4
|
Wang C, Yang J, Pan Q, Zhu P, Li J. Integrated transcriptomic and proteomic analysis of exogenous abscisic acid regulation on tuberous root development in Pseudostellaria heterophylla. Front Nutr 2024; 11:1417526. [PMID: 39036490 PMCID: PMC11258014 DOI: 10.3389/fnut.2024.1417526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.
Collapse
Affiliation(s)
| | | | | | - Panpan Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
5
|
Chen F, He Y, Yao X, Zho B, Tian S, Yin J, Lu L. CsMOF1-guided regulation of drought-induced theanine biosynthesis in Camellia sinensis. Int J Biol Macromol 2024; 268:131725. [PMID: 38677697 DOI: 10.1016/j.ijbiomac.2024.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The distinctive flavor and numerous health benefits of tea are attributed to the presence of theanine, a special amino acid found in tea plants. Nitrogen metabolite is greatly impacted by drought; however, the molecular mechanism underlying the synthesis of theanine in drought-stricken tea plants is still not clear. Through the drought transcriptome data of tea plants, we have identified a gene CsMOF1 that appears to play a role in theanine biosynthesis under drought stress, presenting a significantly negative correlation with both theanine content and the expression of CsGS1. Further found that CsMOF1 is a transcription factor containing a MYB binding domain, localized in the nucleus. Upon silencing CsMOF1, there was a prominent increase in the level of the theanine and glutamine, as well as the expression of CsGS1, while glutamic acid content decreased significantly. Conversely, overexpression of CsMOF1 yielded opposite effects. Dual luciferase reporter assay and electromobility shift assays demonstrated that CsMOF1 binds to the promoter of CsGS1, thereby inhibiting its activity. These results indicate that CsMOF1 plays a crucial role in theanine biosynthesis in tea plants under drought stress, acting as a transcriptional repressor related to theanine biosynthesis. This study provides new insights into the tissue-specific regulation of theanine biosynthesis and aids with the cultivation of new varieties of tea plants.
Collapse
Affiliation(s)
- Feng Chen
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yuan He
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Bokun Zho
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Shiyu Tian
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Jie Yin
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Song Y, He J, Guo J, Xie Y, Ma Z, Liu Z, Niu C, Li X, Chu B, Tahir MM, Xu J, Ma F, Guan Q. The chromatin remodeller MdRAD5B enhances drought tolerance by coupling MdLHP1-mediated H3K27me3 in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:617-634. [PMID: 37874929 PMCID: PMC10893944 DOI: 10.1111/pbi.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
RAD5B belongs to the Rad5/16-like group of the SNF2 family, which often functions in chromatin remodelling. However, whether RAD5B is involved in chromatin remodelling, histone modification, and drought stress tolerance is largely unclear. We identified a drought-inducible chromatin remodeler, MdRAD5B, which positively regulates apple drought tolerance. Transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analysis showed that MdRAD5B affects the expression of 466 drought-responsive genes through its chromatin remodelling function in response to drought stress. In addition, MdRAD5B interacts with and degrades MdLHP1, a crucial regulator of histone H3 trimethylation at K27 (H3K27me3), through the ubiquitin-independent 20S proteasome. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that MdRAD5B modulates the H3K27me3 deposition of 615 genes in response to drought stress. Genetic interaction analysis showed that MdRAD5B mediates the H3K27me3 deposition of drought-responsive genes through MdLHP1, which causes their expression changes under drought stress. Our results unravelled a dual function of MdRAD5B in gene expression modulation in apple in response to drought, that is, via the regulation of chromatin remodelling and H3K27me3.
Collapse
Affiliation(s)
- Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- Shenzhen Research InstituteNorthwest A&F UniversityShenzhenChina
| |
Collapse
|
7
|
Li C, Jiang R, Wang X, Lv Z, Li W, Chen W. Feedback regulation of plant secondary metabolism: Applications and challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111983. [PMID: 38211735 DOI: 10.1016/j.plantsci.2024.111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Plant secondary metabolites offer resistance to invasion by herbivorous organisms, and are also useful in the chemical, pharmaceutical, cosmetic, and fragrance industries. There are numerous approaches to enhancing secondary metabolite yields. However, a growing number of studies has indicated that feedback regulation may be critical in regulating secondary metabolite biosynthesis. Here, we review examples of feedback regulation in secondary metabolite biosynthesis pathways, phytohormone signal transduction, and complex deposition sites associated with secondary metabolite biosynthesis. We propose a new strategy to enhance secondary metabolite production based on plant feedback regulation. We also discuss challenges in feedback regulation that must be overcome before its application to enhancing secondary metabolite yields. This review discusses recent advances in the field and highlights a strategy to overcome feedback regulation-related obstacles and obtain high secondary metabolite yields.
Collapse
Affiliation(s)
- Chuhan Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xingxing Wang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wankui Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
8
|
Zhang G, Ren N, Huang L, Shen T, Chen Y, Yang Y, Huang X, Jiang M. Basic helix-loop-helix transcription factor OsbHLH110 positively regulates abscisic acid biosynthesis and salinity tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108423. [PMID: 38373370 DOI: 10.1016/j.plaphy.2024.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
Salinity is a significant abiotic stress factor affecting plant growth, consequently reducing crop yield. Abscisic acid (ABA), a well-known phytohormone, is crucial in conferring resistance to abiotic stress, thus, understanding the mechanisms underlying ABA biosynthesis is crucial. In rice (Oryza sativa L.), OsABA2, a short-chain dehydrogenase protein, has a pivotal role in modulating ABA biosynthesis and salt tolerance by undergoing phosphorylation at Ser197 through mitogen-activated protein kinase OsMPK1. However, the interaction between OsABA2 and other proteins in regulating ABA biosynthesis remains unclear. We employed OsABA2 as a bait in yeast two-hybrid screening: a basic helix-loop-helix transcription factor interacting with OsABA2, named OsbHLH110, was identified. Our results showed that firefly luciferase complementary imaging, pull-down, and co-immunoprecipitation assays validated the interaction between OsbHLH110 and OsABA2, affirming their interaction in vivo and in vitro. Moreover, the expression of OsbHLH110 significantly increases in response to salt and ABA treatments. Additionally, OsbHLH110 can directly bind to the G-box element in the OsABA2 promoter. This binding enhances luciferase activity controlled by the OsABA2 promoter, thereby increasing the expression of the OsABA2 gene and content of the OsABA2 protein, resulting in an increase in ABA content. OsABA2 enhanced the interaction between OsbHLH110 and OsABA2 promoter. This collaborative effect enhanced the regulation of ABA biosynthesis. Subsequent genetic analysis demonstrated that OsbHLH110 improved the tolerance of rice to salt stress.
Collapse
Affiliation(s)
- Gang Zhang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China; Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Ning Ren
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liping Huang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China; Internationgal Research Center for Enviromental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Tao Shen
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Chen
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Yang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Xingxiu Huang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Li X, Ma Z, Song Y, Shen W, Yue Q, Khan A, Tahir MM, Wang X, Malnoy M, Ma F, Bus V, Zhou S, Guan Q. Insights into the molecular mechanisms underlying responses of apple trees to abiotic stresses. HORTICULTURE RESEARCH 2023; 10:uhad144. [PMID: 37575656 PMCID: PMC10421731 DOI: 10.1093/hr/uhad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Apple (Malus[Formula: see text]domestica) is a popular temperate fruit crop worldwide. However, its growth, productivity, and quality are often adversely affected by abiotic stresses such as drought, extreme temperature, and high salinity. Due to the long juvenile phase and highly heterozygous genome, the conventional breeding approaches for stress-tolerant cultivars are time-consuming and resource-intensive. These issues may be resolved by feasible molecular breeding techniques for apples, such as gene editing and marker-assisted selection. Therefore, it is necessary to acquire a more comprehensive comprehension of the molecular mechanisms underpinning apples' response to abiotic stress. In this review, we summarize the latest research progress in the molecular response of apples to abiotic stressors, including the gene expression regulation, protein modifications, and epigenetic modifications. We also provide updates on new approaches for improving apple abiotic stress tolerance, while discussing current challenges and future perspectives for apple molecular breeding.
Collapse
Affiliation(s)
- Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271000, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige 38098, Italy
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Vincent Bus
- The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F. Fruit crops combating drought: Physiological responses and regulatory pathways. PLANT PHYSIOLOGY 2023; 192:1768-1784. [PMID: 37002821 PMCID: PMC10315311 DOI: 10.1093/plphys/kiad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Shen X, Song Y, Ping Y, He J, Xie Y, Ma F, Li X, Guan Q. The RNA-binding protein MdHYL1 modulates cold tolerance and disease resistance in apple. PLANT PHYSIOLOGY 2023; 192:2143-2160. [PMID: 36970784 PMCID: PMC10315269 DOI: 10.1093/plphys/kiad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Apple (Malus domestica) trees often experience various abiotic and biotic stresses. However, due to the long juvenile period of apple and its high degree of genetic heterozygosity, only limited progress has been made in developing cold-hardy and disease-resistant cultivars through traditional approaches. Numerous studies reveal that biotechnology is a feasible approach to improve stress tolerance in woody perennial plants. HYPONASTIC LEAVES1 (HYL1), a double-stranded RNA-binding protein, is a key regulator involved in apple drought stress response. However, whether HYL1 participates in apple cold response and pathogen resistance remains unknown. In this study, we revealed that MdHYL1 plays a positive role in cold tolerance and pathogen resistance in apple. MdHYL1 acted upstream to positively regulate freezing tolerance and Alternaria alternata resistance by positively modulating transcripts of MdMYB88 and MdMYB124 in response to cold stress or A. alternata infection. In addition, MdHYL1 regulated the biogenesis of several miRNAs responsive to cold and A. alternata infection in apple. Furthermore, we identified Mdm-miRNA156 (Mdm-miR156) as a negative regulator of cold tolerance and Mdm-miRNA172 (Mdm-miR172) as a positive regulator of cold tolerance, and that Mdm-miRNA160 (Mdm-miR160) decreased plant resistance to infection by A. alternata. In summary, we highlight the molecular role of MdHYL1 regarding cold tolerance and A. alternata infection resistance, thereby providing candidate genes for breeding apple with freezing tolerance and A. alternata resistance using biotechnology.
Collapse
Affiliation(s)
- Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Yikun Ping
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
12
|
Li K, Zhai L, Fu S, Wu T, Zhang X, Xu X, Han Z, Wang Y. Genome-wide analysis of the MdZR gene family revealed MdZR2.2-induced salt and drought stress tolerance in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111755. [PMID: 37290593 DOI: 10.1016/j.plantsci.2023.111755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The DNL-type zinc finger protein constitutes a zinc ribbon protein (ZR) family, which belongs to a branch of zinc finger protein and plays an essential role in response to abiotic stress. Here, we identified six apple (Malus domestica) MdZR genes. Based on their phylogenetic relationship and gene structure, the MdZR genes were divided into three categories, including MdZR1, MdZR2, and MdZR3. Subcellular results showed that the MdZRs are located on the nuclear and membrane. The transcriptome data showed that MdZR2.2 is expressed in various tissues. The expression analysis results showed that MdZR2.2 was significantly upregulated under salt and drought treatments. Thus, we selected MdZR2.2 for further research. Overexpression of MdZR2.2 in apple callus improved their tolerance to drought and salt stress and ability to scavenge reactive oxygen species (ROS). In contrast, transgenic apple roots with silenced MdZR2.2 grew more poorly than the wild type when subjected to salt and drought stress, which reduced their ability to scavenge ROS. To our knowledge, this is the first study to analyze the MdZR protein family. This study identified a gene that responds to drought and salt stress. Our findings lay a foundation for a comprehensive analysis of the MdZR family members.
Collapse
Affiliation(s)
- Keting Li
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Sitong Fu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China.
| |
Collapse
|
13
|
Ning C, Yang Y, Chen Q, Zhao W, Zhou X, He L, Li L, Zong D, Chen J. An R2R3 MYB transcription factor PsFLP regulates the symmetric division of guard mother cells during stomatal development in Pisum sativum. PHYSIOLOGIA PLANTARUM 2023; 175:e13943. [PMID: 37260122 DOI: 10.1111/ppl.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
MYB transcriptional regulators belong to one of the most significant transcription factors families in plants, among which R2R3-MYB transcription factors are involved in plant growth and development, hormone signal transduction, and stress response. Two R2R3-MYB transcription factors, FLP and its paralogous AtMYB88, redundantly regulate the symmetrical division of guard mother cells (GMCs), and abiotic stress response in Arabidopsis thaliana. Only one orthologue gene of FLP was identified in pea (Pisum sativum FLP; PsFLP). In this study, we explored the gene function of PsFLP by virus-induced gene silencing (VIGS) technology. The phenotypic analysis displayed that the silencing of PsFLP expression led to the abnormal development of stomata and the emergence of multiple guard cells tightly united. In addition, the abnormal stomata of flp could be fully rescued by PsFLP driven by the FLP promoter. In conclusion, the results showed that PsFLP plays a conservative negative role in regulating the symmetric division of GMC during stomatal development. Based on real-time quantitative PCR, the relative expressions of AAO3, NCED3, and SnRK2.3 significantly increased in the flp pFLP::PsFLP plants compared to mutant, indicating that PsFLP might be involved in drought stress response. Thus, PsFLP regulates the genes related to cell cycle division during the stomatal development of peas and participates in response to drought stress. The study provides a basis for further research on its function and application in leguminous crop breeding.
Collapse
Affiliation(s)
- Conghui Ning
- College of Life Science, Southwest Forestry University, Kunming, Yunnan, China
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yating Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiyi Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Weiyue Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xuan Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Laigeng Li
- College of Life Science, Southwest Forestry University, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dan Zong
- College of Life Science, Southwest Forestry University, Kunming, Yunnan, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Liu R, Shen Y, Wang M, Liu R, Cui Z, Li P, Wu Q, Shen Q, Chen J, Zhang S, Liu S, Ma H, Pang C, Ge C. GhMYB102 promotes drought resistance by regulating drought-responsive genes and ABA biosynthesis in cotton (Gossypium hirsutum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111608. [PMID: 36717027 DOI: 10.1016/j.plantsci.2023.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The MYB transcription factor (TF) family is among the largest TF families and plays an important role in plant growth and stress response. However, few studies have investigated the role of the MYB gene in drought resistance in cotton. In this study, we analysed the drought transcriptomic data of cotton and identified that the GhMYB102 gene was significantly upregulated in upland cotton during the early stages of drought stress. Bioinformatics analysis showed that the amino acid sequence encoded by GhMYB102 contained two highly conserved MYB binding domains belonging to R2R3-MYB TFs. GhMYB102 was most closely related to AtMYB102. GhMYB102 is mainly expressed in roots and is induced by abiotic stresses and abscisic acid (ABA); it is localised in the nucleus and has transcriptional activation activity. Silencing of GhMYB102 decreased plant drought resistance. In addition, dual-luciferase assays and yeast single hybridisation analysis showed that GhMYB102 could directly bind the MYB motif elements in the promoter regions of GhNCED1 and GhZAT10. These results indicate that GhMYB102 plays a positive role in drought tolerance by regulating the expression of GhNCED1 and GhZAT10. Thus, GhMYB102 enhances drought resistance by participating in ABA biosynthesis or regulating the expression of drought-responsive genes.
Collapse
Affiliation(s)
- Ruida Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Beijing Lianchuang Seed Science Academy, Longping High-tech Subsidiary, Zhengzhou 450001,Henan, China; Hebei Agricultural University, Stare Key Laboratory of Cotton Biology (Hebei Base), Baoding 071001, Hebei, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yanhui Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Minxuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Hebei Agricultural University, Stare Key Laboratory of Cotton Biology (Hebei Base), Baoding 071001, Hebei, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Ziqian Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Pengzhen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Qidi Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Jing Y, Liu C, Liu B, Pei T, Zhan M, Li C, Wang D, Li P, Ma F. Overexpression of the FERONIA receptor kinase MdMRLK2 confers apple drought tolerance by regulating energy metabolism and free amino acids production. TREE PHYSIOLOGY 2023; 43:154-168. [PMID: 35972799 DOI: 10.1093/treephys/tpac100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major abiotic stress limiting the growth and production of apple trees worldwide. The receptor-like kinase FERONIA is involved in plant growth, development and stress responses; however, the function of FERONIA in apple under drought stress remains unclear. Here, the FERONIA receptor kinase gene MdMRLK2 from apple (Malus domestica) was shown to encode a plasma membrane-localized transmembrane protein and was significantly induced by abscisic acid and drought treatments. 35S::MdMRLK2 apple plants showed less photosystem damage and higher photosynthetic rates compared with wild-type (WT) plants, after withholding water for 7 days. 35S::MdMRLK2 apple plants also had enhanced energy levels, activated caspase activity and more free amino acids, than the WT, under drought conditions. By performing yeast two-hybrid screening, glyceraldehyde-3-phosphate dehydrogenase and MdCYS4, a member of cystatin, were identified as MdMRLK2 interaction partners. Moreover, under drought conditions, the 35S::MdMRLK2 apple plants were characterized by higher abscisic acid (ABA) content. Overall, these findings demonstrated that MdMRLK2 regulates apple drought tolerance, probably via regulating levels of energetic matters, free amino acids and ABA.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingbing Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Duanni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
16
|
Cheng P, Yue Q, Zhang Y, Zhao S, Khan A, Yang X, He J, Wang S, Shen W, Qian Q, Du W, Ma F, Zhang D, Guan Q. Application of γ-aminobutyric acid (GABA) improves fruit quality and rootstock drought tolerance in apple. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153890. [PMID: 36571915 DOI: 10.1016/j.jplph.2022.153890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
GABA (γ-aminobutyric acid) plays a multifaceted role in plant growth, fruit quality, and tolerance to abiotic stresses. However, its physiological roles and mechanisms in the fruit quality and response to long-term drought stress in apple remain unelucidated. To investigate the effect of GABA on apple fruit quality and drought tolerance, we sprayed exogenous GABA on apple cultivar "Cripps Pink" and irrigated rootstock M.9-T337 with GABA, respectively. Results showed that exogenous GABA could effectively improve the fruit quality of "Cripps Pink", including increased sugar-to-acid ratio, flesh firmness, pericarp malleability, and GABA content, as well as reduced fruit acidity. In addition, pretreatment of M.9-T337 plants with GABA improved their tolerance to both long- and short-term drought stress. Specifically, 1 mM exogenous GABA increased the net photosynthetic rate, relative leaf water content, root-to-shoot ratio, and water use efficiency under long-term drought stress, and delayed the increased of the relative electrolyte leakage under short-term drought stress. RNA-seq analysis identified 1271 differentially expressed genes (DEGs) between nontreated and GABA-pretreated plants under short-term drought stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEGs revealed that GABA may enhance plant drought resistance by upregulating the expression of genes related to "Biosynthesis of secondary metabolites", "MAPK signaling pathway", "Glutathione metabolism", and "Carbon fixation in photosynthetic organisms". In conclusion, these results revealed that exogenous GABA can improve fruit quality and enhance drought tolerance in apple.
Collapse
Affiliation(s)
- Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanshan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Li Y, Li P, Zhang L, Shu J, Court MH, Sun Z, Jiang L, Zheng C, Shu H, Ji L, Zhang S. Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111314. [PMID: 35696914 DOI: 10.1016/j.plantsci.2022.111314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 05/02/2023]
Abstract
The plant family 1 UDP-glycosyltransferases (UGTs) are increasingly being investigated because of their contribution to plant secondary metabolism and other diverse biological roles. The apple (Malus domestica) is one of the most widely cultivated fruit trees with great economic importance. However, little is known regarding the apple UGTs. In this study, we identified 229 members of family 1 through a genome-wide analysis of the apple UGTs, which were clustered into 18 groups, from A to R. We also performed detailed analysis of 34 apple UGTs by quantitative RT-PCR, and discovered a number of stress-regulated UGTs. Among them, we characterized the role of MD09G1064900, also named MdUGT83L3, which was significantly induced by salt and cold. In vivo analysis showed that it has high activity towards cyanidin, and moderate activity towards quercetin and keampferol. Transgenic callus and regenerated apple plants overexpressing MdUGT83L3 showed enhanced tolerance to salt and cold treatments. Overexpression of MdUGT83L3 also increased anthocyanin accumulation in the callus tissues and enhanced ROS clearing upon exposure to salt and cold stresses. Furthermore, via yeast-one-hybrid assay, EMSA and CHIP analyses, we also found that MdUGT83L3 could be directly regulated by MdMYB88. Our study indicated that MdUGT83L3, under the regulation of MdMYB88, plays important roles in salt and cold stress adaptation via modulating flavonoid metabolism in apple.
Collapse
Affiliation(s)
- Yanjie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, PR China
| | - Pan Li
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 250000, PR China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jing Shu
- Shandong Agriculture and Engineering University, Jinan, Shandong 250100, PR China
| | - Michael H Court
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Zhuojing Sun
- Science and Technology Development Center of Ministry of Agriculture and Rural Affairs, PR China
| | - Lepu Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huairui Shu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lusha Ji
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 250000, PR China.
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
18
|
Wang Z, Li J, Yang X, Hu Y, Yin Y, Shen X. MdFLP enhances drought tolerance by regulating MdNAC019 in self-rooted apple stocks. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111331. [PMID: 35696930 DOI: 10.1016/j.plantsci.2022.111331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Self-rooted apple stocks are widely used for the production of apples worldwide. However, self-rooted apple stocks are weak due to shallow roots and poor grounding, resulting in poor drought resistance. Therefore, it is essential to understand the molecular mechanisms to develop self-rooted apple stock cultivars with drought resistance. We reported that MdFLP, an R2R3-MYB transcription factor, directly binds to the promoter of MdNAC019, activating its transcription and consequently enhancing drought tolerance in self-rooted apple stocks. In addition, MdFLP indirectly activates the transcriptional expression of abiotic stress-related genes, namely, MdERF6 and MdZAT10. The plants overexpressing MdFLP displayed stronger drought tolerance, whereas MdFLP-RNAi plants showed weak drought tolerance compared with non-transgenic "Gala" plants, indicating that MdFLP regulates drought tolerance in self-rooted apple stocks. Altogether, we believe that our findings provide novel insights into the functions of MdFLP in the regulation of drought tolerance in self-rooted apple stocks.
Collapse
Affiliation(s)
- Zenghui Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xuemei Yang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Yanli Hu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China.
| | - Xiang Shen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, Tai'an, Shandong 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
19
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
20
|
Zhou K, Li Y, Hu L, Zhang J, Yue H, Yang S, Liu Y, Gong X, Ma F. Overexpression of MdASMT9, an N-acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple. TREE PHYSIOLOGY 2022; 42:1114-1126. [PMID: 34865159 DOI: 10.1093/treephys/tpab157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Improving apple water-use efficiency (WUE) is increasingly desirable in the face of global climate change. Melatonin is a pleiotropic molecule that functions in plant development and stress tolerance. In apple, exogenous application of melatonin has been largely investigated, but melatonin biosynthesis and its physiological roles remain elusive. In the plant biosynthetic pathway of melatonin, the last and key step is that N-acetylserotonin methyltransferase (ASMT) converts N-acetylserotonin into melatonin. Here, we identified an apple ASMT gene, MdASMT9, using homology-based cloning and in vitro enzyme assays. Overexpression of MdASMT9 significantly increased melatonin accumulation in transgenic apple lines. Moreover, an enhanced WUE was observed in the MdASMT9-overexpressing apple lines. Under well-watered conditions, this increase in WUE was attributed to an enhancement of photosynthetic rate and stomatal aperture via a reduction in abscisic acid biosynthesis. By contrast, under long-term moderate water deficit conditions, regulations in photoprotective mechanisms, stomatal behavior, osmotic adjustment and antioxidant activity enhanced the WUE in transgenic apple lines. Taken together, our findings shed light on the positive effect of MdASMT9 on improving WUE of apple by modulating melatonin biosynthesis.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangtiansu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shulin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Li X, Zhou S, Liu Z, Lu L, Dang H, Li H, Chu B, Chen P, Ma Z, Zhao S, Li Z, van Nocker S, Ma F, Guan Q. Fine-tuning of SUMOylation modulates drought tolerance of apple. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:903-919. [PMID: 34978131 PMCID: PMC9055824 DOI: 10.1111/pbi.13772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
SUMOylation is involved in various aspects of plant biology, including drought stress. However, the relationship between SUMOylation and drought stress tolerance is complex; whether SUMOylation has a crosstalk with ubiquitination in response to drought stress remains largely unclear. In this study, we found that both increased and decreased SUMOylation led to increased survival of apple (Malus × domestica) under drought stress: both transgenic MdSUMO2A overexpressing (OE) plants and MdSUMO2 RNAi plants exhibited enhanced drought tolerance. We further confirmed that MdDREB2A is one of the MdSUMO2 targets. Both transgenic MdDREB2A OE and MdDREB2AK192R OE plants (which lacked the key site of SUMOylation by MdSUMO2A) were more drought tolerant than wild-type plants. However, MdDREB2AK192R OE plants had a much higher survival rate than MdDREB2A OE plants. We further showed SUMOylated MdDREB2A was conjugated with ubiquitin by MdRNF4 under drought stress, thereby triggering its protein degradation. In addition, MdRNF4 RNAi plants were more tolerant to drought stress. These results revealed the molecular mechanisms that underlie the relationship of SUMOylation with drought tolerance and provided evidence for the tight control of MdDREB2A accumulation under drought stress mediated by SUMOylation and ubiquitination.
Collapse
Affiliation(s)
- Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Shuangxi Zhou
- Department of Biological SciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Liyuan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Huan Dang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Huimin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Steve van Nocker
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
22
|
Chen P, Zhi F, Li X, Shen W, Yan M, He J, Bao C, Fan T, Zhou S, Ma F, Guan Q. Zinc-finger protein MdBBX7/MdCOL9, a target of MdMIEL1 E3 ligase, confers drought tolerance in apple. PLANT PHYSIOLOGY 2022; 188:540-559. [PMID: 34618120 PMCID: PMC8774816 DOI: 10.1093/plphys/kiab420] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 05/21/2023]
Abstract
Water deficit is one of the main challenges for apple (Malus × domestica) growth and productivity. Breeding drought-tolerant cultivars depends on a thorough understanding of the drought responses of apple trees. Here, we identified the zinc-finger protein B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9), which plays a positive role in apple drought tolerance. The overexpression of MdBBX7 enhanced drought tolerance, whereas knocking down MdBBX7 expression reduced it. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis identified one cis-element of MdBBX7, CCTTG, as well as its known binding motif, the T/G box. ChIP-seq and RNA-seq identified 1,197 direct targets of MdBBX7, including ETHYLENE RESPONSE FACTOR (ERF1), EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15), and GOLDEN2-LIKE 1 (GLK1) and these were further verified by ChIP-qPCR and electronic mobility shift assays. Yeast two-hybrid screen identified an interacting protein of MdBBX7, RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1). Further examination revealed that MdMIEL1 could mediate the ubiquitination and degradation of MdBBX7 by the 26S proteasome pathway. Genetic interaction analysis suggested that MdMIEL1 acts as an upstream factor of MdBBX7. In addition, MdMIEL1 was a negative regulator of the apple drought stress response. Taken together, our results illustrate the molecular mechanisms by which the MdMIEL1-MdBBX7 module influences the response of apple to drought stress.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianle Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Ltd., Hawke's Bay 4130, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Dong Q, Duan D, Zheng W, Huang D, Wang Q, Yang J, Liu C, Li C, Gong X, Li C, Ma F, Mao K. Overexpression of MdVQ37 reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. TREE PHYSIOLOGY 2022; 42:160-174. [PMID: 34328189 DOI: 10.1093/treephys/tpab098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Drought stress is an environmental factor that seriously threatens plant growth, development and yield. VQ proteins are transcriptional regulators that have been reported to be involved in plant growth, development and the responses to biotic and abiotic stressors. However, the relationship between VQ proteins and drought stress has not been well documented in plants. In this study, overexpressing the apple VQ motif-containing protein (MdVQ37) gene in apple plants markedly reduced the tolerance to drought. Physiological and biochemical studies further demonstrated lower enzymatic activities and decreased photosynthetic capacity in transgenic lines compared with wild-type (WT) plants under drought stress. Ultrastructural analysis of leaves showed that the leaves and palisade tissues from the transgenic lines were significantly thinner than those from WT plants. Salicylic acid (SA) analysis indicated that overexpression of MdVQ37 increased the accumulation of 2,5-DHBA by up-regulating the expression of the SA catabolic gene, which ultimately resulted to a significant reduction in endogenous SA content and the disruption of the SA-dependent signaling pathway under drought stress. Applying SA partially increased the survival rate of the transgenic lines under drought stress. These results demonstrate that the regulatory function of apple MdVQ37 is implicated in drought stress, through a change in leaf development and SA homeostasis. This study provides novel insight into understanding the multiple functions of VQ proteins.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Wenqian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
24
|
Maize WRKY Transcription Factor ZmWRKY79 Positively Regulates Drought Tolerance through Elevating ABA Biosynthesis. Int J Mol Sci 2021; 22:ijms221810080. [PMID: 34576244 PMCID: PMC8468953 DOI: 10.3390/ijms221810080] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Drought stress causes heavy damages to crop growth and productivity under global climatic changes. Transcription factors have been extensively studied in many crops to play important roles in plant growth and defense. However, there is a scarcity of studies regarding WRKY transcription factors regulating drought responses in maize crops. Previously, ZmWRKY79 was identified as the regulator of maize phytoalexin biosynthesis with inducible expression under different elicitation. Here, we elucidated the function of ZmWRKY79 in drought stress through regulating ABA biosynthesis. The overexpression of ZmWRKY79 in Arabidopsis improved the survival rate under drought stress, which was accompanied by more lateral roots, lower stomatal aperture, and water loss. ROS scavenging was also boosted by ZmWRKY79 to result in less H2O2 and MDA accumulation and increased antioxidant enzyme activities. Further analysis detected more ABA production in ZmWRKY79 overexpression lines under drought stress, which was consistent with up-regulated ABA biosynthetic gene expression by RNA-seq analysis. ZmWRKY79 was observed to target ZmAAO3 genes in maize protoplast through acting on the specific W-boxes of the corresponding gene promoters. Virus-induced gene silencing of ZmWRKY79 in maize resulted in compromised drought tolerance with more H2O2 accumulation and weaker root system architecture. Together, this study substantiates the role of ZmWRKY79 in the drought-tolerance mechanism through regulating ABA biosynthesis, suggesting its broad functions not only as the regulator in phytoalexin biosynthesis against pathogen infection but also playing the positive role in abiotic stress response, which provides a WRKY candidate gene to improve drought tolerance for maize and other crop plants.
Collapse
|