1
|
Jia B, Feng P, Song J, Zhou C, Wang Y, Zhang B, Wu M, Zhang J, Chen Q, Yu J. Transcriptome Analysis and Identification of Genes Associated with Cotton Seed Size. Int J Mol Sci 2024; 25:9812. [PMID: 39337299 PMCID: PMC11432076 DOI: 10.3390/ijms25189812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Cotton seeds, as the main by-product of cotton, are not only an important raw material for edible oil and feed but also a source of biofuel. The quality of cotton seeds directly affects cotton planting and is closely related to the yield and fiber quality. However, the molecular mechanism governing cotton seed size remains largely unexplored. This study investigates the regulatory mechanisms of cotton seed size by focusing on two cotton genotypes, N10 and N12, which exhibit notable phenotypic variations across multiple environments. Developing seeds were sampled at various stages (5, 20, 30, and 35 DPA) and subjected to RNA-seq. Temporal pattern clustering and WGCNA on differentially expressed genes identified 413 candidate genes, including these related to sugar metabolism that were significantly enriched in transcriptional regulation. A genetic transformation experiment indicated that the overexpression of the GhUXS5 gene encoding UDP-glucuronate decarboxylase 5 significantly increased seed size, suggesting an important role of GhUXS5 in regulating cotton seed size. This discovery provides crucial insights into the molecular mechanisms controlling cotton seed size, helping to unravel the complex regulatory network and offering new strategies and targets for cotton breeding to enhance the economic value of cotton seeds and overall cotton yield.
Collapse
Affiliation(s)
- Bing Jia
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Pan Feng
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Caoyi Zhou
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Yajie Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
- College of Agriculture, Tarim University, Alaer 843300, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Man Wu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 880033, USA;
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
| | - Jiwen Yu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| |
Collapse
|
2
|
Wang Y, Wang M, Yan X, Chen K, Tian F, Yang X, Cao L, Ruan N, Dang Z, Yin X, Huang Y, Li F, Xu Q. The DEP1 Mutation Improves Stem Lodging Resistance and Biomass Saccharification by Affecting Cell Wall Biosynthesis in Rice. RICE (NEW YORK, N.Y.) 2024; 17:35. [PMID: 38748282 PMCID: PMC11096150 DOI: 10.1186/s12284-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Plant cell walls have evolved precise plasticity in response to environmental stimuli. The plant heterotrimeric G protein complexes could sense and transmit extracellular signals to intracellular signaling systems, and activate a series of downstream responses. dep1 (Dense and Erect Panicles 1), the gain-of-function mutation of DEP1 encoding a G protein γ subunit, confers rice multiple improved agronomic traits. However, the effects of DEP1 on cell wall biosynthesis and wall-related agronomic traits remain largely unknown. RESULTS In this study, we showed that the DEP1 mutation affects cell wall biosynthesis, leading to improved lodging resistance and biomass saccharification. The DEP1 is ubiquitously expressed with a relatively higher expression level in tissues rich in cell walls. The CRISPR/Cas9 editing mutants of DEP1 (dep1-cs) displayed a significant enhancement in stem mechanical properties relative to the wild-type, leading to a substantial improvement in lodging resistance. Cell wall analyses showed that the DEP1 mutation increased the contents of cellulose, hemicelluloses, and pectin, and reduced lignin content and cellulose crystallinity (CrI). Additionally, the dep1-cs seedlings exhibited higher sensitivity to cellulose biosynthesis inhibitors, 2,6-Dichlorobenzonitrile (DCB) and isoxaben, compared with the wild-type, confirming the role of DEP1 in cellulose deposition. Moreover, the DEP1 mutation-mediated alterations of cell walls lead to increased enzymatic saccharification of biomass after the alkali pretreatment. Furthermore, the comparative transcriptome analysis revealed that the DEP1 mutation substantially altered expression of genes involved in carbohydrate metabolism, and cell wall biosynthesis. CONCLUSIONS Our findings revealed the roles of DEP1 in cell wall biosynthesis, lodging resistance, and biomass saccharification in rice and suggested genetic modification of DEP1 as a potential strategy to develop energy rice varieties with high lodging resistance.
Collapse
Affiliation(s)
- Ye Wang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Meihan Wang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Xia Yan
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Kaixuan Chen
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Fuhao Tian
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Xiao Yang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Liyu Cao
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Nan Ruan
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Zhengjun Dang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Xuelin Yin
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Yuwei Huang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Fengcheng Li
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China.
| | - Quan Xu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
3
|
Guha PK, Magar ND, Kommana M, Barbadikar KM, Suneel B, Gokulan C, Lakshmi DV, Patel HK, Sonti RV, Sundaram RM, Madhav MS. Strong culm: a crucial trait for developing next-generation climate-resilient rice lines. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:665-686. [PMID: 38737321 PMCID: PMC11087419 DOI: 10.1007/s12298-024-01445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Lodging, a phenomenon characterized by the bending or breaking of rice plants, poses substantial constraints on productivity, particularly during the harvesting phase in regions susceptible to strong winds. The rice strong culm trait is influenced by the intricate interplay of genetic, physiological, epigenetic, and environmental factors. Stem architecture, encompassing morphological and anatomical attributes, alongside the composition of both structural and non-structural carbohydrates, emerges as a critical determinant of lodging resistance. The adaptive response of the rice culm to various biotic and abiotic environmental factors further modulates the propensity for lodging. Advancements in next-generation sequencing technologies have expedited the genetic dissection of lodging resistance, enabling the identification of pertinent genes, quantitative trait loci, and novel alleles. Concurrently, contemporary breeding strategies, ranging from biparental approaches to more sophisticated methods such as multi-parent-based breeding, gene pyramiding, genomic selection, genome-wide association studies, and haplotype-based breeding, offer perspectives on the genetic underpinnings of culm strength. This review comprehensively delves into physiological attributes, culm histology, epigenetic determinants, and gene expression profiles associated with lodging resistance, with a specialized focus on leveraging next-generation sequencing for candidate gene discovery.
Collapse
Affiliation(s)
- Pritam Kanti Guha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
- Department of Microbiology, Yogi Vemana University., Y.S.R Kadapa, India
| | - Nakul D. Magar
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Madhavilatha Kommana
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Kalyani M. Barbadikar
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - B. Suneel
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - C. Gokulan
- Department of Biotechnology, CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
| | - D. Vijay Lakshmi
- Department of Microbiology, Yogi Vemana University., Y.S.R Kadapa, India
| | - Hitendra Kumar Patel
- Department of Biotechnology, CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
| | - Ramesh V. Sonti
- Department of Biotechnology, CSIR-Center for Cellular and Molecular Biology, Hyderabad, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - R. M. Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Maganti Sheshu Madhav
- Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India
- ICAR-Central Tobacco Research Institute, Rajahmundry, India
| |
Collapse
|
4
|
Sun H, Sun J, Yuan Z, Li F, Li X, Li J, Du Y, Wang F. A Tos17 transposon insertion in OsCesA9 causes brittle culm in rice. Gene 2024; 890:147818. [PMID: 37739196 DOI: 10.1016/j.gene.2023.147818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The mechanical strength of rice stalks plays an important role in rice growth and development. In this study, the brittle culm mutant bc26 was identified from a tissue culture-derived line of the japonica rice cultivar 'ZH15'. bc26 plants showed fragile leaves and stalks and reduced plant height and spike number compared with wild-type 'ZH15'. Analysis of cell wall components revealed that the cellulose content of stems, leaves, roots and spikes of bc26 plants was significantly lower than that of the wild type, while the hemicellulose content in these tissues of bc26 plants was significantly higher than that of the wild type. Further sequencing using a mixed pool bulked segregant analysis sequencing (BSA-Seq) of brittle plants from the F2 populations localized the bc26 gene to chromosome 9, and a Tos17 transposon insertion in the bc6 gene near the highest SNP-index point was associated with a loss of gene function. Therefore, the bc26 gene was tentatively identified as a new allele of the Bc6 gene, resulting in the brittle culm trait caused by the insertion of the Tos17 transposon.
Collapse
Affiliation(s)
- Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Jiajun Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zeke Yuan
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fuhao Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xinrong Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Junzhou Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yanxiu Du
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
5
|
Li Z, Chen R, Wen Y, Liu H, Chen Y, Wu X, Yang Y, Wu X, Zhou Y, Liu J. Comprehensive analysis of the UDP-glucuronate decarboxylase (UXS) gene family in tobacco and functional characterization of NtUXS16 in Golgi apparatus in Arabidopsis. BMC PLANT BIOLOGY 2023; 23:551. [PMID: 37936064 PMCID: PMC10631120 DOI: 10.1186/s12870-023-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND UDP-glucuronate decarboxylase (also named UXS) converts UDP-glucuronic acid (UDP-GlcA) to UDP-xylose (UDP-Xyl) by decarboxylation of the C6-carboxylic acid of glucuronic acid. UDP-Xyl is an important sugar donor that is required for the synthesis of plant cell wall polysaccharides. RESULTS In this study, we first carried out the genome-wide identification of NtUXS genes in tobacco. A total of 17 NtUXS genes were identified, which could be divided into two groups (Group I and II), and the Group II UXSs can be further divided into two subgroups (Group IIa and IIb). Furthermore, the protein structures, intrachromosomal distributions and gene structures were thoroughly analyzed. To experimentally verify the subcellular localization of NtUXS16 protein, we transformed tobacco BY-2 cells with NtUXS16 fused to the monomeric red fluorescence protein (mRFP) at the C terminus under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The fluorescent signals of NtUXS16-mRFP were localized to the medial-Golgi apparatus. Contrary to previous predictions, protease digestion analysis revealed that NtUXS16 is not a type II membrane protein. Overexpression of NtUXS16 in Arabidopsis seedling in darkness led to a significant increase in hypocotyl length and a reduction in root length compared with the wild type. In summary, these results suggest Golgi apparatus localized-NtUXS16 plays an important role in hypocotyl and root growth in the dark. CONCLUSION Our findings facilitate our understanding of the novel functions of NtUXS16 and provide insights for further exploration of the biological roles of NtUXS genes in tobacco.
Collapse
Affiliation(s)
- Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Runping Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yufang Wen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Hanxiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yangyang Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong Zhou
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.
| | - Jianping Liu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
6
|
Zhou Y, Zhang T, Wang X, Wu W, Xing J, Li Z, Qiao X, Zhang C, Wang X, Wang G, Li W, Bai S, Li Z, Suo Y, Wang J, Niu Y, Zhang J, Lan C, Hu Z, Li B, Zhang X, Wang W, Galbraith DW, Chen Y, Guo S, Song CP. A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis. Nat Commun 2023; 14:4384. [PMID: 37474494 PMCID: PMC10359280 DOI: 10.1038/s41467-023-40013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
The unique dumbbell-shape of grass guard cells (GCs) is controlled by their cell walls which enable their rapid responses to the environment. The molecular mechanisms regulating the synthesis and assembly of GC walls are as yet unknown. Here we have identified BZU3, a maize gene encoding UDP-glucose 4-epimerase that regulates the supply of UDP-glucose during GC wall synthesis. The BZU3 mutation leads to significant decreases in cellular UDP-glucose levels. Immunofluorescence intensities reporting levels of cellulose and mixed-linkage glucans are reduced in the GCs, resulting in impaired local wall thickening. BZU3 also catalyzes the epimerization of UDP-N-acetylgalactosamine to UDP-N-acetylglucosamine, and the BZU3 mutation affects N-glycosylation of proteins that may be involved in cell wall synthesis and signaling. Our results suggest that the spatiotemporal modulation of BZU3 plays a dual role in controlling cell wall synthesis and glycosylation via controlling UDP-glucose/N-acetylglucosamine homeostasis during stomatal morphogenesis. These findings provide insights into the mechanisms controlling formation of the unique morphology of grass stomata.
Collapse
Affiliation(s)
- Yusen Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xiaocui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zuliang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xin Qiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Chunrui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Guangshun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Wenhui Li
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Yanli Niu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Baozhu Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - David W Galbraith
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- School of Plant Sciences and Bio5 Institute, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| |
Collapse
|
7
|
Dang Z, Wang Y, Wang M, Cao L, Ruan N, Huang Y, Li F, Xu Q, Chen W. The Fragile culm19 (FC19) mutation largely improves plant lodging resistance, biomass saccharification, and cadmium resistance by remodeling cell walls in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132020. [PMID: 37429191 DOI: 10.1016/j.jhazmat.2023.132020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Cell wall is essential for plant upright growth, biomass saccharification, and stress resistance. Although cell wall modification is suggested as an effective means to increase biomass saccharification, it is a challenge to maintain normal plant growth with improved mechanical strength and stress resistance. Here, we reported two independent fragile culm mutants, fc19-1 and fc19-2, resulting from novel mutations of OsIRX10, produced by the CRISPR/Cas9 system. Compared to wild-type, the two mutants exhibited reduced contents of xylose, hemicellulose, and cellulose, and increased arabinose and lignin without significant alteration in levels of pectin and uronic acids. Despite brittleness, the mutants displayed increased breaking force, leading to improved lodging resistance. Furthermore, the altered cell wall and increased biomass porosity in fc19 largely increased biomass saccharification. Notably, the mutants showed enhanced cadmium (Cd) resistance with lower Cd accumulation in roots and shoots. The FC19 mutation impacts transcriptional levels of key genes contributing to Cd uptake, sequestration, and translocation. Moreover, transcriptome analysis revealed that the FC19 mutation resulted in alterations of genes mainly involved in carbohydrate and phenylpropanoid metabolism. Therefore, a hypothetic model was proposed to elucidate that the FC19 mutation-mediated cell wall remodeling leads to improvements in lodging resistance, biomass saccharification, and Cd resistance.
Collapse
Affiliation(s)
- Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Yuwei Huang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
8
|
Virág E, Kiniczky M, Kutasy B, Nagy Á, Pallos JP, Laczkó L, Freytag C, Hegedűs G. Supplementation of the Plant Conditioner ELICE Vakcina ® Product with β-Aminobutyric Acid and Salicylic Acid May Lead to Trans-Priming Signaling in Barley ( Hordeum vulgare). PLANTS (BASEL, SWITZERLAND) 2023; 12:2308. [PMID: 37375933 DOI: 10.3390/plants12122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Plant immunological memory, priming, is a defense mechanism that can be triggered by external stimuli, leading to the activation of biochemical pathways and preparing plants for disease resistance. Plant conditioners improve yield and crop quality through nutrient efficiency and abiotic stress tolerance, which is enhanced by the addition of resistance- and priming-induced compounds. Based on this hypothesis, this study aimed to investigate plant responses to priming actives of different natures, including salicylic acid and beta-aminobutyric acid, in combination with the plant conditioning agent ELICE Vakcina®. Phytotron experiments and RNA-Seq analyses of differentially expressed genes using the combinations of these three investigated compounds were performed in a barley culture to investigate possible synergistic relationships in the genetic regulatory network. The results indicated a strong regulation of defense responses, which was enhanced by supplemental treatments; however, both synergistic and antagonistic effects were enhanced with one or two components, depending on the supplementation. The overexpressed transcripts were functionally annotated to assess their involvement in jasmonic acid and salicylic acid signaling; however, their determinant genes were highly dependent on the supplemental treatments. Although the effects overlapped, the potential effects of trans-priming the two supplements tested could be largely separated.
Collapse
Affiliation(s)
- Eszter Virág
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
- EduCoMat Ltd., Iskola Str 12A, 8360 Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
| | - Márta Kiniczky
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
| | - Barbara Kutasy
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Festetics Str 7, 8360 Keszthely, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
| | - József Péter Pallos
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
| | - Levente Laczkó
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
- ELKH-DE Conservation Biology Research Group, Egyetem Square, 4032 Debrecen, Hungary
| | - Csongor Freytag
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
| | - Géza Hegedűs
- Research Institute for Medicinal Plants and Herbs Ltd., Lupaszigeti Str 4, 2011 Budakalász, Hungary
- EduCoMat Ltd., Iskola Str 12A, 8360 Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Gasparich Márk Str 18/A, 8900 Zalaegerszeg, Hungary
| |
Collapse
|
9
|
Bai Y, Liu M, Zhou R, Jiang F, Li P, Li M, Zhang M, Wei H, Wu Z. Construction of ceRNA Networks at Different Stages of Somatic Embryogenesis in Garlic. Int J Mol Sci 2023; 24:ijms24065311. [PMID: 36982386 PMCID: PMC10049443 DOI: 10.3390/ijms24065311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
LncRNA (long non-coding RNA) and mRNA form a competitive endogenous RNA (ceRNA) network by competitively binding to common miRNAs. This network regulates various processes of plant growth and development at the post-transcriptional level. Somatic embryogenesis is an effective means of plant virus-free rapid propagation, germplasm conservation, and genetic improvement, which is also a typical process to study the ceRNA regulatory network during cell development. Garlic is a typical asexual reproductive vegetable. Somatic cell culture is an effective means of virus-free rapid propagation in garlic. However, the ceRNA regulatory network of somatic embryogenesis remains unclear in garlic. In order to clarify the regulatory role of the ceRNA network in garlic somatic embryogenesis, we constructed lncRNA and miRNA libraries of four important stages (explant stage: EX; callus stage: AC; embryogenic callus stage: EC; globular embryo stage: GE) in the somatic embryogenesis of garlic. It was found that 44 lncRNAs could be used as precursors of 34 miRNAs, 1511 lncRNAs were predicted to be potential targets of 144 miRNAs, and 45 lncRNAs could be used as eTMs of 29 miRNAs. By constructing a ceRNA network with miRNA as the core, 144 miRNAs may bind to 1511 lncRNAs and 12,208 mRNAs. In the DE lncRNA-DE miRNA-DE mRNA network of adjacent stages of somatic embryo development (EX-VS-CA, CA-VS-EC, EC-VS-GE), by KEGG enrichment of adjacent stage DE mRNA, plant hormone signal transduction, butyric acid metabolism, and C5-branched dibasic acid metabolism were significantly enriched during somatic embryogenesis. Since plant hormones play an important role in somatic embryogenesis, further analysis of plant hormone signal transduction pathways revealed that the auxin pathway-related ceRNA network (lncRNAs-miR393s-TIR) may play a role in the whole stage of somatic embryogenesis. Further verification by RT-qPCR revealed that the lncRNA125175-miR393h-TIR2 network plays a major role in the network and may affect the occurrence of somatic embryos by regulating the auxin signaling pathway and changing the sensitivity of cells to auxin. Our results lay the foundation for studying the role of the ceRNA network in the somatic embryogenesis of garlic.
Collapse
Affiliation(s)
- Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Ping Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Mengqian Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Meng Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
10
|
Shen T, Li K, Yan R, Xu F, Ni L, Jiang M. The UDP-glucuronic acid decarboxylase OsUXS3 regulates Na + ion toxicity tolerance under salt stress by interacting with OsCATs in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:850-858. [PMID: 36870160 DOI: 10.1016/j.plaphy.2023.02.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/12/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Overly Na+ ion in soil caused by salt stress has a significant negative impact on the growth and production of crops, especially rice (Oryza sativa L.). Therefore, it is vital for us to clarify how salt stress tolerance in rice is caused by Na+ ion toxicity. The UDP-glucuronic acid decarboxylase (UXS) is a critical enzyme in the biosynthesis of UDP-xylose, which is the key substrate of cytoderm synthesis in plants. In this study, we found that OsUXS3, a rice UXS, is a positive regulator to regulate Na+ ion toxicity under salt stress by interacting with OsCATs (Oryza sativa catalase; OsCAT). The expression of OsUXS3 was significantly up-regulated under NaCl and NaHCO3 treatments of rice seedlings. Meanwhile, by the genetic and biochemical evidence, knockout of OsUXS3 significantly increased reactive oxygen species (ROS) levels and decreased CAT activity under NaCl and NaHCO3 treatments in tissue. Furthermore, knockout of OsUXS3 caused excessive accumulation of Na + ion and rapid loss of K+ ion and disrupts Na+/K+ homeostasis under NaCl and NaHCO3 treatments. Based on the results above, we can conclude that OsUXS3 might regulate CAT activity by interacting with OsCATs, which is not only characterized for the first time but also regulating Na+/K+ homeostasis, positively regulating the Na+ ion toxicity tolerance under salt stress in rice.
Collapse
Affiliation(s)
- Tao Shen
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaiyue Li
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Runjiao Yan
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengjuan Xu
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Mingyi Jiang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
11
|
Miao W, Li F, Lu J, Wang D, Chen M, Tang L, Xu Z, Chen W. Biochar application enhanced rice biomass production and lodging resistance via promoting co-deposition of silica with hemicellulose and lignin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158818. [PMID: 36122710 DOI: 10.1016/j.scitotenv.2022.158818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Biochar, an environmentally friendly soil amendment, is created via a series of thermochemical processes from carbon-rich organic matter. The biochar addition enhances soil characteristics dramatically and increases crop growth and yields. However, the mechanism by which biochar improves plant lodging resistance, which is heavily influenced by cell walls, remains unknown. Three rice cultivars were grown in an experimental field provided with four concentrations of biochar (10, 20, 30, 40 t ha-1). The biochar application enhanced biomass production and lodging resistance in all three cultivars by up to 29 % and 22 %, respectively, with the largest improvement at a biochar application rate of 30 t ha-1. Biochar application significantly enhanced stem cell wall-related characteristics, with an increase in stem breaking force, wall thickness, and plumpness of 52 %, 32 %, and 21 %, respectively, which are suggested to be major contributors to enhanced lodging resistance and biomass yield. Notably, cell wall composition and silica content analysis indicated a significant increase in hemicellulose, lignin, and silica content in biochar-treated samples up to 36 %, 13 %, and 58 %, respectively, when compared to plants not treated with biochar. Integrative analysis suggested that silica, hemicellulose, and lignin were co-deposited in cell walls, which influenced biomass production and lodging resistance. Furthermore, the transcriptome profile revealed that biochar application increased the expression of genes involved in biomass production, cell wall formation, and silica deposition. This study suggests that biochar application might improve both biomass production and lodging resistance by promoting the co-deposition of silicon with hemicellulose and lignin in cell walls.
Collapse
Affiliation(s)
- Wei Miao
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Jiancheng Lu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Donglei Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Mingkai Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Liang Tang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| |
Collapse
|