1
|
Bernardino KDC, Guilhen JHS, de Menezes CB, Tardin FD, Schaffert RE, Bastos EA, Cardoso MJ, Gazaffi R, Rosa JRBF, Garcia AAF, Guimarães CT, Kochian L, Pastina MM, Magalhaes JV. Genetic loci associated with sorghum drought tolerance in multiple environments and their sensitivity to environmental covariables. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:259. [PMID: 39461923 DOI: 10.1007/s00122-024-04761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
KEY MESSAGE Climate change can limit yields of naturally resilient crops, like sorghum, challenging global food security. Agriculture under an erratic climate requires tapping into a reservoir of flexible adaptive loci that can lead to lasting yield stability under multiple abiotic stress conditions. Domesticated in the hot and dry regions of Africa, sorghum is considered a harsh crop, which is adapted to important stress factors closely related to climate change. To investigate the genetic basis of drought stress adaptation in sorghum, we used a multi-environment multi-locus genome-wide association study (MEML-GWAS) in a subset of a diverse sorghum association panel (SAP) phenotyped for performance both under well-watered and water stress conditions. We selected environments in Brazil that foreshadow agriculture where both drought and temperature stresses coincide as in many tropical agricultural frontiers. Drought reduced average grain yield (Gy) by up to 50% and also affected flowering time (Ft) and plant height (Ph). We found 15 markers associated with Gy on all sorghum chromosomes except for chromosomes 7 and 9, in addition to loci associated with phenology traits. Loci associated with Gy strongly interacted with the environment in a complex way, while loci associated with phenology traits were less affected by G × E. Studying environmental covariables potentially underpinning G × E, increases in relative humidity and evapotranspiration favored and disfavored grain yield, respectively. High temperatures influenced G × E and reduced sorghum yields, with a ~ 100 kg ha-1 average decrease in grain yield for each unit increase in maximum temperature between 29 and 38 °C. Extreme G × E for sorghum stress resilience poses an additional challenge to breed crops for moving, erratic weather conditions.
Collapse
Affiliation(s)
| | - José Henrique Soler Guilhen
- Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil
- JP Agrícola Consultoria, Paragominas, PA, 68625-130, Brazil
| | | | | | | | - Edson Alves Bastos
- Embrapa Mid-North, Av. Duque de Caxias, nº 5.650, Teresina, PI, 64008-780, Brazil
| | - Milton José Cardoso
- Embrapa Mid-North, Av. Duque de Caxias, nº 5.650, Teresina, PI, 64008-780, Brazil
| | - Rodrigo Gazaffi
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
- Federal University of São Carlos (UFSCar), Rodovia Anhanguera, Km 174, Araras, SP, 13604-367, Brazil
| | - João Ricardo Bachega Feijó Rosa
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
- RB Genetics & Statistics Consulting (RBGSC), Jaú, SP, CEP, 17210-610, Brazil
| | | | | | - Leon Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Maria Marta Pastina
- Embrapa Maize and Sorghum, Rodovia MG 424, Km 65, Sete Lagoas, MG, 35701-970, Brazil.
| | | |
Collapse
|
2
|
Baytar AA, Yanar EG, Frary A, Doğanlar S. Association mapping and candidate gene identification for yield traits in European hazelnut ( Corylus avellana L.). PLANT DIRECT 2024; 8:e625. [PMID: 39170862 PMCID: PMC11336203 DOI: 10.1002/pld3.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
European hazelnut (Corylus avellana L.) is an important nut crop due to its nutritional benefits, culinary uses, and economic value. Türkiye is the leading producer of hazelnut, followed by Italy and the United States. Quantitative trait locus studies offer promising opportunities for breeders and geneticists to identify genomic regions controlling desirable traits in hazelnut. A genome-wide association analysis was conducted with 5,567 single nucleotide polymorphisms on a Turkish core set of 86 hazelnut accessions, revealing 189 quantitative trait nucleotides (QTNs) associated with 22 of 31 traits (p < 2.9E-07). These QTNs were associated with plant and leaf, phenological, reproductive, nut, and kernel traits. Based on the close physical distance of QTNs associated with the same trait, we identified 23 quantitative trait loci. Furthermore, we identified 23 loci of multiple QTs comprising chromosome locations associated with more than one trait at the same position or in close proximity. A total of 159 candidate genes were identified for 189 QTNs, with 122 of them containing significant conserved protein domains. Some candidate matches to known proteins/domains were highly significant, suggesting that they have similar functions as their matches. This comprehensive study provides valuable insights for the development of breeding strategies and the improvement of hazelnut and enhances the understanding of the genetic architecture of complex traits by proposing candidate genes and potential functions.
Collapse
Affiliation(s)
- Asena Akköse Baytar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Ertuğrul Gazi Yanar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of ScienceIzmir Institute of TechnologyIzmirTürkiye
- Plant Science and Technology Application and Research CenterIzmir Institute of TechnologyIzmirTürkiye
| |
Collapse
|
3
|
Gou H, Lu S, Guo L, Che L, Li M, Zeng B, Yang J, Chen B, Mao J. Evolution of PIN gene family between monocotyledons and dicotyledons and VvPIN1 negatively regulates freezing tolerance in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14464. [PMID: 39157882 DOI: 10.1111/ppl.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
The PIN-FORMED (PIN) proteins mediate the auxin flow throughout the plant and have been identified in many species. However, evolution differences in the PIN gene families have not been systematically analyzed, and their functions under abiotic stresses in grape are largely unexplored. In this study, 373 PIN genes were identified from 25 species and divided into 3 subgroups. Physicochemical properties analysis indicated that most of the PIN proteins were unstable alkaline hydrophobic proteins in nature. The synteny analysis showed that the PINs contained strong gene duplication. Motif composition revealed that PIN gene sequence differences between monocotyledons and dicotyledons were due to evolutionary-induced base loss, and the loss was more common in dicotyledonous. Meanwhile, the codon usage bias showed that the PINs showed stronger codon preference in monocotyledons, monocotyledons biased towards C3s and G3s, and dicotyledons biased towards A3s and T3s. In addition, the VvPIN1 can interact with VvCSN5. Significantly, under freezing treatment, the ion leakage,O 2 · - $$ \left({O}_2^{\cdotp -}\right) $$ , H2O2, and malondialdehyde (MDA) were obviously increased, while the proline (Pro) content, peroxidase (POD) activity, and glutathione (GSH) content were decreased in VvPIN1-overexpressing Arabidopsis compared to the wild type (WT). And quantitative real-time PCR (qRT-PCR) showed that AtICE1, AtICE2, AtCBF1, AtCBF2, and AtCBF3 were down-regulated in overexpression lines. These results demonstrated that VvPIN1 negatively regulated the freezing tolerance in transgenic Arabidopsis. Collectively, this study provides a novel insight into the evolution and a basis for further studies on the biological functions of PIN genes in monocotyledons and dicotyledons.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Baozhen Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Juanbo Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| |
Collapse
|
4
|
Hostetler AN, Morais de Sousa Tinoco S, Sparks EE. Root responses to abiotic stress: a comparative look at root system architecture in maize and sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:553-562. [PMID: 37798135 DOI: 10.1093/jxb/erad390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Under all environments, roots are important for plant anchorage and acquiring water and nutrients. However, there is a knowledge gap regarding how root architecture contributes to stress tolerance in a changing climate. Two closely related plant species, maize and sorghum, have distinct root system architectures and different levels of stress tolerance, making comparative analysis between these two species an ideal approach to resolve this knowledge gap. However, current research has focused on shared aspects of the root system that are advantageous under abiotic stress conditions rather than on differences. Here we summarize the current state of knowledge comparing the root system architecture relative to plant performance under water deficit, salt stress, and low phosphorus in maize and sorghum. Under water deficit, steeper root angles and deeper root systems are proposed to be advantageous for both species. In saline soils, a reduction in root length and root number has been described as advantageous, but this work is limited. Under low phosphorus, root systems that are shallow and wider are beneficial for topsoil foraging. Future work investigating the differences between these species will be critical for understanding the role of root system architecture in optimizing plant production for a changing global climate.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
5
|
Menamo T, Borrell AK, Mace E, Jordan DR, Tao Y, Hunt C, Kassahun B. Genetic dissection of root architecture in Ethiopian sorghum landraces. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:209. [PMID: 37715848 DOI: 10.1007/s00122-023-04457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 09/18/2023]
Abstract
KEY MESSAGE This study quantified genetic variation in root system architecture (root number, angle, length and dry mass) within a diversity panel of 1771 Ethiopian sorghum landraces and identified 22 genomic regions associated with the root variations. The root system architecture (RSA) of crop plants influences adaptation to water-limited conditions and determines the capacity of a plant to access soil water and nutrients. Four key root traits (number, angle, length and dry mass) were evaluated in a diversity panel of 1771 Ethiopian sorghum landraces using purpose-built root chambers. Significant genetic variation was observed in all studied root traits, with nodal root angle ranging from 16.4° to 26.6°, with a high repeatability of 78.9%. Genome wide association studies identified a total of 22 genomic regions associated with root traits which were distributed on all chromosomes except chromosome SBI-10. Among the 22 root genomic regions, 15 co-located with RSA trait QTL previously identified in sorghum, with the remaining seven representing novel RSA QTL. The majority (85.7%) of identified root angle QTL also co-localized with QTL previously identified for stay-green in sorghum. This suggests that the stay-green phenotype might be associated with root architecture that enhances water extraction during water stress conditions. The results open avenues for manipulating root phenotypes to improve productivity in abiotic stress environments via marker-assisted selection.
Collapse
Affiliation(s)
- Temesgen Menamo
- College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Andrew K Borrell
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Emma Mace
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, Hermitage Research Facility, Warwick, QLD, 4370, Australia
- Agri-Science Queensland, Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - David R Jordan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Colleen Hunt
- Agri-Science Queensland, Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Bantte Kassahun
- College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia.
| |
Collapse
|
6
|
Wong ACS, van Oosterom EJ, Godwin ID, Borrell AK. Integrating stay-green and PIN-FORMED genes: PIN-FORMED genes as potential targets for designing climate-resilient cereal ideotypes. AOB PLANTS 2023; 15:plad040. [PMID: 37448862 PMCID: PMC10337860 DOI: 10.1093/aobpla/plad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Plant architecture modification (e.g. short-stature crops) is one of the key outcomes of modern crop breeding for high-yielding crop varieties. In cereals, delayed senescence, or stay-green, is an important trait that enables post-anthesis drought stress adaptation. Stay-green crops can prolong photosynthetic capacity during grain-filling period under post-anthesis drought stress, which is essential to ensure grain yield is not impacted under drought stress conditions. Although various stay-green quantitative trait loci have been identified in cereals, the underlying molecular mechanisms regulating stay-green remain elusive. Recent advances in various gene-editing technologies have provided avenues to fast-track crop improvement, such as the breeding of climate-resilient crops in the face of climate change. We present in this viewpoint the focus on using sorghum as the model cereal crop, to study PIN-FORMED (PIN) auxin efflux carriers as means to modulate plant architecture, and the potential to employ it as an adaptive strategy to address the environmental challenges posed by climate uncertainties.
Collapse
Affiliation(s)
- Albert Chern Sun Wong
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Erik J van Oosterom
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Andrew K Borrell
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, 604 Yangan Road, Warwick, Queensland 4370, Australia
| |
Collapse
|
7
|
Wang M, Zhu Q, Yao N, Liang W, Ma X, Li J, Li X, Wang L, Liang W. The Enzyme Lysine Malonylation of Calvin Cycle and Gluconeogenesis Regulated Glycometabolism in Nostoc flagelliforme to Adapt to Drought Stress. Int J Mol Sci 2023; 24:ijms24098446. [PMID: 37176152 PMCID: PMC10179182 DOI: 10.3390/ijms24098446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Lysine malonylation (Kmal) is an evolutionarily conserved post-translational modification (PTM) that has been demonstrated to be involved in cellular and organismal metabolism. However, the role that Kmal plays in response to drought stress of the terrestrial cyanobacteria N. flagelliforme is still unknown. In this study, we performed the first proteomic analysis of Kmal in N. flagelliforme under different drought stresses using LC-MS/MS. In total, 421 malonylated lysine residues were found in 236 different proteins. GO and KEGG enrichment analysis indicated that these malonylated proteins were highly enriched in several metabolic pathways, including carbon metabolism and photosynthesis. Decreased malonylation levels were found to hinder the reception and transmission of light energy and CO2 fixation, which led to a decrease in photosynthetic activity. Kmal was also shown to inhibit the flux of the TCA cycle and activate the gluconeogenesis pathway in response to drought stress. Furthermore, malonylated antioxidant enzymes and antioxidants were synergistically involved in reactive oxygen species (ROS) scavenging. Malonylation was involved in lipid degradation and amino acid biosynthesis as part of drought stress adaptation. This work represents the first comprehensive investigation of the role of malonylation in dehydrated N. flagelliforme, providing an important resource for understanding the drought tolerance mechanism of this organism.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Qiang Zhu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Ning Yao
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Wangli Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxia Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jingjing Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxu Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Lingxia Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|