1
|
Diao H, Wu J. Extreme precipitation reduces the recent photosynthetic carbon isotope signal detected in ecosystem respiration in an old-growth temperate forest. TREE PHYSIOLOGY 2024; 44:tpae118. [PMID: 39246247 PMCID: PMC11469762 DOI: 10.1093/treephys/tpae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
The successful utilization of stable carbon isotope approaches in investigating forest carbon dynamics has relied on the assumption that the carbon isotope compositions (δ13C) therein have detectable temporal variations. However, interpreting the δ13C signal transfer can be challenging, given the complexities involved in disentangling the effect of a single environmental factor, the isotopic dilution effect from background CO2 and the lack of high-resolution δ13C measurements. In this study, we conducted continuous in situ monitoring of atmospheric CO2 (δ13Ca) across a canopy profile in an old-growth temperate forest in northeast China during the normal year 2020 and the wet year 2021. Both years exhibited similar temperature conditions in terms of both seasonal variations and annual averages. We tracked the natural carbon isotope composition from δ13Ca to photosynthate (δ13Cp) and to ecosystem respiration (δ13CReco). We observed significant differences in δ13Ca between the two years. Contrary to in 2020, in 2021 there was a δ13Ca valley in the middle of the growing season, attributed to surges in soil CO2 efflux induced by precipitation, while in 2020 values peaked during that period. Despite substantial and similar seasonal variations in canopy photosynthetic discrimination (Δ13Ccanopy) in the two years, the variability of δ13Cp in 2021 was significantly lower than in 2020, due to corresponding differences in δ13Ca. Furthermore, unlike in 2020, we found almost no changes in δ13CReco in 2021, which we ascribed to the imprint of the δ13Cp signal on above-ground respiration and, more importantly, to the contribution of stable δ13C signals from soil heterotrophic respired CO2. Our findings suggest that extreme precipitation can impede the detectability of recent photosynthetic δ13C signals in ecosystem respiration in forests, thus complicating the interpretation of above- and below-ground carbon linkage using δ13CReco. This study provides new insights for unravelling precipitation-related variations in forest carbon dynamics using stable isotope techniques.
Collapse
Affiliation(s)
- Haoyu Diao
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| | - Jiabing Wu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China
| |
Collapse
|
2
|
Tang Y, Sahlstedt E, Rissanen K, Bäck J, Schiestl-Aalto P, Angove C, Richter A, Saurer M, Aalto J, Dukat P, Lintunen A, Rinne-Garmston KT. Resin acid δ 13C and δ 18O as indicators of intra-seasonal physiological and environmental variability. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39189985 DOI: 10.1111/pce.15108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
Understanding the dynamics of δ13C and δ18O in modern resin is crucial for interpreting (sub)fossilized resin records and resin production dynamics. We measured the δ13C and δ18O offsets between resin acids and their precursor molecules in the top-canopy twigs and breast-height stems of mature Pinus sylvestris trees. We also investigated the physiological and environmental signals imprinted in resin δ13C and δ18O at an intra-seasonal scale. Resin δ13C was c. 2‰ lower than sucrose δ13C, in both twigs and stems, likely due to the loss of 13C-enriched C-1 atoms of pyruvate during isoprene formation and kinetic isotope effects during diterpene synthesis. Resin δ18O was c. 20‰ higher than xylem water δ18O and c. 20‰ lower than δ18O of water-soluble carbohydrates, possibly caused by discrimination against 18O during O2-based diterpene oxidation and 35%-50% oxygen atom exchange with water. Resin δ13C and δ18O recorded a strong signal of soil water potential; however, their overall capacity to infer intraseasonal environmental changes was limited by their temporal, within-tree and among-tree variations. Future studies should validate the potential isotope fractionation mechanisms associated with resin synthesis and explore the use of resin δ13C and δ18O as a long-term proxy for physiological and environmental changes.
Collapse
Affiliation(s)
- Yu Tang
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Helsinki, Finland
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Elina Sahlstedt
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Kaisa Rissanen
- Département des Sciences Biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Pauliina Schiestl-Aalto
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Charlotte Angove
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Paulina Dukat
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anna Lintunen
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Katja T Rinne-Garmston
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
3
|
Salomón RL, Rodríguez-Calcerrada J, De Roo L, Miranda JC, Bodé S, Boeckx P, Steppe K. Carbon isotope composition of respired CO2 in woody stems and leafy shoots of three tree species along the growing season: physiological drivers for respiratory fractionation. TREE PHYSIOLOGY 2023; 43:1731-1744. [PMID: 37471648 DOI: 10.1093/treephys/tpad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The carbon isotope composition of respired CO2 (δ13CR) and bulk organic matter (δ13CB) of various plant compartments informs about the isotopic fractionation and substrate of respiratory processes, which are crucial to advance the understanding of carbon allocation in plants. Nevertheless, the variation across organs, species and seasons remains poorly understood. Cavity Ring-Down Laser Spectroscopy was applied to measure δ13CR in leafy shoots and woody stems of maple (Acer platanoides L.), oak (Quercus robur L.) and cedar (Thuja occidentalis L.) trees during spring and late summer. Photosynthesis, respiration, growth and non-structural carbohydrates were measured in parallel to evaluate potential drivers for respiratory fractionation. The CO2 respired by maple and oak shoots was 13C-enriched relative to δ13CB during spring, but not late summer or in the stem. In cedar, δ13CR did not vary significantly throughout organs and seasons, with respired CO2 being 13C-depleted relative to δ13CB. Shoot δ13CR was positively related to leaf starch concentration in maple, while stem δ13CR was inversely related to stem growth. These relations were not significant for oak or cedar. The variability in δ13CR suggests (i) different contributions of respiratory pathways between organs and (ii) seasonality in the respiratory substrate and constitutive compounds for wood formation in deciduous species, less apparent in evergreen cedar, whose respiratory metabolism might be less variable.
Collapse
Affiliation(s)
- Roberto L Salomón
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Plant Ecology, Ghent University, Coupure links 653, Ghent 9000, Belgium
- Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040, Madrid, Spain
| | - Jesús Rodríguez-Calcerrada
- Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040, Madrid, Spain
| | - Linus De Roo
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Plant Ecology, Ghent University, Coupure links 653, Ghent 9000, Belgium
| | - José Carlos Miranda
- Departamento de Sistemas y Recursos Naturales, Research Group FORESCENT, Universidad Politécnica de Madrid, Jose Antonio Novais 10, 28040, Madrid, Spain
| | - Samuel Bodé
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Coupure links 653, Gent 9000, Belgium
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Coupure links 653, Gent 9000, Belgium
| | - Kathy Steppe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Laboratory of Plant Ecology, Ghent University, Coupure links 653, Ghent 9000, Belgium
| |
Collapse
|
4
|
Tang Y, Sahlstedt E, Young G, Schiestl‐Aalto P, Saurer M, Kolari P, Jyske T, Bäck J, Rinne‐Garmston KT. Estimating intraseasonal intrinsic water-use efficiency from high-resolution tree-ring δ 13 C data in boreal Scots pine forests. THE NEW PHYTOLOGIST 2023; 237:1606-1619. [PMID: 36451527 PMCID: PMC10108005 DOI: 10.1111/nph.18649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/16/2022] [Indexed: 05/26/2023]
Abstract
Intrinsic water-use efficiency (iWUE), a key index for carbon and water balance, has been widely estimated from tree-ring δ13 C at annual resolution, but rarely at high-resolution intraseasonal scale. We estimated high-resolution iWUE from laser-ablation δ13 C analysis of tree-rings (iWUEiso ) and compared it with iWUE derived from gas exchange (iWUEgas ) and eddy covariance (iWUEEC ) data for two Pinus sylvestris forests from 2002 to 2019. By carefully timing iWUEiso via modeled tree-ring growth, iWUEiso aligned well with iWUEgas and iWUEEC at intraseasonal scale. However, year-to-year patterns of iWUEgas , iWUEiso , and iWUEEC were different, possibly due to distinct environmental drivers on iWUE across leaf, tree, and ecosystem scales. We quantified the modification of iWUEiso by postphotosynthetic δ13 C enrichment from leaf sucrose to tree rings and by nonexplicit inclusion of mesophyll and photorespiration terms in photosynthetic discrimination model, which resulted in overestimation of iWUEiso by up to 11% and 14%, respectively. We thus extended the application of tree-ring δ13 C for iWUE estimates to high-resolution intraseasonal scale. The comparison of iWUEgas , iWUEiso , and iWUEEC provides important insights into physiological acclimation of trees across leaf, tree, and ecosystem scales under climate change and improves the upscaling of ecological models.
Collapse
Affiliation(s)
- Yu Tang
- Bioeconomy and Environment UnitNatural Resources Institute Finland (Luke)Latokartanonkaari 900790HelsinkiFinland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research (INAR) / Forest SciencesUniversity of HelsinkiPO Box 2700014HelsinkiFinland
| | - Elina Sahlstedt
- Bioeconomy and Environment UnitNatural Resources Institute Finland (Luke)Latokartanonkaari 900790HelsinkiFinland
| | - Giles Young
- Bioeconomy and Environment UnitNatural Resources Institute Finland (Luke)Latokartanonkaari 900790HelsinkiFinland
| | - Pauliina Schiestl‐Aalto
- Faculty of Science, Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiPO Box 6800014HelsinkiFinland
| | - Matthias Saurer
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research (WSL)Zürcherstrasse 1118903BirmensdorfSwitzerland
| | - Pasi Kolari
- Faculty of Science, Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiPO Box 6800014HelsinkiFinland
| | - Tuula Jyske
- Production Systems UnitNatural Resources Institute FinlandTietotie 202150EspooFinland
| | - Jaana Bäck
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research (INAR) / Forest SciencesUniversity of HelsinkiPO Box 2700014HelsinkiFinland
| | - Katja T. Rinne‐Garmston
- Bioeconomy and Environment UnitNatural Resources Institute Finland (Luke)Latokartanonkaari 900790HelsinkiFinland
| |
Collapse
|