1
|
Hu P, Xu Y, Su Y, Wang Y, Xiong Y, Ding Y. Nuclear-localized pyruvate kinases control phosphorylation of histone H3 on threonine 11. NATURE PLANTS 2024; 10:1682-1697. [PMID: 39367257 DOI: 10.1038/s41477-024-01821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Phosphorylation of histone H3 at threonine 11 (H3T11ph) affects transcription and chromosome stability. However, the enzymes responsible for depositing H3T11ph and the functions of H3T11ph in plants remain unknown. Here we report that in Arabidopsis thaliana, PYRUVATE KINASE 6 (PK6), PK7 and PK8 enter the nucleus under conditions of sufficient glucose and light exposure, where they interact with SWI2/SNF2-RELATED 1 COMPLEX 4 (SWC4) and phosphorylate H3 at threonine 11. Mutations in these kinases or knockdown of SWC4 resulted in FLC-dependent early flowering, short hypocotyls and short pedicels. Genome-wide, H3T11ph is highly enriched at transcription start sites and transcription termination sites, and positively correlated with gene transcript levels. PK6 and SWC4 targeted FLC, MYB73, PRE1, TCP4 and TCP10, depositing H3T11ph at these loci and promoting their transcription, and PK6 occupancy at these loci requires SWC4. Together, our results reveal that nuclear-localized PK6, PK7 and PK8 modulate H3T11ph and plant growth.
Collapse
Affiliation(s)
- Pengcheng Hu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanmei Xu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanhua Su
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuxin Wang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Xiong
- Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| |
Collapse
|
2
|
Ji X, Liu W, Zhang F, Su Y, Ding Y, Li H. H3K36me3 and H2A.Z coordinately modulate flowering time in Arabidopsis. J Genet Genomics 2024; 51:1135-1138. [PMID: 37302474 DOI: 10.1016/j.jgg.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoru Ji
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenqian Liu
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanhua Su
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Chen H, Wang W, Chen X, Niu Y, Qi Y, Yu Z, Xiong M, Xu P, Wang W, Guo T, Yang HQ, Mao Z. PIFs interact with SWI2/SNF2-related 1 complex subunit 6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis. J Genet Genomics 2023; 50:983-992. [PMID: 37120038 DOI: 10.1016/j.jgg.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Light is an essential environmental signal perceived by a broad range of photoreceptors in plants. Among them, the red/far-red light receptor phytochromes function to promote photomorphogenesis, which is critical to the survival of seedlings after seeds germination. The basic-helix-loop-helix transcription factors phytochrome-interacting factors (PIFs) are the pivotal direct downstream components of phytochromes. H2A.Z is a highly conserved histone variant regulating gene transcription, and its incorporation into nucleosomes is catalyzed by SWI2/SNF2-related 1 complex, in which SWI2/SNF2-related 1 complex subunit 6 (SWC6) and actin-related protein 6 (ARP6) serve as core subunits. Here, we show that PIFs physically interact with SWC6 in vitro and in vivo, leading to the disassociation of HY5 from SWC6. SWC6 and ARP6 regulate hypocotyl elongation partly through PIFs in red light. PIFs and SWC6 coregulate the expression of auxin-responsive genes such as IAA6, IAA19, IAA20, and IAA29 and repress H2A.Z deposition at IAA6 and IAA19 in red light. Based on previous studies and our findings, we propose that PIFs inhibit photomorphogenesis, at least in part, through repression of H2A.Z deposition at auxin-responsive genes mediated by the interactions of PIFs with SWC6 and promotion of their expression in red light.
Collapse
Affiliation(s)
- Huiru Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wanting Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yake Niu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuanyuan Qi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ze Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Minyu Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Radjacommare R, Lin SY, Usharani R, Lin WD, Jauh GY, Schmidt W, Fu H. The Arabidopsis Deubiquitylase OTU5 Suppresses Flowering by Histone Modification-Mediated Activation of the Major Flowering Repressors FLC, MAF4, and MAF5. Int J Mol Sci 2023; 24:ijms24076176. [PMID: 37047144 PMCID: PMC10093928 DOI: 10.3390/ijms24076176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Distinct phylogeny and substrate specificities suggest that 12 Arabidopsis Ovarian Tumor domain-containing (OTU) deubiquitinases participate in conserved or plant-specific functions. The otu5-1 null mutant displayed a pleiotropic phenotype, including early flowering, mimicking that of mutants harboring defects in subunits (e.g., ARP6) of the SWR1 complex (SWR1c) involved in histone H2A.Z deposition. Transcriptome and RT-qPCR analyses suggest that downregulated FLC and MAF4-5 are responsible for the early flowering of otu5-1. qChIP analyses revealed a reduction and increase in activating and repressive histone marks, respectively, on FLC and MAF4-5 in otu5-1. Subcellular fractionation, GFP-fusion expression, and MNase treatment of chromatin showed that OTU5 is nucleus-enriched and chromatin-associated. Moreover, OTU5 was found to be associated with FLC and MAF4-5. The OTU5-associated protein complex(es) appears to be distinct from SWR1c, as the molecular weights of OTU5 complex(es) were unaltered in arp6-1 plants. Furthermore, the otu5-1 arp6-1 double mutant exhibited synergistic phenotypes, and H2A.Z levels on FLC/MAF4-5 were reduced in arp6-1 but not otu5-1. Our results support the proposition that Arabidopsis OTU5, acting independently of SWR1c, suppresses flowering by activating FLC and MAF4-5 through histone modification. Double-mutant analyses also indicate that OTU5 acts independently of the HUB1-mediated pathway, but it is partially required for FLC-mediated flowering suppression in autonomous pathway mutants and FRIGIDA-Col.
Collapse
|
5
|
Long J, Carter B, Johnson ET, Ogas J. Contribution of the histone variant H2A.Z to expression of responsive genes in plants. Semin Cell Dev Biol 2023; 135:85-92. [PMID: 35474148 PMCID: PMC9588091 DOI: 10.1016/j.semcdb.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/19/2022]
Abstract
The histone variant H2A.Z plays a critical role in chromatin-based processes such as transcription, replication, and repair in eukaryotes. Although many H2A.Z-associated processes and features are conserved in plants and animals, a distinguishing feature of plant chromatin is the enrichment of H2A.Z in the bodies of genes that exhibit dynamic expression, particularly in response to differentiation and the environment. Recent work sheds new light on the plant machinery that enables dynamic changes in H2A.Z enrichment and identifies additional chromatin-based pathways that contribute to transcriptional properties of H2A.Z-enriched chromatin. In particular, analysis of a variety of responsive loci reveals a repressive role for H2A.Z in expression of responsive genes and identifies roles for SWR1 and INO80 chromatin remodelers in enabling dynamic regulation of H2A.Z levels and transcription. These studies lay the groundwork for understanding how this ancient histone variant is harnessed by plants to enable responsive and dynamic gene expression (Graphical Abstract).
Collapse
Affiliation(s)
- Jiaxin Long
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Emily T Johnson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
6
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
7
|
Banerjee S, Roy S. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update. Cell Cycle 2021; 20:1760-1784. [PMID: 34437813 DOI: 10.1080/15384101.2021.1966584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Plants, with their obligatory immobility, are vastly exposed to a wide range of environmental agents and also various endogenous processes, which frequently cause damage to DNA and impose genotoxic stress. These factors subsequently increase genome instability, thus affecting plant growth and productivity. Therefore, to survive under frequent and extreme environmental stress conditions, plants have developed highly efficient and powerful defense mechanisms to repair the damages in the genome for maintaining genome stability. Such multi-dimensional signaling response, activated in presence of damage in the DNA, is collectively known as DNA Damage Response (DDR). DDR plays a crucial role in the remarkably efficient detection, signaling, and repair of damages in the genome for maintaining plant genome stability and normal growth responses. Like other highly advanced eukaryotic systems, chromatin dynamics play a key role in regulating cell cycle progression in plants through remarkable orchestration of environmental and developmental signals. The regulation of chromatin architecture and nucleosomal organization in DDR is mainly modulated by the ATP dependent chromatin remodelers (ACRs), chromatin modifiers, and histone chaperones. ACRs are mainly responsible for transcriptional regulation of several homologous recombination (HR) repair genes in plants under genotoxic stress. The HR-based repair of DNA damage has been considered as the most error-free mechanism of repair and represents one of the essential sources of genetic diversity and new allelic combinations in plants. The initiation of DDR signaling and DNA damage repair pathway requires recruitment of epigenetic modifiers for remodeling of the damaged chromatin while accumulating evidence has shown that chromatin remodeling and DDR share part of the similar signaling pathway through the altered epigenetic status of the associated chromatin region. In this review, we have integrated information to provide an overview on the association between chromatin remodeling mediated regulation of chromatin structure stability and DDR signaling in plants, with emphasis on the scope of the utilization of the available knowledge for the improvement of plant health and productivity.Abbreviation: ADH: Alcohol Dehydrogenase; AGO2: Argonaute 2; ARP: Actin-Related Protein; ASF:1- Anti-Silencing Function-1; ATM: Ataxia Telangiectasia Mutated; ATR: ATM and Rad3- Related; AtSWI3c: Arabidopsis thaliana Switch 3c; ATXR5: Arabidopsis Trithorax-Related5; ATXR6: Arabidopsis Trithorax-Related6; BER: Base Excision Repair; BRCA1: Breast Cancer Associated 1; BRM: BRAHMA; BRU1: BRUSHY1; CAF:1- Chromatin Assembly Factor-1; CHD: Chromodomain Helicase DNA; CHR5: Chromatin Remodeling Protein 5; CHR11/17: Chromatin Remodeling Protein 11/17; CIPK11- CBL- Interacting Protein Kinase 11; CLF: Curly Leaf; CMT3: Chromomethylase 3; COR15A: Cold Regulated 15A; COR47: Cold Regulated 47; CRISPR: Clustered Regulatory Interspaced Short Palindromic Repeats; DDM1: Decreased DNA Methylation1; DRR: DNA Repair and Recombination; DSBs: Double-Strand Breaks; DDR: DNA Damage Response; EXO1: Exonuclease 1; FAS1/2: Fasciata1/2; FACT: Facilitates Chromatin Transcription; FT: Flowering Locus T; GMI1: Gamma-Irradiation And Mitomycin C Induced 1; HAC1: Histone Acetyltransferase of the CBP Family 1; HAM1: Histone Acetyltransferase of the MYST Family 1; HAM2: Histone Acetyltransferase of the MYST Family 2; HAF1: Histone Acetyltransferase of the TAF Family 1; HAT: Histone Acetyl Transferase; HDA1: Histone Deacetylase 1; HDA6: Histone Deacetylase 6; HIRA: Histone Regulatory Homolog A; HR- Homologous recombination; HAS: Helicase SANT Associated; HSS: HAND-SLANT-SLIDE; ICE1: Inducer of CBF Expression 1; INO80: Inositol Requiring Mutant 80; ISW1: Imitation Switch 1; KIN1/2: Kinase 1 /2; MET1: Methyltransferase 1; MET2: Methyltransferase 2; MINU: MINUSCULE; MMS: Methyl Methane Sulfonate; MMS21: Methyl Methane Sulfonate Sensitivity 21; MRN: MRE11, RAD50 and NBS1; MSI1: Multicopy Suppressor Of Ira1; NAP1: Nucleosome Assembly Protein 1; NRP1/NRP2: NAP1-Related Protein; NER: Nucleotide Excision Repair; NHEJ: Non-Homologous End Joining; PARP1: Poly-ADP Ribose Polymerase; PIE1: Photoperiod Independent Early Flowering 1; PIKK: Phosphoinositide 3-Kinase-Like Kinase; PKL: PICKLE; PKR1/2: PICKLE Related 1/2; RAD: Radiation Sensitive Mutant; RD22: Responsive To Desiccation 22; RD29A: Responsive To Desiccation 29A; ROS: Reactive Oxygen Species; ROS1: Repressor of Silencing 1; RPA1E: Replication Protein A 1E; SANT: Swi3, Ada2, N-Cor and TFIIIB; SEP3: SEPALLATA3; SCC3: Sister Chromatid Cohesion Protein 3; SMC1: Structural Maintenance of Chromosomes Protein 1; SMC3: Structural Maintenance of Chromosomes Protein 3; SOG1: Suppressor of Gamma Response 1; SWC6: SWR1 Complex Subunit 6; SWR1: SWI2/SNF2-Related 1; SYD: SPLAYED; SMC5: Structural Maintenance of Chromosome 5; SWI/SNF: Switch/Sucrose Non-Fermentable; TALENs: Transcription Activators Like Effector Nucleases; TRRAP: Transformation/Transactivation Domain-Associated Protein; ZFNs: Zinc Finger Nucleases.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advanced Studies, the University of Burdwan, Golapbag Campus, Burdwan, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, the University of Burdwan, Golapbag Campus, Burdwan, West Bengal, India
| |
Collapse
|
8
|
OsARP6 Is Involved in Internode Elongation by Regulating Cell-Cycle-Related Genes. Biomolecules 2021; 11:biom11081100. [PMID: 34439766 PMCID: PMC8393719 DOI: 10.3390/biom11081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The SWR1 complex (SWR1-C) is important for the deposition of histone variant H2A.Z into chromatin to regulate gene expression. Characterization of SWR1-C subunits in Arabidopsis thaliana has revealed their role in variety of developmental processes. Oryza sativa actin related protein 6 (OsARP6) is a subunit of rice SWR1-C. Its role in rice plant development is unknown. Here, we examined the subcellular localization, expression patterns, and loss of function phenotypes for this protein and found that OsARP6 is a nuclear localized protein, and is broadly expressed. OsARP6 interacted with OsPIE1, a central ATPase subunit of rice SWR1-C. The osarp6 knockout mutants displayed pleiotropic phenotypic alterations in vegetative and reproductive traits, including semi-dwarf phenotype, lower tillers number, short leaf length, changes in spikelet morphology, and seed abortion. Microscopic thin sectioning of the top internode revealed that the dwarf phenotype of osarp6 was due to reduced number of cells rather than reduced cell length. The altered transcript level of genes involved in cell division suggested that OsARP6 affects cell cycle regulation. In addition, H2A.Z levels were reduced at the promoters and transcription start sites (TSS) of the regulated genes in osarp6 plants. Together, these results suggest that OsARP6 is involved in rice plant development, and H2A.Z deposition.
Collapse
|
9
|
Cai H, Liu L, Zhang M, Chai M, Huang Y, Chen F, Yan M, Su Z, Henderson I, Palanivelu R, Chen X, Qin Y. Spatiotemporal control of miR398 biogenesis, via chromatin remodeling and kinase signaling, ensures proper ovule development. THE PLANT CELL 2021; 33:1530-1553. [PMID: 33570655 PMCID: PMC8254498 DOI: 10.1093/plcell/koab056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/02/2021] [Indexed: 05/11/2023]
Abstract
The coordinated development of sporophytic and gametophytic tissues is essential for proper ovule patterning and fertility. However, the mechanisms regulating their integrated development remain poorly understood. Here, we report that the Swi2/Snf2-Related1 (SWR1) chromatin-remodeling complex acts with the ERECTA receptor kinase-signaling pathway to control female gametophyte and integument growth in Arabidopsis thaliana by inhibiting transcription of the microRNA gene MIR398c in early-stage megagametogenesis. Moreover, pri-miR398c is transcribed in the female gametophyte but is then translocated to and processed in the ovule sporophytic tissues. Together, SWR1 and ERECTA also activate ARGONAUTE10 (AGO10) expression in the chalaza; AGO10 sequesters miR398, thereby ensuring the expression of three AGAMOUS-LIKE (AGL) genes (AGL51, AGL52, and AGL78) in the female gametophyte. In the context of sexual organ morphogenesis, these findings suggest that the spatiotemporal control of miRNA biogenesis, resulting from coordination between chromatin remodeling and cell signaling, is essential for proper ovule development in Arabidopsis.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Liu
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Zhang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengnan Chai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangqian Chen
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maokai Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhenxia Su
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ian Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States
| | - Yuan Qin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Author for correspondence:
| |
Collapse
|
10
|
Cai H, Huang Y, Chen F, Liu L, Chai M, Zhang M, Yan M, Aslam M, He Q, Qin Y. ERECTA signaling regulates plant immune responses via chromatin-mediated promotion of WRKY33 binding to target genes. THE NEW PHYTOLOGIST 2021; 230:737-756. [PMID: 33454980 DOI: 10.1111/nph.17200] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The signaling pathway mediated by the receptor-like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one-hybrid analysis were applied to identify ER-WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER-signaling-mediated plant immune responses.
Collapse
Affiliation(s)
- Hanyang Cai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youmei Huang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fangqian Chen
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Liu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengnan Chai
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Man Zhang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Maokai Yan
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Qing He
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
11
|
Espinosa-Cantú A, Cruz-Bonilla E, Noda-Garcia L, DeLuna A. Multiple Forms of Multifunctional Proteins in Health and Disease. Front Cell Dev Biol 2020; 8:451. [PMID: 32587857 PMCID: PMC7297953 DOI: 10.3389/fcell.2020.00451] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Protein science has moved from a focus on individual molecules to an integrated perspective in which proteins emerge as dynamic players with multiple functions, rather than monofunctional specialists. Annotation of the full functional repertoire of proteins has impacted the fields of biochemistry and genetics, and will continue to influence basic and applied science questions - from the genotype-to-phenotype problem, to our understanding of human pathologies and drug design. In this review, we address the phenomena of pleiotropy, multidomain proteins, promiscuity, and protein moonlighting, providing examples of multitasking biomolecules that underlie specific mechanisms of human disease. In doing so, we place in context different types of multifunctional proteins, highlighting useful attributes for their systematic definition and classification in future research directions.
Collapse
Affiliation(s)
- Adriana Espinosa-Cantú
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| | - Erika Cruz-Bonilla
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| |
Collapse
|
12
|
Espinosa-Cores L, Bouza-Morcillo L, Barrero-Gil J, Jiménez-Suárez V, Lázaro A, Piqueras R, Jarillo JA, Piñeiro M. Insights Into the Function of the NuA4 Complex in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:125. [PMID: 32153620 PMCID: PMC7047200 DOI: 10.3389/fpls.2020.00125] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 05/14/2023]
Abstract
Chromatin remodeling plays a key role in the establishment and maintenance of gene expression patterns essential for plant development and responses to environmental factors. Post-translational modification of histones, including acetylation, is one of the most relevant chromatin remodeling mechanisms that operate in eukaryotic cells. Histone acetylation is an evolutionarily conserved chromatin signature commonly associated with transcriptional activation. Histone acetylation levels are tightly regulated through the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In plants, different families of HATs are present, including the MYST family, which comprises homologs of the catalytic subunit of the Nucleosome Acetyltransferase of H4 (NuA4) complex in yeast. This complex mediates acetylation of histones H4, H2A, and H2A.Z, and is involved in transcriptional regulation, heterochromatin silencing, cell cycle progression, and DNA repair in yeast. In Arabidopsis and, other plant species, homologs for most of the yeast NuA4 subunits are present and although the existence of this complex has not been demonstrated yet, compelling evidence supports the notion that this type of HAT complex functions from mosses to angiosperms. Recent proteomic studies show that several Arabidopsis homologs of NuA4 components, including the assembly platform proteins and the catalytic subunit, are associated in vivo with additional members of this complex suggesting that a NuA4-like HAT complex is present in plants. Furthermore, the functional characterization of some Arabidopsis NuA4 subunits has uncovered the involvement of these proteins in the regulation of different plant biological processes. Interestingly, for most of the mutant plants deficient in subunits of this complex characterized so far, conspicuous defects in flowering time are observed, suggesting a role for NuA4 in the control of this plant developmental program. Moreover, the participation of Arabidopsis NuA4 homologs in other developmental processes, such as gametophyte development, as well as in cell proliferation and stress and hormone responses, has also been reported. In this review, we summarize the current state of knowledge on plant putative NuA4 subunits and discuss the latest progress concerning the function of this chromatin modifying complex.
Collapse
|
13
|
Grasser KD. The FACT Histone Chaperone: Tuning Gene Transcription in the Chromatin Context to Modulate Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2020; 11:85. [PMID: 32140163 PMCID: PMC7042381 DOI: 10.3389/fpls.2020.00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
FACT is a heterodimeric histone chaperone consisting of the SSRP1 and SPT16 proteins and is conserved among eukaryotes. It interacts with the histones H2A-H2B and H3-H4 as well as with DNA. Based on in vitro and in vivo studies mainly in yeast and mammalian cells, FACT can mediate nucleosome disassembly and reassembly and thus facilitates in the chromatin context DNA-dependent processes including transcription, replication and repair. In plants, primarily the role of FACT related to RNA polymerase II transcription has been examined. FACT was found to associate with elongating Arabidopsis RNA polymerase II (RNAPII) as part of the transcript elongation complex and it was identified as repressor of aberrant intragenic transcriptional initiation. Arabidopsis mutants depleted in FACT subunits exhibit various defects in vegetative and reproductive development. Strikingly, FACT modulates important developmental transitions by promoting expression of key repressors of these processes. Thus, FACT facilitates expression of DOG1 and FLC adjusting the switch from seed dormancy to germination and from vegetative to reproductive development, respectively. In the central cell of the female gametophyte, FACT can facilitate DNA demethylation especially within heterochromatin, and thereby contributes to gene imprinting during Arabidopsis reproduction. This review discusses results particularly from the plant perspective about the contribution of FACT to processes that involve reorganisation of nucleosomes with a main focus on RNAPII transcription and its implications for diverse areas of plant biology.
Collapse
|
14
|
Aslam M, Fakher B, Jakada BH, Cao S, Qin Y. SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells 2019; 8:cells8121621. [PMID: 31842357 PMCID: PMC6952815 DOI: 10.3390/cells8121621] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
The nucleosome is the structural and fundamental unit of eukaryotic chromatin. The chromatin remodeling complexes change nucleosome composition, packaging and positioning to regulate DNA accessibility for cellular machinery. SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) belongs to the INO80 chromatin remodeling family and mainly catalyzes the exchange of H2A-H2B with the H2A.Z-H2B dimer. The replacement of H2A.Z into nucleosomes affects nucleosome stability and chromatin structure. Incorporation of H2A.Z into the chromatin and its physiochemical properties play a key role in transcriptional regulation during developmental and environmental responses. In Arabidopsis, various studies have uncovered several pivotal roles of SWR1-C. Recently, notable progress has been achieved in understanding the role of SWR1-C in plant developmental and physiological processes such as DNA damage repair, stress tolerance, and flowering time. The present article introduces the SWR1-C and comprehensively reviews recent discoveries made in understanding the function of the SWR1 complex in plants.
Collapse
Affiliation(s)
- Mohammad Aslam
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| | - Beenish Fakher
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.F.); (B.H.J.); (S.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (M.A.); (Y.Q.); Tel.: +86-177-2075-0046 (Y.Q.)
| |
Collapse
|
15
|
Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. Int J Mol Sci 2019; 20:ijms20184591. [PMID: 31533258 PMCID: PMC6770637 DOI: 10.3390/ijms20184591] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic genes are packed into a dynamic but stable nucleoprotein structure called chromatin. Chromatin-remodeling and modifying complexes generate a dynamic chromatin environment that ensures appropriate DNA processing and metabolism in various processes such as gene expression, as well as DNA replication, repair, and recombination. The INO80 and SWR1 chromatin remodeling complexes (INO80-c and SWR1-c) are ATP-dependent complexes that modulate the incorporation of the histone variant H2A.Z into nucleosomes, which is a critical step in eukaryotic gene regulation. Although SWR1-c has been identified in plants, plant INO80-c has not been successfully isolated and characterized. In this review, we will focus on the functions of the SWR1-c and putative INO80-c (SWR1/INO80-c) multi-subunits and multifunctional complexes in Arabidopsis thaliana. We will describe the subunit compositions of the SWR1/INO80-c and the recent findings from the standpoint of each subunit and discuss their involvement in regulating development and environmental responses in Arabidopsis.
Collapse
|
16
|
Identification of SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) Subunits in Pineapple and the Role of Pineapple SWR1 COMPLEX 6 (AcSWC6) in Biotic and Abiotic Stress Response. Biomolecules 2019; 9:biom9080364. [PMID: 31412667 PMCID: PMC6723344 DOI: 10.3390/biom9080364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022] Open
Abstract
Chromatin remodeling complex orchestrates numerous aspects of growth and development in eukaryotes. SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is a member of the SWI/SNF ATPase-containing chromatin remodeling complex responsible for the exchange of H2A for H2A.Z. In plants, SWR1-C plays a crucial role by transcriptionally regulating numerous biological and developmental processes. However, SWR1-C activity remains obscure in pineapple. Here, we aim to identify the SWR1-C subunits in pineapple. By genome-wide identification, we found a total of 11 SWR1-C subunits in the pineapple. The identified SWR1-C subunits were named and classified based on the sequence similarity and phylogenetic analysis. RNA-Seq analysis showed that pineapple SWR1-C subunits are expressed differentially in different organs and at different stages. Additionally, the qRT-PCR of pineapple SWR1-C subunits during abiotic stress exposure showed significant changes in their expression. We further investigated the functions of pineapple SWR1 COMPLEX 6 (AcSWC6) by ectopically expressing it in Arabidopsis. Interestingly, transgenic plants ectopically expressing AcSWC6 showed susceptibility to fungal infection and enhanced resistance to salt and osmotic stress, revealing its involvement in biotic and abiotic stress. Moreover, the complementation of mutant Arabidopsisswc6 by pineapple SWC6 suggested the conserved function of SWC6 in plants.
Collapse
|
17
|
Sijacic P, Holder DH, Bajic M, Deal RB. Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome. PLoS Genet 2019; 15:e1008326. [PMID: 31381567 PMCID: PMC6695207 DOI: 10.1371/journal.pgen.1008326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/15/2019] [Accepted: 07/22/2019] [Indexed: 12/01/2022] Open
Abstract
The SWR1 chromatin remodeling complex, which deposits the histone variant H2A.Z into nucleosomes, has been well characterized in yeast and animals, but its composition in plants has remained uncertain. We used the conserved SWR1 subunit ACTIN RELATED PROTEIN 6 (ARP6) as bait in tandem affinity purification experiments to isolate associated proteins from Arabidopsis thaliana. We identified all 11 subunits found in yeast SWR1 and the homologous mammalian SRCAP complexes, demonstrating that this complex is conserved in plants. We also identified several additional proteins not previously associated with SWR1, including Methyl-CpG-BINDING DOMAIN 9 (MBD9) and three members of the Alfin1-like protein family, all of which have been shown to bind modified histone tails. Since mbd9 mutant plants were phenotypically similar to arp6 mutants, we explored a potential role for MBD9 in H2A.Z deposition. We found that MBD9 is required for proper H2A.Z incorporation at thousands of discrete sites, which represent a subset of the genomic regions normally enriched with H2A.Z. We also discovered that MBD9 preferentially interacts with acetylated histone H4 peptides, as well as those carrying mono- or dimethylated H3 lysine 4, or dimethylated H3 arginine 2 or 8. Considering that MBD9-dependent H2A.Z sites show a distinct histone modification profile, we propose that MBD9 recognizes particular nucleosome modifications via its PHD- and Bromo-domains and thereby guides SWR1 to these sites for H2A.Z deposition. Our data establish the SWR1 complex as being conserved across eukaryotes and suggest that MBD9 may be involved in targeting the complex to specific genomic sites through nucleosomal interactions. The finding that MBD9 does not appear to be a core subunit of the Arabidopsis SWR1 complex, along with the synergistic phenotype of arp6;mbd9 double mutants, suggests that MBD9 also has important roles beyond H2A.Z deposition. The histone H2A variant, H2A.Z, is found in all known eukaryotes and plays important roles in transcriptional regulation. H2A.Z is selectively incorporated into nucleosomes within many genes by the activity of a conserved ATP-dependent chromatin remodeling complex in yeast, insects, and mammals. Whether this complex exists in the same form in plants, and how the complex is targeted to specific genomic locations have remained open questions. In this study we demonstrate that plants do indeed utilize a complex analogous to those of fungi and animals to deposit H2A.Z, and we also identify several new proteins that interact with this complex. We found that one such interactor, Methyl-CpG-BINDING DOMAIN 9 (MBD9), is required for H2A.Z incorporation at thousands of genomic sites that share a distinct histone modification profile. The histone binding properties of MBD9 suggest that it may guide H2A.Z deposition to specific sites by interacting with modified nucleosomes and with the H2A.Z deposition complex. We hypothesize that this represents a general paradigm for the targeting of H2A.Z to specific sites.
Collapse
Affiliation(s)
- Paja Sijacic
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Dylan H. Holder
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, United States of America
| | - Marko Bajic
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, United States of America
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:16641-16650. [PMID: 31363048 DOI: 10.1073/pnas.1906023116] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Active DNA demethylation is critical for controlling the DNA methylomes in plants and mammals. However, little is known about how DNA demethylases are recruited to target loci, and the involvement of chromatin marks in this process. Here, we identify 2 components of the SWR1 chromatin-remodeling complex, PIE1 and ARP6, as required for ROS1-mediated DNA demethylation, and discover 2 SWR1-associated bromodomain-containing proteins, AtMBD9 and nuclear protein X1 (NPX1). AtMBD9 and NPX1 recognize histone acetylation marks established by increased DNA methylation 1 (IDM1), a known regulator of DNA demethylation, redundantly facilitating H2A.Z deposition at IDM1 target loci. We show that at some genomic regions, H2A.Z and DNA methylation marks coexist, and H2A.Z physically interacts with ROS1 to regulate DNA demethylation and antisilencing. Our results unveil a mechanism through which DNA demethylases can be recruited to specific target loci exhibiting particular histone marks, providing a conceptual framework to understand how chromatin marks regulate DNA demethylation.
Collapse
|
19
|
Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.Z deposition. Nat Commun 2019; 10:3352. [PMID: 31350403 PMCID: PMC6659704 DOI: 10.1038/s41467-019-11291-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/05/2019] [Indexed: 11/08/2022] Open
Abstract
Deposition of the histone variant H2A.Z by the SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation in eukaryotes, but the composition of the Arabidopsis SWR1-C has not been thoroughly characterized. Here, we aim to identify interacting partners of a conserved Arabidopsis SWR1 subunit ACTIN-RELATED PROTEIN 6 (ARP6). We isolate nine predicted components and identify additional interactors implicated in histone acetylation and chromatin biology. One of the interacting partners, methyl-CpG-binding domain 9 (MBD9), also strongly interacts with the Imitation SWItch (ISWI) chromatin remodeling complex. MBD9 is required for deposition of H2A.Z at a distinct subset of ARP6-dependent loci. MBD9 is preferentially bound to nucleosome-depleted regions at the 5’ ends of genes containing high levels of activating histone marks. These data suggest that MBD9 is a SWR1-C interacting protein required for H2A.Z deposition at a subset of actively transcribing genes. The SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation, but its composition remains largely uncharacterized in plants. Here, the authors report that methyl-CpG-binding domain 9 (MBD9) is a SWR1-C interacting protein required for histone H2A.Z deposition in Arabidopsis.
Collapse
|
20
|
Crevillén P, Gómez-Zambrano Á, López JA, Vázquez J, Piñeiro M, Jarillo JA. Arabidopsis YAF9 histone readers modulate flowering time through NuA4-complex-dependent H4 and H2A.Z histone acetylation at FLC chromatin. THE NEW PHYTOLOGIST 2019; 222:1893-1908. [PMID: 30742710 DOI: 10.1111/nph.15737] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/02/2019] [Indexed: 05/27/2023]
Abstract
Posttranslational histone modifications and the dynamics of histone variant H2A.Z are key mechanisms underlying the floral transition. In yeast, SWR1-C and NuA4-C mediate the deposition of H2A.Z and the acetylation of histone H4, H2A and H2A.Z, respectively. Yaf9 is a subunit shared by both chromatin-remodeling complexes. The significance of the two Arabidopsis YAF9 homologues, YAF9A and YAF9B, is unknown. To get an insight into the role of Arabidopsis YAF9 proteins in plant developmental responses, we followed physiological, genetic, genomic, epigenetic, proteomics and cell biology approaches. Our data revealed that YAF9A and YAF9B are histone H3 readers with unequally redundant functions. Double mutant yaf9a yaf9b plants display pleiotropic developmental phenotypic alterations as well as misregulation of a wide variety of genes. We demonstrated that YAF9 proteins regulate flowering time by both FLC-dependent and independent mechanisms that work in parallel with SWR1-C. Interestingly, we show that YAF9A binds FLC chromatin and that YAF9 proteins regulate FLC expression by modulating the acetylation levels of H2A.Z and H4 but not H2A.Z deposition. Our work highlights the key role exerted by YAF9 homologues in the posttranslational modification of canonical histones and variants that regulate gene expression in plants to control development.
Collapse
Affiliation(s)
- Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Ángeles Gómez-Zambrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
21
|
Rodrigues AS, De Vega JJ, Miguel CM. Comprehensive assembly and analysis of the transcriptome of maritime pine developing embryos. BMC PLANT BIOLOGY 2018; 18:379. [PMID: 30594130 PMCID: PMC6310951 DOI: 10.1186/s12870-018-1564-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/22/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND There are clear differences in embryo development between angiosperm and gymnosperm species. Most of the current knowledge on gene expression and regulation during plant embryo development has derived from studies on angiosperms species, in particular from the model plant Arabidopsis thaliana. The few published studies on transcript profiling of conifer embryogenesis show the existence of many putative embryo-specific transcripts without an assigned function. In order to extend the knowledge on the transcriptomic expression during conifer embryogenesis, we sequenced the transcriptome of zygotic embryos for several developmental stages that cover most of Pinus pinaster (maritime pine) embryogenesis. RESULTS Total RNA samples collected from five zygotic embryo developmental stages were sequenced with Illumina technology. A de novo transcriptome was assembled as no genome sequence is yet published for Pinus pinaster. The transcriptome of reference for the period of zygotic embryogenesis in maritime pine contains 67,429 transcripts, which likely encode 58,527 proteins. The annotation shows a significant percentage, 31%, of predicted proteins exclusively present in pine embryogenesis. Functional categories and enrichment analysis of the differentially expressed transcripts evidenced carbohydrate transport and metabolism over-representation in early embryo stages, as highlighted by the identification of many putative glycoside hydrolases, possibly associated with cell wall modification, and carbohydrate transport transcripts. Moreover, the predominance of chromatin remodelling events was detected in early to middle embryogenesis, associated with an active synthesis of histones and their post-translational modifiers related to increased transcription, as well as silencing of transposons. CONCLUSIONS Our results extend the understanding of gene expression and regulation during zygotic embryogenesis in conifers and are a valuable resource to support further improvements in somatic embryogenesis for vegetative propagation of conifer species. Specific transcripts associated with carbohydrate metabolism, monosaccharide transport and epigenetic regulation seem to play an important role in pine early embryogenesis and may be a source of reliable molecular markers for early embryogenesis.
Collapse
Affiliation(s)
- Andreia S. Rodrigues
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - José J. De Vega
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Célia M. Miguel
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
22
|
Genome-Wide Identification and Characterization of Warming-Related Genes in Brassica rapa ssp. pekinensis. Int J Mol Sci 2018; 19:ijms19061727. [PMID: 29891774 PMCID: PMC6032310 DOI: 10.3390/ijms19061727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
For sustainable crop cultivation in the face of global warming, it is important to unravel the genetic mechanisms underlying plant adaptation to a warming climate and apply this information to breeding. Thermomorphogenesis and ambient temperature signaling pathways have been well studied in model plants, but little information is available for vegetable crops. Here, we investigated genes responsive to warming conditions from two Brassica rapa inbred lines with different geographic origins: subtropical (Kenshin) and temperate (Chiifu). Genes in Gene Ontology categories “response to heat”, “heat acclimation”, “response to light intensity”, “response to oxidative stress”, and “response to temperature stimulus” were upregulated under warming treatment in both lines, but genes involved in “response to auxin stimulus” were upregulated only in Kenshin under both warming and minor-warming conditions. We identified 16 putative high temperature (HT) adaptation-related genes, including 10 heat-shock response genes, 2 transcription factor genes, 1 splicing factor gene, and 3 others. BrPIF4, BrROF2, and BrMPSR1 are candidate genes that might function in HT adaptation. Auxin response, alternative splicing of BrHSFA2, and heat shock memory appear to be indispensable for HT adaptation in B. rapa. These results lay the foundation for molecular breeding and marker development to improve warming tolerance in B. rapa.
Collapse
|
23
|
Gómez-Zambrano Á, Crevillén P, Franco-Zorrilla JM, López JA, Moreno-Romero J, Roszak P, Santos-González J, Jurado S, Vázquez J, Köhler C, Solano R, Piñeiro M, Jarillo JA. Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes. MOLECULAR PLANT 2018; 11:815-832. [PMID: 29604400 DOI: 10.1016/j.molp.2018.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 05/07/2023]
Abstract
Deposition of the H2A.Z histone variant by the SWR1 complex (SWR1-C) in regulatory regions of specific loci modulates transcription. Characterization of mutations in Arabidopsis thaliana homologs of yeast SWR1-C has revealed a role for H2A.Z exchange in a variety of developmental processes. Nevertheless, the exact composition of plant SWR1-C and how it is recruited to target genes remains to be established. Here we show that SWC4, the Arabidopsis homolog of yeast SANT domain protein Swc4/Eaf2, is a DNA-binding protein that interacts with SWR1-C subunits. We demonstrate that the swc4-1 knockout mutant is embryo-lethal, while SWC4 RNAi knockdown lines display pleiotropic phenotypic alterations in vegetative and reproductive traits, including acceleration of flowering time, indicating that SWC4 controls post-embryonic processes. Transcriptomic analyses and genome-wide profiling of H2A.Z indicate that SWC4 represses transcription of a number of genes, including the floral integrator FT and key transcription factors, mainly by modulating H2A.Z deposition. Interestingly, SWC4 silencing does not affect H2A.Z deposition at the FLC locus nor expression of this gene, a master regulator of flowering previously shown to be controlled by SWR1-C. Importantly, we find that SWC4 recognizes specific AT-rich DNA elements in the chromatin regions of target genes and that SWC4 silencing impairs SWR1-C binding at FT. Collectively, our data suggest that SWC4 regulates plant growth and development by aiding SWR1-C recruitment and modulating H2A.Z deposition.
Collapse
Affiliation(s)
- Ángeles Gómez-Zambrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - José M Franco-Zorrilla
- Plant Molecular Genetics Department and Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Pawel Roszak
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Silvia Jurado
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Roberto Solano
- Plant Molecular Genetics Department and Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
24
|
Xu M, Leichty AR, Hu T, Poethig RS. H2A.Z promotes the transcription of MIR156A and MIR156C in Arabidopsis by facilitating the deposition of H3K4me3. Development 2018; 145:dev152868. [PMID: 29361556 PMCID: PMC5825843 DOI: 10.1242/dev.152868] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
Abstract
Vegetative phase change in Arabidopsis thaliana is mediated by a decrease in the level of MIR156A and MIR156C, resulting in an increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. Changes in chromatin structure are required for the downregulation of MIR156A and MIR156C, but whether chromatin structure contributes to their initial elevated expression is unknown. We found that mutations in components of the SWR1 complex (ARP6, SEF) and in genes encoding H2A.Z (HTA9 and HTA11) reduce the expression of MIR156A and MIR156C, and accelerate vegetative phase change, indicating that H2A.Z promotes juvenile vegetative identity. However, arp6 and sef did not accelerate the temporal decline in miR156, and the downregulation of MIR156A and MIR156C was not accompanied by significant change in the level of H2A.Z at these loci. We conclude that H2A.Z contributes to the high expression of MIR156A/MIR156C early in shoot development, but does not regulate the timing of vegetative phase change. Our results also suggest that H2A.Z promotes the expression of MIR156A/MIR156C by facilitating the deposition of H3K4me3, rather than by decreasing nucleosome occupancy.
Collapse
Affiliation(s)
- Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron R Leichty
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Ramirez-Prado JS, Piquerez SJM, Bendahmane A, Hirt H, Raynaud C, Benhamed M. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:355. [PMID: 29616066 PMCID: PMC5868138 DOI: 10.3389/fpls.2018.00355] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 05/02/2023]
Abstract
Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.
Collapse
Affiliation(s)
- Juan S. Ramirez-Prado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Sophie J. M. Piquerez
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Abdelhafid Bendahmane
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Heribert Hirt
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Cécile Raynaud
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Moussa Benhamed
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
- *Correspondence: Moussa Benhamed,
| |
Collapse
|
26
|
Jarillo JA, Komar DN, Piñeiro M. The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein-DNA Interactions. Methods Mol Biol 2018; 1794:323-334. [PMID: 29855969 DOI: 10.1007/978-1-4939-7871-7_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two-hybrid systems allow for the identification of proteins that physically interact in the context of biological processes. In the cases where these proteins interact with DNA it is essential to define their binding properties with specific regions of the genome to shed light on the intricate gene regulatory networks that modulate the biological response of interest. The chromatin immunoprecipitation (ChIP) protocol described here provides a powerful means to identify the DNA-binding sites of transcription factors, proteins involved in chromatin remodeling processes, or histone marks that modulate gene expression in eukaryotes and specifically in plants like the model species Arabidopsis thaliana. This procedure involves the in vivo fixation of protein-DNA complexes, the physical fragmentation of chromatin with ultrasounds, the specific immunoprecipitation of protein-DNA complexes, and the use of quantitative PCR techniques for the relative quantification of the DNA sequences associated with the proteins of study. This valuable methodology has contributed significantly to a better understanding of the gene expression regulatory mechanisms underlying the control of a variety of biological processes in Arabidopsis.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain.
| | - Dorota N Komar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Madrid, Spain.
| |
Collapse
|
27
|
Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C, Rhodes D, van Noort J, Jaeger KE, Wigge PA. Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis. MOLECULAR PLANT 2017; 10:1258-1273. [PMID: 28893714 PMCID: PMC6175055 DOI: 10.1016/j.molp.2017.08.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 05/18/2023]
Abstract
Temperature influences the distribution, range, and phenology of plants. The key transcriptional activators of heat shock response in eukaryotes, the heat shock factors (HSFs), have undergone large-scale gene amplification in plants. While HSFs are central in heat stress responses, their role in the response to ambient temperature changes is less well understood. We show here that the warm ambient temperature transcriptome is dependent upon the HSFA1 clade of Arabidopsis HSFs, which cause a rapid and dynamic eviction of H2A.Z nucleosomes at target genes. A transcriptional cascade results in the activation of multiple downstream stress-responsive transcription factors, triggering large-scale changes to the transcriptome in response to elevated temperature. H2A.Z nucleosomes are enriched at temperature-responsive genes at non-inducible temperature, and thus likely confer inducibility of gene expression and higher responsive dynamics. We propose that the antagonistic effects of H2A.Z and HSF1 provide a mechanism to activate gene expression rapidly and precisely in response to temperature, while preventing leaky transcription in the absence of an activation signal.
Collapse
Affiliation(s)
- Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Varodom Charoensawan
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Anna Brestovitsky
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Ruth Buning
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
| | - Charles Ravarani
- Medical Research Council Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daniela Rhodes
- Medical Research Council Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Structural Biology, Nanyang Technical University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
| | - Katja E Jaeger
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Philip A Wigge
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
28
|
Narro-Diego L, López-González L, Jarillo JA, Piñeiro M. The PHD-containing protein EARLY BOLTING IN SHORT DAYS regulates seed dormancy in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:2393-2405. [PMID: 28770581 DOI: 10.1111/pce.13046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 05/20/2023]
Abstract
The Arabidopsis protein EARLY BOLTING IN SHORT DAYS (EBS), a plant-specific transcriptional regulator, is involved in the control of flowering time by repressing the floral integrator FT. The EBS protein binds the H3K4me3 histone mark and interacts with histone deacetylases to modulate gene expression. Here, we show that EBS also participates in the regulation of seed dormancy. ebs mutations cause a reduction in seed dormancy, and the concurrent loss of function of the EBS homologue SHORT LIFE (SHL) enhances this dormancy alteration. Transcriptomic analyses in ebs mutant seeds uncovered the misregulation of several regulators of seed dormancy including the MADS box gene AGAMOUS-LIKE67 (AGL67). AGL67 interacts genetically with EBS in seed dormancy regulation, indicating that both loci act in the same pathway. Interestingly, EBS functions independently of the master regulator gene of dormancy DELAY OF GERMINATION 1 (DOG1) and other genes encoding chromatin remodelling factors involved in the control of seed dormancy. Altogether, these data show that EBS is a central repressor of germination during seed dormancy and that SHL acts redundantly with EBS in the control of this developmental process. Our observations suggest that a tightly regulated crosstalk among histone modifications is necessary for a proper control of seed dormancy.
Collapse
Affiliation(s)
- Laura Narro-Diego
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Leticia López-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Jose A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
29
|
Cai H, Zhao L, Wang L, Zhang M, Su Z, Cheng Y, Zhao H, Qin Y. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression. THE NEW PHYTOLOGIST 2017; 214:1579-1596. [PMID: 28295392 DOI: 10.1111/nph.14521] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 05/02/2023]
Abstract
Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.
Collapse
Affiliation(s)
- Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Zhenxia Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Heming Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| |
Collapse
|
30
|
Jiang D, Berger F. Histone variants in plant transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:123-130. [PMID: 27412913 DOI: 10.1016/j.bbagrm.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 12/28/2022]
Abstract
Chromatin based organization of eukaryotic genome plays a profound role in regulating gene transcription. Nucleosomes form the basic subunits of chromatin by packaging DNA with histone proteins, impeding the access of DNA to transcription factors and RNA polymerases. Exchange of histone variants in nucleosomes alters the properties of nucleosomes and thus modulates DNA exposure during transcriptional regulation. Growing evidence indicates the important function of histone variants in programming transcription during developmental transitions and stress response. Here we review how histone variants and their deposition machineries regulate the nucleosome stability and dynamics, and discuss the link between histone variants and transcriptional regulation in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Danhua Jiang
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
31
|
Berriri S, Gangappa SN, Kumar SV. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis. MOLECULAR PLANT 2016; 9:1051-65. [PMID: 27131447 PMCID: PMC4938710 DOI: 10.1016/j.molp.2016.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/28/2016] [Accepted: 04/10/2016] [Indexed: 05/17/2023]
Abstract
Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.
Collapse
Affiliation(s)
- Souha Berriri
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | | | - S Vinod Kumar
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
32
|
Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S, Trick M, Rosser SJ, Kumar SV, Freemont PS, Osbourn A. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 2016; 44:2255-65. [PMID: 26895889 PMCID: PMC4797310 DOI: 10.1093/nar/gkw100] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Nan Yu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Moore
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Field
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Souha Berriri
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh, EH9 3JR, UK
| | - S Vinod Kumar
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
33
|
Han SK, Wu MF, Cui S, Wagner D. Roles and activities of chromatin remodeling ATPases in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:62-77. [PMID: 25977075 DOI: 10.1111/tpj.12877] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 05/18/2023]
Abstract
Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
34
|
Sequeira-Mendes J, Gutierrez C. Links between genome replication and chromatin landscapes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:38-51. [PMID: 25847096 DOI: 10.1111/tpj.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 05/07/2023]
Abstract
Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
35
|
Jarillo JA, Piñeiro M. H2A.Z mediates different aspects of chromatin function and modulates flowering responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:96-109. [PMID: 25943140 DOI: 10.1111/tpj.12873] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 05/23/2023]
Abstract
Eukaryotic organisms have canonical histones and a number of histone variants that perform specialized functions and confer particular structural properties to the nucleosomes that contain them. The histone H2A family comprises several variants, with H2A.Z being the most evolutionarily conserved. This variant is essential in eukaryotes and has emerged as a key player in chromatin function, performing an essential role in gene transcription and genome stability. During recent years, biochemical, genetic and genomic studies have begun to uncover the role of several ATP-dependent chromatin-remodeling complexes in H2A.Z deposition and removal. These ATPase complexes are widely conserved from yeast to mammals. In Arabidopsis there are homologs for most of the subunits of these complexes, and their functions are just beginning to be unveiled. In this review, we discuss the major contributions made in relation to the biology of the H2A.Z in plants, and more specifically concerning the function of this histone variant in the transition from vegetative to reproductive development. Recent advances in the understanding of the molecular mechanisms underlying the H2A.Z-mediated modulation of the floral transition, and thermosensory flowering responses in particular, are discussed. The emerging picture shows that plants contain chromatin-remodeling complexes related to those involved in modulating the dynamics of H2A.Z in other eukaryotes, but their precise biochemical nature remains elusive.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223, Madrid, Spain
| |
Collapse
|
36
|
Huang CK, Lo PC, Huang LF, Wu SJ, Yeh CH, Lu CA. A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 88:269-86. [PMID: 25920996 DOI: 10.1007/s11103-015-0321-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 04/17/2015] [Indexed: 05/07/2023]
Abstract
Leaf senescence, the final stage of leaf development, is regulated tightly by endogenous and environmental signals. MYBS3, a MYB transcription factor with a single DNA-binding domain, mediates sugar signaling in rice. Here we report that an Arabidopsis MYBS3 homolog, MYBH, plays a critical role in developmentally regulated and dark-induced leaf senescence by repressing transcription. Expression of MYBH was enhanced in older and dark-treated leaves. Gain- and loss-of-function analysis indicated that MYBH was involved in the onset of leaf senescence. Plants constitutively overexpressing MYBH underwent premature leaf senescence and showed enhanced expression of leaf senescence marker genes. In contrast, the MYBH mutant line, mybh-1, exhibited a delayed-senescence phenotype. The EAR repression domain was required for MYBH-regulated leaf senescence. Overexpression and knockout of MYBH repressed and enhanced auxin-responsive gene expression, respectively. MYBH repressed the auxin-amido synthase genes DFL1/GH3.6 and DFL2/GH3.10, which regulate auxin homoeostasis, by binding directly to the TA box in each of their regulatory regions. An auxin-responsive phenotype was enhanced in MYBH overexpression lines and reduced in mybh knockout lines. Overexpression of MYBH enhanced gene expression of SAUR36, an auxin-promoted leaf senescence key regulator, and accelerated ABA- and ethylene-induced leaf senescence in transgenic Arabidopsis plants. Our results suggest that the role of MYBH in controlling auxin homeostasis accounts for its capacity to participate in regulation of age- and darkness-induced leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Science, National Central University, Jhongli City, 320, Taoyuan County, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
37
|
Histone variants: the artists of eukaryotic chromatin. SCIENCE CHINA-LIFE SCIENCES 2015; 58:232-9. [DOI: 10.1007/s11427-015-4817-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
38
|
López-González L, Mouriz A, Narro-Diego L, Bustos R, Martínez-Zapater JM, Jarillo JA, Piñeiro M. Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins. THE PLANT CELL 2014; 26:3922-38. [PMID: 25281686 PMCID: PMC4247585 DOI: 10.1105/tpc.114.130781] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interplay among histone modifications modulates the expression of master regulatory genes in development. Chromatin effector proteins bind histone modifications and translate the epigenetic status into gene expression patterns that control development. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific proteins with a plant homeodomain (PHD) motif, SHORT LIFE (SHL) and EARLY BOLTING IN SHORT DAYS (EBS), function in the chromatin-mediated repression of floral initiation and play independent roles in the control of genes regulating flowering. Previous results showed that repression of the floral integrator FLOWERING LOCUS T (FT) requires EBS. We establish that SHL is necessary to negatively regulate the expression of SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), another floral integrator. SHL and EBS recognize di- and trimethylated histone H3 at lysine 4 and bind regulatory regions of SOC1 and FT, respectively. These PHD proteins maintain an inactive chromatin conformation in SOC1 and FT by preventing high levels of H3 acetylation, bind HISTONE DEACETYLASE6, and play a central role in regulating flowering time. SHL and EBS are widely conserved in plants but are absent in other eukaryotes, suggesting that the regulatory module mediated by these proteins could represent a distinct mechanism for gene expression control in plants.
Collapse
Affiliation(s)
- Leticia López-González
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Laura Narro-Diego
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Regla Bustos
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - José Miguel Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja, 26006 Logroño, Spain
| | - Jose A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| |
Collapse
|
39
|
Zhu D, Rosa S, Dean C. Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J Mol Biol 2014; 427:659-69. [PMID: 25180639 DOI: 10.1016/j.jmb.2014.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Changes in nuclear organization are considered an important complement to trans-acting factors, histone modifications and non-coding RNAs in robust and stable epigenetic silencing. However, how these multiple layers interconnect mechanistically to reinforce each other's activity is still unclear. A system providing long timescales facilitating analysis of these interconnections is vernalization. This involves the Polycomb-mediated epigenetic silencing of flowering locus C (FLC) that occurs as Arabidopsis plants are exposed to prolonged cold. Analysis of changes in nuclear organization during vernalization has revealed that disruption of a gene loop and physical clustering of FLC loci are part of the vernalization mechanism. These events occur at different times and thus contribute to distinct aspects of the silencing mechanism. The physical clustering of FLC loci is tightly correlated with the accumulation of specific Polycomb complexes/H3K27me3 at a localized intragenic site during the cold. Since the quantitative nature of vernalization is a reflection of a bistable cell autonomous switch in an increasing number of cells, this correlation suggests a tight connection between the switching mechanism and changes in nuclear organization. This integrated picture is likely to be informative for many epigenetic mechanisms.
Collapse
Affiliation(s)
- Danling Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
40
|
Jégu T, Latrasse D, Delarue M, Hirt H, Domenichini S, Ariel F, Crespi M, Bergounioux C, Raynaud C, Benhamed M. The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2014; 26:538-51. [PMID: 24510722 PMCID: PMC3967024 DOI: 10.1105/tpc.113.114454] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.
Collapse
Affiliation(s)
- Teddy Jégu
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Heribert Hirt
- Institut des Sciences du Végétal, UPR CNRS, F-91190 Gif-sur-Yvette, France
| | - Séverine Domenichini
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Federico Ariel
- Unité de Recherche en Génomique Végétale Plant Genomics, INRA/CNRS/University of Evry, F-91057 Evry, France
| | - Martin Crespi
- Unité de Recherche en Génomique Végétale Plant Genomics, INRA/CNRS/University of Evry, F-91057 Evry, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Université Paris-Sud XI, 91405 Orsay, France
- Address correspondence to
| |
Collapse
|
41
|
Steinbach Y, Hennig L. Arabidopsis MSI1 functions in photoperiodic flowering time control. FRONTIERS IN PLANT SCIENCE 2014; 5:77. [PMID: 24639681 PMCID: PMC3945484 DOI: 10.3389/fpls.2014.00077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/17/2014] [Indexed: 05/05/2023]
Abstract
Appropriate timing of flowering is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals such as photoperiod, vernalization or light quality, ambient temperature and biotic as well as abiotic stresses. The key florigenic signal FLOWERING LOCUS T (FT) is regulated by several flowering activators, such as CONSTANS (CO), and repressors, such as FLOWERING LOCUS C (FLC). Chromatin modifications are essential for regulated gene expression, which often involves the well conserved MULTICOPY SUPRESSOR OF IRA 1 (MSI1)-like protein family. MSI1-like proteins are ubiquitous partners of various complexes, such as POLYCOMB REPRESSIVE COMPLEX2 or CHROMATIN ASSEMBLY FACTOR 1. In Arabidopsis, one of the functions of MSI1 is to control the switch to flowering. Arabidopsis MSI1 is needed for the correct expression of the floral integrator gene SUPPRESSOR OF CO 1 (SOC1). Here, we show that the histone-binding protein MSI1 acts in the photoperiod pathway to regulate normal expression of CO in long day (LD) photoperiods. Reduced expression of CO in msi1-mutants leads to failure of FT and SOC1 activation and to delayed flowering. MSI1 is needed for normal sensitivity of Arabidopsis to photoperiod, because msi1-mutants responded less than wild type to an intermittent LD treatment of plants grown in short days. Finally, genetic analysis demonstrated that MSI1 acts upstream of the CO-FT pathway to enable an efficient photoperiodic response and to induce flowering.
Collapse
Affiliation(s)
- Yvonne Steinbach
- Department of Biology, Institute of Agricultural Sciences, ETH ZürichZürich, Switzerland
- *Correspondence: Yvonne Steinbach, Department of Biology, Institute of Agricultural Sciences, ETH Zürich, Universitätstr.2, CH-8092 Zürich, Switzerland e-mail:
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala, Sweden
| |
Collapse
|
42
|
Rosa M, Von Harder M, Aiese Cigliano R, Schlögelhofer P, Mittelsten Scheid O. The Arabidopsis SWR1 chromatin-remodeling complex is important for DNA repair, somatic recombination, and meiosis. THE PLANT CELL 2013; 25:1990-2001. [PMID: 23780875 PMCID: PMC3723608 DOI: 10.1105/tpc.112.104067] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
All processes requiring interaction with DNA are attuned to occur within the context of the complex chromatin structure. As it does for programmed transcription and replication, this also holds true for unscheduled events, such as repair of DNA damage. Lesions such as double-strand breaks occur randomly; their repair requires that enzyme complexes access DNA at potentially any genomic site. This is achieved by chromatin remodeling factors that can locally slide, evict, or change nucleosomes. Here, we show that the Swi2/Snf2-related (SWR1 complex), known to deposit histone H2A.Z, is also important for DNA repair in Arabidopsis thaliana. Mutations in genes for Arabidopsis SWR1 complex subunits photoperiod-independent Early Flowering1, actin-related protein6, and SWR1 complex6 cause hypersensitivity to various DNA damaging agents. Even without additional genotoxic stress, these mutants show symptoms of DNA damage accumulation. The reduced DNA repair capacity is connected with impaired somatic homologous recombination, in contrast with the hyper-recombinogenic phenotype of yeast SWR1 mutants. This suggests functional diversification between lower and higher eukaryotes. Finally, reduced fertility and irregular gametogenesis in the Arabidopsis SWR1 mutants indicate an additional role for the chromatin-remodeling complex during meiosis. These results provide evidence for the importance of Arabidopsis SWR1 in somatic DNA repair and during meiosis.
Collapse
Affiliation(s)
- Marisa Rosa
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Mona Von Harder
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Riccardo Aiese Cigliano
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
- Address correspondence to
| |
Collapse
|
43
|
Celesnik H, Ali GS, Robison FM, Reddy ASN. Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biol Open 2013; 2:424-31. [PMID: 23616927 PMCID: PMC3625871 DOI: 10.1242/bio.20133764] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/01/2013] [Indexed: 12/01/2022] Open
Abstract
Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn2+-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1 mutants showed no significant phenotypes as compared to wild type. However, atvoz1-1 atvoz2-1 double mutant plants exhibited several phenotypes characteristic of flowering-time mutants. The double mutant displayed a severe delay in flowering, together with additional pleiotropic phenotypes. Late flowering correlated with elevated expression of FLOWERING LOCUS C (FLC), which encodes a potent floral repressor, and decreased expression of its target, the floral promoter FD. Vernalization rescued delayed flowering of atvoz1-1 atvoz2-1 and reversed elevated FLC levels. Accumulation of FLC transcripts in atvoz1-1 atvoz2-1 correlated with increased expression of several FLC activators, including components of the PAF1 and SWR1 chromatin-modifying complexes. Additionally, AtVOZs were shown to bind the promoter of MOS3/SAR3 and directly regulate expression of this nuclear pore protein, which is known to participate in the regulation of flowering time, suggesting that AtVOZs exert at least some of their flowering regulation by influencing the nuclear pore function. Complementation of atvoz1-1 atvoz2-1 with AtVOZ2 reversed all double mutant phenotypes, confirming that the observed morphological and molecular changes arise from the absence of functional AtVOZ proteins, and validating the functional redundancy between AtVOZ1 and AtVOZ2.
Collapse
Affiliation(s)
- Helena Celesnik
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University , Fort Collins, CO 80523-1878 , USA
| | | | | | | |
Collapse
|
44
|
Zacharaki V, Benhamed M, Poulios S, Latrasse D, Papoutsoglou P, Delarue M, Vlachonasios KE. The Arabidopsis ortholog of the YEATS domain containing protein YAF9a regulates flowering by controlling H4 acetylation levels at the FLC locus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 196:44-52. [PMID: 23017898 DOI: 10.1016/j.plantsci.2012.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 05/04/2023]
Abstract
Histone acetylation and complexes associated with this process are directly involved in chromatin regulation and gene expression. Among these, NuA4 complex is directly involved in acetylation of histone H4, H2A and H2A.Z. In yeast, the NuA4 complex contains the catalytic subunit, the histone acetyltransferase ESA1, and several associated components including YAF9. In this report we explored the biological role of YAF9a in Arabidopsis thaliana. Homozygous yaf9a-1 and yaf9a-3 mutants show early flowering phenotypes. Moreover, yaf9a-1 mutants displayed reduced expression of the flowering repressor FLC, whereas the expression of the flowering activators FT and SOC1 was induced in comparison to wild-type plants. Using chromatin immunoprecipitation assays with H4 tetra-acetylated antibodies we observed a positive correlation with gene expression profile of FLC and FT in yaf9a-1 mutants under long days. We therefore conclude that YAF9a in Arabidopsis is a negative regulator of flowering by controlling the H4 acetylation levels in the FLC and FT chromatin.
Collapse
Affiliation(s)
- Vasiliki Zacharaki
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Biology, Postgraduate Studies Program "Applied Genetics and Biotechnology", 54124 Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
45
|
Berr A, Ménard R, Heitz T, Shen WH. Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol 2012; 14:829-39. [DOI: 10.1111/j.1462-5822.2012.01785.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Deal RB, Henikoff S. Histone variants and modifications in plant gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:116-22. [PMID: 21159547 PMCID: PMC3093162 DOI: 10.1016/j.pbi.2010.11.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/17/2010] [Indexed: 05/19/2023]
Abstract
Genomes are packaged by complexing DNA with histone proteins, which provides an opportunity to regulate gene expression by dynamically impeding access of transcriptional regulatory proteins and RNA polymerases to DNA. The incorporation of histone variants into nucleosomes and addition of post-translational modifications to histones can alter the physical properties of nucleosomes and thereby serve as a mechanism for regulating DNA exposure. Chromatin-based gene regulation has profound effects on developmental processes including regulation of the vegetative to reproductive transition, as well as responses to pathogens and abiotic factors. Incorporation of the histone variant H2A.Z and methylation of histone H3 lysine residues 4 and 27 have emerged as key elements in the regulation of genes involved in each of these processes.
Collapse
Affiliation(s)
- Roger B. Deal
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
47
|
Crevillén P, Dean C. Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:38-44. [PMID: 20884277 DOI: 10.1016/j.pbi.2010.08.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/30/2010] [Indexed: 05/20/2023]
Abstract
The genetic pathways regulating the floral transition in Arabidopsis are becoming increasingly well understood. The ease with which mutant phenotypes can be quantified has led to many suppressor screens and the molecular identification of the underlying genes. One focus has been on the pathways that regulate the gene encoding the floral repressor FLC. This has revealed a set of antagonistic pathways comprising evolutionary conserved activities that link chromatin regulation, transcription level and co-transcriptional RNA metabolism. Here we discuss our current understanding of the transcriptional activation of FLC, how different activities are integrated at this one locus and why FLC regulation seems so sensitive to mutation in these conserved gene regulatory pathways.
Collapse
Affiliation(s)
- Pedro Crevillén
- Department of Cell & Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | |
Collapse
|
48
|
Abstract
In eukaryotic genomes, gene expression and DNA recombination are affected by structural chromatin traits. Chromatin structure is shaped by the activity of enzymes that either introduce covalent modifications in DNA and histone proteins or use energy from ATP to disrupt histone-DNA interactions. The genomic 'marks' that are generated by covalent modifications of histones and DNA, or by the deposition of histone variants, are susceptible to being altered in response to stress. Recent evidence has suggested that proteins generating these epigenetic marks play crucial roles in the defence against pathogens. Histone deacetylases are involved in the activation of jasmonic acid- and ethylene-sensitive defence mechanisms. ATP-dependent chromatin remodellers mediate the constitutive repression of the salicylic acid-dependent pathway, whereas histone methylation at the WRKY70 gene promoter affects the activation of this pathway. Interestingly, bacterial-infected tissues show a net reduction in DNA methylation, which may affect the disease resistance genes responsible for the surveillance against pathogens. As some epigenetic marks can be erased or maintained and transmitted to offspring, epigenetic mechanisms may provide plasticity for the dynamic control of emerging pathogens without the generation of genomic lesions.
Collapse
Affiliation(s)
- María E Alvarez
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| | | | | |
Collapse
|
49
|
Xu Y, Deng M, Peng J, Hu Z, Bao L, Wang J, Zheng ZL. OsPIE1, the rice ortholog of Arabidopsis PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1, is essential for embryo development. PLoS One 2010; 5:e11299. [PMID: 20585576 PMCID: PMC2891997 DOI: 10.1371/journal.pone.0011299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/31/2010] [Indexed: 11/19/2022] Open
Abstract
Background The SWR1 complex is important for the deposition of histone variant H2A.Z into chromatin necessary to robustly regulate gene expression during growth and development. In Arabidopsis thaliana, the catalytic subunit of the SWR1-like complex, encoded by PIE1 (PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1), has been shown to function in multiple developmental processes including flowering time pathways and petal number regulation. However, the function of the PIE1 orthologs in monocots remains unknown. Methodology/Findings We report the identification of the rice (Oryza sativa) ortholog, OsPIE1. Although OsPIE1 does not exhibit a conserved exon/intron structure as Arabidopsis PIE1, its encoded protein is highly similar to PIE1, sharing 53.9% amino acid sequence identity. OsPIE1 also has a very similar expression pattern as PIE1. Furthermore, transgenic expression of OsPIE1 completely rescued both early flowering and extra petal number phenotypes of the Arabidopsis pie1-2 mutant. However, homozygous T-DNA insertional mutants of OsPIE1 in rice were embryonically lethal, in contrast to the viable mutants in the orthologous genes for yeast, Drosophila and Arabidopsis (Swr1, DOMINO and PIE1, respectively). Conclusions/Significance Taken together, our results suggest that OsPIE1 is the rice ortholog of Arabidopsis PIE1 and plays an essential role in rice embryo development.
Collapse
Affiliation(s)
- Yonghan Xu
- Province Key Laboratory of Genetic Engineering on Plant Metabolism, Virology and Biotechnology Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Minjuan Deng
- Province Key Laboratory of Genetic Engineering on Plant Metabolism, Virology and Biotechnology Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianfei Peng
- College of Biosafety Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhanghua Hu
- Province Key Laboratory of Genetic Engineering on Plant Metabolism, Virology and Biotechnology Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lieming Bao
- Province Key Laboratory of Genetic Engineering on Plant Metabolism, Virology and Biotechnology Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junming Wang
- Crop Science and Nuclear Utilization Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Van Lijsebettens M, Grasser KD. The role of the transcript elongation factors FACT and HUB1 in leaf growth and the induction of flowering. PLANT SIGNALING & BEHAVIOR 2010; 5:715-7. [PMID: 20404555 PMCID: PMC3001568 DOI: 10.4161/psb.5.6.11646] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 05/23/2023]
Abstract
In the cell nucleus, the packaging of the DNA into chromatin represses transcription by restricting the access of transcriptional regulators to their binding sites and inhibiting the progression of RNA polymerases during transcript elongation. To efficiently transcribe genes in the context of chromatin, eukaryotes have a variety of transcript elongation factors promoting transcription in vivo. The facilitates chromatin transcription (FACT) complex consisting of the SSRP1 and SPT16 proteins, is a histone chaperone that assists transcription by destabilising nucleosomes in the path of RNA polymerases. In a recent study, we report that Arabidopsis FACT is critically involved in different aspects of development including leaf growth and the transition to flowering. Moreover, FACT was found to interact genetically with HUB1 that mono-ubiquitinates histone H2B. Depending on the underlying process that is regulated by the two complexes, there appear to be different levels of interaction.
Collapse
Affiliation(s)
- Mieke Van Lijsebettens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, VIB, Ghent, Belgium
| | | |
Collapse
|