1
|
Chen M, Liu P, An R, He X, Zhao P, Huang D, Yang X. Sugarcane Pan-Transcriptome Identifying a Master Gene ScHCT Regulating Lignin and Sugar Traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1739-1755. [PMID: 39761552 DOI: 10.1021/acs.jafc.4c10101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Sugarcane has the most complex polyploid genome in the world, and sugar-related traits are one of the most important aims in sugarcane breeding. It is essential to construct a representative pan-transcriptome that contains all transcripts of a species for studies on genetic diversity, population expression, and omics analyses in sugarcane. In this study, we constructed the first comprehensive pan-transcriptome for sugarcane, and 8434 highly reliable open reading frames were found, which were not aligned with any published sugarcane genome. The core and dispensable gene clusters, as well as high- and low-expression gene clusters of the pan-transcriptome, were identified and analyzed. The integration of two sugar content differential transcriptome data revealed nine key candidate genes, including the ScHCT gene, encoding a crucial enzyme for lignin synthesis. Furthermore, the function of the ScHCT gene was validated inArabidopsis, which was negatively correlated with sugar content and positively correlated with lignin content. The interaction protein of ScHCT, ScABH, was screened via a yeast two-hybrid assay and further validated by point-to-point Y2H and bimolecular fluorescence complementation assays. The phenotype of the Arabidopsis abh mutant line revealed that loss of function of ABH resulted in a decrease of sucrose content in stem tissue. This study provides important reference information and genetic resources for sugarcane research and varietal improvement.
Collapse
Affiliation(s)
- Meiyan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Peng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ruilin An
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Peifang Zhao
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
2
|
Saberi Riseh R, Fathi F, Lagzian A, Vatankhah M, Kennedy JF. Modifying lignin: A promising strategy for plant disease control. Int J Biol Macromol 2024; 271:132696. [PMID: 38823737 DOI: 10.1016/j.ijbiomac.2024.132696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Lignin is a complex polymer found in the cell walls of plants, providing structural support and protection against pathogens. By modifying lignin composition and structure, scientists aim to optimize plant defense responses and increase resistance to pathogens. This can be achieved through various genetic engineering techniques which involve manipulating the genes responsible for lignin synthesis. By either up regulating or down regulating specific genes, researchers can alter the lignin content, composition, or distribution in plant tissues. Reducing lignin content in specific tissues like leaves can improve the effectiveness of defense mechanisms by allowing for better penetration of antimicrobial compounds. Overall, Lignin modification through techniques has shown promising results in enhancing various plants resistance against pathogens. Furthermore, lignin modification can have additional benefits beyond pathogen resistance. It can improve biomass processing for biofuel production by reducing lignin recalcitrance, making the extraction of sugars from cellulose more efficient. The complexity of lignin biosynthesis and its interactions with other plant components make it a challenging target for modification. Additionally, the potential environmental impact and regulatory considerations associated with genetically modified organisms (GMOs) require careful evaluation. Ongoing research aims to further optimize this approach and develop sustainable solutions for crop protection.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
3
|
Lam LPY, Lui ACW, Bartley LE, Mikami B, Umezawa T, Lo C. Multifunctional 5-hydroxyconiferaldehyde O-methyltransferases (CAldOMTs) in plant metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1671-1695. [PMID: 38198655 DOI: 10.1093/jxb/erae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Lydia Pui Ying Lam
- Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita 010-0852, Japan
| | - Andy C W Lui
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Bunzo Mikami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
4
|
Ma QH. Lignin Biosynthesis and Its Diversified Roles in Disease Resistance. Genes (Basel) 2024; 15:295. [PMID: 38540353 PMCID: PMC10969841 DOI: 10.3390/genes15030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Lignin is complex, three-dimensional biopolymer existing in plant cell wall. Lignin biosynthesis is increasingly highlighted because it is closely related to the wide applications in agriculture and industry productions, including in pulping process, forage digestibility, bio-fuel, and carbon sequestration. The functions of lignin in planta have also attracted more attentions recently, particularly in plant defense response against different pathogens. In this brief review, the progress in lignin biosynthesis is discussed, and the lignin's roles in disease resistance are thoroughly elucidated. This issue will help in developing broad-spectrum resistant crops in agriculture.
Collapse
Affiliation(s)
- Qing-Hu Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
5
|
Li X, Li Y, Wei A, Wang Z, Huang H, Huang Q, Yang L, Gao Y, Zhu G, Liu Q, Li Y, Wei S, Wei D. Integrated transcriptomic and proteomic analyses of two sugarcane (Saccharum officinarum Linn.) varieties differing in their lodging tolerance. BMC PLANT BIOLOGY 2023; 23:601. [PMID: 38030995 PMCID: PMC10685470 DOI: 10.1186/s12870-023-04622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Lodging seriously affects sugarcane stem growth and sugar accumulation, reduces sugarcane yield and sucrose content, and impedes mechanization. However, the molecular mechanisms underlying sugarcane lodging tolerance remain unclear. In this study, comprehensive transcriptomic and proteomic analyses were performed to explore the differential genetic regulatory mechanisms between upright (GT42) and lodged (GF98-296) sugarcane varieties. RESULTS The stain test showed that GT42 had more lignin and vascular bundles in the stem than GF98-296. The gene expression analysis revealed that the genes that were differentially expressed between the two varieties were mainly involved in the phenylpropanoid pathway at the growth stage. The protein expression analysis indicated that the proteins that were differentially expressed between the two varieties were related to the synthesis of secondary metabolites, the process of endocytosis, and the formation of aminoacyl-tRNA. Time-series analysis revealed variations in differential gene expression patterns between the two varieties, whereas significant protein expression trends in the two varieties were largely consistent, except for one profile. The expression of CYP84A, 4CL, and CAD from the key phenylpropanoid biosynthetic pathway was enhanced in GT42 at stage 2 but suppressed in GF98-296 at the growth stage. Furthermore, the expression of SDT1 in the nicotinate and nicotinamide metabolism was enhanced in GT42 cells but suppressed in GF98-296 cells at the growth stage. CONCLUSION Our findings provide reference data for mining lodging tolerance-related genes that are expected to facilitate the selective breeding of sugarcane varieties with excellent lodging tolerance.
Collapse
Affiliation(s)
- Xiang Li
- Guangxi Subtropical Crops Research Institute, Nanning, 530002, China
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yijie Li
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ailin Wei
- Baise Institue of Agricultural Sciences, Baise, 533612, China
| | - Zeping Wang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hairong Huang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Quyan Huang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Litao Yang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yijing Gao
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guanghu Zhu
- Center for Applied Mathematics of Guangxi (GUET), Guilin, 541004, China
| | - Qihuai Liu
- Center for Applied Mathematics of Guangxi (GUET), Guilin, 541004, China
| | - Yangrui Li
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Shaolong Wei
- Guangxi Subtropical Crops Research Institute, Nanning, 530002, China.
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Debin Wei
- Baise Institue of Agricultural Sciences, Baise, 533612, China.
| |
Collapse
|
6
|
Tyrka M, Krajewski P, Bednarek PT, Rączka K, Drzazga T, Matysik P, Martofel R, Woźna-Pawlak U, Jasińska D, Niewińska M, Ługowska B, Ratajczak D, Sikora T, Witkowski E, Dorczyk A, Tyrka D. Genome-wide association mapping in elite winter wheat breeding for yield improvement. J Appl Genet 2023; 64:377-391. [PMID: 37120451 PMCID: PMC10457411 DOI: 10.1007/s13353-023-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Increased grain yield (GY) is the primary breeding target of wheat breeders. We performed the genome-wide association study (GWAS) on 168 elite winter wheat lines from an ongoing breeding program to identify the main determinants of grain yield. Sequencing of Diversity Array Technology fragments (DArTseq) resulted in 19,350 single-nucleotide polymorphism (SNP) and presence-absence variation (PAV) markers. We identified 15 main genomic regions located in ten wheat chromosomes (1B, 2B, 2D, 3A, 3D, 5A, 5B, 6A, 6B, and 7B) that explained from 7.9 to 20.3% of the variation in grain yield and 13.3% of the yield stability. Loci identified in the reduced genepool are important for wheat improvement using marker-assisted selection. We found marker-trait associations between three genes involved in starch biosynthesis and grain yield. Two starch synthase genes (TraesCS2B03G1238800 and TraesCS2D03G1048800) and a sucrose synthase gene (TraesCS3D03G0024300) were found in regions of QGy.rut-2B.2, QGy.rut-2D.1, and QGy.rut-3D, respectively. These loci and other significantly associated SNP markers found in this study can be used for pyramiding favorable alleles in high-yielding varieties or to improve the accuracy of prediction in genomic selection.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland.
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Kinga Rączka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| | - Tadeusz Drzazga
- Małopolska Plant Breeding Ltd, Sportowa 21, 55-040, Kobierzyce, Poland
| | - Przemysław Matysik
- Plant Breeding Strzelce Group IHAR Ltd, Główna 20, 99-307, Strzelce, Poland
| | - Róża Martofel
- Poznań Plant Breeding Ltd, Kasztanowa 5, 63-004, Tulce, Poland
| | | | - Dorota Jasińska
- Poznań Plant Breeding Ltd, Kasztanowa 5, 63-004, Tulce, Poland
| | | | | | | | - Teresa Sikora
- DANKO Plant Breeders Ltd, Ks. Strzybnego 23, 47-411, Rudnik, Poland
| | - Edward Witkowski
- Plant Breeding Smolice Ltd, Smolice 146, 63-740, Kobylin, Poland
| | - Ada Dorczyk
- Plant Breeding Smolice Ltd, Smolice 146, 63-740, Kobylin, Poland
| | - Dorota Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| |
Collapse
|
7
|
Li H, Liu X, Zhang J, Chen L, Zhang M, Miao Y, Ma P, Hao M, Jiang B, Ning S, Huang L, Yuan Z, Chen X, Chen X, Liu D, Wan H, Zhang L. Identification of the Solid Stem Suppressor Gene Su-TdDof in Synthetic Hexaploid Wheat Syn-SAU-117. Int J Mol Sci 2023; 24:12845. [PMID: 37629026 PMCID: PMC10454891 DOI: 10.3390/ijms241612845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the transfer of solid stem genes from durum wheat is suppressed by a suppressor gene located on chromosome 3D in common wheat, and only hollow-stemmed lines have been created. However, synthetic hexaploid wheat can serve as a bridge for transferring solid stem genes from tetraploid wheat to common wheat. In this study, the F1, F2, and F2:3 generations of a cross between solid-stemmed Syn-SAU-119 and semisolid-stemmed Syn-SAU-117 were developed. A single dominant gene, which was tentatively designated Su-TdDof and suppresses stem solidity, was identified in synthetic hexaploid wheat Syn-SAU-117 by using genetic analysis. By using bulked segregant RNA-seq (BSR-seq) analysis, Su-TdDof was mapped to chromosome 7DS and flanked by markers KASP-669 and KASP-1055 within a 4.53 cM genetic interval corresponding to 3.86 Mb and 2.29 Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Ae. tauschii (AL8/78 v4.0) genomes, respectively, in which three genes related to solid stem development were annotated. Su-TdDof differed from a previously reported solid stem suppressor gene based on its origin and position. Su-TdDof would provide a valuable example for research on the suppression phenomenon. The flanking markers developed in this study might be useful for screening Ae. tauschii accessions with no suppressor gene (Su-TdDof) to develop more synthetic hexaploid wheat lines for the breeding of lodging resistance in wheat and further cloning the suppressor gene Su-TdDof.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Junqing Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Longyu Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongping Miao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pan Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Golenberg EM, Popadić A, Hao W. Transcriptome analyses of leaf architecture in Sansevieria support a common genetic toolkit in the parallel evolution of unifacial leaves in monocots. PLANT DIRECT 2023; 7:e511. [PMID: 37559824 PMCID: PMC10407180 DOI: 10.1002/pld3.511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023]
Abstract
Planar structures dramatically increase the surface-area-to-volume ratio, which is critically important for multicellular organisms. In this study, we utilize naturally occurring phenotypic variation among three Sansivieria species (Asperagaceae) to investigate leaf margin expression patterns that are associated with mediolateral and adaxial/abaxial development. We identified differentially expressed genes (DEGs) between center and margin leaf tissues in two planar-leaf species Sansevieria subspicata and Sansevieria trifasciata and compared these with expression patterns within the cylindrically leaved Sansevieria cylindrica. Two YABBY family genes, homologs of FILAMENTOUS FLOWER and DROOPING LEAF, are overexpressed in the center leaf tissue in the planar-leaf species and in the tissue of the cylindrical leaves. As mesophyll structure does not indicate adaxial versus abaxial differentiation, increased leaf thickness results in more water-storage tissue and enhances resistance to aridity. This suggests that the cylindrical-leaf in S. cylindrica is analogous to the central leaf tissue in the planar-leaf species. Furthermore, the congruence of the expression patterns of these YABBY genes in Sansevieria with expression patterns found in other unifacial monocot species suggests that patterns of parallel evolution may be the result of similar solutions derived from a limited developmental toolbox.
Collapse
Affiliation(s)
| | - Aleksandar Popadić
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| | - Weilong Hao
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
9
|
Liu Q, Zhao Y, Rahman S, She M, Zhang J, Yang R, Islam S, O'Hara G, Varshney RK, Liu H, Ma H, Ma W. The putative vacuolar processing enzyme gene TaVPE3cB is a candidate gene for wheat stem pith-thickness. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:138. [PMID: 37233825 DOI: 10.1007/s00122-023-04372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE The vacuolar processing enzyme gene TaVPE3cB is identified as a candidate gene for a QTL of wheat pith-thickness on chromosome 3B by BSR-seq and differential expression analyses. The high pith-thickness (PT) of the wheat stem could greatly enhance stem mechanical strength, especially the basal internodes which support the heavier upper part, such as upper stems, leaves and spikes. A QTL for PT in wheat was previously discovered on 3BL in a double haploid population of 'Westonia' × 'Kauz'. Here, a bulked segregant RNA-seq analysis was applied to identify candidate genes and develop associated SNP markers for PT. In this study, we aimed at screening differentially expressed genes (DEGs) and SNPs in the 3BL QTL interval. Sixteen DEGs were obtained based on BSR-seq and differential expression analyses. Twenty-four high-probability SNPs in eight genes were identified by comparing the allelic polymorphism in mRNA sequences between the high PT and low PT samples. Among them, six genes were confirmed to be associated with PT by qRT-PCR and sequencing. A putative vacuolar processing enzyme gene TaVPE3cB was screened out as a potential PT candidate gene in Australian wheat 'Westonia'. A robust SNP marker associated with TaVPE3cB was developed, which can assist in the introgression of TaVPE3cB.b in wheat breeding programs. In addition, we also discussed the function of other DEGs which may be related to pith development and programmed cell death (PCD). A five-level hierarchical regulation mechanism of stem pith PCD in wheat was proposed.
Collapse
Affiliation(s)
- Qier Liu
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Provincial Key Laboratory of Agrobiology, and Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yun Zhao
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, People's Republic of China
| | - Shanjida Rahman
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Rongchang Yang
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Shahidul Islam
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Graham O'Hara
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Hang Liu
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Hongxiang Ma
- Provincial Key Laboratory of Agrobiology, and Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wujun Ma
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
- College of Agronomy, Qingdao Agriculture University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
10
|
Cai T, Sharif Y, Zhuang Y, Yang Q, Chen X, Chen K, Chen Y, Gao M, Dang H, Pan Y, Raza A, Zhang C, Chen H, Zhuang W. In-silico identification and characterization of O-methyltransferase gene family in peanut ( Arachis hypogaea L.) reveals their putative roles in development and stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1145624. [PMID: 37063183 PMCID: PMC10102615 DOI: 10.3389/fpls.2023.1145624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Cultivated peanut (Arachis hypogaea) is a leading protein and oil-providing crop and food source in many countries. At the same time, it is affected by a number of biotic and abiotic stresses. O-methyltransferases (OMTs) play important roles in secondary metabolism, biotic and abiotic stress tolerance. However, the OMT genes have not been comprehensively analyzed in peanut. In this study, we performed a genome-wide investigation of A. hypogaea OMT genes (AhOMTs). Gene structure, motifs distribution, phylogenetic history, genome collinearity and duplication of AhOMTs were studied in detail. Promoter cis-elements, protein-protein interactions, and micro-RNAs targeting AhOMTs were also predicted. We also comprehensively studied their expression in different tissues and under different stresses. We identified 116 OMT genes in the genome of cultivated peanut. Phylogenetically, AhOMTs were divided into three groups. Tandem and segmental duplication events played a role in the evolution of AhOMTs, and purifying selection pressure drove the duplication process. AhOMT promoters were enriched in several key cis-elements involved in growth and development, hormones, light, and defense-related activities. Micro-RNAs from 12 different families targeted 35 AhOMTs. GO enrichment analysis indicated that AhOMTs are highly enriched in transferase and catalytic activities, cellular metabolic and biosynthesis processes. Transcriptome datasets revealed that AhOMTs possessed varying expression levels in different tissues and under hormones, water, and temperature stress. Expression profiling based on qRT-PCR results also supported the transcriptome results. This study provides the theoretical basis for further work on the biological roles of AhOMT genes for developmental and stress responses.
Collapse
Affiliation(s)
- Tiecheng Cai
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yasir Sharif
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qiang Yang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Xiangyu Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
- Crops Research Institute, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Kun Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuting Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Meijia Gao
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hao Dang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Yijing Pan
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Ali Raza
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Chong Zhang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Hua Chen
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Weijian Zhuang
- Center of Legume Plant Genetics and System Biology, College of Agronomy, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| |
Collapse
|
11
|
Lin N, Wang M, Jiang J, Zhou Q, Yin J, Li J, Lian J, Xue Y, Chai Y. Downregulation of Brassica napus MYB69 ( BnMYB69) increases biomass growth and disease susceptibility via remodeling phytohormone, chlorophyll, shikimate and lignin levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1157836. [PMID: 37077631 PMCID: PMC10108680 DOI: 10.3389/fpls.2023.1157836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
MYB transcription factors are major actors regulating plant development and adaptability. Brassica napus is a staple oil crop and is hampered by lodging and diseases. Here, four B. napus MYB69 (BnMYB69s) genes were cloned and functionally characterized. They were dominantly expressed in stems during lignification. BnMYB69 RNA interference (BnMYB69i) plants showed considerable changes in morphology, anatomy, metabolism and gene expression. Stem diameter, leaves, roots and total biomass were distinctly larger, but plant height was significantly reduced. Contents of lignin, cellulose and protopectin in stems were significantly reduced, accompanied with decrease in bending resistance and Sclerotinia sclerotiorum resistance. Anatomical detection observed perturbation in vascular and fiber differentiation in stems, but promotion in parenchyma growth, accompanied with changes in cell size and cell number. In shoots, contents of IAA, shikimates and proanthocyanidin were reduced, while contents of ABA, BL and leaf chlorophyll were increased. qRT-PCR revealed changes in multiple pathways of primary and secondary metabolisms. IAA treatment could recover many phenotypes and metabolisms of BnMYB69i plants. However, roots showed trends opposite to shoots in most cases, and BnMYB69i phenotypes were light-sensitive. Conclusively, BnMYB69s might be light-regulated positive regulators of shikimates-related metabolisms, and exert profound influences on various internal and external plant traits.
Collapse
Affiliation(s)
- Na Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Mu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiayi Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qinyuan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiaming Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jianping Lian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yufei Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yourong Chai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
- *Correspondence: Yourong Chai,
| |
Collapse
|
12
|
Wan W, Zhao Y, Li X, Xu J, Liu K, Guan S, Chai Y, Xu H, Cui H, Chen X, Wu P, Diao M. A moderate reduction in irrigation and nitrogen improves water-nitrogen use efficiency, productivity, and profit under new type of drip irrigated spring wheat system. FRONTIERS IN PLANT SCIENCE 2022; 13:1005945. [PMID: 36299786 PMCID: PMC9589231 DOI: 10.3389/fpls.2022.1005945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Rational irrigation and nitrogen management strategies are crucial for wheat growth. However, the optimal amount of water and nitrogen for the newly developed drip irrigated spring wheat system (TR6S, one drip tube service for six rows of wheat, with a row spacing of 10 cm and an inter-block space of 25 cm, saves drip tubes and obtains higher profits) in dry and semi-arid areas remains unclear. Therefore, a field experiment was conducted with four nitrogen levels (300, 270, 240, and 0 kg ha-1 referred N300, N270, N240, and N0) and four irrigation levels (4500, 4200, 3900, and 3600 m3 ha-1 referred I4500, I4200, I3900, and I3600) during the 2021-2022 and 2022-2023 spring wheat seasons to analyze the effects of irrigation (I) and nitrogen (N) levels on grain yield, water-nitrogen use efficiency, profit, biomass accumulation, and nitrogen nutrient absorption status under TR6S. Compared with the traditional irrigation and nitrogen management strategy (N300-I4500, as control), lesser irrigation and nitrogen supply (I<3979 m3 ha-1 and N<273 kg ha-1) saved cost but led to lower grain yield, water use efficiency (WUE), agronomic efficiency of nitrogen fertilizer (AEN), and profit. However, a moderate reduction in irrigation and nitrogen supply (4500 m3 ha-1>I>3979 m3 ha-1 and 300 kg ha-1 >N>273 kg ha-1) improved grain yield, WUE, AEN, and profit. The increase in grain yield was mainly related to the rise in 1000-grain weight and kernels per spike. Although the moderate reduction in irrigation lowered soil moisture status, the dry matter pre-stored in the vegetative organs before anthesis that gets redistributed into grains during grain filling was improved. Moreover, the moderate reduction in nitrogen supply resulted in a more reasonable nitrogen nutrition index (NNI) of wheat plant, which improved flag leaf area and chlorophyll relative content (SPAD) at the anthesis stage. This also played a positive role in biomass accumulation and redistributed, yield structure optimization. Considering comprehensively yield, WUE, AEN and profit, combination of 285 kg ha-1 N and 4170 m3 ha-1 I was optimal irrigation and nitrogen application pattern for TR6S. This strategy can be applied to other arid and semi-arid regions.
Collapse
Affiliation(s)
- Wenliang Wan
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Yanhui Zhao
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Xiaofang Li
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jing Xu
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Kaige Liu
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Sihui Guan
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Yaqian Chai
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Hongjun Xu
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
- Crop Research Institute of Xinjiang Academy of Agricultural Sciences, Shihezi, China
| | - Hongxin Cui
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Xianjun Chen
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Pei Wu
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - Ming Diao
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| |
Collapse
|
13
|
Liu L, Liu S, Lu H, Tian Z, Zhao H, Wei D, Wang S, Huang Z. Integration of transcriptome and metabolome analyses reveals key lodging-resistance-related genes and metabolic pathways in maize. Front Genet 2022; 13:1001195. [PMID: 36299597 PMCID: PMC9588961 DOI: 10.3389/fgene.2022.1001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Stalk lodging, or breakage of the stalk at or below the ear, is one of the vital factors causing substantial yield losses in maize (Zea mays. L). Lodging affects maize plants’ physiological and molecular processes, eventually impacting plant growth and productivity. Despite this known fact, few researchers have investigated the genetic architecture underlying lodging in maize. Herein, through integrated transcriptome, metabolome, and phenotypic analyses of stalks of three diverse hybrid cultivars (highly resistant JNK738, mildly resistant JNK728, and lowly resistant XY335) at the tasseling (10 days to silking, 10 DTS) stage, we identified key genes and metabolic pathways modulating lodging resistance in maize. Based on the RNA-Seq analysis, a total of 10093 differentially expressed genes (DEGs) were identified from the comparison of the three varieties in pairs. Additionally, key lodging resistance–related metabolic pathways were obtained by KEGG enrichment analysis, and the DEGs were found predominantly enriched in phenylpropanoid and secondary metabolites biosynthesis pathways in the L_vs._H and M_vs._H comparison groups. Moreover, K-means analysis clustered the DEGs into clear and distinct expression profiles for each cultivar, with several functional and regulatory genes involved in the cell wall assembly, lignin biosynthetic process and hormone metabolic process being identified in the special clusters related to lodging resistance. Subsequently, integrating metabolome and transcriptome analyses revealed nine key lignin-associated metabolites that showed different expression trends in the three hybrid cultivars, among which L-phenylalanine and p-coumaric acid were regarded as differentially changed metabolites (DCMs). These two DCMs belonged to phenylalanine metabolism and biosynthesis pathways and were also supported by the RNA-Seq data. Furthermore, plant hormone signal transduction pathway–related genes encoding auxin, abscisic acid, jasmonates, and salicylic acid were differentially expressed in the three comparisons of lodging resistance, indicating these DEGs were valuable potential targets for improving maize lodging resistance. Finally, comparative physiological and qRT-PCR analyses results supported our transcriptome-based findings. Our research not only provides a preliminary theoretical basis and experimental ideas for an in-depth study of the regulatory networks involved in maize lodging resistance regulation but also opens up new avenues for molecular maize stalk lodging resistance breeding.
Collapse
Affiliation(s)
- Lei Liu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Songtao Liu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Haibo Lu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Haichao Zhao
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Dong Wei
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
- *Correspondence: Zhihong Huang,
| |
Collapse
|
14
|
Tan J, Chen Y, Mo Z, Tan C, Wen R, Chen Z, Tian H. Zinc oxide nanoparticles and polyethylene microplastics affect the growth, physiological and biochemical attributes, and Zn accumulation of rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61534-61546. [PMID: 35445922 DOI: 10.1007/s11356-022-19262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles and microplastics are becoming important pollutants in agricultural fields, but there are few studies on the interaction of zinc oxide nanoparticles (ZnONPs) and polyethylene (PE) microplastics with rice seedlings. The two rice cultivars Xiangyaxiangzhan and Yuxiangyouzhan were grown at three ZnONP levels (0 mg L-1, 50 mg L-1, and 500 mg L-1) and three PE levels (0 mg L-1, 250 mg L-1, and 500 mg L-1), and the growth, physiological attributes, and Zn uptake of rice seedlings were measured. Result showed that the ZnONPs and PE treatment effects on the investigated parameters differed between the cultivars, whilst Yuxiangyouzhan produced 6.98% higher in mean total dry biomass than Xiangyaxiangzhan. The mean total dry biomass in Xiangyaxiagnzhan and Yuxiangyouzhan changed by 10.22-30.85% and - 11.74-25.58% under ZnONPs, respectively. The PE treatments reduced growth parameters in Xiangyaxiangzhan, whilst the 250 mg L-1 PE treatment reduced the growth parameter of Yuxiangyouzhan. Besides, the ZnONP treatment had a stronger effect on rice seedling growth than the PE treatment. Furthermore, the ZnONPs modulated the physiological parameter in plant tissue of the two rice varieties. ZnONP treatment lead to the accumulation of Zn in plant tissue and the shoot Zn content was strongly related to shoot cellulose content. Overall, ZnONPs and PE treatments modulated the growth, physiological and biochemical attributes, and Zn uptake of rice seedlings, and the cultivars and dose effects could not be ignored.
Collapse
Affiliation(s)
- Jiangtao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China
| | - Chunju Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Runhao Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengtong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Niu Y, Chen T, Zhao C, Guo C, Zhou M. Identification of QTL for Stem Traits in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:962253. [PMID: 35909739 PMCID: PMC9330363 DOI: 10.3389/fpls.2022.962253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Lodging in wheat (Triticum aestivum L.) is a complicated phenomenon that is influenced by physiological, genetics, and external factors. It causes a great yield loss and reduces grain quality and mechanical harvesting efficiency. Lodging resistance is contributed by various traits, including increased stem strength. The aim of this study was to map quantitative trait loci (QTL) controlling stem strength-related features (the number of big vascular bundles, stem diameter, stem wall thickness) using a doubled haploid (DH) population derived from a cross between Baiqimai and Neixiang 5. Field experiments were conducted during 2020-2022, and glasshouse experiments were conducted during 2021-2022. Significant genetic variations were observed for all measured traits, and they were all highly heritable. Fifteen QTL for stem strength-related traits were identified on chromosomes 2D, 3A, 3B, 3D, 4B, 5A, 6B, 7A, and 7D, respectively, and 7 QTL for grain yield-related traits were identified on chromosomes 2B, 2D, 3D, 4B, 7A, and 7B, respectively. The superior allele of the major QTL for the number of big vascular bundle (VB) was independent of plant height (PH), making it possible to improve stem strength without a trade-off of PH, thus improving lodging resistance. VB also showed positive correlations with some of the yield components. The result will be useful for molecular marker-assisted selection (MAS) for high stem strength and high yield potential.
Collapse
Affiliation(s)
- Yanan Niu
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Tianxiao Chen
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ce Guo
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
16
|
Shao Y, Shen Y, He F, Li Z. QTL Identification for Stem Fiber, Strength and Rot Resistance in a DH Population from an Alien Introgression of Brassica napus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030373. [PMID: 35161354 PMCID: PMC8840419 DOI: 10.3390/plants11030373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 05/31/2023]
Abstract
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force (BF), breaking strength (F) and Sclerotinia sclerotiorum resistance (SSR). Each trait was significantly positively or negatively correlated with more than three of the other six traits. QTL mapping for ADL, Cel, Hem, SG, BF, F and SSR were performed using a doubled haploid population derived from an intertribal B. napus introgression line 'Y689' crossed with B. napus cv. 'Westar'. A total of 67 additive QTL were identified and integrated into 55 consensus QTL by meta-analysis. Among the 55 consensus QTL, 23 (41.8%) QTL were co-located and were integrated into 11 unique QTL. The QTL by environment (Q × E) interactions were analyzed and 22 combined QTL were identified. In addition, candidate genes within the QTL intervals were proposed based on the known function of Arabidopsis orthologs. These results provided valuable information for improving lodging resistance, S. sclerotiorum resistance and mechanized harvesting of B. napus.
Collapse
Affiliation(s)
- Yujiao Shao
- College of Chemistry and Life Science, Hubei University of Education, Wuhan 430070, China;
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feifei He
- Department of Natural Sciences, Shantou Polytechnic, Shantou 515078, China;
| | - Zaiyun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
17
|
Cao Y, Yan X, Ran S, Ralph J, Smith RA, Chen X, Qu C, Li J, Liu L. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus. PLANT, CELL & ENVIRONMENT 2022; 45:248-261. [PMID: 34697825 PMCID: PMC9084453 DOI: 10.1111/pce.14208] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Ferulate-5-hydroxylase is a key enzyme involved in the conversion of the guaiacyl monolignol to the syringyl monolignol in angiosperms. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease. Stem rot caused by the fungus Sclerotinia sclerotiorum in Brassica napus causes severe losses in its production. To date, there is no information about the effect of the lignin monomer ratio on the resistance to S. sclerotiorum in B. napus. Four dominantly expressed ferulate-5-hydroxylase genes were concertedly knocked out by CRISPR/Cas9 in B. napus, and three mutant lines were generated. The S/G lignin compositional ratio was decreased compared to that of the wild type based on the results of Mӓule staining and 2D-NMR profiling in KO-7. The resistance to S. sclerotiorum in stems and leaves increased for the three f5h mutant lines compared with WT. Furthermore, we found that the stem strength of f5h mutant lines was significantly increased. Overall, we demonstrate for the first time that decreasing the S/G ratio by knocking out of the F5H gene improves S. sclerotiorum resistance in B. napus and increases stem strength.
Collapse
Affiliation(s)
- Yanru Cao
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Xingying Yan
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Shuyao Ran
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - John Ralph
- Department of Biochemistry and the D.O.E. Great Lakes Bioenergy Research CenterWisconsin Energy Institute, University of WisconsinMadisonWisconsinUSA
| | - Rebecca A. Smith
- Department of Biochemistry and the D.O.E. Great Lakes Bioenergy Research CenterWisconsin Energy Institute, University of WisconsinMadisonWisconsinUSA
| | - Xueping Chen
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
18
|
Chen C, Chang J, Wang S, Lu J, Liu Y, Si H, Sun G, Ma C. Cloning, expression analysis and molecular marker development of cinnamyl alcohol dehydrogenase gene in common wheat. PROTOPLASMA 2021; 258:881-889. [PMID: 33443712 DOI: 10.1007/s00709-021-01607-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
In common wheat, stem strength is one of the key factors for lodging resistance, which is influenced by lignin content. Cinnamyl alcohol dehydrogenase (CAD) is a vital enzyme in the pathway of lignin biosynthesis. Cloning and marker development of the CAD gene could be helpful for lodging resistance breeding. In this study, the full-length genomic DNA sequence of CAD gene in wheat was cloned by using homologous strategy. A marker 5-f2r2 was developed based on CAD sequence and used to genotype 258 wheat lines. Four haplotype combinations of CAD genes were identified in 258 wheat lines. Correction analyses among the CAD gene expression, CAD activity, and stem strength indicated significant positive correlation between CAD gene expression and CAD activity, between wheat CAD activity and wheat stem strength. The haplotype combination B is significantly associated with the lower enzyme activity and weak stem strength, which was supported by the level of CAD gene expression. The CAD activity and stem strength of wheat could be distinguished to some extent using this pair of specific primer 5-f2r2 designed in this study, indicating that the sequence targeted site (STS) marker 5-f2r2 could be used in marker assistant selection (MAS) breeding.
Collapse
Affiliation(s)
- Can Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Jingming Chang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Sheng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Jie Lu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Yi Liu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei, 230036, China.
- Anhui Key Laboratory of Crop Biology, Hefei, 230036, China.
| |
Collapse
|
19
|
Deng G, Bi F, Liu J, He W, Li C, Dong T, Yang Q, Gao H, Dou T, Zhong X, Peng M, Yi G, Hu C, Sheng O. Transcriptome and metabolome profiling provide insights into molecular mechanism of pseudostem elongation in banana. BMC PLANT BIOLOGY 2021; 21:125. [PMID: 33648452 PMCID: PMC7923470 DOI: 10.1186/s12870-021-02899-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/21/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Banana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musa spp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach. RESULTS A total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed. CONCLUSIONS The results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.
Collapse
Affiliation(s)
- Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Jing Liu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128 China
| | - Weidi He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Xiaohong Zhong
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128 China
| | - Miao Peng
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128 China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou, China
| |
Collapse
|
20
|
Hafeez A, Gě Q, Zhāng Q, Lǐ J, Gōng J, Liú R, Shí Y, Shāng H, Liú À, Iqbal MS, Dèng X, Razzaq A, Ali M, Yuán Y, Gǒng W. Multi-responses of O-methyltransferase genes to salt stress and fiber development of Gossypium species. BMC PLANT BIOLOGY 2021; 21:37. [PMID: 33430775 PMCID: PMC7798291 DOI: 10.1186/s12870-020-02786-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND O-methyltransferases (OMTs) are an important group of enzymes that catalyze the transfer of a methyl group from S-adenosyl-L-methionine to their acceptor substrates. OMTs are divided into several groups according to their structural features. In Gossypium species, they are involved in phenolics and flavonoid pathways. Phenolics defend the cellulose fiber from dreadful external conditions of biotic and abiotic stresses, promoting strength and growth of plant cell wall. RESULTS An OMT gene family, containing a total of 192 members, has been identified and characterized in three main Gossypium species, G. hirsutum, G. arboreum and G. raimondii. Cis-regulatory elements analysis suggested important roles of OMT genes in growth, development, and defense against stresses. Transcriptome data of different fiber developmental stages in Chromosome Substitution Segment Lines (CSSLs), Recombination Inbred Lines (RILs) with excellent fiber quality, and standard genetic cotton cultivar TM-1 demonstrate that up-regulation of OMT genes at different fiber developmental stages, and abiotic stress treatments have some significant correlations with fiber quality formation, and with salt stress response. Quantitative RT-PCR results revealed that GhOMT10_Dt and GhOMT70_At genes had a specific expression in response to salt stress while GhOMT49_At, GhOMT49_Dt, and GhOMT48_At in fiber elongation and secondary cell wall stages. CONCLUSIONS Our results indicate that O-methyltransferase genes have multi-responses to salt stress and fiber development in Gossypium species and that they may contribute to salt tolerance or fiber quality formation in Gossypium.
Collapse
Affiliation(s)
- Abdul Hafeez
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qí Zhāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruìxián Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yùzhēn Shí
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hǎihóng Shāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Àiyīng Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muhammad S Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiǎoyīng Dèng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muharam Ali
- Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan.
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
21
|
Jo Heuschele D, Smith KP, Annor GA. Variation in Lignin, Cell Wall-Bound p-Coumaric, and Ferulic Acid in the Nodes and Internodes of Cereals and Their Impact on Lodging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12569-12576. [PMID: 33126793 DOI: 10.1021/acs.jafc.0c04025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding the contribution of stem cell wall components to lodging is important in developing breeding programs aimed at reducing lodging in cereal crops. This study is one of the first to investigate the correlation between the amounts of cell wall-bound ferulic acid, p-coumaric acid, and lignin in the nodes and internodes of cereals (oat, wheat, and barley) and their lodging susceptibility during grain fill. All samples, except two-row barley, were susceptible to lodging and expressed a significantly lower stalk strength. Lignin and phenolic contents between nodes and internodes of all samples were significantly different, with internodes having higher amounts (5.5-7.0 and 10.9-16.2 μg/g p-coumaric acid, and 2.5-3.2 and 3.9-7.1 μg/g ferulic acid in nodes and internodes, respectively). The acid-soluble lignin content was different between nodes and internodes but not between crops. This data set did not correlate with lodging classification, possibly due to sample size and type.
Collapse
Affiliation(s)
- D Jo Heuschele
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, United States
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108, United States
| | - George A Annor
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
22
|
Yu M, Wang M, Gyalpo T, Basang Y. Stem lodging resistance in hulless barley: Transcriptome and metabolome analysis of lignin biosynthesis pathways in contrasting genotypes. Genomics 2020; 113:935-943. [PMID: 33127582 DOI: 10.1016/j.ygeno.2020.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/28/2020] [Accepted: 10/25/2020] [Indexed: 01/15/2023]
Abstract
Hulless barley is an important economic and food crop for local population in the Qinghai-Tibet plateau. However, due to extreme weather conditions, its production suffers from stem lodging stress, inflicting significant yield losses. Herein, we selected five lodging resistant and five non-resistant genotypes to investigate changes in concentration of lignin related metabolites and expression levels of related genes in node samples. The lodging resistant genotypes displayed high content of lignin intermediate metabolites. 57% of the expressed genes were differentially expressed (DEG) between the two groups. 31 DEGs participate in the lignin pathways and we found that 65% of these DEGs were strongly up-regulated in the lodging resistant group, indicating a mechanism towards high lignin synthesis within said group. The candidate structural genes as well as the co-expressed TFs identified in this study represent important molecular tools for functional characterization and exploitation in molecular breeding programmes.
Collapse
Affiliation(s)
- Mingzhai Yu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China; Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Mu Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China; Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Thondup Gyalpo
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China; Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Yuzhen Basang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China; Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China.
| |
Collapse
|
23
|
Reynolds M, Chapman S, Crespo-Herrera L, Molero G, Mondal S, Pequeno DNL, Pinto F, Pinera-Chavez FJ, Poland J, Rivera-Amado C, Saint Pierre C, Sukumaran S. Breeder friendly phenotyping. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110396. [PMID: 32534615 DOI: 10.1016/j.plantsci.2019.110396] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 05/18/2023]
Abstract
The word phenotyping can nowadays invoke visions of a drone or phenocart moving swiftly across research plots collecting high-resolution data sets on a wide array of traits. This has been made possible by recent advances in sensor technology and data processing. Nonetheless, more comprehensive often destructive phenotyping still has much to offer in breeding as well as research. This review considers the 'breeder friendliness' of phenotyping within three main domains: (i) the 'minimum data set', where being 'handy' or accessible and easy to collect and use is paramount, visual assessment often being preferred; (ii) the high throughput phenotyping (HTP), relatively new for most breeders, and requiring significantly greater investment with technical hurdles for implementation and a steeper learning curve than the minimum data set; (iii) detailed characterization or 'precision' phenotyping, typically customized for a set of traits associated with a target environment and requiring significant time and resources. While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models, that can be built from the high-throughput and detailed precision phenotypes. This review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translational research to deliver other new breeding resources, and how the different categories of phenotyping listed above apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.
Collapse
Affiliation(s)
| | - Scott Chapman
- CISRO Agriculture and Food, The University of Queensland, Australia
| | | | - Gemma Molero
- International Maize and Wheat Improvement Centre, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu X, Hu X, Li K, Liu Z, Wu Y, Wang H, Huang C. Genetic mapping and genomic selection for maize stalk strength. BMC PLANT BIOLOGY 2020; 20:196. [PMID: 32380944 PMCID: PMC7204062 DOI: 10.1186/s12870-020-2270-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Maize is one of the most important staple crops and is widely grown throughout the world. Stalk lodging can cause enormous yield losses in maize production. However, rind penetrometer resistance (RPR), which is recognized as a reliable measurement to evaluate stalk strength, has been shown to be efficient and useful for improving stalk lodging-resistance. Linkage mapping is an acknowledged approach for exploring the genetic architecture of target traits. In addition, genomic selection (GS) using whole genome markers enhances selection efficiency for genetically complex traits. In the present study, two recombinant inbred line (RIL) populations were utilized to dissect the genetic basis of RPR, which was evaluated in seven growth stages. RESULTS The optimal stages to measure stalk strength are the silking phase and stages after silking. A total of 66 and 45 quantitative trait loci (QTL) were identified in each RIL population. Several potential candidate genes were predicted according to the maize gene annotation database and were closely associated with the biosynthesis of cell wall components. Moreover, analysis of gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway further indicated that genes related to cell wall formation were involved in the determination of RPR. In addition, a multivariate model of genomic selection efficiently improved the prediction accuracy relative to a univariate model and a model considering RPR-relevant loci as fixed effects. CONCLUSIONS The genetic architecture of RPR is highly genetically complex. Multiple minor effect QTL are jointly involved in controlling phenotypic variation in RPR. Several pleiotropic QTL identified in multiple stages may contain reliable genes and can be used to develop functional markers for improving the selection efficiency of stalk strength. The application of genomic selection to RPR may be a promising approach to accelerate breeding process for improving stalk strength and enhancing lodging-resistance.
Collapse
Affiliation(s)
- Xiaogang Liu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojiao Hu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Li
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhifang Liu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujin Wu
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwu Wang
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Changling Huang
- Institute of Crop Sciences, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
Fan D, Li C, Fan C, Hu J, Li J, Yao S, Lu W, Yan Y, Luo K. MicroRNA6443-mediated regulation of FERULATE 5-HYDROXYLASE gene alters lignin composition and enhances saccharification in Populus tomentosa. THE NEW PHYTOLOGIST 2020; 226:410-425. [PMID: 31849071 DOI: 10.1111/nph.16379] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/01/2019] [Indexed: 05/22/2023]
Abstract
Ferulate 5-hydroxylase (F5H) is a limiting enzyme involved in biosynthesizing sinapyl (S) monolignol in angiosperms. Genetic regulation of F5H can influence S monolignol synthesis and therefore improve saccharification efficiency and biofuel production. To date, little is known about whether F5H is post-transcriptionally regulated by endogenous microRNAs (miRNAs) in woody plants. Here, we report that a microRNA, miR6443, specifically regulates S lignin biosynthesis during stem development in Populus tomentosa. In situ hybridization showed that miR6443 is preferentially expressed in vascular tissues. We further identified that F5H2 is the direct target of miR6443. Overexpression of miR6443 decreased the transcript level of F5H2 in transgenic plants, resulting in a significant reduction in S lignin content. Conversely, reduced miR6443 expression by short tandem target mimics (STTM) elevated F5H2 transcripts, therefore increasing S lignin composition. Introduction of a miR6443-resistant form of F5H2 into miR6443-overexpression plants restored lignin ectopic composition, supporting that miR6443 specifically regulated S lignin biosynthesis by repressing F5H2 in P. tomentosa. Furthermore, saccharification assays revealed decreased hexose yields by 7.5-24.5% in miR6443-overexpression plants compared with the wild-type control, and increased hexoses yields by 13.2-14.6% in STTM6443-overexpression plants. Collectively, we demonstrate that miR6443 modulates S lignin biosynthesis by specially regulating F5H2 in P. tomentosa.
Collapse
Affiliation(s)
- Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianqiu Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shu Yao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wanxiang Lu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yangyang Yan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
26
|
Pan J, Zhao J, Liu Y, Huang N, Tian K, Shah F, Liang K, Zhong X, Liu B. Optimized nitrogen management enhances lodging resistance of rice and its morpho-anatomical, mechanical, and molecular mechanisms. Sci Rep 2019; 9:20274. [PMID: 31889083 PMCID: PMC6937289 DOI: 10.1038/s41598-019-56620-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/09/2019] [Indexed: 11/11/2022] Open
Abstract
Increasing evidence shows that improved nitrogen management can enhance lodging resistance and lower internodes play a key role in the lodging resistance of rice. However, little is known about the cellular and molecular mechanisms underlying the enhanced lodging resistance under improved nitrogen management. In the present study, two rice varieties, with contrasting lodging resistance, were grown under optimized N management (OPT) and farmers’ fertilizer practices. Under OPT, the lower internodes of both cultivars were shorter but the upper internodes were longer, while both culm diameter and wall thickness of lower internodes were dramatically increased. Microscopic examination showed that the culm wall of lower internodes under OPT contained more sclerenchyma cells beneath epidermis and vascular bundle sheath. The genome-wide gene expression profiling revealed that transcription of genes encoding cell wall loosening factors was down-regulated while transcription of genes participating in lignin and starch synthesis was up-regulated under OPT, resulting in inhibition of longitudinal growth, promotion in transverse growth of lower internodes and enhancement of lodging resistance. This is the first comprehensive report on the morpho-anatomical, mechanical, and molecular mechanisms of lodging resistance of rice under optimized N management.
Collapse
Affiliation(s)
- Junfeng Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Yanzhuo Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Nongrong Huang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Ka Tian
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Farooq Shah
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Kaiming Liang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Xuhua Zhong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
| |
Collapse
|
27
|
Physiology and proteomic analysis reveals root, stem and leaf responses to potassium deficiency stress in alligator weed. Sci Rep 2019; 9:17366. [PMID: 31758026 PMCID: PMC6874644 DOI: 10.1038/s41598-019-53916-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2019] [Indexed: 11/09/2022] Open
Abstract
Alligator weed is reported to have a strong ability to adapt to potassium deficiency stress. Proteomic changes in response to this stress are largely unknown in alligator weed seedlings. In this study, we performed physiological and comparative proteomics of alligator weed seedlings between normal growth (CK) and potassium deficiency (LK) stress using 2-DE techniques, including root, stem and leaf tissues. Seedling height, soluble sugar content, PGK activity and H2O2 contents were significantly altered after 15 d of LK treatment. A total of 206 differentially expressed proteins (DEPs) were identified. There were 72 DEPs in the root, 79 in the stem, and 55 in the leaves. The proteomic results were verified using western blot and qRT-PCR assays. The most represented KEGG pathway was "Carbohydrate and energy metabolism" in the three samples. The "Protein degradation" pathway only existed in the stem and root, and the "Cell cycle" pathway only existed in the root. Protein-protein interaction analysis demonstrated that the interacting proteins detected were the most common in the stem, with 18 proteins. Our study highlights protein changes in alligator weed seedling under LK stress and provides new information on the comprehensive analysis of the protein network in plant potassium nutrition.
Collapse
|
28
|
Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A, Wang J, Riaz MW, Rehman S, Wu W, Khan RM, Abbas A, Riaz A, Anis GB, Si H, Jiang H, Ma C. Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. Int J Mol Sci 2019; 20:E4211. [PMID: 31466256 PMCID: PMC6747267 DOI: 10.3390/ijms20174211] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023] Open
Abstract
One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.
Collapse
Affiliation(s)
- Liaqat Shah
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Yahya
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Syed Mehar Ali Shah
- Department of Plant Breeding and Genetics, University of Agriculture Peshawar, Peshawar 57000, Pakistan
| | - Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Asif Ali
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jing Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Waheed Riaz
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shamsur Rehman
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weixun Wu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Riaz Muhammad Khan
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Adil Abbas
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Aamir Riaz
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Galal Bakr Anis
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafrelsheikh 33717, Egypt
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
29
|
Khobra R, Sareen S, Meena BK, Kumar A, Tiwari V, Singh GP. Exploring the traits for lodging tolerance in wheat genotypes: a review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:589-600. [PMID: 31168225 PMCID: PMC6522606 DOI: 10.1007/s12298-018-0629-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 05/23/2023]
Abstract
The rising population entails enhancement in wheat productivity to ensure substantial food supply which often get hindered by various biotic and abiotic stresses. Lodging, due to rain and high velocity wind causes significant economic and yield losses in cereals. Hence, lodging is emerging as a major hurdle to achieve the required yield targets. Various morphological, biochemical, anatomical and genetic traits contribute to produce a plant competent enough to bear lodging stress. Hence, in this review, we intend to elaborate the cause and impact relationship of lodging and tried to link lodging tolerance traits to field practices to minimize the losses. Because of the complex nature of lodging phenomenon, it is still obscure to identify best correlated traits to screen genotype in breeding programmes. However, the genotypes with best correlated traits like plant height, culm wall thickness should be introduced/selected in breeding programmes to inculcate lodging tolerance in a high yielding variety as in recent era lodging tolerance is a key factor to enhance productivity and farmer's income as well.
Collapse
Affiliation(s)
- Rinki Khobra
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Sindhu Sareen
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Braj Kishor Meena
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Arvind Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Vinod Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - G. P. Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| |
Collapse
|
30
|
Zhao X, Zhou N, Lai S, Frei M, Wang Y, Yang L. Elevated CO 2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:223-231. [PMID: 30077851 DOI: 10.1016/j.scitotenv.2018.07.431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 05/12/2023]
Abstract
Elevated atmospheric CO2 concentration has been shown to increase rice yield but its effect on plant lodging resistance is still under debate. In this study, we examined lodging incidence in the field and lodging-related traits of two rice cultivars with contrasting lodging susceptibility under ambient and elevated CO2 (ca. 200 μmol mol-1 above ambient) concentrations by using a free-air CO2 enrichment (FACE) system. Elevated CO2 (E-CO2) increased lodging resistance as shown by reduced visual lodging incidence in the field at the late grain filling stage in E-CO2 plots. This coincided with enhanced in situ pushing resistance of intact plants one week before lodging occurred. The positive CO2 effect was more pronounced in the lodging-susceptible cultivar LY084. In contrast, the cultivar WYJ23 displayed greater pushing resistance in the field, and no lodging occurred at either ambient or elevated CO2 conditions throughout the cropping season. The field observations were consistent with the physicochemical characterization of basal internodes of rice plants at the grain filling stage. Greater lodging-resistance of WYJ23 was mainly attributed to its shorter plant height and thicker culm wall of basal internodes. The improvement of lodging resistance by E-CO2 for the lodging-susceptible cultivar LY084 was mainly related to enhanced culm density, which was explained by elevated starch deposition in the stem. Less lodging incidence under elevated CO2 contributed to an increase in grain yield by 36% for LY084. In conclusion, rice production could benefit from elevated CO2 in a changing climate because of an increase in lodging resistance as a result of CO2-induced improvements in mechanical strength of basal internodes.
Collapse
Affiliation(s)
- Xinyong Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Nan Zhou
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Shuangkun Lai
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Lianxing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
31
|
Liu S, Huang Y, Xu H, Zhao M, Xu Q, Li F. Genetic enhancement of lodging resistance in rice due to the key cell wall polymer lignin, which affects stem characteristics. BREEDING SCIENCE 2018; 68:508-515. [PMID: 30697111 PMCID: PMC6345238 DOI: 10.1270/jsbbs.18050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 05/28/2023]
Abstract
Lodging in crops seriously restricts plant growth and grain production. The genetic modification of cell walls to enhance plant mechanical strength has been suggested as a promising approach toward improving lodging resistance. However, because of the complexity of the plant cell wall, the exact effects of its polymers on plant lodging resistance remain elusive. To address this issue, we performed large-scale analyses of a total of 56 rice (Oryza sativa L.) varieties that displayed distinct cell wall component and lodging index. Lignin was identified as the key cell wall polymer that positively determines lodging resistance in rice. Correlation analysis between cell wall composition and plant morphological characteristics revealed that lignin enhanced rice lodging resistance by largely increasing the mechanical strength of the basal stem and reducing plant height. Further characterization of four representative rice varieties, ShenNong9903, YanJian218, KongYu131, and ShenNongK33, displaying varied levels of lodging resistance, revealed the multiple candidate genes (PAL, CoMT, 4CL3, CAD2, CAD7 and CCR20) responsible for increasing lignin level. Hence, our results demonstrate that the high lignin level in the cell wall predominately improves lodging resistance and suggest target genes for the genetic modification of lignin towards breeding rice with high lodging resistance.
Collapse
|
32
|
Begović L, Abičić I, Lalić A, Lepeduš H, Cesar V, Leljak-Levanić D. Lignin synthesis and accumulation in barley cultivars differing in their resistance to lodging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:142-148. [PMID: 30419464 DOI: 10.1016/j.plaphy.2018.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Since lignin greatly affects stem strength, which is an important agronomical trait, understanding the relationship between lodging resistance and lignin synthesis is important in barley breeding and selection processes. The aim of the study was to reveal the connection between physiological aspects of lignin synthesis and genetic background of barley cultivars with different lodging phenotype. Three barley cultivars Astor, Scarlett and Jaran were compared by measuring lignin, cellulose and total soluble phenolics content, phenylalanine ammonia-lyase activity (PAL) and expression of cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol dehydrogenase (CAD) in three lower internodes at flowering and grain filling stage. To assess their genetic background simple sequence repeats (SSR) markers, connected to lodging resistance and plant height, were analyzed. Compared to lodging susceptible cultivars Scarlett and Jaran, a lodging resistant cultivar Astor revealed different dynamics of lignin synthesis and deposition, showing higher PAL activity and total soluble phenolics content as well as higher expression of CCR and CAD genes in the second internode at grain filling stage. Analysis of SSR markers associated with quantitative trait loci (QTL) for lodging resistance revealed that Astor discriminates from Scarlett and Jaran by marker Bmag337 connected with elongation of the second internode. Lignification process is under a strong influence of genotype and environmental factors which determine lignin synthesis dynamics and deposition of lignin in the cell walls of barley.
Collapse
Affiliation(s)
- Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia.
| | - Ivan Abičić
- Agricultural Institute Osijek, Južno Predgrađe 3, HR-31000, Osijek, Croatia.
| | - Alojzije Lalić
- Agricultural Institute Osijek, Južno Predgrađe 3, HR-31000, Osijek, Croatia.
| | - Hrvoje Lepeduš
- Faculty of Humanities and Social Sciences, Josip Juraj Strossmayer University of Osijek, Lorenza Jägera 9, HR-31000, Osijek, Croatia.
| | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia.
| | - Dunja Leljak-Levanić
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000, Zagreb, Croatia.
| |
Collapse
|
33
|
Wang M, Zhu X, Wang K, Lu C, Luo M, Shan T, Zhang Z. A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Sci Rep 2018; 8:6543. [PMID: 29695751 PMCID: PMC5916939 DOI: 10.1038/s41598-018-24884-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Plant caffeic acid 3-O-methyltransferase (COMT) has been implicated in the lignin biosynthetic pathway through catalyzing the multi-step methylation reactions of hydroxylated monomeric lignin precursors. However, genetic evidence for its function in plant disease resistance is poor. Sharp eyespot, caused primarily by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.). In this study, a wheat COMT gene TaCOMT-3D, is identified to be in response to R. cerealis infection through microarray-based comparative transcriptomics. The TaCOMT-3D gene is localized in the long arm of the chromosome 3D. The transcriptional level of TaCOMT-3D is higher in sharp eyespot-resistant wheat lines than in susceptible wheat lines, and is significantly elevated after R. cerealis inoculation. After R. cerealis inoculation and disease scoring, TaCOMT-3D-silenced wheat plants exhibit greater susceptibility to sharp eyespot compared to unsilenced wheat plants, whereas overexpression of TaCOMT-3D enhances resistance of the transgenic wheat lines to sharp eyespot. Moreover, overexpression of TaCOMT-3D enhances the stem mechanical strength, and lignin (particular syringyl monolignol) accumulation in the transgenic wheat lines. These results suggest that TaCOMT-3D positively contributes to both wheat resistance against sharp eyespot and stem mechanical strength possibly through promoting lignin (especially syringyl monolignol) accumulation.
Collapse
Affiliation(s)
- Minxia Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Ke Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, NG250QF, United Kingdom
| | - Meiying Luo
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Tianlei Shan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China.
| |
Collapse
|
34
|
Li F, Liu S, Xu H, Xu Q. A novel FC17/CESA4 mutation causes increased biomass saccharification and lodging resistance by remodeling cell wall in rice. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:298. [PMID: 30410573 PMCID: PMC6211429 DOI: 10.1186/s13068-018-1298-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice not only produces grains for human beings, but also provides large amounts of lignocellulose residues, which recently highlighted as feedstock for biofuel production. Genetic modification of plant cell walls can potentially enhance biomass saccharification; however, it remains a challenge to maintain a normal growth with enhanced lodging resistance in rice. RESULTS In this study, rice (Oryza sativa) mutant fc17, which harbors the substitution (F426S) at the plant-conserved region (P-CR) of cellulose synthase 4 (CESA4) protein, exhibited slightly affected plant growth and 17% higher lodging resistance compared to the wild-type. More importantly, the mutant showed a 1.68-fold enhancement in biomass saccharification efficiency. Cell wall composition analysis showed a reduction in secondary wall thickness and cellulose content, and compensatory increase in hemicelluloses and lignin content. Both X-ray diffraction and calcofluor staining demonstrated a significant reduction in cellulose crystallinity, which should be a key factor for its high saccharification. Proteomic profiling of wild-type and fc17 plants further indicated a possible mechanism by which mutation induces cellulose deposition and cell wall remodeling. CONCLUSION These results suggest that CESA4 P-CR site mutation affects cell wall features especially cellulose structure and thereby causes enhancement in biomass digestion and lodging resistance. Therefore, CESA4 P-CR region is promising target for cell wall modification to facilitate the breeding of bioenergy rice.
Collapse
Affiliation(s)
- Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Sitong Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Hai Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
35
|
Zhang W, Wu L, Ding Y, Yao X, Wu X, Weng F, Li G, Liu Z, Tang S, Ding C, Wang S. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). JOURNAL OF PLANT RESEARCH 2017; 130:859-871. [PMID: 28451936 DOI: 10.1007/s10265-017-0943-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 03/09/2017] [Indexed: 05/12/2023]
Abstract
Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.
Collapse
Affiliation(s)
- Wujun Zhang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
- Chongqing Academy of Agricultural Sciences/Chongqing Ratooning Rice Research Center, Chongqing, 402160, China
| | - Longmei Wu
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfeng Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiong Yao
- Chongqing Academy of Agricultural Sciences/Chongqing Ratooning Rice Research Center, Chongqing, 402160, China
| | - Xiaoran Wu
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Weng
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ganghua Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhenghui Liu
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - She Tang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengqiang Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaohua Wang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
36
|
Dorairaj D, Ismail MR. Distribution of Silicified Microstructures, Regulation of Cinnamyl Alcohol Dehydrogenase and Lodging Resistance in Silicon and Paclobutrazol Mediated Oryza sativa. Front Physiol 2017; 8:491. [PMID: 28747889 PMCID: PMC5506179 DOI: 10.3389/fphys.2017.00491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si), a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense. The aim of this study is to resolve effects of Si on formation of microstructure and regulation of cinnamyl alcohol dehydrogenase (CAD), a key gene responsible for lignin biosynthesis. Besides evaluating silicon, paclobutrazol (PBZ) a plant growth retartdant that reduces internode elongation is also incorporated in this study. Hardness, brittleness and stiffness were improved in presence of silicon thus reducing lodging. Scanning electron micrographs with the aid of energy dispersive x-ray (EDX) was used to map silicon distribution. Presence of trichomes, silica cells, and silica bodies were detected in silicon treated plants. Transcripts of CAD gene was also upregulated in these plants. Besides, phloroglucinol staining showed presence of lignified vascular bundles and sclerenchyma band. In conclusion, silicon treated rice plants showed an increase in lignin content, silicon content, and formation of silicified microstructures.
Collapse
Affiliation(s)
- Deivaseeno Dorairaj
- Department of Crop Science, Faculty of Agriculture, Universiti Putra MalaysiaSerdang, Malaysia
| | - Mohd Razi Ismail
- Department of Crop Science, Faculty of Agriculture, Universiti Putra MalaysiaSerdang, Malaysia.,Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra MalaysiaSerdang, Malaysia
| |
Collapse
|
37
|
Oiestad AJ, Martin JM, Cook J, Varella AC, Giroux MJ. Identification of Candidate Genes Responsible for Stem Pith Production Using Expression Analysis in Solid-Stemmed Wheat. THE PLANT GENOME 2017; 10. [PMID: 28724083 DOI: 10.3835/plantgenome2017.02.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The wheat stem sawfly (WSS) is an economically important pest of wheat in the Northern Great Plains. The primary means of WSS control is resistance associated with the single quantitative trait locus (QTL) , which controls most stem solidness variation. The goal of this study was to identify stem solidness candidate genes via RNA-seq. This study made use of 28 single nucleotide polymorphism (SNP) makers derived from expressed sequence tags (ESTs) linked to contained within a 5.13 cM region. Allele specific expression of EST markers was examined in stem tissue for solid and hollow-stemmed pairs of two spring wheat near isogenic lines (NILs) differing for the QTL. Of the 28 ESTs, 13 were located within annotated genes and 10 had detectable stem expression. Annotated genes corresponding to four of the ESTs were differentially expressed between solid and hollow-stemmed NILs and represent possible stem solidness gene candidates. Further examination of the 5.13 cM region containing the 28 EST markers identified 260 annotated genes. Twenty of the 260 linked genes were up-regulated in hollow NIL stems, while only seven genes were up-regulated in solid NIL stems. An -methyltransferase within the region of interest was identified as a candidate based on differential expression between solid and hollow-stemmed NILs and putative function. Further study of these candidate genes may lead to the identification of the gene(s) controlling stem solidness and an increased ability to select for wheat stem solidness and manage WSS.
Collapse
|
38
|
Zheng M, Chen J, Shi Y, Li Y, Yin Y, Yang D, Luo Y, Pang D, Xu X, Li W, Ni J, Wang Y, Wang Z, Li Y. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Sci Rep 2017; 7:41805. [PMID: 28150816 PMCID: PMC5288770 DOI: 10.1038/srep41805] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/29/2016] [Indexed: 01/10/2023] Open
Abstract
Increasing plant density is one of the most efficient ways of increasing wheat (Triticum aestivum L.) grain production. However, overly dense plant populations have an increased risk of lodging. We examined lignin deposition during wheat stem development and the regulatory effects of plant density using the wheat cultivars shannong23 and weimai8. Plants were cultivated at densities of 75, 225 and 375 plants per m2 during two growing seasons. Our results showed that decreasing plant density enhanced culm quality, as revealed by increased culm diameter, wall thickness and dry weight per unit length, and improved the structure of sclerenchyma and vascular bundles by increasing lignification. In addition, more lignins were deposited in the secondary cell walls, resulting in strong lodging resistance. The guaiacyl unit was the major component of lignin and there was a higher content of the syringyl unit than that of the hydroxybenzyl unit. Furthermore, we hypothesised that the syringyl unit may correlate with stem stiffness. We describe here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of stem breaking strength by plant density, particularly the effect of plant density on lignin biosynthesis and its relationship with lodging resistance in wheat.
Collapse
Affiliation(s)
- Mengjing Zheng
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Jin Chen
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Yuhua Shi
- Agricultural Bureau of Yanzhou District, Jining, Shandong, P. R. China
| | - Yanxia Li
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Yanping Yin
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Dongqing Yang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Yongli Luo
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Dangwei Pang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Xu Xu
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Wenqian Li
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Jun Ni
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Yuanyuan Wang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Zhenlin Wang
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| | - Yong Li
- State Key Laboratory of Crop Biology, Ministry of Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, P. R. China
| |
Collapse
|
39
|
Naing AH, Lee K, Kim KO, Ai TN, Kim CK. Involvement of Sodium Nitroprusside (SNP) in the Mechanism That Delays Stem Bending of Different Gerbera Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:2045. [PMID: 29234346 PMCID: PMC5712348 DOI: 10.3389/fpls.2017.02045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/15/2017] [Indexed: 05/22/2023]
Abstract
Longevity of cut flowers of many gerbera cultivars (Gerbera jamesonii) is typically short because of stem bending; hence, stem bending that occurs during the early vase life period is a major problem in gerbera. Here, we investigated the effects of sodium nitroprusside (SNP) on the delay of stem bending in the gerbera cultivars, Alliance, Rosalin, and Bintang, by examining relative fresh weight, bacterial density in the vase solution, transcriptional analysis of a lignin biosynthesis gene, antioxidant activity, and xylem blockage. All three gerbera cultivars responded to SNP by delaying stem bending, compared to the controls; however, the responses were dose- and cultivar-dependent. Among the treatments, SNP at 20 mg L-1 was the best to delay stem bending in Alliance, while dosages of 10 and 5 mg L-1 were the best for Rosalin and Bintang, respectively. However, stem bending in Alliance and Rosalin was faster than in Bintang, indicating a discrepancy influenced by genotype. According to our analysis of the role of SNP in the delay of stem bending, the results revealed that SNP treatment inhibited bacterial growth and xylem blockage, enhanced expression levels of a lignin biosynthesis gene, and maintained antioxidant activities. Therefore, it is suggested that the cause of stem bending is associated with the above-mentioned parameters and SNP is involved in the mechanism that delays stem bending in the different gerbera cultivars.
Collapse
Affiliation(s)
- Aung H. Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Kyoungsun Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Kyoung-Ook Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Trinh N. Ai
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh, Vietnam
| | - Chang K. Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
- *Correspondence: Chang K. Kim,
| |
Collapse
|
40
|
Wu L, Zhang W, Ding Y, Zhang J, Cambula ED, Weng F, Liu Z, Ding C, Tang S, Chen L, Wang S, Li G. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:881. [PMID: 28611803 PMCID: PMC5447739 DOI: 10.3389/fpls.2017.00881] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/10/2017] [Indexed: 05/08/2023]
Abstract
Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR, and OsCAD2, and primary cell wall synthesis, OsCesA1, OsCesA3, and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and cellulose in both sclerenchyma and parenchyma cells, which attribute to lignin and cellulose in culm tissue and weak mechanical tissue, consequently, result in poor stem strength and higher lodging risks. Highlights: (1) Shading decreases the stem mechanical strength of japonica rice by decreasing non-structural carbohydrate, sucrose, lignin, and cellulose accumulation in culms. (2) The decrease of carbon source under shading condition is the cause for the lower lignin and cellulose accumulation in culm. (3) The expression of genes involved in lignin and primarily cell wall cellulose biosynthesis (OsCesA1, OsCesA3, and OsCesA8) at the stem formation stage are down-regulated under shading condition, inducing defective cell wall development and poor lodging resistance.
Collapse
Affiliation(s)
- Longmei Wu
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Wujun Zhang
- Chongqing Ratooning Rice Research Center, Chongqing Academy of Agricultural SciencesChongqing, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Jianwei Zhang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Elidio D. Cambula
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Fei Weng
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Chengqiang Ding
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - She Tang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Lin Chen
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Ganghua Li,
| |
Collapse
|
41
|
Negi S, Tak H, Ganapathi TR. Functional characterization of secondary wall deposition regulating transcription factors MusaVND2 and MusaVND3 in transgenic banana plants. PROTOPLASMA 2016; 253:431-446. [PMID: 25952082 DOI: 10.1007/s00709-015-0822-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
NAM, ATAF, and CUC (NAC) domain-containing proteins are plant-specific transcription factors involved in stress responses and developmental regulation. MusaVND2 and MusaVND3 are vascular-related NAC domain-containing genes encoding for nuclear-localized proteins. The transcript level of MusaVND2 and MusaVND3 are gradually induced after induction of lignification conditions in banana embryogenic cells. Banana embryogenic cells differentiated to tracheary element-like cells after overexpression of MusaVND2 and MusaVND3 with a differentiation frequency of 63.5 and 23.4 %, respectively, after ninth day. Transgenic banana plants overexpressing either of MusaVND2 or MusaVND3 showed ectopic secondary wall deposition as well as transdifferentiation of cells into tracheary elements. Transdifferentiation to tracheary element-like cells was observed in cortical cells of corm and in epidermal and mesophyll cells of leaves of transgenic plants. Elevated levels of lignin and crystalline cellulose were detected in the transgenic banana lines than control plants. The results obtained are useful for understanding the molecular regulation of secondary wall development in banana.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
| |
Collapse
|
42
|
Nguyen TN, Son S, Jordan MC, Levin DB, Ayele BT. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC PLANT BIOLOGY 2016; 16:28. [PMID: 26811086 PMCID: PMC4727291 DOI: 10.1186/s12870-016-0717-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/18/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. RESULTS Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. CONCLUSION Lodging resistance, tolerance against biotic and abiotic stresses and feedstock quality of wheat biomass are closely associated with its lignin content. Therefore, the findings of this study provide important insights into the molecular mechanisms underlying lignin formation in wheat, an important step towards the development of molecular tools that can facilitate the breeding of wheat cultivars for optimized lignin content and enhanced feedstock quality without affecting other lignin-related agronomic benefits.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - SeungHyun Son
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - Mark C Jordan
- Morden Reasearch and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
43
|
Systematic analysis of O -methyltransferase gene family and identification of potential members involved in the formation of O -methylated flavonoids in Citrus. Gene 2016; 575:458-472. [DOI: 10.1016/j.gene.2015.09.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022]
|
44
|
Ma QH, Luo HR. Biochemical characterization of caffeoyl coenzyme A 3-O-methyltransferase from wheat. PLANTA 2015; 242:113-22. [PMID: 25854602 DOI: 10.1007/s00425-015-2295-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/30/2015] [Indexed: 05/09/2023]
Abstract
TaCCoAOMT1 is located in wheat chromosome 7A and highly expressed in stem and root. It is important for lignin biosynthesis, and associated with stem maturity but not lodging resistance. Caffeoyl coenzyme A 3-O-methyltransferases (CCoAOMTs) are one important class of enzymes to carry out the transfer of the methyl group from S-adenosylmethionine to the hydroxyl group, and play important roles in lignin and flavonoids biosynthesis. In the present study, sequences for CCoAOMT from the wheat genome were analyzed. One wheat CCoAOMT that belonged to bona fide subclade involved in lignin biosynthesis, namely TaCCoAOMT1, was obtained by the prokaryotic expression in E. coli. The three-dimensional structure prediction showed a highly similar structure of TaCCoAOMT1 with MsCCoAOMT. Recombinant TaCCoAOMT1 protein could only use caffeoyl CoA and 5-hydroxyferuloyl CoA as effective substrates and caffeoyl CoA as the best substrate. TaCCoAOMT1 had a narrow optimal pH and thermal stability. The TaCCoAOMT1 gene was highly expressed in wheat stem and root tissues, paralleled CCoAOMT enzyme activity. TaCCoAOMT1 mRNA abundance and enzyme activity increased linearly with stem maturity, but showed little difference between wheat lodging-resistant (H4546) and lodging-sensitive (C6001) cultivars in elongation, heading and milky stages. These data suggest that TaCCoAOMT1 is an important CCoAOMT for lignin biosynthesis that is critical for stem development, but not directly associated with lodging-resistant trait in wheat.
Collapse
Affiliation(s)
- Qing-Hu Ma
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China,
| | | |
Collapse
|
45
|
Calvenzani V, Castagna A, Ranieri A, Tonelli C, Petroni K. Hydroxycinnamic acids and UV-B depletion: Profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1. JOURNAL OF PLANT PHYSIOLOGY 2015; 181:75-82. [PMID: 26002085 DOI: 10.1016/j.jplph.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 05/18/2023]
|
46
|
Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu C, Tian J, Lu T, Xie G, Peng L. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:514-25. [PMID: 25418842 DOI: 10.1111/pbi.12276] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 05/03/2023]
Abstract
Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice.
Collapse
Affiliation(s)
- Fengcheng Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Negi S, Tak H, Ganapathi TR. Cloning and functional characterization of MusaVND1 using transgenic banana plants. Transgenic Res 2014; 24:571-85. [PMID: 25523085 DOI: 10.1007/s11248-014-9860-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023]
Abstract
Vascular related NAC (NAM, ATAF and CUC) domain-containing genes regulate secondary wall deposition and differentiation of xylem vessel elements. MusaVND1 is an ortholog of Arabidopsis VND1 and contains the highly conserved NAC domain. The expression of MusaVND1 is highest in developing corm and during lignification conditions, the increase in expression of MusaVND1 coincides with the expression of PAL, COMT and C4H genes. MusaVND1 encodes a nuclear localized protein as MusaVND1-GFP fusion protein gets localized to nucleus. Transient overexpression of MusaVND1 converts banana embryogenic cells to xylem vessel elements, with a final differentiation frequency of 33.54% at the end of tenth day. Transgenic banana plants overexpressing MusaVND1 showed stunted growth and were characterized by PCR and Southern blot analysis. Transgenic banana plants showed transdifferentiation of various types of cells into xylem vessel elements and ectopic deposition of lignin in cells of various plant organs such as leaf and corm. Tracheary element formation was seen in the cortical region of transgenic corm as well as in epidermal cells of leaves. Biochemical analysis indicates significantly higher levels of lignin and cellulose content in transgenic banana lines than control plants. MusaVND1 overexpressing transgenic banana plants showed elevated expression levels of genes involved in lignin and cellulose biosynthesis pathway. Further expression of different MYB transcription factors positively regulating secondary wall deposition was also up regulated in MusaVND1 transgenic lines.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
48
|
Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Sci Rep 2014; 4:6567. [PMID: 25298209 PMCID: PMC4190510 DOI: 10.1038/srep06567] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022] Open
Abstract
Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, 'Leaf Star', with superior lodging resistance and a gh phenotype similar to one of its parents, 'Chugoku 117'. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety.
Collapse
|
49
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
50
|
Frei M. Lignin: characterization of a multifaceted crop component. ScientificWorldJournal 2013; 2013:436517. [PMID: 24348159 PMCID: PMC3848262 DOI: 10.1155/2013/436517] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022] Open
Abstract
Lignin is a plant component with important implications for various agricultural disciplines. It confers rigidity to cell walls, and is therefore associated with tolerance to abiotic and biotic stresses and the mechanical stability of plants. In animal nutrition, lignin is considered an antinutritive component of forages as it cannot be readily fermented by rumen microbes. In terms of energy yield from biomass, the role of lignin depends on the conversion process. It contains more gross energy than other cell wall components and therefore confers enhanced heat value in thermochemical processes such as direct combustion. Conversely, it negatively affects biological energy conversion processes such as bioethanol or biogas production, as it inhibits microbial fermentation of the cell wall. Lignin from crop residues plays an important role in the soil organic carbon cycling, as it constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon sequestration. Due to the significance of lignin in several agricultural disciplines, the modification of lignin content and composition by breeding is becoming increasingly important. Both mapping of quantitative trait loci and transgenic approaches have been adopted to modify lignin in crops. However, breeding goals must be defined considering the conflicting role of lignin in different agricultural disciplines.
Collapse
Affiliation(s)
- Michael Frei
- Division of Abiotic Stress Tolerance in Crops, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Straße 13, 53115 Bonn, Germany
| |
Collapse
|