1
|
Ying Y, Deng B, Zhang L, Hu Y, Liu L, Bao J, Xu F. Multi-omics analyses reveal mechanism for high resistant starch formation in an indica rice SSIIIa mutant. Carbohydr Polym 2025; 347:122708. [PMID: 39486949 DOI: 10.1016/j.carbpol.2024.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/18/2024] [Accepted: 09/03/2024] [Indexed: 11/04/2024]
Abstract
Soluble starch synthase IIIa (SSIIIa) is a key enzyme involved in amylopectin biosynthesis in rice, and deficiency of SSIIIa results in high content of resistant starch, which is benefit to human health. However, little is known about metabolic differences and carbon re-allocation in the seeds of the indica rice ss3a mutant. We found that SSIIIa deficiency impaired the storage of starch, but increased the soluble sugars, free amino acids and lipids. By multi-omic analyses, we found inactivation of SSIIIa triggered carbon repartitioning by downregulating sucrose synthase, grain incomplete filling 1, fructokinase and hexokinase (HK), and promoted the accumulation of soluble sugars. Meanwhile, the downregulation of HK and upregulation of plastidic phosphoglucomutase reduced the carbon flow through glycolysis and promoted glycogenesis. The downregulation of OsbZIP58 and the deleterious effect on ribosome formation might result in the reduction of storage protein synthesis and increased free amino acids content in ss3a. The higher levels of amylose and lipids could form more amylose-lipid complexes (starch phospholipids), resulting in a higher resistant starch content. Taken together, our study unraveled a functional cross talk between starch, protein and lipids in rice endosperm during seed development of ss3a, providing new insights for formation of high resistant starch in rice.
Collapse
Affiliation(s)
- Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Bowen Deng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Lin Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
2
|
Koulas S, Kyriakis E, Tsagkarakou AS, Leonidas DD. Kinetic and Structural Studies of the Plastidial Solanum tuberosum Phosphorylase. ACS OMEGA 2024; 9:41841-41854. [PMID: 39398113 PMCID: PMC11465516 DOI: 10.1021/acsomega.4c06313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Kinetics and structural studies of the plastidial Solanum tuberosum phosphorylase (stPho1) revealed that the most active form of the enzyme (stPho1ΔL78) is composed by two segments generated by proteolytic degradation of an approximately 65-residue-long peptide (L78) approximately in the middle of the stPho1 primary structure. stPho1ΔL78 is 1.5 times more active than the nonproteolyzed enzyme in solution and shows stronger specificity for glycogen, α-d-glucose, caffeine, and β-cyclodextrin than stPho1. The crystal structure of stPho1ΔL78 has been resolved at 2.2 Å resolution and revealed similarities and differences with the mammalian enzymes. The structural fold is conserved as is the active site, while other binding sites such as the inhibitor, the glycogen storage, the quercetin, and the allosteric are not. The binding of α-d-glucose, caffeine, and β-cyclodextrin to stPho1 has been studied by X-ray crystallography and revealed significant differences from those of the mammalian phosphorylases. As stPho1 is capable of catalyzing both starch synthesis and degradation, our studies suggest that the direction of stPho1 activity is regulated by the proteolytic degradation of the L78 peptide.
Collapse
Affiliation(s)
- Symeon
M. Koulas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | | | - Anastasia S. Tsagkarakou
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Demetres D. Leonidas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece
| |
Collapse
|
3
|
Yu G, Mou Y, Shoaib N, He X, Liu L, Di R, Mughal N, Zhang N, Huang Y. Serine 31 Phosphorylation-Driven Regulation of AGPase Activity: Potential Implications for Enhanced Starch Yields in Crops. Int J Mol Sci 2023; 24:15283. [PMID: 37894964 PMCID: PMC10607544 DOI: 10.3390/ijms242015283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
ADP-Glc pyrophosphorylase (AGPase), which catalyzes the transformation of ATP and glucose-1-phosphate (Glc-1-P) into adenosine diphosphate glucose (ADP-Glc), acts as a rate-limiting enzyme in crop starch biosynthesis. Prior research has hinted at the regulation of AGPase by phosphorylation in maize. However, the identification and functional implications of these sites remain to be elucidated. In this study, we identified the phosphorylation site (serine at the 31st position of the linear amino acid sequence) of the AGPase large subunit (Sh2) using iTRAQTM. Subsequently, to ascertain the impact of Sh2 phosphorylation on AGPase, we carried out site-directed mutations creating Sh2-S31A (serine residue replaced with alanine) to mimic dephosphorylation and Sh2-S31D (serine residue replaced with aspartic acid) or Sh2-S31E (serine residue replaced with glutamic acid) to mimic phosphorylation. Preliminary investigations were performed to determine Sh2 subcellular localization, its interaction with Bt2, and the resultant AGPase enzymatic activity. Our findings indicate that phosphorylation exerts no impact on the stability or localization of Sh2. Furthermore, none of these mutations at the S31 site of Sh2 seem to affect its interaction with Bt2 (smaller subunit). Intriguingly, all S31 mutations in Sh2 appear to enhance AGPase activity when co-transfected with Bt2, with Sh2-S31E demonstrating a substantial five-fold increase in AGPase activity compared to Sh2. These novel insights lay a foundational groundwork for targeted improvements in AGPase activity, thus potentially accelerating the production of ADP-Glc (the primary substrate for starch synthesis), promising implications for improved starch biosynthesis, and holding the potential to significantly impact agricultural practices.
Collapse
Affiliation(s)
- Guowu Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (N.S.); (L.L.); (R.D.); (N.M.); (Y.H.)
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuewei Mou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (N.S.); (L.L.); (R.D.); (N.M.); (Y.H.)
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Noman Shoaib
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (N.S.); (L.L.); (R.D.); (N.M.); (Y.H.)
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewu He
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Lun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (N.S.); (L.L.); (R.D.); (N.M.); (Y.H.)
| | - Runze Di
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (N.S.); (L.L.); (R.D.); (N.M.); (Y.H.)
| | - Nishbah Mughal
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (N.S.); (L.L.); (R.D.); (N.M.); (Y.H.)
| | - Na Zhang
- College of Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.M.); (N.S.); (L.L.); (R.D.); (N.M.); (Y.H.)
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Shoaib N, Mughal N, Liu L, Raza A, Shen L, Yu G. Site-Directed Mutations at Phosphorylation Sites in Zea mays PHO1 Reveal Modulation of Enzymatic Activity by Phosphorylation at S566 in the L80 Region. PLANTS (BASEL, SWITZERLAND) 2023; 12:3205. [PMID: 37765369 PMCID: PMC10536461 DOI: 10.3390/plants12183205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Starch phosphorylase (PHO) is a pivotal enzyme within the GT35-glycogen-phosphorylase (GT; glycosyltransferases) superfamily. Despite the ongoing debate surrounding the precise role of PHO1, evidence points to its substantial influence on starch biosynthesis, supported by its gene expression profile and subcellular localization. Key to PHO1 function is the enzymatic regulation via phosphorylation; a myriad of such modification sites has been unveiled in model crops. However, the functional implications of these sites remain to be elucidated. In this study, we utilized site-directed mutagenesis on the phosphorylation sites of Zea mays PHO1, replacing serine residues with alanine, glutamic acid, and aspartic acid, to discern the effects of phosphorylation. Our findings indicate that phosphorylation exerts no impact on the stability or localization of PHO1. Nonetheless, our enzymatic assays unveiled a crucial role for phosphorylation at the S566 residue within the L80 region of the PHO1 structure, suggesting a potential modulation or enhancement of PHO1 activity. These data advance our understanding of starch biosynthesis regulation and present potential targets for crop yield optimization.
Collapse
Affiliation(s)
- Noman Shoaib
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Nishbah Mughal
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Leiyang Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guowu Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Sharma S, Friberg M, Vogel P, Turesson H, Olsson N, Andersson M, Hofvander P. Pho1a (plastid starch phosphorylase) is duplicated and essential for normal starch granule phenotype in tubers of Solanum tuberosum L. FRONTIERS IN PLANT SCIENCE 2023; 14:1220973. [PMID: 37636090 PMCID: PMC10450146 DOI: 10.3389/fpls.2023.1220973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
Reserve starch from seeds and tubers is a crucial plant product for human survival. Much research has been devoted to quantitative and qualitative aspects of starch synthesis and its relation to abiotic factors of importance in agriculture. Certain aspects of genetic factors and enzymes influencing carbon assimilation into starch granules remain elusive after many decades of research. Starch phosphorylase (Pho) can operate, depending on metabolic conditions, in a synthetic and degradative pathway. The plastidial form of the enzyme is one of the most highly expressed genes in potato tubers, and the encoded product is imported into starch-synthesizing amyloplasts. We identified that the genomic locus of a Pho1a-type starch phosphorylase is duplicated in potato. Our study further shows that the enzyme is of importance for a normal starch granule phenotype in tubers. Null mutants created by genome editing display rounded starch granules in an increased number that contained a reduced ratio of apparent amylose in the starch.
Collapse
Affiliation(s)
- Shrikant Sharma
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | | | | | | | | | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
6
|
Nakamura Y. A model for the reproduction of amylopectin cluster by coordinated actions of starch branching enzyme isoforms. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01352-6. [PMID: 37294528 DOI: 10.1007/s11103-023-01352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/10/2023] [Indexed: 06/10/2023]
Abstract
Amylopectin is a highly branched glucan which accounts for approximately 65-85% of starch in most plant tissues. It is crucially important to understand the biosynthetic process of this glucan in regulating the structure and functional properties of starch granules. Currently, the most accepted ideas of structural feature and biosynthesis of amylopectin are that amylopectin is composed of a branched element called "cluster" and that the essential process of amylopectin biosynthesis is to reproduce a new cluster from the existing cluster. The present paper proposes a model explaining the whole process of amylopectin biosynthesis as to how the new cluster is reproduced by concerted actions of multiple isoforms of starch biosynthetic enzymes, particularly by combinations of distinct roles of starch branching enzyme (BE) isoforms. This model proposes for the first time the molecular mechanism as to how the formation of a new cluster is initiated, and the reason why BEI can play a major role in this step. This is because BEI has a rather broad chain-length preference compared to BEIIb, because a low preference of BEI for the substrate chain-length is advantageous for branching a couple of elongated chains that are not synchronously formed and thus these chains having varied lengths could be safely attacked by this isoform. On the contrary, it is unlikely that BEIIb is involved in this reaction because it can react to only short chains having degree of polymerization of 12-14. BEIIa is possibly able to complement the role of BEI to some extent, because BEIIa can attack basically short chains but its chain-length preference is lower compared with BEIIb. The model implies that the first branches mainly formed by BEI to construct the amorphous lamellae whereas the second branches predominantly formed by BEIIb are located mainly in the crystalline lamellae. This paper provides new insights into the roles of BEI, BEIIb, and BEIIa in amylopectin biosynthesis in cereal endosperm.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Starch Technologies Co., Ltd, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, Akita, 010-0195, Japan.
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-Nakano, Akita-City, Akita, 010-0195, Japan.
| |
Collapse
|
7
|
Courseaux A, George O, Deschamps P, Bompard C, Duchêne T, Dauvillée D. BE3 is the major branching enzyme isoform required for amylopectin synthesis in C hlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1201386. [PMID: 37324674 PMCID: PMC10264815 DOI: 10.3389/fpls.2023.1201386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Starch-branching enzymes (BEs) are essential for starch synthesis in both plants and algae where they influence the architecture and physical properties of starch granules. Within Embryophytes, BEs are classified as type 1 and type 2 depending on their substrate preference. In this article, we report the characterization of the three BE isoforms encoded in the genome of the starch producing green algae Chlamydomonas reinhardtii: two type 2 BEs (BE2 and BE3) and a single type 1 BE (BE1). Using single mutant strains, we analyzed the consequences of the lack of each isoform on both transitory and storage starches. The transferred glucan substrate and the chain length specificities of each isoform were also determined. We show that only BE2 and BE3 isoforms are involved in starch synthesis and that, although both isoforms possess similar enzymatic properties, BE3 is critical for both transitory and storage starch metabolism. Finally, we propose putative explanations for the strong phenotype differences evidenced between the C. reinhardtii be2 and be3 mutants, including functional redundancy, enzymatic regulation or alterations in the composition of multimeric enzyme complexes.
Collapse
Affiliation(s)
- Adeline Courseaux
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Océane George
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Philippe Deschamps
- University Paris-Saclay, CNRS UMR 8079, AgroParisTech, Laboratoire Ecologie Systématique Evolution, Gif-sur-Yvette, France
| | - Coralie Bompard
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Thierry Duchêne
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - David Dauvillée
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
8
|
Kang X, Gao W, Cui B, El-Aty AMA. Structure and genetic regulation of starch formation in sorghum (Sorghum bicolor (L.) Moench) endosperm: A review. Int J Biol Macromol 2023; 239:124315. [PMID: 37023877 DOI: 10.1016/j.ijbiomac.2023.124315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
This review focuses on the structure and genetic regulation of starch formation in sorghum (Sorghum bicolor (L.) Moench) endosperm. Sorghum is an important cereal crop that is well suited to grow in regions with high temperatures and limited water resources due to its C4 metabolism. The endosperm of sorghum kernels is a rich source of starch, which is composed of two main components: amylose and amylopectin. The synthesis of starch in sorghum endosperm involves multiple enzymatic reactions, which are regulated by complex genetic and environmental factors. Recent research has identified several genes involved in the regulation of starch synthesis in sorghum endosperm. In addition, the structure and properties of sorghum starch can also be influenced by environmental factors such as temperature, water availability, and soil nutrients. A better understanding of the structure and genetic regulation of starch formation in sorghum endosperm can have important implications for the development of sorghum-based products with improved quality and nutritional value. This review provides a comprehensive summary of the current knowledge on the structure and genetic regulation of starch formation in sorghum endosperm and highlights the potential for future research to further improve our understanding of this important process.
Collapse
Affiliation(s)
- Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
9
|
Niu L, Liu L, Zhang J, Scali M, Wang W, Hu X, Wu X. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production. Int J Mol Sci 2023; 24:ijms24043927. [PMID: 36835340 PMCID: PMC9967003 DOI: 10.3390/ijms24043927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Maize accumulates large amounts of starch in seeds which have been used as food for human and animals. Maize starch is an importantly industrial raw material for bioethanol production. One critical step in bioethanol production is degrading starch to oligosaccharides and glucose by α-amylase and glucoamylase. This step usually requires high temperature and additional equipment, leading to an increased production cost. Currently, there remains a lack of specially designed maize cultivars with optimized starch (amylose and amylopectin) compositions for bioethanol production. We discussed the features of starch granules suitable for efficient enzymatic digestion. Thus far, great advances have been made in molecular characterization of the key proteins involved in starch metabolism in maize seeds. The review explores how these proteins affect starch metabolism pathway, especially in controlling the composition, size and features of starch. We highlight the roles of key enzymes in controlling amylose/amylopectin ratio and granules architecture. Based on current technological process of bioethanol production using maize starch, we propose that several key enzymes can be modified in abundance or activities via genetic engineering to synthesize easily degraded starch granules in maize seeds. The review provides a clue for developing special maize cultivars as raw material in the bioethanol industry.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Ning L, Wang Y, Shi X, Zhou L, Ge M, Liang S, Wu Y, Zhang T, Zhao H. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. THE PLANT CELL 2023; 35:409-434. [PMID: 36222567 PMCID: PMC9806651 DOI: 10.1093/plcell/koac302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fluctuations in nitrogen (N) availability influence protein and starch levels in maize (Zea mays) seeds, yet the underlying mechanism is not well understood. Here, we report that N limitation impacted the expression of many key genes in N and carbon (C) metabolism in the developing endosperm of maize. Notably, the promoter regions of those genes were enriched for P-box sequences, the binding motif of the transcription factor prolamin-box binding factor 1 (PBF1). Loss of PBF1 altered accumulation of starch and proteins in endosperm. Under different N conditions, PBF1 protein levels remained stable but PBF1 bound different sets of target genes, especially genes related to the biosynthesis and accumulation of N and C storage products. Upon N-starvation, the absence of PBF1 from the promoters of some zein genes coincided with their reduced expression, suggesting that PBF1 promotes zein accumulation in the endosperm. In addition, PBF1 repressed the expression of sugary1 (Su1) and starch branching enzyme 2b (Sbe2b) under normal N supply, suggesting that, under N-deficiency, PBF1 redirects the flow of C skeletons for zein toward the formation of C compounds. Overall, our study demonstrates that PBF1 modulates C and N metabolism during endosperm development in an N-dependent manner.
Collapse
Affiliation(s)
| | | | - Xi Shi
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Min Ge
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Shuaiqiang Liang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yibo Wu
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Tifu Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | | |
Collapse
|
11
|
Han J, Guo Z, Wang M, Liu S, Hao Z, Zhang D, Yong H, Weng J, Zhou Z, Li M, Li X. Using the dominant mutation gene Ae1-5180 ( amylose extender) to develop high-amylose maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:57. [PMID: 37313014 PMCID: PMC10248602 DOI: 10.1007/s11032-022-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Maize amylose is a type of high value-added starch used for medical, food, and chemical applications. Mutations in the starch branching enzyme (SBEIIb), with recessive ae (amylose extender) and dominant Ae1-5180 alleles, are the primary way to improve maize endosperm amylose content (AC). However, studies on Ae1-5180 mutation are scarce, and its roles in starch synthesis and breeding potential are unclear. We found that the AC of the Ae1-5180 mutant was 47.23%, and its kernels were tarnished and glassy and are easily distinguished from those of the wild type (WT), indicating that the dominant mutant has the classical characteristics of the ae mutant. Starch granules of Ae1-5180 became smaller, and higher in amount with irregular shape. The degree of amylopectin polymerisation changed to induce an increase in starch thermal stability. Compared with WT, the activity of granule-bound starch synthase and starch synthase was higher in early stages and lower in later stages, and other starch synthesis enzymes decreased during kernel development in the Ae1-5180 mutant. We successfully developed a marker (mu406) for the assisted selection of 17 Ae1-5180 near isogenic lines (NILs) according to the position of insertion of the Mu1 transposon in the SBEIIb promoter of Ae1-5180. JH214/Ae1-5180, CANS-1/Ae1-5180, CA240/Ae1-5180, and Z1698/Ae1-5180 have high breeding application potential with their higher AC (> 40%) and their 100-kernel weight decreased to < 25% compared to respective recurrent parents. Therefore, using the dominant Ae1-5180 mutant as a donor can detect the kernel phenotype and AC of Ae1-5180-NILs in advance, thereby accelerating the high-amylose breeding process. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01323-7.
Collapse
Affiliation(s)
- Jienan Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zenghui Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Meijuan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Shiyuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Degui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Hongjun Yong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zhiqiang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Mingshun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Xinhai Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| |
Collapse
|
12
|
Feng X, Rahman MM, Hu Q, Wang B, Karim H, Guzmán C, Harwood W, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Lan J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. HvGBSSI mutation at the splicing receptor site affected RNA splicing and decreased amylose content in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1003333. [PMID: 36212333 PMCID: PMC9538149 DOI: 10.3389/fpls.2022.1003333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Granule-bound starch synthase I (HvGBSSI) is encoded by the barley waxy (Wx-1) gene and is the sole enzyme in the synthesis of amylose. Here, a Wx-1 mutant was identified from an ethyl methane sulfonate (EMS)-mutagenized barley population. There were two single-base mutations G1086A and A2424G in Wx-1 in the mutant (M2-1105). The G1086A mutation is located at the 3' splicing receptor (AG) site of the fourth intron, resulting in an abnormal RNA splicing. The A2424G mutation was a synonymous mutation in the ninth intron. The pre-mRNA of Wx-1 was incorrectly spliced and transcribed into two abnormal transcripts. The type I transcript had a 6 bp deletion in the 5' of fifth exon, leading to a translated HvGBSSI protein lacking two amino acids with a decreased starch-binding capacity. In the type II transcript, the fourth intron was incorrectly cleaved and retained, resulting in the premature termination of the barley Wx-1 gene. The mutations in the Wx-1 decreased the enzymatic activity of the HvGBSSI enzyme and resulted in a decreased level in amylose content. This work sheds light on a new Wx-1 gene inaction mechanism.
Collapse
Affiliation(s)
- Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Md. Mostafijur Rahman
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Cordoba, Spain
| | - Wendy Harwood
- John Innes Center, Norwich Research Park, Norwich, United Kingdom
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Ying Y, Xu F, Zhang Z, Tappiban P, Bao J. Dynamic Change in Starch Biosynthetic Enzymes Complexes during Grain-Filling Stages in BEIIb Active and Deficient Rice. Int J Mol Sci 2022; 23:ijms231810714. [PMID: 36142619 PMCID: PMC9501056 DOI: 10.3390/ijms231810714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Starch is the predominant reserve in rice (Oryza sativa L.) endosperm, which is synthesized by the coordinated efforts of a series of starch biosynthetic-related enzymes in the form of a multiple enzyme complex. Whether the enzyme complex changes during seed development is not fully understood. Here, we investigated the dynamic change in multi-protein complexes in an indica rice variety IR36 (wild type, WT) and its BEIIb-deficient mutant (be2b) at different developmental stages. Gel permeation chromatography (GPC) and Western blotting analysis of soluble protein fractions revealed most of the enzymes except for SSIVb were eluted in smaller molecular weight fractions at the early developing stage and were transferred to higher molecular weight fractions at the later stage in both WT and be2b. Accordingly, protein interactions were enhanced during seed development as demonstrated by co-immunoprecipitation analysis, suggesting that the enzymes were recruited to form larger protein complexes during starch biosynthesis. The converse elution pattern from GPC of SSIVb may be attributed to its vital role in the initiation step of starch synthesis. The number of protein complexes was markedly decreased in be2b at all development stages. Although SSIVb could partially compensate for the role of BEIIb in protein complex formation, it was hard to form a larger protein complex containing over five proteins in be2b. In addition, other proteins such as PPDKA and PPDKB were possibly present in the multi-enzyme complexes by proteomic analyses of high molecular weight fractions separated from GPC. Two putative protein kinases were found to be potentially associated with starch biosynthetic enzymes. Collectively, our findings unraveled a dynamic change in the protein complex during seed development, and potential roles of BEIIb in starch biosynthesis via various protein complex formations, which enables a deeper understanding of the complex mechanism of starch biosynthesis in rice.
Collapse
Affiliation(s)
- Yining Ying
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Feifei Xu
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhongwei Zhang
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agriculture Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Correspondence: ; Tel.: +86-571-86971932
| |
Collapse
|
14
|
Chen Y, Luo L, Xu F, Xu X, Bao J. Carbohydrate Repartitioning in the Rice Starch Branching Enzyme IIb Mutant Stimulates Higher Resistant Starch Content and Lower Seed Weight Revealed by Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9802-9816. [PMID: 35903884 DOI: 10.1021/acs.jafc.2c03737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The starch branching enzyme IIb mutant (be2b) in rice significantly increases the resistant starch (RS) content and leads to reduced seed weight. However, the underlying metabolic mechanisms remain unclear. Proteomic analysis indicated that upregulation of starch synthase IIa (SSIIa) and SSIIIa and downregulation of BEI and SSI were possibly responsible for the decreased short amylopectin chains (DP 6-15) and increased longer chains (DP > 16) of be2b starch. The upregulation of granule-bound starch synthase led to increased amylose content (AC). These changes in the amylopectin structure and AC accounted for the increased RS content. α-Amylase 2A showed the strongest upregulation (up to 8.45-fold), indicating that the loss of BEIIb activity enhanced starch degradation. Upregulation of glycolysis-related proteins stimulated carbohydrate repartitioning through glycerate-3-phosphate and promoted the accumulation of tricarboxylic acid cycle intermediates, amino acids, and fatty acids. The unexpected carbohydrate partitioning and enhanced starch degradation resulted in the reduced seed weight in the be2b mutant.
Collapse
Affiliation(s)
- Yaling Chen
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Science, Jiangxi Normal University, Nanchang 330000, China
| | - Lili Luo
- Laboratory of Plant Genetic Improvement and Biotechnology, College of Life Science, Jiangxi Normal University, Nanchang 330000, China
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiaoyong Xu
- Yazhou Bay Laboratory, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Yazhou Bay Laboratory, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
15
|
Singh A, Compart J, Al-Rawi SA, Mahto H, Ahmad AM, Fettke J. LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:819-835. [PMID: 35665549 DOI: 10.1111/tpj.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, α-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and β-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes.
Collapse
Affiliation(s)
- Aakanksha Singh
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Shadha Abduljaleel Al-Rawi
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Harendra Mahto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Abubakar Musa Ahmad
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| |
Collapse
|
16
|
Li Y, Karim H, Wang B, Guzmán C, Harwood W, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Lan J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Regulation of Amylose Content by Single Mutations at an Active Site in the Wx-B1 Gene in a Tetraploid Wheat Mutant. Int J Mol Sci 2022; 23:ijms23158432. [PMID: 35955567 PMCID: PMC9368913 DOI: 10.3390/ijms23158432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/15/2023] Open
Abstract
The granule-bound starch synthase I (GBSSI) encoded by the waxy gene is responsible for amylose synthesis in the endosperm of wheat grains. In the present study, a novel Wx-B1 null mutant line, M3-415, was identified from an ethyl methanesulfonate-mutagenized population of Chinese tetraploid wheat landrace Jianyangailanmai (LM47). The gene sequence indicated that the mutated Wx-B1 encoded a complete protein; this protein was incompatible with the protein profile obtained using sodium dodecyl sulfate–polyacrylamide gel electrophoresis, which showed the lack of Wx-B1 protein in the mutant line. The prediction of the protein structure showed an amino acid substitution (G470D) at the edge of the ADPG binding pocket, which might affect the binding of Wx-B1 to starch granules. Site-directed mutagenesis was further performed to artificially change the amino acid at the sequence position 469 from alanine (A) to threonine (T) (A469T) downstream of the mutated site in M3-415. Our results indicated that a single amino acid mutation in Wx-B1 reduces its activity by impairing its starch-binding capacity. The present study is the first to report the novel mechanism underlying Wx-1 deletion in wheat; moreover, it provided new insights into the inactivation of the waxy gene and revealed that fine regulation of wheat amylose content is possible by modifying the GBSSI activity.
Collapse
Affiliation(s)
- Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071 Cordoba, Spain;
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK;
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-0958; Fax: +86-28-8265-0350
| |
Collapse
|
17
|
Zhong Y, Qu JZ, Liu X, Ding L, Liu Y, Bertoft E, Petersen BL, Hamaker BR, Hebelstrup KH, Blennow A. Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydr Polym 2022; 287:119327. [DOI: 10.1016/j.carbpol.2022.119327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
|
18
|
Yu G, Shoaib N, Xie Y, Liu L, Mughal N, Li Y, Huang H, Zhang N, Zhang J, Liu Y, Hu Y, Liu H, Huang Y. Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize. Int J Mol Sci 2022; 23:ijms23094518. [PMID: 35562912 PMCID: PMC9104829 DOI: 10.3390/ijms23094518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Starch phosphorylase (PHO) is a multimeric enzyme with two distinct isoforms: plastidial starch phosphorylase (PHO1) and cytosolic starch phosphorylase (PHO2). PHO1 specifically resides in the plastid, while PHO2 is found in the cytosol. Both play a critical role in the synthesis and degradation of starch. This study aimed to report the detailed structure, function, and evolution of genes encoding PHO1 and PHO2 and their protein ligand-binding sites in eight monocots and four dicots. "True" orthologs of PHO1 and PHO2 of Oryza sativa were identified, and the structure of the enzyme at the protein level was studied. The genes controlling PHO2 were found to be more conserved than those controlling PHO1; the variations were mainly due to the variable sequence and length of introns. Cis-regulatory elements in the promoter region of both genes were identified, and the expression pattern was analyzed. The real-time quantitative polymerase chain reaction indicated that PHO2 was expressed in all tissues with a uniform pattern of transcripts, and the expression pattern of PHO1 indicates that it probably contributes to the starch biosynthesis during seed development in Zea mays. Under abscisic acid (ABA) treatment, PHO1 was found to be downregulated in Arabidopsis and Hordeum vulgare. However, we found that ABA could up-regulate the expression of both PHO1 and PHO2 within 12 h in Zea mays. In all monocots and dicots, the 3D structures were highly similar, and the ligand-binding sites were common yet fluctuating in the position of aa residues.
Collapse
Affiliation(s)
- Guowu Yu
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.H.)
| | - Noman Shoaib
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Ying Xie
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Lun Liu
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Nishbah Mughal
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.H.)
| | - Huanhuan Huang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Na Zhang
- College of Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.H.)
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
- Correspondence: (H.L.); (Y.H.)
| | - Yubi Huang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.H.)
- Correspondence: (H.L.); (Y.H.)
| |
Collapse
|
19
|
He S, Hao X, Wang S, Zhou W, Ma Q, Lu X, Chen L, Zhang P. Starch synthase II plays a crucial role in starch biosynthesis and the formation of multienzyme complexes in cassava storage roots. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2540-2557. [PMID: 35134892 DOI: 10.1093/jxb/erac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Starch is a glucose polymer synthesized by green plants for energy storage and is crucial for plant growth and reproduction. The biosynthesis of starch polysaccharides is mediated by members of the large starch synthase (SS) protein superfamily. Here, we showed that in cassava storage roots, soluble starch synthase II (MeSSII) plays an important role in starch biosynthesis and the formation of protein complexes with other starch biosynthetic enzymes by directly interacting with MeSSI, MeSBEII, and MeISAII. MeSSII-RNAi cassava lines showed increased amylose content and reduced biosynthesis of the intermediate chain of amylopectin (B1 type) in their storage roots, leading to altered starch physicochemical properties. Furthermore, gel permeation chromatography analysis of starch biosynthetic enzymes between wild type and MeSSII-RNAi lines confirmed the key role of MeSSII in the organization of heteromeric starch synthetic protein complexes. The lack of MeSSII in cassava also reduced the capacity of MeSSI, MeSBEII, MeISAI, and MeISAII to bind to starch granules. These findings shed light on the key components of the starch biosynthesis machinery in root crops.
Collapse
Affiliation(s)
- Shutao He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomeng Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhi Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinlu Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Ida T, Crofts N, Miura S, Matsushima R, Fujita N. Starch biosynthetic protein complex formation in rice <i>ss2a be2b (</i>+<i>)</i> double mutant differs from their parental single mutants. J Appl Glycosci (1999) 2022; 69:23-33. [PMID: 35891898 PMCID: PMC9276526 DOI: 10.5458/jag.jag.jag-2021_0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Amylopectin, which consists of highly branched glucose polymers, is a major component of starch. Biochemical processes that regulate the elongation of glucose polymers and the generation and removal of glucose branches are essential for determining the properties of starch. Starch synthases (SSs) and branching enzyme (BE) mainly form complexes consisting of SSI, SSIIa, and BEIIb during endosperm development. Loss of BEIIb in rice is complemented by BEIIa, but the compensatory effects differ depending on the presence or absence of inactive BEIIb. To better understand these compensatory mechanisms, ss2a be2b (+) double mutant, which possessed truncated inactive SSIIa and inactive BEIIb, were analyzed. Soluble proteins separated by gel filtration chromatography showed that SSIIa and BEIIb proteins in the wild-type exhibited a broad range of elution patterns and only small amounts were detected in high molecular mass fractions. In contrast, most of truncated inactive SSIIa and inactive BEIIb from ss2a be2b (+) were found in high molecular mass fractions, and the SSI-SSIIa-BEIIb trimeric protein complex found in the wild-type was likely absent in ss2a be2b (+). Those SSIIa and BEIIb proteins in high molecular mass fractions in ss2a be2b (+) were also identified by mass spectrometry. Parental ss2a single mutant had negligible amounts of SSIIa suggesting that the truncated inactive SSIIa was recruited to high-molecular mass complexes in the presence of inactive BEIIb in ss2a be2b (+) double mutant. In addition, SSIVb might be involved in the formation of alternative protein complexes with < 300 kDa in ss2a be2b (+).
Collapse
Affiliation(s)
- Tamami Ida
- Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Science, Akita Prefectural University
| | - Naoko Crofts
- Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Science, Akita Prefectural University
| | - Satoko Miura
- Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Science, Akita Prefectural University
| | - Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University
| | - Naoko Fujita
- Institute of Plant Science and Resources, Okayama University
| |
Collapse
|
21
|
Gao H, Niu J, Zhao W, Zhang D, Li S, Xu Y, Liu Y. The Effect and Regulation Mechanism of Powdery Mildew on Wheat Grain Carbon Metabolism. STARCH-STARKE 2022. [DOI: 10.1002/star.202100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongyun Gao
- School of Life Sciences Zhengzhou Normal University Zhengzhou 450044 China
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat Henan Agricultural University Zhengzhou 450046 China
| | - Wanyong Zhao
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou 450000 China
| | - Dale Zhang
- School of Life Sciences Henan University Kaifeng 475004 China
| | - Suoping Li
- School of Life Sciences Henan University Kaifeng 475004 China
| | - Yanhua Xu
- School of Life Sciences Zhengzhou Normal University Zhengzhou 450044 China
| | - Yumiao Liu
- School of Life Sciences Zhengzhou Normal University Zhengzhou 450044 China
| |
Collapse
|
22
|
Zhang Z, Tappiban P, Ying Y, Hu Y, Bao J. Functional Interactions between Enzymes Involved in Amylose and Amylopectin Biosynthesis in Rice Based on Mathematical Models. Biomacromolecules 2022; 23:1443-1452. [PMID: 35143725 DOI: 10.1021/acs.biomac.1c01662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starch biosynthesis is controlled by multiple enzymes, including granule-bound starch synthase I (GBSSI), soluble starch synthases (SSs), branching enzymes (BEs), and debranching enzymes (DBEs). Although the role of individual isoforms has been primarily elucidated, the precise information about how they work together in the synthesis of specific amylose and amylopectin chains is still unclear. In this study, starch molecular chain-length distributions (CLDs) of five rice varieties with different amylose contents were measured by fluorophore-assisted carbohydrate electrophoresis and size-exclusion chromatography and fitted with two mathematical models, and the protein abundance of 11 starch synthesis-related enzymes was measured by western blotting. The correlation between model fitting parameters of amylose and amylopectin CLDs demonstrated that amylose and amylopectin syntheses are closely dependent. GBSSI could interact with BEI, BEIIb, SSIIa, SSIVb, ISA1, PUL, and PHO1 to synthesize the amylopectin intermediate and long chains as well as amylose chains. In addition, the interaction among SSIVb and SSI, SSIIa, BEI, BEIIb, ISA1, and PUL possibly suggests that SSIVb assists them to synthesize the amylopectin chains. The results can help understand the mechanisms about the functional interaction of different enzyme isoforms in starch biosynthesis.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
23
|
Li R, Zheng W, Jiang M, Zhang H. A review of starch biosynthesis in cereal crops and its potential breeding applications in rice ( Oryza Sativa L.). PeerJ 2022; 9:e12678. [PMID: 35036154 PMCID: PMC8710062 DOI: 10.7717/peerj.12678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Starch provides primary storage of carbohydrates, accounting for approximately 85% of the dry weight of cereal endosperm. Cereal seeds contribute to maximum annual starch production and provide the primary food for humans and livestock worldwide. However, the growing demand for starch in food and industry and the increasing loss of arable land with urbanization emphasizes the urgency to understand starch biosynthesis and its regulation. Here, we first summarized the regulatory signaling pathways about leaf starch biosynthesis. Subsequently, we paid more attention to how transcriptional factors (TFs) systematically respond to various stimulants via the regulation of the enzymes during starch biosynthesis. Finally, some strategies to improve cereal yield and quality were put forward based on the previous reports. This review would collectively help to design future studies on starch biosynthesis in cereal crops.
Collapse
Affiliation(s)
- Ruiqing Li
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China.,College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenyin Zheng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meng Jiang
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
24
|
Expression analyses of soluble starch synthase and starch branching enzyme isoforms in stem and leaf tissues under different photoperiods in lentil (Lens culinaris Medik.). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Shoaib N, Liu L, Ali A, Mughal N, Yu G, Huang Y. Molecular Functions and Pathways of Plastidial Starch Phosphorylase (PHO1) in Starch Metabolism: Current and Future Perspectives. Int J Mol Sci 2021; 22:ijms221910450. [PMID: 34638789 PMCID: PMC8509025 DOI: 10.3390/ijms221910450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Starch phosphorylase is a member of the GT35-glycogen-phosphorylase superfamily. Glycogen phosphorylases have been researched in animals thoroughly when compared to plants. Genetic evidence signifies the integral role of plastidial starch phosphorylase (PHO1) in starch biosynthesis in model plants. The counterpart of PHO1 is PHO2, which specifically resides in cytosol and is reported to lack L80 peptide in the middle region of proteins as seen in animal and maltodextrin forms of phosphorylases. The function of this extra peptide varies among species and ranges from the substrate of proteasomes to modulate the degradation of PHO1 in Solanum tuberosum to a non-significant effect on biochemical activity in Oryza sativa and Hordeum vulgare. Various regulatory functions, e.g., phosphorylation, protein–protein interactions, and redox modulation, have been reported to affect the starch phosphorylase functions in higher plants. This review outlines the current findings on the regulation of starch phosphorylase genes and proteins with their possible role in the starch biosynthesis pathway. We highlight the gaps in present studies and elaborate on the molecular mechanisms of phosphorylase in starch metabolism. Moreover, we explore the possible role of PHO1 in crop improvement.
Collapse
Affiliation(s)
- Noman Shoaib
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
| | - Lun Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Nishbah Mughal
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
- Correspondence: (G.Y.); (Y.H.); Tel.: +86-180-0803-9351 (G.Y.); +86-028-8629-0868 (Y.H.)
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (G.Y.); (Y.H.); Tel.: +86-180-0803-9351 (G.Y.); +86-028-8629-0868 (Y.H.)
| |
Collapse
|
26
|
Ida T, Crofts N, Miura S, Matsushima R, Fujita N. Structure and Properties of Starch in Rice Double Mutants Lacking Starch Synthase (SS) IIa and Starch Branching Enzyme (BE) IIb. J Appl Glycosci (1999) 2021; 68:31-39. [PMID: 34429697 PMCID: PMC8367641 DOI: 10.5458/jag.jag.jag-2021_0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Starch biosynthetic enzymes form multi-protein complexes consisting of starch synthase (SS) I, SSIIa, and starch branching enzyme (BE) IIb, which synthesize amylopectin clusters. This study analyzed the starch properties in two double mutant rice lines lacking SSIIa and BEIIb, one of which expressed an inactive BEIIb protein. The ss2a be2b lines showed similar or greater seed weight than the be2b lines, and plant growth was not affected. The ss2a line showed increased short amylopectin chains resulting in a lower gelatinization temperature. Starch granule morphology and A-type crystallinity were similar between the ss2a line and the wild type, except for a mild chalky seed phenotype in the ss2a line. However, the starch phenotype of the ss2a be2b lines, which was similar to that of be2b but not ss2a, was characterized by increased long amylopectin chains, abnormal starch granules, and B-type crystallinity. The similarity in phenotype between the ss2a be2b and be2b lines may be attributed to the inability of the be2b mutants to generate short amylopectin branches, which serve as primers for SSIIa. Therefore, the presence or absence of SSIIa hardly affected the amylopectin structure under the be2b background. The amylose content was significantly higher in the ss2a be2b lines than in the be2b lines. Starch crystallinity was greater in ss2a be2b lines than in be2b lines, despite the fact that starch crystallinity is generally negatively correlated with amylose content. This suggests that the formation of a double helix between long amylopectin chains and amylose affects starch crystallinity in the ss2a be2b mutants.
Collapse
Affiliation(s)
- Tamami Ida
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Naoko Crofts
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Satoko Miura
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Ryo Matsushima
- 2 Institute of Plant Science and Resources, Okayama University
| | - Naoko Fujita
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| |
Collapse
|
27
|
Tappiban P, Ying Y, Xu F, Bao J. Proteomics and Post-Translational Modifications of Starch Biosynthesis-Related Proteins in Developing Seeds of Rice. Int J Mol Sci 2021; 22:5901. [PMID: 34072759 PMCID: PMC8199009 DOI: 10.3390/ijms22115901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Rice (Oryza sativa L.) is a foremost staple food for approximately half the world's population. The components of rice starch, amylose, and amylopectin are synthesized by a series of enzymes, which are responsible for rice starch properties and functionality, and then affect rice cooking and eating quality. Recently, proteomics technology has been applied to the establishment of the differentially expressed starch biosynthesis-related proteins and the identification of posttranslational modifications (PTMs) target starch biosynthesis proteins as well. It is necessary to summarize the recent studies in proteomics and PTMs in rice endosperm to deepen our understanding of starch biosynthesis protein expression and regulation, which will provide useful information to rice breeding programs and industrial starch applications. The review provides a comprehensive summary of proteins and PTMs involved in starch biosynthesis based on proteomic studies of rice developing seeds. Starch biosynthesis proteins in rice seeds were differentially expressed in the developing seeds at different developmental stages. All the proteins involving in starch biosynthesis were identified using proteomics methods. Most starch biosynthesis-related proteins are basically increased at 6-20 days after flowering (DAF) and decreased upon the high-temperature conditions. A total of 10, 14, 2, 17, and 7 starch biosynthesis related proteins were identified to be targeted by phosphorylation, lysine acetylation, succinylation, lysine 2-hydroxyisobutyrylation, and malonylation, respectively. The phosphoglucomutase is commonly targeted by five PTMs types. Research on the function of phosphorylation in multiple enzyme complex formation in endosperm starch biosynthesis is underway, while the functions of other PTMs in starch biosynthesis are necessary to be conducted in the near future.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Yining Ying
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Feifei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Jinsong Bao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
28
|
Differential expression of three key starch biosynthetic genes in developing grains of rice differing in glycemic index. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Mehrpouyan S, Menon U, Tetlow IJ, Emes MJ. Protein phosphorylation regulates maize endosperm starch synthase IIa activity and protein-protein interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1098-1112. [PMID: 33232552 DOI: 10.1111/tpj.15094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Starch synthesis is an elaborate process employing several isoforms of starch synthases (SSs), starch branching enzymes (SBEs) and debranching enzymes (DBEs). In cereals, some starch biosynthetic enzymes can form heteromeric complexes whose assembly is controlled by protein phosphorylation. Previous studies suggested that SSIIa forms a trimeric complex with SBEIIb, SSI, in which SBEIIb is phosphorylated. This study investigates the post-translational modification of SSIIa, and its interactions with SSI and SBEIIb in maize amyloplast stroma. SSIIa, immunopurified and shown to be free from other soluble starch synthases, was shown to be readily phosphorylated, affecting Vmax but with minor effects on substrate Kd and Km values, resulting in a 12-fold increase in activity compared with the dephosphorylated enzyme. This ATP-dependent stimulation of activity was associated with interaction with SBEIIb, suggesting that the availability of glucan branching limits SSIIa and is enhanced by physical interaction of the two enzymes. Immunoblotting of maize amyloplast extracts following non-denaturing polyacrylamide gel electrophoresis identified multiple bands of SSIIa, the electrophoretic mobilities of which were markedly altered by conditions that affected protein phosphorylation, including protein kinase inhibitors. Separation of heteromeric enzyme complexes by GPC, following alteration of protein phosphorylation states, indicated that such complexes are stable and may partition into larger and smaller complexes. The results suggest a dual role for protein phosphorylation in promoting association and dissociation of SSIIa-containing heteromeric enzyme complexes in the maize amyloplast stroma, providing new insights into the regulation of starch biosynthesis in plants.
Collapse
Affiliation(s)
- Sahar Mehrpouyan
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Usha Menon
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
30
|
Baysal C, He W, Drapal M, Villorbina G, Medina V, Capell T, Khush GS, Zhu C, Fraser PD, Christou P. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming. Proc Natl Acad Sci U S A 2020; 117:26503-26512. [PMID: 33020297 PMCID: PMC7584904 DOI: 10.1073/pnas.2014860117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Starch properties can be modified by mutating genes responsible for the synthesis of amylose and amylopectin in the endosperm. However, little is known about the effects of such targeted modifications on the overall starch biosynthesis pathway and broader metabolism. Here we investigated the effects of mutating the OsSBEIIb gene encoding starch branching enzyme IIb, which is required for amylopectin synthesis in the endosperm. As anticipated, homozygous mutant plants, in which OsSBEIIb was completely inactivated by abolishing the catalytic center and C-terminal regulatory domain, produced opaque seeds with depleted starch reserves. Amylose content in the mutant increased from 19.6 to 27.4% and resistant starch (RS) content increased from 0.2 to 17.2%. Many genes encoding isoforms of AGPase, soluble starch synthase, and other starch branching enzymes were up-regulated, either in their native tissues or in an ectopic manner, whereas genes encoding granule-bound starch synthase, debranching enzymes, pullulanase, and starch phosphorylases were largely down-regulated. There was a general increase in the accumulation of sugars, fatty acids, amino acids, and phytosterols in the mutant endosperm, suggesting that intermediates in the starch biosynthesis pathway increased flux through spillover pathways causing a profound impact on the accumulation of multiple primary and secondary metabolites. Our results provide insights into the broader implications of perturbing starch metabolism in rice endosperm and its impact on the whole plant, which will make it easier to predict the effect of metabolic engineering in cereals for nutritional improvement or the production of valuable metabolites.
Collapse
Affiliation(s)
- Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Wenshu He
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London, TW20 0EX Egham, United Kingdom
| | - Gemma Villorbina
- Department of Chemistry, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Gurdev S Khush
- Department of Plant Sciences, University of California, Davis, CA 95616;
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, TW20 0EX Egham, United Kingdom
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain;
- Catalan Institute for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
31
|
Blennow A, Skryhan K, Tanackovic V, Krunic SL, Shaik SS, Andersen MS, Kirk H, Nielsen KL. Non-GMO potato lines, synthesizing increased amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2096-2108. [PMID: 32096588 PMCID: PMC7540516 DOI: 10.1111/pbi.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 05/04/2023]
Abstract
Solanum tuberosum potato lines with high amylose content were generated by crossing with the wild potato species Solanum sandemanii followed by repeated backcrossing to Solanum tuberosum lines. The trait, termed increased amylose (IAm), was recessive and present after three generations of backcrossing into S. tuberosum lines (6.25% S. sandemanii genes). The tubers of these lines were small, elongated and irregular with small and misshaped starch granules and high sugar content. Additional backcrossing resulted in less irregular tuber morphology, increased starch content (4.3%-9.5%) and increased amylose content (29%-37.9%) but indifferent sugar content. The amylose in the IAm starch granules was mainly located in peripheral spots, and large cavities were found in the granules. Starch pasting was suppressed, and the digestion-resistant starch (RS) content was increased. Comprehensive microarray polymer profiling (CoMPP) analysis revealed specific alterations of major pectic and glycoprotein cell wall components. This complex phenotype led us to search for candidate IAm genes exploiting its recessive trait. Hence, we sequenced genomic DNA of a pool of IAm lines, identified SNPs genome wide against the draft genome sequence of potato and searched for regions of decreased heterozygosity. Three regions, located on chromosomes 3, 7 and 10, respectively, displayed markedly less heterozygosity than average. The only credible starch metabolism-related gene found in these regions encoded the isoamylase-type debranching enzyme Stisa1. Decreased expression of mRNA (>500 fold) and reduced enzyme activity (virtually absent from IAm lines) supported Stisa1 as a candidate gene for IAm.
Collapse
Affiliation(s)
- Andreas Blennow
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Vanja Tanackovic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Susanne L. Krunic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | | | | | - Kåre L. Nielsen
- Department of Chemistry and BiologyAalborg UniversityAalborgDenmark
| |
Collapse
|
32
|
Luo J, Butardo VM, Yang Q, Konik-Rose C, Colgrave ML, Millar A, Jobling SA, Li Z. The impact of the indica rice SSIIa allele on the apparent high amylose starch from rice grain with downregulated japonica SBEIIb. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2961-2974. [PMID: 32651668 DOI: 10.1007/s00122-020-03649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/01/2020] [Indexed: 05/24/2023]
Abstract
Catalytically active indica SSIIa allele in high amylose rice with down-regulated japonica SBEIIb can increase starch content and modify the starch structure and properties without changing its amylose content. Rice (Oryza sativa) genotypes with inactive starch synthase IIa (SSIIa) with recessive variants of starch branching enzyme IIb (SBEIIb) exhibit a range of alterations in grain phenotype, starch granule morphology, starch granule bound proteins, starch structure, and functional properties. However, the interactions between the two enzymes have not been thoroughly investigated yet. We analysed recombinant rice lines having down-regulated SBEIIb expression (SBEIIbDR) with either indica or japonica type SSIIa (SSIIaind or SSIIajap). In SBEIIbDR rice starch granules, the increased abundance of two protein bands (SSI and SSIIa) was found with eight additional protein bands not generally associated with starch granules. The amount of SSIIa was higher in SSIIaindSBEIIbDR than SSIIajapSBEIIbDR, which indicated that indica type SSIIa, possibly in the monomer form, was extensively involved in starch biosynthesis in the SBEIIbDR endosperm. Furthermore, SSIIaindSBEIIbDR grains had higher total starch content and higher starch swelling power than SSIIajapSBEIIbDR lines, but the amylopectin gelatinization temperatures and enthalpy and the apparent amylose content remained similar. In summary, this work suggests that SSIIaind can partly compensate for the alteration of starch synthesis resulting from the SBEIIb down-regulation in japonica background without reducing its amylose content. The study provides insight into the starch structural and textural improvements of high amylose starch.
Collapse
Affiliation(s)
- Jixun Luo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Vito M Butardo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Qiang Yang
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | | | | | - Anthony Millar
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Stephen A Jobling
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
33
|
Tetlow IJ, Bertoft E. A Review of Starch Biosynthesis in Relation to the Building Block-Backbone Model. Int J Mol Sci 2020; 21:E7011. [PMID: 32977627 PMCID: PMC7582286 DOI: 10.3390/ijms21197011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023] Open
Abstract
Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms. Understanding the precise nature of granule architecture, and how both biological and abiotic factors determine this structure is of both fundamental and practical importance. This review outlines current knowledge of granule architecture and the starch biosynthesis pathway in relation to the building block-backbone model of starch structure. We highlight the gaps in our knowledge in relation to our understanding of the structure and synthesis of starch, and argue that the building block-backbone model takes accurate account of both structural and biochemical data.
Collapse
Affiliation(s)
- Ian J. Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
34
|
Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020; 10:biom10071020. [PMID: 32660096 PMCID: PMC7407607 DOI: 10.3390/biom10071020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023] Open
Abstract
For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.
Collapse
|
35
|
Hwang SK, Koper K, Okita TW. The plastid phosphorylase as a multiple-role player in plant metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110303. [PMID: 31779913 DOI: 10.1016/j.plantsci.2019.110303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 05/11/2023]
Abstract
The physiological roles of the plastidial phosphorylase in starch metabolism of higher plants have been debated for decades. While estimated physiological substrate levels favor a degradative role, genetic evidence indicates that the plastidial phosphorylase (Pho1) plays an essential role in starch initiation and maturation of the starch granule in developing rice grains. The plastidial enzyme contains a unique peptide domain, up to 82 residues in length depending on the plant species, not found in its cytosolic counterpart or glycogen phosphorylases. The role of this extra peptide domain is perplexing, as its complete removal does not significantly affect the in vitro catalytic or enzymatic regulatory properties of rice Pho1. This peptide domain may have a regulatory function as it contains potential phosphorylation sites and, in some plant Pho1s, a PEST motif, a substrate for proteasome-mediated degradation. We discuss the potential roles of Pho1 and its L80 domain in starch biosynthesis and photosynthesis.
Collapse
Affiliation(s)
- Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Kaan Koper
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
36
|
Qu J, Xu S, Tian X, Li T, Wang L, Zhong Y, Xue J, Guo D. Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ 2019; 7:e7528. [PMID: 31523504 PMCID: PMC6717500 DOI: 10.7717/peerj.7528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
In seeds, the endosperm is a crucial organ that plays vital roles in supporting embryo development and determining seed weight and quality. Starch is the predominant storage carbohydrate of the endosperm and accounts for ∼70% of the mature maize kernel weight. Nonetheless, because starch biosynthesis is a complex process that is orchestrated by multiple enzymes, the gene regulatory networks of starch biosynthesis, particularly amylose and amylopectin biosynthesis, have not been fully elucidated. Here, through high-throughput RNA sequencing, we developed a temporal transcriptome atlas of the endosperms of high-amylose maize and common maize at 5-, 10-, 15- and 20-day after pollination and found that 21,986 genes are involved in the programming of the high-amylose and common maize endosperm. A coexpression analysis identified multiple sequentially expressed gene sets that are closely correlated with cellular and metabolic programmes and provided valuable insight into the dynamic reprogramming of the transcriptome in common and high-amylose maize. In addition, a number of genes and transcription factors were found to be strongly linked to starch synthesis, which might help elucidate the key mechanisms and regulatory networks underlying amylose and amylopectin biosynthesis. This study will aid the understanding of the spatiotemporal patterns and genetic regulation of endosperm development in different types of maize and provide valuable genetic information for the breeding of starch varieties with different contents.
Collapse
Affiliation(s)
- Jianzhou Qu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Xiaokang Tian
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Licheng Wang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Yuyue Zhong
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| | - Dongwei Guo
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.,Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, China
| |
Collapse
|
37
|
The Proteomic Analysis of Maize Endosperm Protein Enriched by Phos-tag tm Reveals the Phosphorylation of Brittle-2 Subunit of ADP-Glc Pyrophosphorylase in Starch Biosynthesis Process. Int J Mol Sci 2019; 20:ijms20040986. [PMID: 30813492 PMCID: PMC6412418 DOI: 10.3390/ijms20040986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022] Open
Abstract
AGPase catalyzes a key rate-limiting step that converts ATP and Glc-1-p into ADP-glucose and diphosphate in maize starch biosynthesis. Previous studies suggest that AGPase is modulated by redox, thermal and allosteric regulation. However, the phosphorylation of AGPase is unclear in the kernel starch biosynthesis process. Phos-tagTM technology is a novel method using phos-tagTM agarose beads for separation, purification, and detection of phosphorylated proteins. Here we identified phos-tagTM agarose binding proteins from maize endosperm. Results showed a total of 1733 proteins identified from 10,678 distinct peptides. Interestingly, a total of 21 unique peptides for AGPase sub-unit Brittle-2 (Bt2) were identified. Bt2 was demonstrated by immunoblot when enriched maize endosperm protein with phos-tagTM agarose was in different pollination stages. In contrast, Bt2 would lose binding to phos-tagTM when samples were treated with alkaline phosphatase (ALP). Furthermore, Bt2 could be detected by Pro-Q diamond staining specifically for phosphorylated protein. We further identified the phosphorylation sites of Bt2 at Ser10, Thr451, and Thr462 by iTRAQ. In addition, dephosphorylation of Bt2 decreased the activity of AGPase in the native gel assay through ALP treatment. Taking together, these results strongly suggest that the phosphorylation of AGPase may be a new model to regulate AGPase activity in the starch biosynthesis process.
Collapse
|
38
|
Vandromme C, Spriet C, Dauvillée D, Courseaux A, Putaux JL, Wychowski A, Krzewinski F, Facon M, D'Hulst C, Wattebled F. PII1: a protein involved in starch initiation that determines granule number and size in Arabidopsis chloroplast. THE NEW PHYTOLOGIST 2019; 221:356-370. [PMID: 30055112 DOI: 10.1111/nph.15356] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
The initiation of starch granule formation is still poorly understood. However, the soluble starch synthase 4 (SS4) appears to be a major component of this process since it is required to synthesize the correct number of starch granules in the chloroplasts of Arabidopsis thaliana plants. A yeast two-hybrid screen allowed the identification of several putative SS4 interacting partners. We identified the product of At4g32190 locus as a chloroplast-targeted PROTEIN INVOLVED IN STARCH INITIATION (named PII1). Arabidopsis mutants devoid of PII1 display an alteration of the starch initiation process and accumulate, on average, one starch granule per plastid instead of the five to seven granules found in plastids of wild-type plants. These granules are larger than in wild-type, and they remain flat and lenticular. pii1 mutants display wild-type growth rates and accumulate standard starch amounts. Moreover, starch characteristics, such as amylopectin chain length distribution, remain unchanged. Our results reveal the involvement of PII1 in the starch priming process in Arabidopsis leaves through interaction with SS4.
Collapse
Affiliation(s)
- Camille Vandromme
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Corentin Spriet
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - David Dauvillée
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Adeline Courseaux
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Jean-Luc Putaux
- Université Grenoble Alpes, CNRS, CERMAV, F-38000, Grenoble, France
| | - Adeline Wychowski
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Frédéric Krzewinski
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Maud Facon
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Christophe D'Hulst
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Fabrice Wattebled
- Univ. Lille, CNRS, UMR8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|
39
|
Crofts N, Iizuka Y, Abe N, Miura S, Kikuchi K, Matsushima R, Fujita N. Rice Mutants Lacking Starch Synthase I or Branching Enzyme IIb Activity Altered Starch Biosynthetic Protein Complexes. FRONTIERS IN PLANT SCIENCE 2018; 9:1817. [PMID: 30581451 PMCID: PMC6292963 DOI: 10.3389/fpls.2018.01817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/22/2018] [Indexed: 05/21/2023]
Abstract
Amylopectin, the major component of starch, is synthesized by synergistic activity of multiple isozymes of starch synthases (SSs) and branching enzymes (BEs). The frequency and length of amylopectin branches determine the functionality of starch. In the rice endosperm, BEIIb generates short side chains of amylopectin and SSI elongates those branches, which can be further elongated by SSIIa. Absence of these enzymes greatly affects amylopectin structure. SSI, SSIIa, and BEIIb associate with each other and with other starch biosynthetic enzymes although SSIIa is low activity in japonica rice. The aim of the current study was to understand how the activity of starch biosynthetic enzyme complexes is compensated in the absence of SSI or BEIIb, and whether the compensatory effects are different in the absence of BEIIb or in the presence of inactive BEIIb. Interactions between starch biosynthetic enzymes were analyzed using one ss1 null mutant and two be2b japonica rice mutants (a mutant producing inactive BEIIb and a mutant that did not produce BEIIb). Soluble proteins extracted from the developing rice seeds were separated by gel filtration chromatography. In the absence of BEIIb activity, BEIIa was eluted in a broad molecular weight range (60-700 kDa). BEIIa in the wild-type was eluted with a mass below 300 kDa. Further, majority of inactive BEIIb co-eluted with SSI, SSIIa, and BEI, in a mass fraction over 700 kDa, whereas only small amounts of these isozymes were found in the wild-type. Compared with the be2b lines, the ss1 mutant showed subtle differences in protein profiles, but the amounts of SSIIa, SSIVb, and BEI in the over-700-kDa fraction were elevated. Immunoprecipitation revealed reduced association of SSIIa and BEIIb in the ss1 mutant, while the association of BEIIb with SSI, SSIIa, SSIVb, BEI, and BEIIa were more pronounced in the be2b mutant that produced inactive BEIIb enzyme. Mass spectrometry and western blotting revealed that SSI, SSIIa, SSIIIa, BEI, BEIIa, starch phosphorylase 1, and pullulanase were bound to the starch granules in the be2b mutants, but not in the wild-type and ss1 mutant. These results will aid the understanding of the mechanism of amylopectin biosynthesis.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Yuriko Iizuka
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Natsuko Abe
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Kana Kikuchi
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Naoko Fujita
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
40
|
Goren A, Ashlock D, Tetlow IJ. Starch formation inside plastids of higher plants. PROTOPLASMA 2018; 255:1855-1876. [PMID: 29774409 DOI: 10.1007/s00709-018-1259-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 05/09/2023]
Abstract
Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule. We highlight the gaps in our knowledge, in particular, the relationship between enzyme function and operation at the molecular level and the formation of the final, macroscopic architecture of the granule.
Collapse
Affiliation(s)
- Asena Goren
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Daniel Ashlock
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
41
|
Patterson JA, Tetlow IJ, Emes MJ. Bioinformatic and in vitro Analyses of Arabidopsis Starch Synthase 2 Reveal Post-translational Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2018; 9:1338. [PMID: 30283470 PMCID: PMC6156364 DOI: 10.3389/fpls.2018.01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 05/13/2023]
Abstract
Starch synthase 2 (SS2) is an important enzyme in leaf starch synthesis, elongating intermediate-length glucan chains. Loss of SS2 results in a distorted starch granule phenotype and altered physiochemical properties, highlighting its importance in starch biosynthesis, however, the post-translational regulation of SS2 is poorly understood. In this study, a combination of bioinformatic and in vitro analysis of recombinant SS2 was used to identify and characterize SS2 post-translational regulatory mechanisms. The SS2 N-terminal region, comprising the first 185 amino acids of the mature protein sequence, was shown to be highly variable between species, and was predicted to be intrinsically disordered. Intrinsic disorder in proteins is often correlated with protein phosphorylation and protein-protein interactions. Recombinant Arabidopsis thaliana SS2 formed homodimers that required the N-terminal region, but N-terminal peptides could not form stable homodimers alone. Recombinant SS2 was shown to be phosphorylated by chloroplast protein kinases and recombinant casein kinase II at two N-terminal serine residues (S63, S65), but mutation of these phosphorylation sites (Ser>Ala) revealed that they are not required for homo-dimerization. Heteromeric enzyme complex (HEC) formation between SS2 and SBE2.2 was shown to be ATP-dependent. However, SS2 homo-dimerization and protein phosphorylation are not required for its interaction with SBE2.2, as truncation of the SS2 N-terminus did not disrupt ATP-dependent HEC assembly. SS2 phosphorylation had no affect on its catalytic activity. Intriguingly, the removal of the N-terminal region of SS2 resulted in a 47-fold increase in its activity. As N-terminal truncation disrupted dimerization, this suggests that SS2 is more active when monomeric, and that transitions between oligomeric state may be a mechanism for SS2 regulation.
Collapse
Affiliation(s)
| | | | - Michael J. Emes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
42
|
Qu J, Xu S, Zhang Z, Chen G, Zhong Y, Liu L, Zhang R, Xue J, Guo D. Evolutionary, structural and expression analysis of core genes involved in starch synthesis. Sci Rep 2018; 8:12736. [PMID: 30143668 PMCID: PMC6109180 DOI: 10.1038/s41598-018-30411-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/30/2018] [Indexed: 01/29/2023] Open
Abstract
Starch is the main storage carbohydrate in plants and an important natural resource for food, feed and industrial raw materials. However, the details regarding the pathway for starch biosynthesis and the diversity of biosynthetic enzymes involved in this process are poorly understood. This study uses a comprehensive phylogenetic analysis of 74 sequenced plant genomes to revisit the evolutionary history of the genes encoding ADP-glucose pyrophosphorylase (AGPase), starch synthase (SS), starch branching enzyme (SBE) and starch de-branching enzyme (DBE). Additionally, the protein structures and expression patterns of these four core genes in starch biosynthesis were studied to determine their functional differences. The results showed that AGPase, SS, SBE and DBE have undergone complicated evolutionary processes in plants and that gene/genome duplications are responsible for the observed differences in isoform numbers. A structure analysis of these proteins suggested that the deletion/mutation of amino acids in some active sites resulted in not only structural variation but also sub-functionalization or neo-functionalization. Expression profiling indicated that AGPase-, SS-, SBE- and DBE-encoding genes exhibit spatio-temporally divergent expression patterns related to the composition of functional complexes in starch biosynthesis. This study provides a comprehensive atlas of the starch biosynthetic pathway, and these data should support future studies aimed at increasing understanding of starch biosynthesis and the functional evolutionary divergence of AGPase, SS, SBE, and DBE in plants.
Collapse
Affiliation(s)
- Jianzhou Qu
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Shutu Xu
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Zhengquan Zhang
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Guangzhou Chen
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Yuyue Zhong
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Linsan Liu
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Renhe Zhang
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Jiquan Xue
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| | - Dongwei Guo
- The key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
43
|
Helle S, Bray F, Verbeke J, Devassine S, Courseaux A, Facon M, Tokarski C, Rolando C, Szydlowski N. Proteome Analysis of Potato Starch Reveals the Presence of New Starch Metabolic Proteins as Well as Multiple Protease Inhibitors. FRONTIERS IN PLANT SCIENCE 2018; 9:746. [PMID: 29963063 PMCID: PMC6013586 DOI: 10.3389/fpls.2018.00746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
Starch bound proteins mainly include enzymes from the starch biosynthesis pathway. Recently, new functions in starch molecular assembly or active protein targeting were also proposed for starch associated proteins. The potato genome sequence reveals 77 loci encoding starch metabolizing enzymes with the identification of previously unknown putative isoforms. Here we show by bottom-up proteomics that most of the starch biosynthetic enzymes in potato remain associated with starch even after washing with SDS or protease treatment of the granule surface. Moreover, our study confirmed the presence of PTST1 (Protein Targeting to Starch), ESV1 (Early StarVation1) and LESV (Like ESV), that have recently been identified in Arabidopsis. In addition, we report on the presence of a new isoform of starch synthase, SS6, containing both K-X-G-G-L catalytic motifs. Furthermore, multiple protease inhibitors were also identified that are cleared away from starch by SDS and thermolysin treatments. Our results indicate that SS6 may play a yet uncharacterized function in starch biosynthesis and open new perspectives both in understanding storage starch metabolism as well as breeding improved potato lines.
Collapse
Affiliation(s)
- Stanislas Helle
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Jérémy Verbeke
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Stéphanie Devassine
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Adeline Courseaux
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maud Facon
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Caroline Tokarski
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Nicolas Szydlowski
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| |
Collapse
|
44
|
Hayashi M, Crofts N, Oitome NF, Fujita N. Analyses of starch biosynthetic protein complexes and starch properties from developing mutant rice seeds with minimal starch synthase activities. BMC PLANT BIOLOGY 2018; 18:59. [PMID: 29636002 PMCID: PMC5894220 DOI: 10.1186/s12870-018-1270-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/19/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Starch is the major component of cereal grains and is composed of essentially linear amylose and highly branched amylopectin. The properties and composition of starch determine the use and value of grains and their products. Starch synthase (SS) I, SSIIa, and SSIIIa play central roles in amylopectin biosynthesis. These three SS isozymes also affect seed development, as complete loss of both SSI and SSIIIa under reduced SSIIa activity in rice lead to sterility, whereas presence of minimal SSI or SSIIIa activity is sufficient for generating fertile seeds. SSs, branching enzymes, and/or debranching enzymes form protein complexes in cereal. However, the relationship between starch properties and the formation of protein complexes remain largely unknown. To better understand this phenomenon, properties of starch and protein complex formation were analyzed using developing mutant rice seeds (ss1 L /ss2a L /ss3a) in which all three major SS activities were reduced. RESULTS The SS activity of ss1 L /ss2a L /ss3a was 25%-30% that of the wild-type. However, the grain weight of ss1 L /ss2a L /ss3a was 89% of the wild-type, 55% of which was starch, showing considerable starch synthesis. The reduction of soluble SS activity in ss1 L /ss2a L /ss3a resulted in increased levels of ADP-glucose pyrophosphorylase and granule-bound starch synthase I, which are responsible for substrate synthesis and amylose synthesis, respectively. Together, these features led to an increase in apparent amylose content (34%) in ss1 L /ss2a L /ss3a compared with wild-type (20%). Gel filtration chromatography of the soluble proteins in ss1 L /ss2a L /ss3a showed that the majority of the starch biosynthetic enzymes maintained the similar elution patterns as wild-type, except that the amounts of high-molecular-weight SSI (> 300 kDa) were reduced and SSIIa of approximately 200-300 kDa were present instead of those > 440 kDa, which predominate in wild-type. Immuno-precipitation analyses suggested that the interaction between the starch biosynthetic enzymes maybe reduced or weaker than in wild-type. CONCLUSIONS Although major SS isozymes were simultaneously reduced in ss1 L /ss2a L /ss3a rice, active protein complexes were formed with a slightly altered pattern, suggesting that the assembly of protein complexes may be complemented among the SS isozymes. In addition, ss1 L /ss2a L /ss3a maintained the ability to synthesize starch and accumulated less amylopectin and more amylose in starch.
Collapse
Affiliation(s)
- Mari Hayashi
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo Nakano, Akita City, Akita, 010-0195, Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo Nakano, Akita City, Akita, 010-0195, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo Nakano, Akita City, Akita, 010-0195, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi, Shimoshinjo Nakano, Akita City, Akita, 010-0195, Japan.
| |
Collapse
|
45
|
Pang Y, Zhou X, Chen Y, Bao J. Comparative Phosphoproteomic Analysis of the Developing Seeds in Two Indica Rice ( Oryza sativa L.) Cultivars with Different Starch Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3030-3037. [PMID: 29486119 DOI: 10.1021/acs.jafc.8b00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein phosphorylation plays important roles in regulation of various molecular events such as plant growth and seed development. However, its involvement in starch biosynthesis is less understood. Here, a comparative phosphoproteomic analysis of two indica rice cultivars during grain development was performed. A total of 2079 and 2434 phosphopeptides from 1273 and 1442 phosphoproteins were identified, covering 2441 and 2808 phosphosites in indica rice 9311 and Guangluai4 (GLA4), respectively. Comparative analysis identified 303 differentially phosphorylated peptides, and 120 and 258 specifically phosphorylated peptides in 9311 and GLA4, respectively. Phosphopeptides in starch biosynthesis related enzymes such as AGPase, SSIIa, SSIIIa, BEI, BEIIb, PUL, and Pho1were identified. GLA4 and 9311 had different amylose content, pasting viscosities, and gelatinization temperature, suggesting subtle difference in starch biosynthesis and regulation between GLA4 and 9311. Our study will give added impetus to further understanding the regulatory mechanism of starch biosynthesis at the phosphorylation level.
Collapse
Affiliation(s)
- Yuehan Pang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology , Zhejiang University , Huajiachi Campus, Hangzhou , 310029 , China
| | - Xin Zhou
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology , Zhejiang University , Huajiachi Campus, Hangzhou , 310029 , China
| | - Yaling Chen
- College of Life Sciences , Jiangxi Normal University , Nanchang , 330022 , China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology , Zhejiang University , Huajiachi Campus, Hangzhou , 310029 , China
| |
Collapse
|
46
|
Nakata M, Miyashita T, Kimura R, Nakata Y, Takagi H, Kuroda M, Yamaguchi T, Umemoto T, Yamakawa H. MutMapPlus identified novel mutant alleles of a rice starch branching enzyme IIb gene for fine-tuning of cooked rice texture. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:111-123. [PMID: 28499068 PMCID: PMC5785365 DOI: 10.1111/pbi.12753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/23/2017] [Accepted: 05/01/2017] [Indexed: 05/07/2023]
Abstract
Physicochemical properties of storage starch largely determine rice grain quality and food characteristics. Therefore, modification of starch property is effective to fine-tune cooked rice textures. To obtain new resources with modified starch property as breeding materials, we screened a mutant population of a japonica cultivar Nipponbare and found two independent mutant lines, altered gelatinization (age)1 and age2, with moderate changes in starch gelatinization property. A combination of conventional genetic analyses and the latest mapping method, MutMapPlus, revealed that both of these lines harbour novel independent mutant alleles of starch branching enzyme IIb (BEIIb) gene. In age1, amino acid substitution of Met-723 to Lys completely abolished BEIIb enzyme activity without significant reduction in its protein level. A transposon insertion in an intron of BEIIb gene reduced BEIIb protein level and activity in age2. Production of a series of the mutant lines by combining age alleles and indica-type starch synthase IIa allele established stepwise alteration of the physicochemical properties of starch including apparent amylose content, thermal property, digestibility by α-amylase and branched structures of amylopectin. Consistent with the alteration of starch properties, the results of a sensory evaluation test demonstrated that warm cooked rice of the mutants showed a variety of textures without marked reduction in overall palatability. These results suggest that a series of the mutant lines are capable of manipulation of cooked rice textures.
Collapse
Affiliation(s)
- Masaru Nakata
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)JoetsuJapan
| | - Tomomi Miyashita
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)JoetsuJapan
| | - Rieko Kimura
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)JoetsuJapan
| | - Yuriko Nakata
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)JoetsuJapan
| | - Hiroki Takagi
- Department of Bioproduction ScienceIshikawa Prefectural UniversityNonoichiJapan
| | - Masaharu Kuroda
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)JoetsuJapan
| | - Takeshi Yamaguchi
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)JoetsuJapan
| | - Takayuki Umemoto
- Institute of Crop ScienceNational Agriculture and Food Research Organization (NARO)TsukubaJapan
| | - Hiromoto Yamakawa
- Division of Crop DevelopmentCentral Region Agricultural Research CenterNational Agriculture and Food Research Organization (NARO)JoetsuJapan
| |
Collapse
|
47
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
48
|
Chang TS, Liu CW, Lin YL, Li CY, Wang AZ, Chien MW, Wang CS, Lai CC. Mapping and comparative proteomic analysis of the starch biosynthetic pathway in rice by 2D PAGE/MS. PLANT MOLECULAR BIOLOGY 2017; 95:333-343. [PMID: 28887709 DOI: 10.1007/s11103-017-0652-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/16/2017] [Indexed: 05/16/2023]
Abstract
Our results not only provide a comprehensive overview of the starch biosynthetic pathway in the developing endosperm but also reveal some important protein markers that regulate the synthesis of starch. In human diets, rice (Oryza sativa L.) is an important source of starch, a substantial amount of which is accumulated in developing endosperm. A better understanding of the complicated pathways involved in starch biosynthesis is needed to improve the yield and quality of rice and other cereal crops through breeding. One pure line rice mutant, SA0419, was induced from a wild-type rice, TNG67, by sodium azide mutagenesis; therefore, TNG67 and SA0419 share the same genetic background. SA0419 is, however, a unique glutinous rice with a lower amylose content (8%) than that of TNG67 (20%), and the grains of SA0419 develop earlier and faster than those of TNG67. In this study, we used a comparative proteomic analysis to identify the differentially expressed proteins that may explain the differences in starch biosynthesis and the characteristics of TNG67 and SA0419. A gel-based proteomic approach was applied to profile the expressed proteome in the developing endosperm of these two rice varieties by nano-LC/MS/MS. Several over-expressed proteins were found in SA0419, such as plastidial ADP-glucose pyrophosphorylase (AGPase), phosphoglucomutase (PGM), pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP), 6-phosphofructokinase (PFK), pyruvate phosphate dikinase (PPDK), starch branching enzymes (SBE) and starch debranching enzyme (SDBE), with those proteins mainly being involved in the pathways of starch metabolism and PPDK-mediated gluconeogenesis. Those over-expressed enzymes may contribute to the relatively early development, similar starch accumulation and rapid grain filling of SA0419 as compared with TNG67. This study provides a detailed biochemical description of starch biosynthesis and related information regarding a unique starch mutant that may assist future research efforts to improve the yield and quality of grain and starch in rice through breeding.
Collapse
Affiliation(s)
- Tao-Shan Chang
- Institute of Molecular Biology, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 40227, Taiwan, Republic of China
| | - Chih-Wei Liu
- Institute of Molecular Biology, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 40227, Taiwan, Republic of China
| | - Yu-Ling Lin
- Department of Agronomy, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung, Taiwan, Republic of China
| | - Chao-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 40227, Taiwan, Republic of China
| | - Arthur Z Wang
- Department of Agronomy, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung, Taiwan, Republic of China
| | - Min-Wei Chien
- Institute of Molecular Biology, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 40227, Taiwan, Republic of China
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung, Taiwan, Republic of China.
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung, 40227, Taiwan, Republic of China.
- Graduate institute of Chinese Medical Science, China Medical University, Taichung, 40402, Taiwan, Republic of China.
| |
Collapse
|
49
|
Nakamura Y, Ono M, Sawada T, Crofts N, Fujita N, Steup M. Characterization of the functional interactions of plastidial starch phosphorylase and starch branching enzymes from rice endosperm during reserve starch biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:83-95. [PMID: 28969805 DOI: 10.1016/j.plantsci.2017.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 05/28/2023]
Abstract
Functional interactions of plastidial phosphorylase (Pho1) and starch branching enzymes (BEs) from the developing rice endosperm are the focus of this study. In the presence of both Pho1 and BE, the same branched primer molecule is elongated and further branched almost simultaneously even at very low glucan concentrations present in the purified enzyme preparations. By contrast, in the absence of any BE, glucans are not, to any significant extent, elongated by Pho1. Based on our in vitro data, in the developing rice endosperm, Pho1 appears to be weakly associated with any of the BE isozymes. By using fluorophore-labeled malto-oligosaccharides, we identified maltose as the smallest possible primer for elongation by Pho1. Linear dextrins act as carbohydrate substrates for BEs. By functionally interacting with a BE, Pho1 performs two essential functions during the initiation of starch biosynthesis in the rice endosperm: First, it elongates maltodextrins up to a degree of polymerization of at least 60. Second, by closely interacting with BEs, Pho1 is able to elongate branched glucans efficiently and thereby synthesizes branched carbohydrates essential for the initiation of amylopectin biosynthesis.
Collapse
Affiliation(s)
- Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita-City, Akita 010-0195, Japan; Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita 010-0101, Japan.
| | - Masami Ono
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita-City, Akita 010-0195, Japan
| | - Takayuki Sawada
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita-City, Akita 010-0195, Japan
| | - Naoko Crofts
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita-City, Akita 010-0195, Japan
| | - Naoko Fujita
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita-City, Akita 010-0195, Japan
| | - Martin Steup
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Strasse 24-25, Potsdam, Germany; Peter Gilgen Centre for Research and Learning, The Hospital for Sick Children, 72 Elm St., Toronto ON M5G 1×8, Canada; University of Toronto, Canada
| |
Collapse
|
50
|
Li C, Powell PO, Gilbert RG. Recent progress toward understanding the role of starch biosynthetic enzymes in the cereal endosperm. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/amylase-2017-0006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStarch from cereal endosperm is a major energy source for many mammals. The synthesis of this starch involves a number of different enzymes whose mode of action is still not completely understood. ADPglucose pyrophosphorylase is involved in the synthesis of starch monomer (ADP-glucose), a process, which almost exclusively takes place in the cytosol. ADPglucose is then transported into the amyloplast and incorporated into starch granules by starch synthase, starch-branching enzyme and debranching enzyme. Additional enzymes, including starch phosphorylase and disproportionating enzyme, may be also involved in the formation of starch granules, although their exact functions are still obscure. Interactions between these enzymes in the form of functional complexes have been proposed and investigated, resulting more complicated starch biosynthetic pathways. An overall picture and recent advances in understanding of the functions of these enzymes is summarized in this review to provide insights into how starch granules are synthesized in cereal endosperm.
Collapse
|