1
|
Zhou J, Zhang H, Huang Y, Jiao S, Zheng X, Lu W, Jiang W, Bai X. Impact of Sulfur Deficiency and Excess on the Growth and Development of Soybean Seedlings. Int J Mol Sci 2024; 25:11253. [PMID: 39457037 PMCID: PMC11508489 DOI: 10.3390/ijms252011253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sulfur is a critical element for plant growth and development, serving as a component of amino acids (cysteine and methionine), iron-sulfur clusters, proteins, glutathione, coenzymes, and auxin precursors. Deficiency or low concentrations of sulfur in the soil can lead to significant growth retardation in plants. The objective of our study was to examine the effects of sulfur (S) deficiency and excess on morphological symptoms, sulfur and nitrogen (N) metabolism, as well as antioxidant activity in soybean. We found that S starvation decreased the fine root length, biomass, and activity, and the chlorophyll content was reduced, while excess sulfur promotes lateral root growth. In contrast to sulfur excess, sulfur deficiency inhibits N and S metabolism levels in both subsurface and above-ground parts, and induced the expression of some sulfur transporters (SULTRs). In this study, we created soybean hairy root lines overexpressing the SULTR gene (GmSULTR2;1a) to observe metabolic changes following sulfur deficiency treatment. The results showed that GmSULTR2;1a saved the sulfur-deficient phenotype, and the antioxidant enzyme activity was much higher than that of the wildtype in the absence of sulfur. Our study revealed the important role of sulfur element in soybean growth and development and the regulation of sulfur deficiency by GmSULTR2;1a.
Collapse
Affiliation(s)
- Jingwen Zhou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Huimin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Yifan Huang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Shuang Jiao
- Key Laboratory of Soybean Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
| | - Xiangmin Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Wentian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Wenjing Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| | - Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (H.Z.); (Y.H.); (X.Z.); (W.L.); (W.J.)
| |
Collapse
|
2
|
Lodovici A, Buoso S, Miras-Moreno B, Lucini L, Tomasi N, García-Pérez P, Pinton R, Zanin L. A multi-omics insight on the interplay between iron deficiency and N forms in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1408141. [PMID: 39479546 PMCID: PMC11521840 DOI: 10.3389/fpls.2024.1408141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024]
Abstract
Introduction Nitrogen (N) and iron (Fe) are involved in several biochemical processes in living organisms, and their limited bioavailability is a strong constraint for plant growth and yield. This work investigated the interplay between Fe and N nutritional pathways in tomato plants kept under N and Fe deficiency and then resupplied with Fe and N (as nitrate, ammonium, or urea) through a physiological, metabolomics and gene expression study. Results After 24 hours of Fe resupply, the Fe concentration in Fe-deficient roots was dependent on the applied N form (following the pattern: nitrate > urea > ammonium > Fe-deficient control), and whereas in leaves of urea treated plants the Fe concentration was lower in comparison to the other N forms. Untargeted metabolomics pointed out distinctive modulations of plant metabolism in a treatment-dependent manner. Overall, N-containing metabolites were affected by the treatments in both leaves and roots, while N form significantly shaped the phytohormone profile. Moreover, the simultaneous application of Fe with N to Fe-deficient plants elicited secondary metabolites' accumulation, such as phenylpropanoids, depending on the applied N form (mainly by urea, followed by nitrate and ammonium). After 4 hours of treatment, ammonium- and urea-treated roots showed a reduction of enzymatic activity of Fe(III)-chelate reductase (FCR), compared to nitrate or N-depleted plants (maintained in Fe deficiency, where FCR was maintained at high levels). The response of nitrate-treated plants leads to the improvement of Fe concentration in tomato roots and the increase of Fe(II) transporter (IRT1) gene expression in tomato roots. Conclusions Our results strengthen and improve the understanding about the interaction between N and Fe nutritional pathways, thinning the current knowledge gap.
Collapse
Affiliation(s)
- Arianna Lodovici
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Sara Buoso
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Plant Biology, University of Murcia, Murcia, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Nicola Tomasi
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Roberto Pinton
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Laura Zanin
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
3
|
Woś B, Likus-Cieślik J, Pająk M, Pietrzykowski M. How tree species have modified the potentially toxic elements distributed in the developed soil-plant system in a post-fire site in highly industrialized region. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:780. [PMID: 39096404 PMCID: PMC11297815 DOI: 10.1007/s10661-024-12933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
The biogeochemical cycles of trace elements are changed by fire as a result of the mineralization of organic matter. Monitoring the accumulation of trace elements in both the environment and the tree biomass during the post-fire (PF) forest ecosystem regeneration process is important for tree species selection for reforestation in ecosystems under anthropogenic pressure. We analyzed the soil concentrations of different groups of potentially toxic elements (PTEs), including beneficial (Al), toxic (Cd, Cr, Pb), and microelements (Cu, Mn, Ni, Zn), and their bioaccumulation in the tree species (Pinus sylvestris, Betula pendula, Alnus glutinosa) biomass introduced after a fire in a forest weakened by long-term emissions of industrial pollutants. The results indicated no direct threat from the PTEs tested at the PF site. The tree species introduced 30 years ago may have modified the biogeochemical cycles of the PTEs through different strategies of bioaccumulation in the belowground and aboveground biomass. Alder had relatively high Al concentrations in the roots and a low translocation factor (TF). Pine and birch had lower Al concentrations in the roots and higher TFs. Foliage concentrations and the TF of Cd increased from alder to pine to birch. However, the highest concentration and bioaccumulation factor of Cd was found in the alder roots. The concentrations of Cr in the foliage and the Cr TFs in the studied species increased from pine to birch to alder. Higher concentrations of Cu and Ni were found in the foliage of birch and alder than of pine. Among the species, birch also had the highest Pb and Zn concentrations in the roots and foliage. We found that different tree species had different patterns of PTE phytostabilization and ways they incorporated these elements into the biological cycle, and these patterns were not dependent on fire disturbance. This suggests that similar patterns might also occur in more polluted soils. Therefore, species-dependent bioaccumulation patterns could also be used to design phytostabilization and remediation treatments for polluted sites under industrial pressure.
Collapse
Affiliation(s)
- Bartłomiej Woś
- Faculty of Forestry, Department of Ecological Engineering and Forest Hydrology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
| | - Justyna Likus-Cieślik
- Faculty of Forestry, Department of Ecological Engineering and Forest Hydrology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Marek Pająk
- Faculty of Forestry, Department of Ecological Engineering and Forest Hydrology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Marcin Pietrzykowski
- Faculty of Forestry, Department of Ecological Engineering and Forest Hydrology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland
| |
Collapse
|
4
|
Siegl A, Afjehi-Sadat L, Wienkoop S. Systemic long-distance sulfur transport and its role in symbiotic root nodule protein turnover. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154260. [PMID: 38701679 DOI: 10.1016/j.jplph.2024.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.
Collapse
Affiliation(s)
- Alina Siegl
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Herndon E, Richardson J, Carrell AA, Pierce E, Weston D. Sulfur speciation in Sphagnum peat moss modified by mutualistic interactions with cyanobacteria. THE NEW PHYTOLOGIST 2024; 241:1998-2008. [PMID: 38135655 DOI: 10.1111/nph.19476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Peat moss (Sphagnum spp.) develops mutualistic interactions with cyanobacteria by providing carbohydrates and S compounds in exchange for N-rich compounds, potentially facilitating N inputs into peatlands. Here, we evaluate how colonization of Sphagnum angustifolium hyaline cells by Nostoc muscorum modifies S abundance and speciation at the scales of individual cells and across whole leaves. For the first time, S K-edge X-ray Absorption Spectroscopy was used to identify bulk and micron-scale S speciation across isolated cyanobacteria colonies, and in colonized and uncolonized leaves. Uncolonized leaves contained primarily reduced organic S and oxidized sulfonate- and sulfate-containing compounds. Increasing Nostoc colonization resulted in an enrichment of S and changes in speciation, with increases in sulfate relative to reduced S and sulfonate. At the scale of individual hyaline cells, colonized cells exhibited localized enrichment of reduced S surrounded by diffuse sulfonate, similar to observations of cyanobacteria colonies cultured in the absence of leaves. We infer that colonization stimulates plant S uptake and the production of sulfate-containing metabolites that are concentrated in stem tissues. Sulfate compounds that are produced in response to colonization become depleted in colonized cells where they may be converted into reduced S metabolites by cyanobacteria.
Collapse
Affiliation(s)
- Elizabeth Herndon
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | | | - Alyssa A Carrell
- Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Eric Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - David Weston
- Biological Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
6
|
Hu Y, Chen Y, Yang X, Deng L, Lu X. Enhancing Soybean Yield: The Synergy of Sulfur and Rhizobia Inoculation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3911. [PMID: 38005808 PMCID: PMC10675423 DOI: 10.3390/plants12223911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Sulfur deficiency severely limits soybean growth, inhibiting the rhizobia nitrogenase and soybean protein synthesis. This study assessed the impact of sulfur fertilization and rhizobia inoculation on soybean growth and nitrogen fixation through bacterial culture and hydroponic experiments. We selected three rhizobia strains for bacterial cultures and used six sulfur levels. The test demonstrated severe inhibition of Rhizobium USDA110 growth without sulfur. In hydroponic experiment, we employed five sulfur levels with USDA110 as the inoculum strain. Soybean growth, nitrogen fixation, yield, and root morphology-related parameters, and root nodule growth, were significantly inhibited without sulfur. Following Rhizobium inoculation, low sulfur concentrations (0.15-0.60 mM) stimulated early-stage (V9) root growth and increased shoot nitrogen accumulation, but inhibited root growth at R5 stage. Furthermore, Rhizobium inoculation notably enhanced soybean growth, nitrogen fixation, and yield, especially within the recommended low sulfur concentration range (0.15-0.30 mM). The maximum nodule nitrogenase activity at R5 stage and highest yield was recorded at a 0.3 mM sulfur concentration with Rhizobium inoculation, which was 9.51-1222.07% higher than other treatments. These findings highlight that low sulfur concentration and rhizobia inoculation enhance soybean growth, nitrogen fixation, and yield but reduce soybean root efficacy, increasing reliance on root nodules.
Collapse
Affiliation(s)
- Yiao Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Y.C.); (X.Y.); (X.L.)
- Guangdong Weisheng Liansu Technology Co., Ltd., Foshan 528313, China
| | - Yulin Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Y.C.); (X.Y.); (X.L.)
| | - Xu Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Y.C.); (X.Y.); (X.L.)
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Y.C.); (X.Y.); (X.L.)
| | - Xing Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Y.C.); (X.Y.); (X.L.)
| |
Collapse
|
7
|
Ma Y, Zhu W, Zhao W, Zhang B, He J, Zhang C, Li P, Hu Y, Zhou Z, Yan Z, Li J, Cai W, Ren G, Chen R. MtESN2 is a subgroup II sulphate transporter required for symbiotic nitrogen fixation and prevention of nodule early senescence in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2023; 46:3558-3574. [PMID: 37545348 DOI: 10.1111/pce.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.
Collapse
Affiliation(s)
- Yanlin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Weike Zhu
- College of Cuiying Honors, Lanzhou University, Lanzhou, China
| | - Weichen Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Beihong Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chenyan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Peng Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yibo Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zaicai Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zezhang Yan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanjuan Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenkai Cai
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Coquerel R, Arkoun M, Dupas Q, Leroy F, Laîné P, Etienne P. Silicon Supply Improves Nodulation and Dinitrogen Fixation and Promotes Growth in Trifolium incarnatum Subjected to a Long-Term Sulfur Deprivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2248. [PMID: 37375874 DOI: 10.3390/plants12122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
In many crops species, sulfur (S) deprivation negatively affects growth, seed yield quality and plant health. Furthermore, silicon (Si) is known to alleviate many nutritional stresses but the effects of Si supply on plants subjected to S deficiency remain unclear and poorly documented. The objective of this study was to evaluate whether Si supply would alleviate the negative effects of S deprivation on root nodulation and atmospheric dinitrogen (N2) fixation capacity in Trifolium incarnatum subjected (or not) to long-term S deficiency. For this, plants were grown for 63 days in hydroponic conditions with (500 µM) or without S and supplied (1.7 mM) or not with Si. The effects of Si on growth, root nodulation and N2 fixation and nitrogenase abundance in nodules have been measured. The most important beneficial effect of Si was observed after 63 days. Indeed, at this harvest time, a Si supply increased growth, the nitrogenase abundance in nodules and N2 fixation in S-fed and S-deprived plants while a beneficial effect on the number and total biomass of nodules was only observed in S-deprived plants. This study shows clearly for the first time that a Si supply alleviates negative effects of S deprivation in Trifolium incarnatum.
Collapse
Affiliation(s)
- Raphaël Coquerel
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France
| | - Quentin Dupas
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Fanny Leroy
- Plateau Technique d'Isotopie de Normandie (PLATIN'), Unité de Services EMERODE, Normandie Université, 14000 Caen, France
| | - Philippe Laîné
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Philippe Etienne
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| |
Collapse
|
9
|
Fukudome M, Ishizaki H, Shimokawa Y, Mori T, Uchi-Fukudome N, Umnajkitikorn K, Murakami EI, Uchiumi T, Kawaguchi M. Reactive Sulfur Species Produced by Cystathionine γ-lyase Function in the Establishment of Mesorhizobium loti-Lotus japonicus Symbiosis. Microbes Environ 2023; 38:ME23021. [PMID: 37704435 PMCID: PMC10522845 DOI: 10.1264/jsme2.me23021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
Reactive sulfur species (RSS) are present in root nodules; however, their role in symbiosis and the mechanisms underlying their production remain unclear. We herein investigated whether RSS produced by the cystathionine γ-lyase (CSE) of microsymbionts are involved in root nodule symbiosis. A cse mutant of Mesorhizobium loti exhibited the decreased production of hydrogen sulfide and other RSS. Although the CSE mutation of M. loti did not affect the early stages of symbiosis, i.e., infection and nodulation, with Lotus japonicus, it reduced the nitrogenase activity of nodules and induced their early senescence. Additionally, changes in the production of sulfur compounds and an increase in reactive oxygen species (ROS) were observed in the infected cells of nodules induced by the cse mutants. The effects of CSE inhibitors in the L. japonicus rhizosphere on symbiosis with M. loti were also investigated. All three CSE inhibitors suppressed infection and nodulation by M. loti concomitant with decreased RSS levels and increased ROS and nitric oxide levels. Therefore, RSS derived from the CSE activity of both the microsymbiont and host plant are required for symbiosis, but function at different stages of symbiosis, possibly with crosstalk with other reactive mole-cular species.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761–0795, Japan
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444–8585, Japan
| | - Haruka Ishizaki
- Graduate School of Science and Engineering, Kagoshima University, 1–21–35 Korimoto, Kagoshima 890–0065, Japan
| | - Yuta Shimokawa
- Graduate School of Science and Engineering, Kagoshima University, 1–21–35 Korimoto, Kagoshima 890–0065, Japan
| | - Tomoko Mori
- Trans-Omics Facility, Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444–8585, Japan
| | - Nahoko Uchi-Fukudome
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8–35–1 Sakuragaoka, Kagoshima 890–8544, Japan
| | - Kamolchanok Umnajkitikorn
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ei-ichi Murakami
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444–8585, Japan
- Nihon Pall Ltd. Scientific and Laboratory Service, Ami-machi, Inashiki-gun, Ibaraki 300–0315, Japan
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1–21–35 Korimoto, Kagoshima 890–0065, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444–8585, Japan
| |
Collapse
|
10
|
Fang D, Zhang W, Ye Z, Hu F, Cheng X, Cao J. The plant specific SHORT INTERNODES/STYLISH (SHI/STY) proteins: Structure and functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:685-695. [PMID: 36565613 DOI: 10.1016/j.plaphy.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Plant specific SHORT INTERNODES/STYLISH (SHI/STY) protein is a transcription factor involved in the formation and development of early lateral organs in plants. However, research on the SHI/STY protein family is not focused enough. In this article, we review recent studies on SHI/STY genes and explore the evolution and structure of SHI/STY. The biological functions of SHI/STYs are discussed in detail in this review, and the application of each biological function to modern agriculture is discussed. All SHI/STY proteins contain typical conserved RING-like zinc finger domain and IGGH domain. SHI/STYs are involved in the formation and development of lateral root, stem extension, leaf morphogenesis, and root nodule development. They are also involved in the regulation of pistil and stamen development and flowering time. At the same time, the regulation of some GA, JA, and auxin signals also involves these family proteins. For each aspect, unanswered or poorly understood questions were identified to help define future research areas. This review will provide a basis for further functional study of this gene family.
Collapse
Affiliation(s)
- Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiuzhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
11
|
Nasrollahi V, Yuan ZC, Kohalmi SE, Hannoufa A. SPL12 Regulates AGL6 and AGL21 to Modulate Nodulation and Root Regeneration under Osmotic Stress and Nitrate Sufficiency Conditions in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223071. [PMID: 36432802 PMCID: PMC9697194 DOI: 10.3390/plants11223071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 06/12/2023]
Abstract
The highly conserved plant microRNA, miR156, affects root architecture, nodulation, symbiotic nitrogen fixation, and stress response. In Medicago sativa, transcripts of eleven SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE, SPLs, including SPL12, are targeted for cleavage by miR156. Our previous research revealed the role of SPL12 and its target gene, AGL6, in nodulation in alfalfa. Here, we investigated the involvement of SPL12, AGL6 and AGL21 in nodulation under osmotic stress and different nitrate availability conditions. Characterization of phenotypic and molecular parameters revealed that the SPL12/AGL6 module plays a negative role in maintaining nodulation under osmotic stress. While there was a decrease in the nodule numbers in WT plants under osmotic stress, the SPL12-RNAi and AGL6-RNAi genotypes maintained nodulation under osmotic stress. Moreover, the results showed that SPL12 regulates nodulation under a high concentration of nitrate by silencing AGL21. AGL21 transcript levels were increased under nitrate treatment in WT plants, but SPL12 was not affected throughout the treatment period. Given that AGL21 was significantly upregulated in SPL12-RNAi plants, we conclude that SPL12 may be involved in regulating nitrate inhibition of nodulation in alfalfa by targeting AGL21. Taken together, our results suggest that SPL12, AGL6, and AGL21 form a genetic module that regulates nodulation in alfalfa under osmotic stress and in response to nitrate.
Collapse
Affiliation(s)
- Vida Nasrollahi
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Susanne E. Kohalmi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
12
|
Fan K, Sze CC, Li MW, Lam HM. Roles of non-coding RNAs in the hormonal and nutritional regulation in nodulation and nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2022; 13:997037. [PMID: 36330261 PMCID: PMC9623164 DOI: 10.3389/fpls.2022.997037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important component in the nitrogen cycle and is a potential solution for sustainable agriculture. It is the result of the interactions between the plant host, mostly restricted to legume species, and the rhizobial symbiont. From the first encounter between the host and the symbiont to eventual successful nitrogen fixation, there are delicate processes involved, such as nodule organogenesis, rhizobial infection thread progression, differentiation of the bacteroid, deregulation of the host defense systems, and reallocation of resources. All these processes are tightly regulated at different levels. Recent evidence revealed that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in these processes by controlling the transcription and translation of effector genes. In general, ncRNAs are functional transcripts without translation potential and are important gene regulators. MiRNAs, negative gene regulators, bind to the target mRNAs and repress protein production by causing the cleavage of mRNA and translational silencing. LncRNAs affect the formation of chromosomal loops, DNA methylation, histone modification, and alternative splicing to modulate gene expression. Both lncRNAs and circRNAs could serve as target mimics of miRNA to inhibit miRNA functions. In this review, we summarized and discussed the current understanding of the roles of ncRNAs in legume nodulation and nitrogen fixation in the root nodule, mainly focusing on their regulation of hormone signal transduction, the autoregulation of nodulation (AON) pathway and nutrient homeostasis in nodules. Unraveling the mediation of legume nodulation by ncRNAs will give us new insights into designing higher-performance leguminous crops for sustainable agriculture.
Collapse
|
13
|
Inoculation and coinoculation combined with sulfur treatment boost the physiological quality of seeds and reduce oxidative stress in soybean seedlings. Symbiosis 2022. [DOI: 10.1007/s13199-022-00871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Nakei MD, Venkataramana PB, Ndakidemi PA. Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.824444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The worldwide increase in population continues to threaten the sustainability of agricultural systems since agricultural output must be optimized to meet the global rise in food demand. Sub-Saharan Africa (SSA) is among the regions with a fast-growing population but decreasing crop productivity. Pests and diseases, as well as inadequate nitrogen (N) levels in soils, are some of the biggest restrictions to agricultural production in SSA. N is one of the most important plant-limiting elements in agricultural soils, and its deficit is usually remedied by using nitrogenous fertilizers. However, indiscriminate use of these artificial N fertilizers has been linked to environmental pollution calling for alternative N fertilization mechanisms. Soybean (Glycine max) is one of the most important legumes in the world. Several species of rhizobia from the four genera, Bardyrhizobium, Rhizobium, Mesorhizobium, and Ensifer (formerly Sinorhizobium), are observed to effectively fix N with soybean as well as perform various plant-growth promoting (PGP) functions. The efficiency of the symbiosis differs with the type of rhizobia species, soybean cultivar, and biotic factors. Therefore, a complete understanding of the ecology of indigenous soybean-nodulating rhizobia concerning their genetic diversity and the environmental factors associated with their localization and dominance in the soil is important. This review aimed to understand the potential of indigenous soybean-nodulating rhizobia through a synthesis of the literature regarding their characterization using different approaches, genetic diversity, symbiotic effectiveness, as well as their functions in biological N fixation (BNF) and biocontrol of soybean soil-borne pathogens.
Collapse
|
15
|
Kanté M, Lemauviel-Lavenant S, Cliquet JB. Remediation of atmospheric sulfur and ammonia by wetland plants: development of a study method. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:373-383. [PMID: 35180015 DOI: 10.1080/15226514.2021.1949264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the context of S and N pollutant remediation, this study aimed to develop a methodology to test the ability of wetland plants to reduce atmospheric pollution by S and N. A methodology using 34S and 15N-labeled Sinapsis alba compost and five species (trap plants) used to fix volatile compounds was developed. 18.66% of 34S and 40.63% of 15N produced by Sinapsis alba compost, equivalent to 67 mg of S and 1611 mg of N, were recovered in trap plants, a negligible proportion of the labeling was found in the culture substrate. 34S and 15N atom% excess were two to ten times higher in leaves than in roots. Agrostis stolonifera, Symphytum officinale, and Lythrum salicaria were more efficient to use atmospheric inorganic sources of S and N than Mentha aquatica and Carex riparia. A low concentration of sulfate in the leaf laminas, a high specific leaf area, and a low leaf dry mass content could represent trait patterns that explain higher abilities to fix pollutants. This study confirms that plants can be used to remediate inorganic atmospheric pollution and highlights the importance of plant screening for this environmental function.Novelty statementThe removal efficiency of botanical biofiltration is well-documented for Volatile Organic pollutants, but little is known concerning Volatile Inorganic pollutants, such as SO2 and NH3 which can also constitute plant nutrients.We developed a methodology based on the use of 34S and 15N-labeled mustard compost to study the ability of wetland plant species to fix volatile N and S pollutants. This methodology was effective as 19% of 34S and 41% of 15N lost by mustard compost were recovered in trap plants. Among the species used as "trap plants" Agrostis stolonifera, Symphytum officinale, and Lythrum salicaria appeared more efficient to use atmospheric inorganic sources of S and N than Mentha aquatica and Carex riparia.
Collapse
Affiliation(s)
- Mohamed Kanté
- Normandy University, UNICAEN, INRAE, EVA, Caen Cedex, France
| | | | | |
Collapse
|
16
|
Speck JJ, James EK, Sugawara M, Sadowsky MJ, Gyaneshwar P. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by Bradyrhizobium diazoefficiens (syn. Bradyrhizobium japonicum) USDA110 T. Appl Environ Microbiol 2019; 85:e01552-19. [PMID: 31562172 PMCID: PMC6881790 DOI: 10.1128/aem.01552-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Sulfur (S)-containing molecules play an important role in symbiotic nitrogen fixation and are critical components of nitrogenase and other iron-S proteins. S deficiency inhibits symbiotic nitrogen fixation by rhizobia. However, despite its importance, little is known about the sources of S that rhizobia utilize during symbiosis. We previously showed that Bradyrhizobium diazoefficiens USDA110T can assimilate both inorganic and organic S and that genes involved in organic S utilization are expressed during symbiosis. Here, we show that a B. diazoefficiens USDA110T mutant with a sulfonate monooxygenase (ssuD) insertion is defective in nitrogen fixation. Microscopy analyses revealed that the ΔssuD mutant was defective in root hair infection and that ΔssuD mutant bacteroids showed degradation compared to the wild-type strain. Moreover, the ΔssuD mutant was significantly more sensitive to hydrogen peroxide-mediated oxidative stress than the wild-type strain. Taken together, these results show that the ability of rhizobia to utilize organic S plays an important role in symbiotic nitrogen fixation. Since nodules have been reported to be an important source of reduced S used during symbiosis and nitrogen fixation, further research will be needed to determine the mechanisms involved in the regulation of S assimilation by rhizobia.IMPORTANCE Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show that sulfonate utilization by Bradyrhizobium diazoefficiens is important for symbiotic nitrogen fixation in both soybean and cowpea. The symbiotic defect is probably due to increased sensitivity to oxidative stress from sulfur deficiency in the mutant strain defective for sulfonate utilization. The results of this study can be extended to other rhizobium-legume symbioses, as sulfonate utilization genes are widespread in these bacteria.
Collapse
Affiliation(s)
- Justin J Speck
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Masayuki Sugawara
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Michael J Sadowsky
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Courbet G, Gallardo K, Vigani G, Brunel-Muguet S, Trouverie J, Salon C, Ourry A. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4183-4196. [PMID: 31055598 DOI: 10.1093/jxb/erz214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/29/2019] [Indexed: 05/02/2023]
Abstract
A complete understanding of ionome homeostasis requires a thorough investigation of the dynamics of the nutrient networks in plants. This review focuses on the complexity of interactions occurring between S and other nutrients, and these are addressed at the level of the whole plant, the individual tissues, and the cellular compartments. With regards to macronutrients, S deficiency mainly acts by reducing plant growth, which in turn restricts the root uptake of, for example, N, K, and Mg. Conversely, deficiencies in N, K, or Mg reduce uptake of S. TOR (target of rapamycin) protein kinase, whose involvement in the co-regulation of C/N and S metabolism has recently been unravelled, provides a clue to understanding the links between S and plant growth. In legumes, the original crosstalk between N and S can be found at the level of nodules, which show high requirements for S, and hence specifically express a number of sulfate transporters. With regards to micronutrients, except for Fe, their uptake can be increased under S deficiency through various mechanisms. One of these results from the broad specificity of root sulfate transporters that are up-regulated during S deficiency, which can also take up some molybdate and selenate. A second mechanism is linked to the large accumulation of sulfate in the leaf vacuoles, with its reduced osmotic contribution under S deficiency being compensated for by an increase in Cl uptake and accumulation. A third group of broader mechanisms that can explain at least some of the interactions between S and micronutrients concerns metabolic networks where several nutrients are essential, such as the synthesis of the Mo co-factor needed by some essential enzymes, which requires S, Fe, Zn and Cu for its synthesis, and the synthesis and regulation of Fe-S clusters. Finally, we briefly review recent developments in the modelling of S responses in crops (allocation amongst plant parts and distribution of mineral versus organic forms) in order to provide perspectives on prediction-based approaches that take into account the interactions with other minerals such as N.
Collapse
Affiliation(s)
- Galatéa Courbet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Sophie Brunel-Muguet
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| | - Jacques Trouverie
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| | - Christophe Salon
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Franche-Comté, Dijon, France
| | - Alain Ourry
- Normandie Université, UNICAEN, INRA, UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, Esplanade de la Paix, Caen Cedex, France
| |
Collapse
|
18
|
Henriet C, Aimé D, Térézol M, Kilandamoko A, Rossin N, Combes-Soia L, Labas V, Serre RF, Prudent M, Kreplak J, Vernoud V, Gallardo K. Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4287-4304. [PMID: 30855667 PMCID: PMC6698706 DOI: 10.1093/jxb/erz114] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 05/08/2023]
Abstract
Water stress and sulfur (S) deficiency are two constraints increasingly faced by crops due to climate change and low-input agricultural practices. To investigate their interaction in the grain legume pea (Pisum sativum), sulfate was depleted at the mid-vegetative stage and a moderate 9-d water stress period was imposed during the early reproductive phase. The combination of the stresses impeded reproductive processes in a synergistic manner, reducing seed weight and seed number, and inducing seed abortion, which highlighted the paramount importance of sulfur for maintaining seed yield components under water stress. On the other hand, the moderate water stress mitigated the negative effect of sulfur deficiency on the accumulation of S-rich globulins (11S) in seeds, probably due to a lower seed sink strength for nitrogen, enabling a readjustment of the ratio of S-poor (7S) to 11S globulins. Transcriptome analysis of developing seeds at the end of the combined stress period indicated that similar biological processes were regulated in response to sulfur deficiency and to the combined stress, but that the extent of the transcriptional regulation was greater under sulfur deficiency. Seeds from plants subjected to the combined stresses showed a specific up-regulation of a set of transcription factor and SUMO ligase genes, indicating the establishment of unique regulatory processes when sulfur deficiency is combined with water stress.
Collapse
Affiliation(s)
- Charlotte Henriet
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Delphine Aimé
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Morgane Térézol
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Anderson Kilandamoko
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Nadia Rossin
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Lucie Combes-Soia
- Physiologie de la Reproduction et des Comportements (PRC) UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Valerie Labas
- Physiologie de la Reproduction et des Comportements (PRC) UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Rémy-Félix Serre
- GeT-PlaGe, US INRA 1426, INRA Auzeville, Castanet-Tolosan, Cedex, France
| | - Marion Prudent
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Vanessa Vernoud
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
19
|
Schneider S, Schintlmeister A, Becana M, Wagner M, Woebken D, Wienkoop S. Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:1180-1189. [PMID: 30443991 PMCID: PMC6446814 DOI: 10.1111/pce.13481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
Legume-rhizobia symbioses play a major role in food production for an ever growing human population. In this symbiosis, dinitrogen is reduced ("fixed") to ammonia by the rhizobial nitrogenase enzyme complex and is secreted to the plant host cells, whereas dicarboxylic acids derived from photosynthetically produced sucrose are transported into the symbiosomes and serve as respiratory substrates for the bacteroids. The symbiosome membrane contains high levels of SST1 protein, a sulfate transporter. Sulfate is an essential nutrient for all living organisms, but its importance for symbiotic nitrogen fixation and nodule metabolism has long been underestimated. Using chemical imaging, we demonstrate that the bacteroids take up 20-fold more sulfate than the nodule host cells. Furthermore, we show that nitrogenase biosynthesis relies on high levels of imported sulfate, making sulfur as essential as carbon for the regulation and functioning of symbiotic nitrogen fixation. Our findings thus establish the importance of sulfate and its active transport for the plant-microbe interaction that is most relevant for agriculture and soil fertility.
Collapse
Affiliation(s)
- Sebastian Schneider
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Arno Schintlmeister
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
- Large‐Instrument Facility for Advanced Isotope ResearchUniversity of ViennaViennaAustria
| | | | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
- Large‐Instrument Facility for Advanced Isotope ResearchUniversity of ViennaViennaAustria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
20
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018; 9:1434. [PMID: 30364181 PMCID: PMC6192434 DOI: 10.3389/fpls.2018.01434] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 05/10/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
21
|
Peng WT, Zhang LD, Zhou Z, Fu C, Chen ZC, Liao H. Magnesium promotes root nodulation through facilitation of carbohydrate allocation in soybean. PHYSIOLOGIA PLANTARUM 2018; 163:372-385. [PMID: 29572845 DOI: 10.1111/ppl.12730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Magnesium (Mg) is an essential element for the growth of both plants and bacteria. Low availability of Mg in agriculture can limit crop productivity and quality. In addition to direct effects on plant growth, limited Mg supply may also impact biological dinitrogen (N2 ) fixation in nodules formed from symbiotic interactions between legumes and rhizobial bacteria. To date, the physiological mechanisms involved in Mg-dependent nodulation remains largely unknown. The objectives of this work were to assess how Mg supply affects nodule growth and development in symbiotic systems, and to test if any observed changes in nodule and soybean are correlated with Mg supply. Here, we found that external Mg supply enhanced nodule growth under nitrogen (N) limited conditions, and subsequently improved N2 fixation and soybean growth. Mg supply altered neither nodule structure nor Mg homeostasis, but remarkably promoted nodule enlargement, resulting in an increase in the number of big nodules. In addition, high Mg supply decreased starch and sucrose accumulation in leaves, and increased their concentrations in roots, which consequently enhanced carbohydrate import into the rhizobia infection zone of nodules. In this study, Mg was shown to promote nodule growth in soybean. This Mg-promoted nodule growth is derived from Mg-facilitated alteration of carbohydrate partitioning and transport into nodules.
Collapse
Affiliation(s)
- Wen Ting Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Dan Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Fu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Zhi Chang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
22
|
Krishnan HB, Song B, Oehrle NW, Cameron JC, Jez JM. Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome. Sci Rep 2018; 8:2367. [PMID: 29402985 PMCID: PMC5799319 DOI: 10.1038/s41598-018-20919-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Nitrogen-fixing nodules, which are also major sites of sulfur assimilation, contribute significantly to the sulfur needs of whole soybean plants. Nodules are the predominant sites for cysteine accumulation and the activity of O-acetylserine(thiol)lyase (OASS) is central to the sulfur assimilation process in plants. Here, we examined the impact of overexpressing OASS on soybean nodulation and nodule metabolome. Overexpression of OASS did not affect the nodule number, but negatively impacted plant growth. HPLC measurement of antioxidant metabolites demonstrated that levels of cysteine, glutathione, and homoglutathione nearly doubled in OASS overexpressing nodules when compared to control nodules. Metabolite profiling by LC-MS and GC-MS demonstrated that several metabolites related to serine, aspartate, glutamate, and branched-chain amino acid pathways were significantly elevated in OASS overexpressing nodules. Striking differences were also observed in the flavonoid levels between the OASS overexpressing and control soybean nodules. Our results suggest that OASS overexpressing plants compensate for the increase in carbon requirement for sulfur assimilation by reducing the biosynthesis of some amino acids, and by replenishing the TCA cycle through fatty acid hydrolysis. These data may indicate that in OASS overexpressing soybean nodules there is a moderate decease in the supply of energy metabolites to the nodule, which is then compensated by the degradation of cellular components to meet the needs of the nodule energy metabolism.
Collapse
Affiliation(s)
- Hari B Krishnan
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Bo Song
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Nathan W Oehrle
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey C Cameron
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309-0596, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
23
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30364181 DOI: 10.3389/fpls.2018:01434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
24
|
Rapeseed-legume intercrops: plant growth and nitrogen balance in early stages of growth and development. Heliyon 2017; 3:e00261. [PMID: 28337486 PMCID: PMC5352734 DOI: 10.1016/j.heliyon.2017.e00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/27/2017] [Accepted: 03/08/2017] [Indexed: 11/21/2022] Open
Abstract
In this study we tested whether legumes can improve the growth and N and S nutrition of rapeseed in an intercropping system and compared the effect of mixtures on legume N-fixation and soil N-resources. Rapeseed was cultivated in low N conditions in monocrops using one (R) or two plants (RR) per pot and in mixtures with lupine, clover or vetch. The R monocrop was the most relevant control, intraspecific competition inducing a significant growth delay resulting in a significantly lower leaf number, in RR monocrop compared to R and the three mixtures considered. Plant biomass, and the N and S contents of rapeseed grown in mixtures were the same than those measured in R monocrop. Compared to the monocrop, the proportion of N derived from the atmosphere was increased by 34, 140 and 290% in lupine, clover and vetch, respectively when intercropped with rapeseed. In mixture with clover and lupine, the soil N pool at harvest was higher than in other treatments, while N export by crop was constant. Legumes suffered from competition for soil S resulting in a decrease of 40% in their S content compared to the monocrop. Compared to rapeseeds grown in R monocrop and in mixture with lupine and vetch, rapeseed mixed with clover showed significantly higher SPAD values in old leaves. In our conditions, mixing legumes with rapeseed is relevant to reduce N fertilization and improve nutrition and growth of rapeseed.
Collapse
|
25
|
Chandran M, Chu Y, Maleki SJ, Ozias-Akins P. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations and at different soil sulfur levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1788-1797. [PMID: 25616282 DOI: 10.1021/jf504892f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transgenic peanut (Arachis hypogaea L.) containing a gene designed for RNA interference (RNAi) showed stable complete silencing of Ara h 2 and partial silencing of Ara h 6, two potent peanut allergens/proteins, along with minimal collateral changes to other allergens, Ara h 1 and Ara h 3, across three generations (T3, T4, and T5) under field conditions. Different soil sulfur levels (0.012, 0.3, and 3.0 mM) differentially impacted sulfur-rich (Ara h 2, Ara h 3, and Ara h 6) versus sulfur-poor (Ara h 1) proteins in non-transgenic versus transgenic peanut. The sulfur level had no effect on Ara h 1, whereas low sulfur led to a significant reduction of Ara h 3 in transgenic and non-transgenic seeds and Ara h 2 and Ara h 6 in non-transgenic but not in transgenic peanuts because these proteins already were reduced by gene silencing. These results demonstrate stability of transgene expression and the potential utility of RNAi in allergen manipulation.
Collapse
Affiliation(s)
- Manju Chandran
- Department of Horticulture, University of Georgia , Tifton, Georgia 31793-5766, United States
| | | | | | | |
Collapse
|
26
|
Irar S, González EM, Arrese-Igor C, Marino D. A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants. PHYSIOLOGIA PLANTARUM 2014; 152:634-45. [PMID: 24754352 DOI: 10.1111/ppl.12214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 05/21/2023]
Abstract
Drought is considered the more harmful abiotic stress resulting in crops yield loss. Legumes in symbiosis with rhizobia are able to fix atmospheric nitrogen. Biological nitrogen fixation (SNF) is a very sensitive process to drought and limits legumes agricultural productivity. Several factors are known to regulate SNF including oxygen availability to bacteroids, carbon and nitrogen metabolisms; but the signaling pathways leading to SNF inhibition are largely unknown. In this work, we have performed a proteomic approach of pea plants grown in split-root system where one half of the root was well-irrigated and the other was subjected to drought. Water stress locally provoked nodule water potential decrease that led to SNF local inhibition. The proteomic approach revealed 11 and 7 nodule proteins regulated by drought encoded by Pisum sativum and Rhizobium leguminosarum genomes respectively. Among these 18 proteins, 3 proteins related to flavonoid metabolism, 2 to sulfur metabolism and 3 RNA-binding proteins were identified. These proteins could be molecular targets for future studies focused on the improvement of legumes tolerance to drought. Moreover, this work also provides new hints for the deciphering of SNF regulation machinery in nodules.
Collapse
Affiliation(s)
- Sami Irar
- Servicio de Proteómica y Metabolómica, CRAG - Centre de Recerca en Agrigenòmica - CSIC IRTA UAB UB, Campus UAB, Edifici CRAG, Bellaterra (Cerdenyola del Valles), 08193, Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Kim WS, Jez JM, Krishnan HB. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic soybeans. FRONTIERS IN PLANT SCIENCE 2014; 5:633. [PMID: 25426134 PMCID: PMC4227475 DOI: 10.3389/fpls.2014.00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/24/2014] [Indexed: 05/11/2023]
Abstract
Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans or due to gene silencing. Proteome rebalancing of seed proteins has been shown to promote the accumulation of foreign proteins. In this study, we have utilized RNAi technology to suppress the expression of the β-conglycinin, the abundant 7S seed storage proteins of soybean. Western blot and 2D-gel analysis revealed that β-conglycinin knockdown line (SAM) failed to accumulate the α', α, and β-subunits of β-conglycinin. The proteome rebalanced SAM retained the overall protein and oil content similar to that of wild-type soybean. We also generated transgenic soybean lines expressing methionine-rich 11 kDa δ-zein under the control of either the glycinin or β-conglycinin promoter. The introgression of the 11 kDa δ-zein into β-conglycinin knockdown line did not enhance the accumulation of the 11 kDa δ-zein. However, when the same plants were grown in sulfur-rich medium, we observed 3- to 16-fold increased accumulation of the 11 kDa δ-zein. Transmission electron microscopy observation revealed that seeds grown in sulfur-rich medium contained numerous endoplasmic reticulum derived protein bodies. Our findings suggest that sulfur availability, not proteome rebalancing, is needed for high-level accumulation of heterologous methionine-rich proteins in soybean seeds.
Collapse
Affiliation(s)
- Won-Seok Kim
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of MissouriColumbia, MO, USA
| | - Joseph M. Jez
- Department of Biology, Washington UniversitySt. Louis, MO, USA
| | - Hari B. Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of MissouriColumbia, MO, USA
| |
Collapse
|
28
|
Salon C, Bataillé MP, Gallardo K, Jeudy C, Santoni AL, Trouverie J, Voisin AS, Avice JC. (34)S and (15)N labelling to model S and N flux in plants and determine the different components of N and S use efficiency. Methods Mol Biol 2014; 1090:335-46. [PMID: 24222425 DOI: 10.1007/978-1-62703-688-7_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In order to highlight our understanding on ecosystems functioning and resource sharing/competition, either in artificial environment or agrosystems, according to changes in the climatic conditions, it is necessary to measure accurately element fluxes within plants. Stable isotopes allow tracking safely and accurately on a short time frame the behavior of elements in plants. After a short review devoted to isotopic studies of elemental flux within plants, we explain how a direct multiple labelling study might be conducted in a plant, so as to measure over short time nitrogen and sulfur acquisition, and assimilates arising from a labelled source.
Collapse
Affiliation(s)
- Christophe Salon
- INRA UMR 1347 Agroécologie INRA/Université de Bourgogne/AgroSup, Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gallardo K, Courty PE, Le Signor C, Wipf D, Vernoud V. Sulfate transporters in the plant's response to drought and salinity: regulation and possible functions. FRONTIERS IN PLANT SCIENCE 2014; 5:580. [PMID: 25400648 PMCID: PMC4212607 DOI: 10.3389/fpls.2014.00580] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/08/2014] [Indexed: 05/20/2023]
Abstract
Drought and salinity are two frequently combined abiotic stresses that affect plant growth, development, and crop productivity. Sulfate, and molecules derived from this anion such as glutathione, play important roles in the intrinsic responses of plants to such abiotic stresses. Therefore, understanding how plants facing environmental constraints re-equilibrate the flux of sulfate between and within different tissues might uncover perspectives for improving tolerance against abiotic stresses. In this review, we took advantage of genomics and post-genomics resources available in Arabidopsis thaliana and in the model legume species Medicago truncatula to highlight and compare the regulation of sulfate transporter genes under drought and salt stress. We also discuss their possible function in the plant's response and adaptation to abiotic stresses and present prospects about the potential benefits of mycorrhizal associations, which by facilitating sulfate uptake may assist plants to cope with abiotic stresses. Several transporters are highlighted in this review that appear promising targets for improving sulfate transport capacities of crops under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Karine Gallardo
- Institut National de la Recherche Agronomique, UMR1347 Agroécologie, DijonFrance
- *Correspondence: Karine Gallardo, Institut National de la Recherche Agronomique, UMR1347 Agroécologie, 17 rue de Sully, BP 86510, Dijon, France e-mail:
| | - Pierre-Emmanuel Courty
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, BaselSwitzerland
| | - Christine Le Signor
- Institut National de la Recherche Agronomique, UMR1347 Agroécologie, DijonFrance
| | - Daniel Wipf
- Université de Bourgogne, UMR1347 Agroécologie, DijonFrance
| | - Vanessa Vernoud
- Institut National de la Recherche Agronomique, UMR1347 Agroécologie, DijonFrance
| |
Collapse
|
30
|
Zuber H, Poignavent G, Le Signor C, Aimé D, Vieren E, Tadla C, Lugan R, Belghazi M, Labas V, Santoni AL, Wipf D, Buitink J, Avice JC, Salon C, Gallardo K. Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:982-96. [PMID: 24118112 DOI: 10.1111/tpj.12350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 05/11/2023]
Abstract
Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.
Collapse
Affiliation(s)
- Hélène Zuber
- Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Varin S, Lemauviel-Lavenant S, Cliquet JB. Is white clover able to switch to atmospheric sulphur sources when sulphate availability decreases? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2511-2521. [PMID: 23645868 DOI: 10.1093/jxb/ert109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sulphur (S) is one of the very few nutrients that plants can absorb either through roots as sulphate or via leaves in a gas form such as SO2 or H2S. This study was realized in a non-S-enriched atmosphere and its purpose was to test whether clover plants can increase their ability to use atmospheric S when sulphate availability decreases. A novel methodology measuring the dilution of (34)S provided from a nutrient solution by atmospheric (32)S was developed to measure S acquisition by Trifolium repens L. Clones of white clover were grown for 140 d in a hydroponic system with three levels of sulphate concentrations. S concentration in plants decreased with S deficiency and plant age. In the experimental conditions used here, S derived from atmospheric deposition (Sdad) constituted from 36% to 100% of the total S. The allocation of S coming from atmospheric and pedospheric sources depends on organs and compounds. Nodules appeared as major sinks for sulphate. A greater proportion of atmospheric S was observed in buffer-soluble proteins than in the insoluble S fraction. Decreasing the S concentration in the nutrient solution resulted in an increase in the Sdad:leaf area ratio and in an increase in the leaf:stolon and root:shoot mass ratios, suggesting that a plasticity in the partitioning of resources to organs may allow a higher gain of S by both roots and leaves. This study shows that clover can increase its ability to use atmospheric S even at low concentration when pedospheric S availability decreases.
Collapse
Affiliation(s)
- Sébastien Varin
- Université de Caen, UMR 950 Ecophysiologie Végétale Agronomie et nutritions NCS, INRA/Université de Caen, Esplanade de la Paix, F-14032 Caen, France
| | | | | |
Collapse
|
32
|
Sieh D, Watanabe M, Devers EA, Brueckner F, Hoefgen R, Krajinski F. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. THE NEW PHYTOLOGIST 2013; 197:606-616. [PMID: 23190168 DOI: 10.1111/nph.12034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/02/2012] [Indexed: 05/24/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction that occurs between the large majority of vascular plants and fungi of the phylum Glomeromycota. In addition to other nutrients, sulfur compounds are symbiotically transferred from AM fungus to host plants; however, the physiological importance of mycorrhizal-mediated sulfur for plant metabolism has not yet been determined. We applied different sulfur and phosphate fertilization treatments to Medicago truncatula and investigated whether mycorrhizal colonization influences leaf metabolite composition and the expression of sulfur starvation-related genes. The expression pattern of sulfur starvation-related genes indicated reduced sulfur starvation responses in mycorrhizal plants grown at 1 mM phosphate nutrition. Leaf metabolite concentrations clearly showed that phosphate stress has a greater impact than sulfur stress on plant metabolism, with no demand for sulfur at strong phosphate starvation. However, when phosphate nutrition is high enough, mycorrhizal colonization reduces sulfur stress responses, probably as a result of symbiotic sulfur uptake. Mycorrhizal colonization is able to reduce sulfur starvation responses in M. truncatula when the plant's phosphate status is high enough that sulfur starvation is of physiological importance. This clearly shows the impact of mycorrhizal sulfur transfer on plant metabolism.
Collapse
Affiliation(s)
- Daniela Sieh
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Emanuel A Devers
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Franziska Brueckner
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Franziska Krajinski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|